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Abstract: To address the limitations of the dung beetle optimizer algorithm, such as its tendency to 

fall into local optima during the later phases of the iterative process, limited global exploration 

capability, and relatively slow convergence speed, this paper proposes a multi-strategy improved dung 

beetle optimizer algorithm. The improvement integrates the Sobol sequence, the nonlinear 

convergence factor, Lévy flight, the adaptive Cauchy–Gaussian hybrid mutation, and the greedy 

strategy. These improvements effectively enhance population diversity, the global exploration ability, 

and local exploitation performance. Specifically, the Sobol sequence is employed to initialize the 

population, thereby ensuring a more uniform and comprehensive population distribution. The 

nonlinear convergence factor is introduced to better balance the algorithm's global exploration and 

local exploitation. Lévy flight is applied to perturb the global best solution, improving the algorithm’s 

ability to escape from local optima. Finally, the adaptive Cauchy–Gaussian hybrid mutation, combined 

with the greedy strategy, is designed to accelerate convergence and preserve elite individuals. To 

comprehensively evaluate the performance of the proposed algorithm, comparative experiments are 

conducted on the CEC2017 benchmark test set against seven widely recognized intelligent 

optimization algorithms. The experimental results demonstrate that the improved algorithm achieves 

superior performance in both optimization accuracy and convergence speed. Finally, the proposed 

algorithm is applied to actual engineering optimization problem, yielding the best results in all cases, 

thereby validating its effectiveness and practical applicability in solving complex optimization 

problem. 
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1. Introduction 

For an extended period, optimization problems have constituted a major research focus. 

However, in the vast majority of engineering optimization problems, improving computational 

efficiency while obtaining optimal solutions under multiple complex constraints remains a 

significant challenge [1]. When dealing with optimization problems involving multiple variables and 

constraints, the solution space often contains multiple local optima, making it difficult for traditional 

numerical methods to achieve satisfactory results [2,3]. Swarm intelligence optimization algorithms, 

due to their few control parameters and strong generalization capabilities, are capable of performing 

global exploration on complex problems and are therefore widely used in various engineering 

applications [4,5]. In the realm of engineering optimization, such intelligent optimization algorithms 

have been extensively applied to areas such as power system optimization [6], engineering design [7], 

and path planning [8], yielding notable optimization outcomes. With the rapid advancement in this 

field, numerous novel intelligent optimization algorithms have been successively introduced, such as 

the ant colony optimizer (ACO) algorithm [9], spider wasp optimizer (SWO) [10], nutcracker 

optimizer algorithm (NOA) [11], whale optimizer algorithm (WOA) [12], artificial hummingbird 

algorithm (AHA) [13], and butterfly optimizer algorithm (BOA) [14]. Among these, the dung beetle 

optimizer (DBO) algorithm, introduced by Xue in 2022 [15], is a novel metaheuristic algorithm 

inspired by the social habits of dung beetles and exhibits significant optimization capability and 

operational flexibility. However, the DBO algorithm still has certain limitations, including a lack of 

diversity in the initial population and a tendency for the population to converge prematurely to local 

optima during the later phases of the iterative process. 

In response to the limitations of the DBO algorithm during the optimization process, numerous 

scholars have conducted extensive research, primarily focusing on two main improvement 

approaches: algorithm fusion and hybrid strategies. On one hand, algorithm fusion can be 

implemented in two ways: Integrating the DBO algorithm with other intelligent optimization 

algorithms [16,17] or combining it with machine learning or deep learning techniques [18,19]. On 

the other hand, improvements based on hybrid strategies are mainly reflected in three aspects. First, 

enhancing the method used to initialize the population leads to a broader and more varied range of 

initial solutions, thereby accelerating the convergence speed and improving the final solution’s 

quality [20,21]. Second, adaptive parameter adjustment allows the key control parameters to 

dynamically and nonlinearly vary with the population distribution, overcoming the issue of fixed 

parameter boundaries in the original algorithm and enhancing its capability to solve complex 

optimization problems [22,23]. Third, improvements through update mechanisms and position 

perturbation introduce randomness to the optimal solution or the entire population in the later iterations, 

effectively preventing premature convergence and maintaining algorithmic diversity [24,25]. 

