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Abstract: In this paper, we investigate the complex spatiotemporal dynamics of a modified Leslie-
Gower model with taxis mechanism and digestion delay. First, the boundedness of solutions and
the global stability of the positive equilibrium point without digestion delay are obtained. Then, the
occurrence conditions for Hopf bifurcation and Turing-Hopf bifurcation under the combined effect
of the predator-taxis and digestion delay are obtained. Theoretically, there is no Hopf bifurcation
or Turing instability as the taxis mechanism and digestion delay are absent. Our results find
that the predator-taxis effect governs the existence of the Turing bifurcation and the emergence of
nonhomogeneous patterns, while the digestion delay determines the stability and the existence of
periodic solutions. Finally, numerical simulations verify the validity of the theoretical analysis, and
homogeneous pattern, nonhomogeneous steady, nonhomogeneous periodic, and mixed patterns are
observed. Interestingly, it is further shown that a double Hopf bifurcation emerges, which is induced
by the interaction between nonhomogeneous Hopf bifurcations with different modes.
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1. Introduction

Since the pioneering work of Lotka and Volterra [1, 2], interactions between predator and prey
populations have been extensively studied from different mathematical perspectives [3—5]. The
Leslie-Gower model is a fundamental framework for modeling predator-prey interactions, where the
predator’s carrying capacity is proportional to prey density [6—8]. A diffusive version of the Leslie-
Gower model takes the following form:
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0

a—bt‘ —dyAu = ru(l - %) ~ fwg(v), xeQ, >0,

ov sV

E—dzAv—rz(l—;), xeQ, >0, (1.1)
ou Ov

%_%_o, x€0Q,t>0,

u(x,0) = up(x) = 0,v(x,0) = vp(x) 20, xeQ,

where u(x, 1) and v(x, t) represent the densities of prey and predator populations, respectively. r;(i=1, 2)
is the intrinsic growth rate, K represents the carrying capacity of environment, s is the maximum per
capita reduction rate of predator that can be achieved, and all parameters are positive constants due
to real biological meanings. d;(i = 1,2) is the diffusion coefficient, and A represents the Laplacian
operator in R”. n is the outward unit normal vector along €2, and the homogeneous Neumann boundary
conditions indicate that there is no population flux across the boundaries. The term f(u)g(v) represents
the speed at which prey is captured. M means that the preys are consumed by each predators, which
is referred as a functional response by Solomon [9]. Here, f(u) = au, g(v) = 15—, where a > 0 denotes
the capture rate, and 42 > O denotes the interference parameter among predators, which presents that
the predation rate is reduced due to predators interfering with the other at high predator density. If the
predator density is low, 15— ~ v for small v, and the mutual interference among predators disappears.

For the growth of a generalist predator, Upadhyay R. K. [10] modeled it as:

% ~dAv = v(dv - us:e)’

where d describes the growth rate of v via sexual reproduction, and e presents for other food sources
to avoid a drastic reduction in the number of remaining predators due to a severe shortage of food. dv?
signifies the fact that mating frequency is directly proportional to the number of male as well as female
individuals.

In ecological environments, research shows that the spatial dynamics of population models with
diffusion are more diverse [11-13]. Directed movement is ubiquitous in biological progress. Living
organisms can perceive and react to their environment through moving towards or away from stimulus,
the behavior is known as taxis. A typical example is predator-taxis, which means prey moves opposite
to the gradient direction of predator distribution to avoid being captured by the predator. Keller and
Segel [14] proposed the classical model incorporating chemotaxis, which was originally developed to
illustrate the aggregation dynamics of cellular slime molds through chemical attraction. The model
has served as the foundation for predator-prey models with predator-taxis [15—-17]. Correspondingly,
prey-taxis is defined as the directed movement that predators exhibit a tendency to migrate toward
regions of high prey density for food resources. Notably, the model with prey-taxis is first proposed
by Kareiva and Odell [18], which describes the non-random foraging behavior of the predator. The
taxis mechanism plays a key role in exhibiting rich and complex dynamic phenomenons which either
stabilize or destabilize the reaction-diffusion system under certain conditions. Chen et al. [19, 20]
took the predator-taxis sensitive coefficient as a bifurcation parameter, demonstrating that attractive
predator-taxis gives rise to various heterogeneous patterns and leads to the occurrence of steady-state
bifurcations. Wu et al. [21] demonstrated that repulsive predator-taxis does not qualitatively affect
the existence and stability of steady states, but may reduce the probability of spatial heterogeneity.
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Furthermore, in most cases attractive prey-taxis tends to stabilize the interactions between predator and
prey [22], while repulsive prey-taxis can give rise to pattern formation [23]. More interesting pattern
formation induced by the taxis mechanism in the predator-prey system has recently been studied,
see [24-26] and references therein.

Moreover, time delay exists widely in the real world. Time delay usually represents maturity period,
gestation, and resource regeneration time. In the predator-prey system, when the predator consumes the
prey, it will not increase the density of the predator immediately, and consumption between different
populations takes some time, which is referred as digestion delay [27,28]. Many scholars have studied
the effect of time delay on the predator-prey models. Song et al. [29] investigates that time delay
can destabilize the positive equilibrium and induce stable spatially homogeneous periodic solutions
through a delayed ratio-dependent predator-prey model. Yao et al. [30] investigated the stability and
existence of the Hopf bifurcation at the coexistence equilibrium for a fear effect predator-prey model
with multiple delays.

Spatial heterogeneity, which means nonhomogeneity and complexity in population spatial
distribution, is universal in biological systems. While periodic phenomena, referring to periodic
fluctuations in species density driven by factors such as time delay, food supply, mating habits,
and harvesting, are widespread in ecosystems. It is conductive to understand the phenomenon
of spatiotemporal oscillations in species density from the perspective of bifurcation. The taxis
mechanism and time delay play an important role in inducing spatiotemporal nonhomogeneous
patterns. Theoretically, there are no Hopf bifurcation or Turing instability as the taxis mechanism
and digestion delay are absent. In fact, the taxis mechanism can induce spatially nonhomogeneous
solutions, while time delay is one of the mechanisms for the existence of temporal periodic solutions.
For an ecological system, it is more reasonable to consider the taxis mechanism and time delay.
However, there is limited exploration in the literature for the role of the taxis sensitivity coefficient and
time delay control parameter in inducing spatiotemporal nonhomogeneous patterns [31,32]. Motivated
by these, we will further consider the following modified Leslie-Gower model with predator-taxis and
digestion delay under homogeneous Neumann boundary conditions

ou u auy
E—dlAu+XV'(qu)+m(1—E)—1+hv, xeQ, >0,

0

—v:dzAv+v(dv—L), xeQ, t>0,

ot ux,t—7t)+e (1.2)
ou Ov

é)_n_a_n_(), x€eoQ, t>0,

u(x,0) = ug(x) > 0,v(x,0) = vy(x) = 0, xeQ,

where 7 > 0 stands for the digestion delay for the predator to convert the energy obtained from prey,
and y is the predator-taxis sensitivity parameter. The term 'V - («Vv) describes the movement of prey
toward the gradient of the predator distribution with y > 0 indicating repulsive taxis and y < 0 denoting
attractive taxis, respectively.

This paper focuses on the spatiotemporal nonhomogeneous pattern phenomenon of system (1.2). By
choosing the time delay control parameter and predator-taxis sensitivity coefficient as the bifurcation
parameters, we obtain the sufficient conditions of the existence of the Hopf bifurcation and Turing-
Hopf bifurcation. We find that the time delay control parameter determine the stability of unique
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positive equilibrium and the existence of spatial homogeneous periodic solutions, and the predator-
taxis sensitivity coefficient governs the existence of the Turing bifurcation and the emergence of the
spatial nonhomogeneous patterns. However, the combined effect of predator-taxis and digestion delay
leads to the Turing-Hopf bifurcation and the emergence of spatially nonhomogeneous periodic patterns.

The remainder of this paper is organized as follows: In Section 2, we prove the boundedness of
solutions of system (1.2) and the global stability by constructing suitable Lyapunov function. In
Section 3, we establish the occurrence conditions of Hopf bifurcations in system (1.2). In Section 4, the
conditions for the Turing-Hopf bifurcation are given. In Section 5, numerical simulations are exhibited
to illustrate the theoretical analysis and rich spatiotemporal patterns are demonstrated. Finally, a brief
summary is given in Section 6.

2. Global stability and boundedness of solutions

System (1.2) has a unique positive equilibrium E,, where
s—ed rK —a)
s Va = .
d aK — rh(K — @)

E.(u.,v.) = (@, ), @ = (2.1)

This satisfies the following conditions:

(i) s—ed >0,

(i) (K — )[aK — rh(K — @)] > 0.

Next, we will discuss the boundedness of solutions and the global stability of (u., v.) as the digestion
delay parameter 7 = 0.

Lemma 2.1. Assume that d,,d»,r,k,a, h,d, s, and e are all positive, and Q C R¥(N > 1) is a bounded
domain. Then, for x € Q,t € (0, +0), when rh —a > 0, s — d(K + e) > 0 hold, we have

) . ) iy +e -
lim sup max u(x, ) < K := i, lim sup max v(x, t) < ————— = ¥y,
oo XEQ oo XEQ s —d(iig + e)
.. . r+ (l"h - Cl)f/() R L. . R
liminf minu(x,t) > K————— = {15, liminf minv(x, ) > 0 := 9,.
t—o0  xeQ r+ rhvo t—o0  xeQ

Proof. Let (u(x,1),v(x,1)) be a solution of system (1.2) with u(x,0) # 0,v(x,0) # 0 for x € Q. From
the first equation of system (1.2), we have

0
a—b;—dlAu—)(V-(qu) < ru(l—%), xeQ t>0.
A scalar equation with respect to u is as follows:
0
a—b;—dlAu—)(V-(qu):ru(l —%) xeQ t>0,
o, x €80, 1> 0, (2.2)
on
I/l(.x, O) = MO(-x$ 0)’ X € Q

Let U(x, f) be the solution of (2.2). By the comparison principle, we have u(x,t) < U(x,t) for x € Q
and ¢ > 0. From lim U(x, f) = K for x € Q, we obtain

t—o0

lim sup m%x u(x,t) < K :=iiy.

t—oo0 €
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For sufficiently small £; > 0, there exists 7} > 0, such that u(x, t) < ity + &) for x € Q and t > T holds.
From the second equation of system (1.2), we have

0
—v—dzAvsv(dv—~L+ 1), xeQ 1> T
ot fig+e +e
A scalar equation with respect to v is as follows:
0
—V—dzAv:v(dv—#+ 1), xeQ, t>T,
ot lig+e +e
0 2.3
oo, x€dQ, t>T), @3
on
v(x, Ty) = vo(x,T), x € Q.

Let V(x, 1) be the solution of (2.3). By the comparison principle, we have v(x, ) < V(x,1) for x € Q

and ¢ > T,. From lim V(x, ) = % for x € Q and the arbitrariness of &, then as s —d(K +¢) > 0,
—o00
we obtain .
. Up +e ~
lim sup max v(x, f) < ————— = .
(oo XEQ s —d(iig + e)

For sufficiently small &, > 0, there exists T, > T such that v(x, f) < ¥y + &, for x € Q and t > T holds.
From the first equation of system (1.2), we have

0
a—L;—dlAu—)(V-(qu)Zru(l—%)—la—u+h,er,t>T2.

Vo+e2
A scalar equation with respect to u is as follows:

ou au(vy + &)

u
— —diAu—vV - V) = (1——)——, Q,t>T,,
g AUV @V =\l = ) e ey e > T
oy, veo s Y
on
M(X, T2) = l/l()(.x, T2)a x € Q.

Let U(x, 1) be the solution of (2.4). By the comparison principle, we have u(x,t) > U(x,t) forx € Q

and r > T,. Then, as rh —a > 0, from lim U(x, ) = K % for x € Q and the arbitrariness of &,
>0

we obtain 3
r+ vo(rh —a) )

liminf min u(x, 1) > K — = 1.
=00 xeQ r + rhvy
From the second equation of system (1.2), we have
0
—v—dZAv:v(dv— il ) xeQ 10,
ot u+e
»_y, x€d, >0, (2.5)
on
v(x,0) = vo(x,0), x € Q.

As such, treating (2.5) as a scalar equation with respect to v, we find that zero is a lower solution
to (2.5). Thus, we obtain

lim inf min v(x, t) > 0 := 7.
t—oo  xeQ

The proof is complete. O
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Remark 2.1. From Lemma 2.1, we know that the limit set of all solutions (u,v) of system (1.2) belongs

to Gy = [X,, X5] X [, Y>], where

X; = min {ilg, min up(x)}, X, = max {iig, max uo(x)},

Y, = min {9y, min vo(x)},

Y, = max {¥y, max vo(x)} .

That is, we have proved that solutions of system (1.2) are bounded under certain conditions. Next, we
prove the global stability of the positive steady state (u., v.) of system (1.2) without time delay by using

a Lyapunov function.

Theorem 2.1. Assume that d,d,,r,k,a,h,d,s, and e are all positive, and Lemma 2.1 holds. The
coexistence equilibrium E, = (u.,v.) is globally asymptotically stable for (u,v) € Gy = [Xi,X5] X

[Y1, Y] and system (1.2) without delay if (H,) and (H;) hold, where

4d1d2V* r
H):yv? < ,—>d,
( 1) X M*Y22 K
) K a SV,
H>) :d < - — -
(H>) Xo+e r|20+hY)(1+hv,) 2(X; +e)u, +e)

Proof. Using the Lyapunov function

V(t):f(u—u*—u*lni)dﬁf(
Q Uy Q

the derivative of V(¢) is

. u—u,\ ou V—V,\0v
= —d —d
v jg;( u )6t X+L( v )Ot x

V—v,—v.In—

:]g;(u_uu*)(dlAu+XV-(qu))dx+Ld2(

¥ fg(u ~ ) [r(l B %) 1 zvhv]dx+L(v_v*) (dv— us:e)dx

=V + V..

On the one hand, we denote

Vi = L(u _uu*)(dlAu +xV- (qu))dx+Ld2(

du. v, :
:—f[ - |Vu|2+2—;|Vv|2+)%Vu-Vv]dx
Q \% u

I/t2
:—fP{leldx.
Q
Define 4
_ [ Vu _[ 5
e(¥)es(

AIMS Mathematics
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Y ) dx,
Vi

) Avdx

) Avdx
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Then,
dll/L-F d2v* dldgl/t*v* )(21/!2
T = > 0, Det = - =,
race(Q)) = =" + = Q) = =~
Therefore, Det(Q;) > 0 is equivalent to y* < %. One finds that it means
2 4d1d2V*
< )
u*Yz2

because of Y; < v(x,t) < Y,. Therefore, Q; is a positive definite matrix, implying that V; < 0.
On the other hand, we denote

T e K e

_f( _ )r_r(u—u*)_%_a(v—v*)_ av, J
ST K K 1+ 1+mw|"
+f(v—v*) [d(v—v*)+dv*—s(v_v*)— SV dx
o u+e u+e

_ el (5
- fg(u w) L(v b)) (u+e d)dx

a SV
- — Uy - Vx - d
fg(“ UV =V T A+ vy s o o |4
= —ngszde,
Q
where
L a _ SV,
u—u,
Pz:( - ) 0,= . K_ . 2(1+hn)(1+hy,) _26(lu+e)(u*+e)
2(1+)(1+hv,) 2u+e)(u.+e) u+e
Thus,
Trace(Q):L+ 4
YTK Tuve
2
r S a %
Det(Qy) = — _ d) - - i .
enQ) = ¢ (u Te 20+ )1+ hvy)  2(u+ e)u, + e)]

We obtain Trace(Q,) > 0 if
Z_d>o.
K

In addition, if we suppose

s K 2

u-+e r

a SV
2(1 + h)(1 + hv,) B 2(u + e)(u, + e)
one obtains Det(Q,) > 0. Noting that X; < u(x,t) < X; and Y < v(x,t) < Y,, we have
S K 2
X, +e o

d<

b

a SV
21 +hY)(1+hv.)  2(X, + e)(u, + e)
Then, Q, is a positive definite matrix, implying that V, < 0.
To sum up, we obtain V() = V; + V, < 0. Thus, the positive steady state E, = (u,, v,) is globally
stable for (u,v) € Gy = [X1, X2] X [Y1, Y»] and system (1.2) without delay. The proof is complete. O

d<
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3. Hopf bifurcation

In this section, we investigate the Hopf bifurcation of system (1.2). We linearize system (1.2) at the
coexistence equilibrium E, and obtain

du i i
HEE S H R E R E
3 0 dzm Y 1% Vr
where
ay ap _ O 0
AO‘( 0 0 )’AT_(b 0)

From (2.1), @ = u, > 0, so

ra au SV,
a= -2 0 a=--- 0 b=—" S0, 32
Y 2T A+ ) (a + e)? 3-2)

Subsequently, the characteristic equation of system (3.1) is
det(ul + M, — Ag — Ae™") =0, (3.3)
dl /ln /\/a’/ln

0 d,
Neumann boundary conditions with n € Ny. From (3.3), we obtain the following equation:

where [ is the 2 X 2 identity matrix, M,, = ,and A, = ';—22 is the eigenvalue of —A under

W+ (di A, + dody, — a))p + dida A% — dadnay + (yad, — ay)be ™ = 0. (3.4)
Substituting u = 0 into Eq (3.4), we obtain
d\dy 22 + (—dha, + yab)A, — a;b = 0. (3.5)

There is no 4, > 0 satisfying Eq (3.5) due to all the coefficients of Eq (3.5) being positive, which
indicates that system (1.2) does not undergo the steady state bifurcation.

In the following, we focus on the analysis of Hopf bifurcations. For 7 > 0, we substitute u = iw,
(w, > 0) into (3.4) and obtain

—wﬁ + (d A, + dr A, — ay)iw, + dldz/li —drA,ay + (yad, — ax)be ™ = 0,

that is,
CL),ZI — (dl/ln + dz/ln - al)iw,, - dldz/lrzl + dz/lnal

(Xa'/ln - aZ)b

For e™™ = cos(w,T) — i sin(w,T), separating the real and imaginary parts of the Eq (3.6), we obtain

e—iwnr —

(3.6)

a)ﬁ - dldz/lﬁ + dz/lna]

cos(w,T) = (ean % ,
ad, —a
in(eo,p) = i+ b, Za)w, (3.7)
T (vad, —ab
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We have
wy + [(did, — ) + B W} + (d1dy Xl = dydyar)” = (yad, — )b = 0. (3.8)

Since (dy A, — a;)* + d342 > 0, then Eq (3.8) has positive roots when
(d1do A2 — dyA,a1)* — (xad, — a;)*b* < 0,

which implies that
d\dr A% — (yab + dya))d, + a;b < 0. (3.9)

Next, we present Lemmas 3.1 and 3.2 to analyze the occurrence of a Hopf bifurcation in system
(1.2).

Lemma 3.1. Let

1
f(X) = Tldz |:(d2al +Xa’b) + \/(d2a1 +Xalb)2 - 4d1d2a2b] . (310)
and |
— (d1dy — dya > + apbl*), 0 <1<,
Yo = abIZ( i —darl + arbl’), 0 <l (3.11)
0, [ > I,
where
1
l() = \/Za b (dzal - d%a% - 4d1d2(12b) . (312)
2

Then, we have
(i) if 0 < x < x. there is a pair of pure imaginary roots +iw for the characteristic Eq (3.4) at
T = T with

1 wy
To; = — [arccos( b) +2jn|, j € Ny; (3.13)

wWo —a

(ii) if ¥ > X there is a pair of pure imaginary roots +iw, (0 < n < N) for the characteristic Eq (3.4)
at T = T,j with

Tnj =

(Xa'/ln - aZ)b
where N = [\/ggy)ﬂ] and [-] denotes the integer part function.

1 [ (wﬁ - d]dz/l% + dz/lnal
— |arccos
Wy,

)+2j7r], jeN,, (3.14)

Proof. Considering Eq (3.8) as a quadratic function of w?, it exhibits positive roots when inequality
(3.9) holds. To study the distribution of roots corresponding to inequality (3.9), by letting p = 4,,, we
obtain

d\dyp* — (xab + dya))p + ab = 0. (3.15)

It is clear that Eq (3.15) has a unique positive root p = £(y) defined by (3.10). To ensure that Eq (3.8)
with n > 1 has positive roots, there must exist 4, for n > 1 to satisfy (3.9). Since A, is monotonically
increasing, that is, 4; < 4, < --- < 4, < ---, we obtain that if A; does not satisfy (3.9), implying
Ay > &(y), then all 4, do not satisfy (3.9). It is shown that Eq (3.8) does not have a positive root for
n>1.
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When y = 0, £(y) takes its minimum value as follows:

£0) = miné(y) = (oar + \Jdia? — ddacb).

2d,d,

By solving A=, = 1l2 = £(0), which is equivalent to
0

did, d
ﬁ—ﬂ+ba220,
I 2
0 0

then we obtain /y in (3.12). When [ > [y, it implies that 4; = llz < 1 and 10% = £(0). We deduce that

i
A = 112 < miél &(x), so there exists n > 1 such that Eq (3.8) has solutions for y > 0. In this case, the
X>
critical value y of Eq (3.8) is y. = 0.
When 0 < [ < [y, assuming the critical value of Eq (3.8) is y., and considering 4, = 112 = &(y.), we
solve the equation as follows:

11 ;
1—2 = @ (dzd] + Cl’b)(,< + \/(dzal + Clb)(*) — 4d1d2612b) .

Then, we obtain
1

abl?

Clearly, when 0 < y < y., there exists no n > 1 satisfying 4, < &(y). Therefore, there is no w, > 0
such that Eq (3.8) has solutions. When y > y., there is 4; that satisfies inequality (3.9). This means
that when n > 1, there must be certain values A, satisfying (3.9).

Next, we assume Ay < &(x) to obtain the number of solutions for (3.9), then we obtain the number of
solutions as N = [ \/f(X)lz:I. Furthermore, the stability of positive equilibrium is determined by the first
critical value of the Hopf bifurcation. By solving Eq (3.7), the critical value is 7 = 7,; for0 <n < N
as in (3.14). This completes the proof. O

X x (d]dz - dzd]lz + Clzbl4) .

Lemma 3.2. 7y and 7,0(y) are defined by (3.13) and (3.14) with j = 0 as follows:

1 wg
Top = — arccos Ak

Wy —ay
1 a)% —d dg/l% + dz/lnal
T,0 = — arccos
' (@, - ar)b

n

(3.16)

), 1<n<N,

where N is defined in Lemma 3.1. Then, we have the following statements:
(i) Too is constant with respect to x, T,0(x) monotonically decreases with respect to y for1 < n < N,
and

lim 7,0(x) = 0;
X—00
(i) When y = 0, 1,0(0) is a monotonically increasing function with respect to n for 0 < n < N, that
is,

Too = min T,0(0).
00 = min 10(0)
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Proof. (1) Ty is constant for y. Next, we will demonstrate that 7,,(y) is a strictly decreasing function
with respect to y for 1 < n < N. Additionally, w, is a function of y, satisfying Eq (3.8). First,
differentiating both sides of Eq (3.8) with respect to y, we obtain

dw, dw,
430, B0 14 Yt 2] - 2B (vad, — an)ad, = O.
dx dx
Then, ,
dw, 2b%ad,(yad, -
O _ (1) = adxad - o) >0 (3.17)
dx 403(x) + 2[(d1 Ay — a1)* + B2 2w,

Taking the derivative on both sides of the second equation in (3.16) with respect to y, we obtain

dTo() _ w,i)

dy %)

arccos H,, —

1
e - ,
%mﬁ—%”m

(1),21 —d, d2/1,21 + drA,a4
Hn(X) = s
(xad, — a)b
and w,(y) 1s defined in (3.17). Next, differentiating H,,(y) with respect to y, we get

where

2wn(X)w;z(X)(Xa/ln - aZ)b - (w%(){) - dl dZA% + dZ/lnal)a’/ln

H () =
00 (xad, — a)*b

Since 0 < arccos H, < m and w,,(y) > 0, it follows that ‘KTd—(;(m) < 0. Thus, 7,0(y) is a monotonically
decreasing function with respect to y for 0 < n < N. Based on Eq (3.17), w,(y) — +co when y — +oo,

thatis lim —— = 0. Moreover, arccos H, is a bounded function, so lim T.0(x) = 0.
X—+o0 wn(x) X—+o0

(i) When y = 0, let A, = p, and the second equation in (3.16) can be rewritten as

2(0) — dydop* +d
arccos ©,0) ~ didzp 2P ,0<n<N. (3.18)

700 = 70(0) = s

Denote w,(0) = w,(p), where w,(p) satisfies
@,(p) + Udip = a1)’ + dyp*1ay(p) + (drdop® = dypar)’ + a3b” = 0. (3.19)
Differentiating both sides of Eq (3.19) with respect to p, we obtain
_5,%(17)[20'1(61119 —ay) +2d5p] + 2(d\d>p* — aydyp)(2d\dop — doay) <0
40Y(p) + 2[(dip — ar)’ + d3 p*1@(p)
Then, taking the derivative of Eq (3.18) with respect to p, we have

dp(©) _ @(p) 1
dp w(p)

w,(p) =

arccos H, — H.

wn(p) 1 — Hy

Since ﬁ,, = Hyl,=0, w,(p) < 0, and a, < 0, we get [KTZ—‘;(O)) > 0. This means 7, is monotonically
increasing with respect to p. However, p is proportional to n, then 7,, increases monotonically with
respect to n, that is 79o(0) < 719(0) < - -+ < T50(0). This completes the proof. O
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Using Lemmas 3.1 and 3.2, we obtain the stability of the coexistence equilibrium and the properties
of the Hopf bifurcation in system (1.2) as follows.

Theorem 3.1. Define y* = lmin Xn» Where x, is a solution of the equation Toy = Tuo(x).
<n<N

(i) (Bifurcation) . is defined by Eq (3.11). Then, we have the following results:
(@) If 0 < x £ x., system (1.2) undergoes spatially homogeneous Hopf bifurcations at T = 7y; for
Jj € No, where 1oy = I_n%?n To; IS the critical value for the Hopf bifurcation, and the first Hopf bifurcation
JENo

is spatially homogeneous.

b) If x. < x £ X, system (1.2) undergoes mode-n Hopf bifurcations at T = t,j for 0 < n < N and
J € Ny, where 1oy = oI<I;111<r11v T 1S the critical value for Hopf bifurcation, so the first Hopf bifurcation is
spatially homogeneous.

(o) If x > x*, system (1.2) undergoes mode-n Hopf bifurcation at t = 7,; for 0 < n < N and j € N,.
Since there is no absolute order for 7,9, thus we define T, = 1r<r:,1<1}v T,0 as the first critical value for the
Hopf bifurcation, at which the periodic solutions are spatially nonhomogeneous.

(d) If x > x., there exists double Hopf bifurcation due to the interaction between homogeneous and
nonhomogeneous or between nonhomogeneous Hopf bifurcations with different modes.

(i) (Stability) The stability analysis of coexistence equilibrium E., is as follows:

(a) If 0 < x < X7, the positive equilibrium (u.,v.) of system (1.2) is locally asymptotically stable
fJor T € [0,749) and unstable for v € (1y9, +00). Then the periodic solution bifurcating from T = 1 is
spatially homogeneous.

(b) If x > X7, the positive equilibrium (u.,v.) is local asymptotically stable with respect to T € [0, 7.)
and unstable with respect to T € (T, +0), and the periodic solution bifurcating from T = 7, is spatially
nonhomogeneous.

Proof. (i)-(a). When 0 < y < y., rewriting the characteristic Eq (3.4), we have
W+ Ayt + By + Crbe™ =0, (3.20)

where Ak = d]/ln + dz/ln —dap, Bk = d]dz/ll% - dlenal, and Ck :)(a//ln —as.
To verify the transversality conditions, we take the derivative of Eq (3.20) with respect to 7, getting

du du _ du
2u— + Ay— + Cybe™ | —u— 17— | =0,
Har " “dr T hbe ( H TdT)

then

du\"' 2u+ A, - Cibre™™  2u+A
(d_ﬂ) _ st A= CpoTe ™ At i _T 321
.

Cibue v ~ Cibue™™  u
Using Egs (3.7) and (3.21), we obtain

2/J+Ak T

—_— =signRe
Cibue™™ p ] [

)"
sign[Re(—'u) l = signRe
dT T=Tpj

=T

2w3_2(d1d2/13_d2/1nal)+(d1/1n+d2/ln_al)2] } [20)%—231#14%
> = sign | ——5—>——
C2b? C?b

2ia)n +Ak
Cibiw,[cos(w,T,/)—i Sin(w, )]

= sign [
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-1
Since A2 — 2B, > 0, we have sign[Re(%) ] > 0, that is, sign|Re (%)] _ > 0. Thus, the Hopf

=Ty T=Tnj

bifurcation at T = 7,; indeed occurs, where 7,0 = min7,;. Thus, (i)-(a) holds.
JENy

(1)-(b). When y. < x¥ < x*, Tw(y) is a monotonically decreasing function with respect to y, and
T(o 1S constant with respect to y. There exists 7g9 < 7,0 when y = 0 and 7,0 — 0 when y — +co.

This implies that there exists y,, such that 7o and 7, intersect at y = y,, where n = 1,2,--- | N, and
X = lmlrjlv Xn- Furthermore, because 7oy = 0m1n Tq0 18 the first critical point for the occurrence of a
<n<

Hopf bifurcation, the periodic solution at the first critical value is spatially homogeneous. Thus, (i)-(b)
holds.

(i)-(c). When y > x*, according to Lemma 3.1, Hopf bifurcations are possible for wave number 0 <
n < N. Moreover, the first critical value of the Hopf bifurcation depends on y rather than 74y, so we

define the first critical value as 7, = 1mm T,0. Consequently, the Hopf bifurcation at the first critical
<n<N

point leads to spatially nonhomogeneous periodic solutions. Thus, (i)-(c) holds.
(1)-(d). When y > y., the critical values 7,0(y) for I < n < N are strictly monotonically decreasing
with respect to y, while 7 is constant with respect to y. Obviously, lim 7,0(y) = 0, and 7oy < 7,,0(0)
X+

when y = 0. For different 1 < n < N, the bifurcation curve 7 = 7,(y) exists intersection points and
bifurcations occur at these points. The double Hopf bifurcations emerge by the interaction between
homogeneous and nonhomogeneous or between nonhomogeneous Hopf bifurcations with different
modes. Thus, (i)-(d) holds.

(ii)-(a). According to conclusion (i), the first critical value of Hopf bifurcation is attained at 7
when 0 < y < x*. Using Hopf bifurcation theory, the equilibrium E. is locally asymptotically stable
for 7 € [0, 79) and unstable for 7 € (7, +0), and the periodic solution is homogeneous in space.
Thus, (ii)-(a) holds.

(i1)-(b). According to conclusion (i), the first critical value of Hopf bifurcation is attained at
7. = min 7,9 when y > y*. Using Hopf bifurcation theory, the equilibrium E, is locally asymptotically

1<n<N
stable for 7 € [0,7,) and unstable for 7 € (r,,+0o0), with the periodic solution being spatially
nonhomogeneous. Thus, (ii)-(b) holds. O

Remark 3.1. (i) From Theorem 3.1, it is evident that x* affects the occurrence of spatially
nonhomogeneous Hopf bifurcations.

(i) According to the definition of y. in (3.11), there exists a spatial critical value ly such that: (a)
when 0 < I < ly, a spatially nonhomogeneous Hopf bifurcation does not occur for 0 < y < x*; (b)
when | > ly, a spatially nonhomogeneous Hopf bifurcations occur for y > 0 due to the critical value

x =0.

4. Turing-Hopf bifurcation

Next, we will consider the occurrence of a Turing-Hopf bifurcation in system (1.2). We rewrite the
linearized system (3.1) as follows:
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0
e =d1Au+)(aAv—Eu—sz, xeQ, t>0,
ot K (1+ hv,)
P gany (6,1 1) €Q, t>0
= V u(x,t— 1), X , )
ot~ T (@t el (4.1)
ou Ov
DA Q, t
- 7n 0, xe€edQ, t>0,
u(x,0) = u(x) > 0,v(x,0) = v(x) >0, x € Q.
Setting
ou(x, 1)
,t_ = 7t - s
u(x ) =ulx,t)—71 o
and putting it into (4.1), we get
0
e :dlAu+)(aAv—Bu—sz, xeQ, t>0,
ot K (1+ hv,)
sv? ou ov sv?
17—+ — =d)Av + “—u, x€Q,t>0,
(@+e? 0 T (a+e) 4.2)
ou v
Z-2_-0 Q,t>0
o - on , xe€edQ, t>0,
u(x,0) = u(x) > 0,v(x,0) = v(x) >0, x € Q.
That is,
ou
Fn _ u u
BT(%)—D(V)+JO(V), “3)
t
where

1 0 d\A yaA 3 _(1+6;Z)2
oL oe( ) 4 2 )

(a+e) (a+e)?

Consider the following general solution of (4.3)
u _ - ak /lkt
( v )— kéo( by )e cos kx,

where a; and b, are constants, k is the spatial spectrum, and A; means the temporal spectrum. Then,
putting it into (4.3), one gets

L0 S a )y, —d\k* - 2 —)(akz—m‘};ﬁ 7
/lk( 2 1 ]Z( by )e Hcoskx = o2 AR

>

ag
( )eﬂ"t cos kx.

(a+e)? =0 (@+e) =0 b
That is,
2 ra 2 aa
Ak j dik” + e xak® + Tom? | _ 0
_((Zs_:;)z (T/lk - 1) /lk + d2k2
We obtain the characteristic equation as follows:
/l,f =T, ) A+ Di(t,x) =0, keNy=1{0,1,2,3,...}, 4.4)
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where
aa ) SV2T

1+ )] (a+e)?

Tu(ty) = — (dl 12+ dol® + %) + ()(akz +

and

2
Di(r. X):dzkz(d1k2+%)+(/\/ak2+ ao ) Vs

(1 +m.)?) (@+e?
Thus, we have
A5 — To(t, x) Ao + Do(7, 1) = 0, (4.5)

where ) )
ra aa SVET aw SV:
To(t,x) = ——

K " (1 + hv,)? ' (a+ e)z’ Dol.x) = (1 + hv,)? ' (@ +e)? g

For the spatially homogeneous system, setting 7(7, y) = 0, one gets

ro(+ w,)? (@ + e)?

T. =
K a sv2

So Ty(t, x) < 0 when 0 < 7 < 7. All eigenvalues of the characteristic Eq (4.5) have negative real parts,
which means that the positive equilibrium E. is locally asymptotically stable. And E., is unstable when
7> 7.. Due to
dRe(Ay) _ aa sv?
dv e, (1+hv)* (a+e)
For the homogeneous system, the Hopf bifurcation will occur when 7 = 7.. And Ty(r,x) < 0 and
Dy(t,x) > 0 when 7 = 0, and the positive equilibrium E, is locally asymptotically stable. Thus, the
Turing-Hopf bifurcation does not occur if there is no digestion delay in system (4.2).
Next, let di,d, # 0, y # 0, and 0 < 7 < 7. to further investigate the Turing instability. We rewrite

Tk(T’X) as

> 0.

sV Tya
2

Tu(t,x) = — (— +di +dy |+ To(t, x).

(a+e)

Clearly, Ty(r, ) < 0 when 22 + 4, + d, > 0. That is,

(d, + dy)(a + e)?
< =
V2 Ta

X0-

Thus, we only consider the sign of Dy(t, ). Set Di(t, x)Z¢(k?), where

o(k?) = dydok* + (rdza Svfwz) A v .
K (a +e) (1+hv,)” (@+e)

Due to ¢(0) = —%— VS0, let K = p, and one gets

(1+hv,)? " (a+e)?

rdroa  sViva aa sv?
2 *X ) 5 p € [0, +OO),

= d\d,p* + + + —
#(p) 12P ( K (@ + e)* p (1 +hv)* (a+e)

Considering mi(r)l ¢(p) = 0, by differentiating with respect to ¢(p) = 0, we obtain
p>
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rdra svf)(a
_ K (a+e)?
Po="2414,
So, mi(I)l o(p) = —¢(y) = 0, where
p>
v\ 2drra®  sv? dr’e®  4Adidraa sv?
(a+e) K (a+e) K (1 +hv) (a+e)

16d;drab’ o
(1+hv,)?

erza __ 4didraa sv2

Case L (l+hv*)2 ' (a+e

For > (0, it implies that ¢(y) = 0 has two different roots.

7> 0 : ¢(xv) = 0 must have two negative roots y; < 0 and y, < 0, where

_dyra
K 1+hv didyaa - ( +e )2 <0
Xl - o SV% ’
(a+e)?
_dyra
_ K + 1+hv d]dza ((z+e)2 <0
XZ - o SV% .
(a+e)?

It is clear that ¢(y) > O if y < y; and y > x»2, and ¢(x) < O if y; < ¥ < x»2. Then we get
o(k*) > 0if y; < x¥ < x2, and @(k*) < 0if y < x; and y > y» for some k € Ny/{0}. Recalling the
definition of y(, we have the following results. If y; < y < min{yy, x>}, the positive equilibrium E, is
locally asymptotically stable and no Turing bifurcation will appear in system (4.2). If y < min{yo, y1}
or y» < x¥ < Xo, the positive equilibrium E, is unstable, and the Turing bifurcation will occur in
system (4 2)

2
Case II, 2°° ?ﬂ:ﬁ“; . (;:e)z < 0: ¢(y) = 0 must have two roots y3 < 0 and y,4 > 0, where

_dara _
7K o ydidhaa - ( Te )2 <0
A3 = R ’
(a+e)?
_dora ddraa - ==
K l+hV 162 a+e2
B @ o
X4 . o7 EVR
((z+e)2

It is clear that ¢(y) > 0if y < y3 and y > x4, and ¢(x) < 0 if y3 < x < x4. Then, we get p(k?) > 0 if
X3 <X < x4 and (k?) < 0if y < y3 and y > y,4 for some k € Ny/{0}. Hence, if y3 < y < min{xo, x4},
the positive equilibrium E, is locally asymptotically stable, and no Turing instability will appear in
system (4.2). If y < min{yo, x3} or y4 < ¥ < xo, the positive equilibrium E, is unstable, and a Turing
instability will occur in system (4.2).

Theorem 4.1. (Turing-Hopf bifurcation)
For d\,d, > 0, system (1.2) will undergo a Turing-Hopf bifurcation when T = 7. and y = x. or
X = X2, Where
ro (L+hn)’ (a@+e)
K a sv2

T, = —
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_dra _ 2 | L _dra 2 S
% = T, \Didhaa - o % T 1o \Didaa s

XCl = 2 7X6‘2 - 2
SVy SV

' (a+e)? - (a+e)?

5. Numerical simulations

In this section, numerical simulations are carried out to verify theoretical analysis results. We
consider system (1.2) in a fixed domain Q = (0, L) and solve it on a grid with 1 X N sites. By using
finite difference, we discretize the Laplacian in the grid with lattice sites denoted by i. We denote
Ax = L/N, where N is the number of discrete points. The form is Aw|, = (Wi, — 2w; + wi_1)/Ax?,
1 <i < N. Then, we employ the explicit Euler method, and the time step is Az = 0.001. The initial
values are taken as (ug, vo) = (1, — 0.02 cos(x), v, — 0.02 cos(x)).

First, we choose the parameters (i) d; = 0.1,d, = 0.1, s = 16,e = 1,d = 13, h = 4, r = 2,
K =1, and a = 10, and one obtains the unique positive equilibrium (u.,v.) = (0.2308,0.4), a; =
-0.4615, a, = —-0.3414, b = 1.69, and [, = 0.2431. According to the definition of y., we choose
[l =02 < lyand ! = 2 > [y, respectively. y.=0.7002 when / = 0.2, and y.=0 when [ = 2. The
bifurcation diagrams in the y — 7 plane are shown in Figure 1.

From Figure 1(a), we find that the critical value of the spatially nonhomogeneous Hopf bifurcation
is x. = 0.7002. Figure 1(b) indicates that a spatially nonhomogeneous Hopf bifurcation will emerge
for y. > 0. Moreover, when y < y* = 0.686, the critical value for the Hopf bifurcation is 7oy = 0.848,
and when y > y* = 0.686, the critical value for the Hopf bifurcation is 7, = min 7,0. The blue

0<n<4
region in Figure 1(b) represents the stable region corresponding to 7 < 7y and 7 < 7., while the

regions corresponding to 7 > 7oy or T > 7, denote the unstable regions. Additionally, we note that
the intersection points of adjacent curves (such as mode-1 and mode-2) are double Hopf bifurcation
points. Next, we further select different digestion delay 7 and predator-taxis sensitivity parameter y to
conduct numerical simulations.

NN
0831 AN mode-1 N 3

N S
o8t Stable Region AN

0.6 0.7 0.8 0.9 1 11 1.2 0.65 0.7 0.75 0.8
X X

(a) (b)
Figure 1. The bifurcation diagrams of system (1.2) in the y — 7 plane. (a) The bifurcation
diagram when [ = 0.2 < [,. mode—k,k = 0,1 are Hopf bifurcation curves. (b) The
stability regions and bifurcation diagram when [ = 2 > [,. mode—k,k = 0,1,---,4 are
Hopf bifurcation curves, and the blue region represents the stable region. P0(0.66,0.85),
P1(0.69,0.85), P2(0.706,0.847), P3(0.758,0.826), P4(0.804,0.808), and P5(0.696,0.831) are
chosen for numerical simulations.
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Figure 2 illustrates spatiotemporal patterns of prey for mode—-k,k = 0,1,---,4, where
Figure 2(a) represents spatially homogeneous periodic patterns, Figure 2(b)—(e) show spatiotemporal
nonhomogeneous periodic patterns for mode —k,k = 1,--- ,4, and Figure 2(f) shows the coexistence
equilibrium (u.,v,) is asymptotically stable for (y, 7) at P5(0.696,0.831). Subsequently, the spatially
nonhomogeneous periodic patterns with different modes are shown in Figure 3.

It is found that the interaction of the spatially nonhomogeneous Hopf bifurcation leads to a
more complex phenomenon which is known as the double Hopf bifurcation. The transition of prey
and predator from the spatially nonhomogeneous periodic solution of mode-3 and mode-4 can be
clearly observed, see Figures 3(d) and 4. And, Figures 4(b) and (d) further show that spatially
nonhomogeneous periodic solutions are unstable during the transition of patterns. Also, Figure 5
illustrates the dynamic curves of periodic solutions of predator and prey at spatial positions x = 2x
and x = & in the temporal direction, respectively. It can be observed that population density exhibits

periodicity in time and a nonhomogeneous distribution in space.
Prey Prey
0.245 0.245

90

0.24 80 0.24 0.24
70

0.235 0.235 0.235
60

0.23 :5,) % 0.23 f 0.23
40

0.225 30 0.225 0.225
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0.22 10 0.22 0.22

1 2 3 4 5 6 1 2 3 4 5 6
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g s 8 8
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Prey Prey Prey
0.24
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; ® — —
g% 0 £ S— —— 023
0.22 R — 0.225
— —
[— —
0z — — 022
C—_— C—_—
0
1 2 3 4 5 6 1 2 3 4 5 6
space x spact space x

(d) (e ®
Figure 2. The spatiotemporal patterns of the density of prey population in system (1.2)
for P0(0.66,0.85), P1(0.69,0.85), P2(0.706,0.847), P3(0.758,0.826), P4(0.804,0.808), and
P5(0.696,0.831), respectively. (a) The stable spatially homogeneous periodic pattern for
mode-0. (b)—(e) The spatially nonhomogeneous periodic patterns for mode—k,k = 1,--- ,4
with / = 2. (f) The positive equilibrium is asymptotically stable at P5(0.696,0.831).
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2

time t 0 o space x time t 0 o0 space X

(a) (b)

2

space x time t 300 o space X

© d)
Figure 3. The nonhomogeneous periodic patterns of system (1.2) about prey for mode
—k,k=1,--- , 4 with [ = 2.

~

space x
Prey

— — 0.232
0.231 e §—
e e ——————————— = — 0.231
EB e eeee—— ——
0.2305 —_— o=
e
500 S
0.23 1 2 3 4 5 6
space x
0.2295 Prey

Predator

1 2 3 4 5 6 space x
space x

(c) (d)
Figure 4. The spatiotemporal dynamics of system (1.2) with / = 2 and P4(0.804,0.808). (a)
and (c): The spatiotemporal dynamics of system (1.2) for prey and predator, respectively. (b)
and (d): The transition from the spatially nonhomogeneous periodic solution of mode-4 to
mode-3.
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Figure 5. The bifurcation periodic solutions of prey and predator, T = 0.85,y = 0.76. (a)
and (b) are the dynamic curve of the periodic solution and the phase diagram with x = 2.
(c) and (d) are the dynamic curve of the periodic solution and the phase diagram with x = 7

Next, we choose the parameters (ii)) d; = 0.2, d, =2, s =16,e=1,d=13,h=4,r=2,K =1,

a = 10, one obtains E, = (0.2308,0.4), 7. = 0.8, ‘“2“ - fdldﬂ” - Sf) -0.071 < 0, yo = 8.0586,
Xc = —4.8304, and)(cz = 0.0966. When y = -5. 5 < min{—4. 8304 8.0586} and 7 = 0.7 < 0.8, the
Turing bifurcation emerges. It is shown that the spatially nonhomogeneous steady patterns occur in
system (1.2), see Figure 6.

predator

space x 0 o time t space x 0 0 time t

(@) (b)
Figure 6. The spatially nonhomogeneous steady patterns induced by the Turing bifurcation
in system (1.2).
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Similarly, we choose the parameters (iii) d; = 0.2, d, =3, s =15,¢=08,d=1,h=05,r =1,
K = 1.5, a = 1. Then, one obtains E. = (0.7,0.7273), 7, = 3.5156, - - dibae . 22 _ 1 6414 > 0,
Xo = 43214, yo = —7.9586, and y.» = —3.3852. When y = —10 < min{—7.9586,4.3214} and
T = 3 < 3.5156, the Turing bifurcation emerges. It is shown that the spatially nonhomogeneous steady

patterns occur in system (1.2), see Figure 7.

predator

1000

400

200
space x 0 time t

(a) (b)
Figure 7. The spatially nonhomogeneous steady patterns induced by the Turing bifurcation
in system (1.2).

0
space x 0 time t

Next we continue to demonstrate the formation of the spatiotemporal patterns induced by the
Turing-Hopf bifurcation in system (1.2). We take the parameter (ii) d, = 0.2,d, = 2, s = 16,
e=1,d=13h=4r=2,K =1,a =10, 7 = 0.9, and y = —-5.2 around the Turing-Hopf
bifurcation onset (7., x.1) = (0.8,—-4.8304). Numerical simulations indicate that system (1.2) does
undergo spatiotemporal nonhomogeneous patterns caused by the Turing-Hopf bifurcation, as shown in
Figure 8. The validity of Theorem 4.1 is verified.

Prey Predator

T e T an T o e U e W]
- :.....’...- o g
i | — .- '. ’...- P e ——— . B
i | — A — -
o -.-.-.-.- 02 oS — - - -
— A —
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460 -.-'-'-.- 460 e — 045
§450 ‘.-'-.-.- E B a50 o —
440 -.-'-.-.- 0.22 240 [ W — 04
430 -..'....- i a0 W —
L) . ‘ 0.35
200 .-, - o o W :
o ‘02!20. so| - W -

10 L g ol soo LI
0 5 10 15 20 25 30 0 5 10 15 20 25 30
space x space x

(a) (b)

Figure 8. The spatiotemporal nonhomogeneous patterns of system (1.2) induced by the
Turing-Hopf bifurcation.

To perform the influence of the digestion delay control parameters 7, we choose the parameters (ii)
d=02,dy=2,5s=16,e=1,d=13, h=4,r=2,K=1,anda = 10 and fix y = =5.1 < y.. Let
7 vary around the threshold 7. = 0.8. When 7 = 0, that is, there is no digestion delay in system (1.2),
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only the spatial nonhomogeneous steady pattern appears, as shown in Figure 9(a). Then, we choose
7 = 0.89 > 7., and the regular stripe pattern is broken. This means that system (1.2) will present a
spatiotemporal nonhomogeneous pattern due to the Turing-Hopf bifurcation, as shown in Figure 9(b).
Moreover, we further choose 7 = 0.9 and 7 = 0.92, and the nonhomogeneous steady patterns gradually
become unstable since the parameter 7 has moved away from the Hopf bifurcation threshold 7., as
shown in Figure 9(c) and (d).
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Figure 9. The spatial nonhomogeneous patterns with different digestion delay parameters 7.

0.24 460

450

time t

440

N N |
SRR A]!
X N |

430

0.21 420

410

time t

o
=)
n
S

25 30

We further choose the parameters (iii)) d; = 0.2,d, =3, s =15,¢e=08,d=1,h=05,r =1,
K=1.5,anda = 1and fix y = —11.5 < ;. Let 7 vary around the threshold 7. = 3.5156. When 7 = 0,
only the spatial nonhomogeneous steady pattern emerges, as shown in Figure 10(a). Next, we choose
7 =3.6>r71,7=3.8, and 7 = 4, respectively, and the regular stripe patterns are broken. The system
(1.2) presents spatiotemporal nonhomogeneous periodic patterns due to the Turing-Hopf bifurcation,
as shown in Figure 10(b)—(d). Overall, Figures 9 and 10 show the influence of the digestion delay
parameter 7 on the formation of the spatiotemporal nonhomogeneous periodic pattern of system (1.2).
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Figure 10. The spatial nonhomogeneous patterns with different digestion delay parameters 7.

Next, to perform the influence of the predator-taxis sensitive parameter y, we continuously display
the spatiotemporal pattern formation of system (1.2). We choose the parameter (i1) d; = 0.2, d, = 2,
=2,K =1,and ¢ = 10 and fix 7 = 0.9 > 1. First, when
x = 0, it is shown that there is no pattern formation in the bounded area, as shown in Figure 11(a).
Next, we choose y = -3, and —4.8304 = x. < x¥ < xo = 8.0586, and then the homogeneous
pattern occurs, as shown in Figure 11(b). Moreover, if we choose y = =5 < x,;, a mixed pattern
will occur, as shown in Figure 11(c). When y = -5.06, y = =5.1, and y = —5.2, slightly different
spatiotemporal nonhomogeneous periodic patterns are presented in Figure 11(d)—(f). It is notable that
the predator-taxis sensitivity parameter y plays a crucial role in the formation of the spatiotemporal

s = 16,

nonhomogeneous pattern of system (1.2).

lI,d =13, h = 4,r

e =

By adjusting the ranges of the control parameters of

time delay and predator-taxis, the combined effect of predator-taxis and digestion delay leads to the
emergence of spatiotemporal nonhomogeneous periodic patterns.
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Figure 11. The spatial nonhomogeneous patterns with different predator-taxis sensitive

parameters y.

6. Conclusions

In this paper, we propose and study a modified Leslie-Gower model with predator-taxis and
digestion delay under homogeneous Neumann boundary condition. Global stability for the positive
equilibrium E, without digestion delay is obtained, see Theorem 2.1. By considering the predator-
taxis sensitive coefficient and digestion delay control parameter as bifurcation parameters, we establish
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the occurrence conditions of the Hopf bifurcation and the Turing-Hopf bifurcation, see Theorems 3.1
and 4.1.

Numerical simulations confirmed the theoretical results, and spatiotemporal patterns of system (1.2)
are observed, see Figures 2 and 3. In addition, the interaction of the spatially nonhomogeneous Hopf
bifurcations with different modes leading to more complex dynamical phenomena which are known
as a double Hopf bifurcation, see Figures 3(d) and 4. Furthermore, spatially nonhomogeneous steady
patterns are observed near the Turing bifurcation critical point, see Figures 6 and 7, and spatiotemporal
nonhomogeneous periodic patterns caused by Turing-Hopf bifurcation are shown in Figure 8. It
is found that system (1.2) shows the spatially nonhomogeneous steady patterns and spatiotemporal
nonhomogeneous periodic patterns with the change of the 7, see Figures 9 and 10. System (1.2)
also exhibits the spatially homogeneous steady pattern, spatially homogeneous periodic pattern,
spatiotemporal nonhomogeneous periodic pattern, and mixed pattern with the change of the predator-
taxis sensitivity coeflicient y, see Figure 11. From the ecological point of view, spatial heterogeneity
and periodic oscillation are universal in ecosystems, which mean they are nonhomogeneous in
population spatial distribution and periodic fluctuations driven by time delay. Indeed, our numerical
results have a realistic biological meaning.

Existing research shows that the predator-prey model without predator-taxis only has spatially
homogeneous periodic solutions [30], and the predator-prey model without time delay only has
stable spatially nonhomogeneous solutions [33]. However, the combined effect of predator-taxis and
digestion delay leads to the spatiotemporal nonhomogeneous periodic patterns and other complex
mixed patterns. This is an interesting dynamic phenomenon. The main results of this paper improve
or extend some existing results. It further illustrates that the cognitive movement between the predator
and prey can cause spatially heterogeneous distributions, even with a certain periodicity. Overall,
the method presented in this paper can be applied to other time-delayed predator-prey models with
taxis mechanism for the study of Turing instability, Turing-Hopf bifurcation, and the formation of
spatiotemporal nonhomogeneous patterns.
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