Although the improved strategies proposed in the previous research enhance the global 

exploration and local exploitation capabilities of the DBO algorithm, several limitations persist in the 

algorithm itself. These include a lack of consideration for the distribution of the initial population 

and insufficient optimization performance during the later phases of the iterative process. These 

shortcomings result in an imbalance between global exploration and the local exploitation 

capabilities, accompanied by diminished convergence accuracy and reduced optimization efficiency. 

In response to these challenges, this paper proposes an improved dung beetle optimizer (IDBO) 

algorithm. First, in the early iterations, the Sobol sequence is introduced to improve the spatial 

distribution of the initial population, thereby enhancing the population’s diversity. The excellent 

uniformity and traversal characteristics of the Sobol sequence effectively enhance the algorithm's 

https://link.zhihu.com/?target=https%3A//so.csdn.net/so/search%3Fq%3DSpider%26spm%3D1001.2101.3001.7020
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exploration capability in the early iterations. Second, a nonlinear convergence factor is incorporated 

to balance the algorithm’s global exploration and local exploitation capabilities, which increases in 

the early iterations and decreases in the subsequent iterations, thereby achieving a dynamic balance 

between exploration and exploitation. Third, in the later iterations, to prevent the algorithm from 

becoming trapped in local optima, Lévy flight is incorporated through its long-distance jumping 

behavior, thereby significantly improving its capacity for global exploration. Meanwhile, to further 

enhance the refined search capability, the adaptive Cauchy–Gaussian hybrid mutation, combined 

with the greedy strategy is applied for local exploitation, which enables the algorithm to converge 

rapidly. Finally, the proposed algorithm is evaluated through both theoretical analysis and practical 

experiments to validate its performance. 

2. Dung beetle optimizer algorithm 

The DBO algorithm represents a novel approach inspired by the foraging and navigational 

behaviors exhibited by dung beetles in their natural ecosystems. This algorithm is capable of 

identifying optimal solutions in complex scenarios, demonstrating its extensive applicability and 

practical significance [26,27]. Furthermore, the algorithm simulates the behaviors of four distinct 

types of dung beetles, namely the ball-rolling dung beetle, the reproductive dung beetle, the small 

dung beetle, and the thief dung beetle, each assigned according to a predefined proportion. Each 

individual dung beetle represents a solution, while the positions of these solutions are iteratively 

updated by following specific update rules associated with each group, resulting in the determination 

of the optimal solution. When applying the DBO algorithm, the population is divided into different 

types according to a certain proportion, with each individual performing its specialized role to 

collectively accomplish its foraging and reproductive objectives. According to the description of the 

algorithm [15], the ball-rolling dung beetles account for 20%, the reproductive dung beetles account 

for 20%, the small dung beetles account for 25%, and the thief dung beetles account for 35% of the 

total population. The detailed formula is presented below. 

2.1. The ball-rolling dung beetle 

The ball-rolling dung beetle imitates its fellow beetles, rolling dung balls in the sunlight to 

determine the optimal orientation. This rolling behavior can be categorized into two scenarios. 

Without obstacles, they persistently roll the dung ball; however, when dung beetles encounter 

obstacles, they perform a distinct reorientation behavior known as "dancing." 

2.1.1. Rolling behavior 

The formula for adjusting the rolling dung beetle’s position without obstacles is as follows: 

 
( 1) ( ) ( 1) Δ

        
Δ ( )

i i i

i

x t x t k x t b x

x x t X 


 

+ = +   − + 


= −

, (1) 

where t denotes the number of the current iteration; ( )ix t  denotes the position of the ith dung beetle 

at iteration t; k denotes the deflection coefficient, where k(0, 0.2]; b denotes a random constant 

value, where b(0, 1); α assumes a value of 1 or –1, depending on whether it deviates from the 



25814 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

original direction; X 
 denotes the global worst position of individuals in the dung beetle 

population; Δx denotes the intensity of light;  is a random number, where [0, 1]; and φ denotes 

the constant probability of encountering no obstacles, where φ=0.9. 

2.1.2. Dancing behavior 

When facing an obstacle that impedes progress, dung beetles execute a reorientation dance and 

establish an alternative path for continued locomotion. The corresponding position update 

mechanism is described as follows: 

 ( 1) ( ) tan( ) ( ) ( 1)      i i i ix t x t x t x t  + = + − − ＞ , (2) 

where θ denotes the random deflection angle and θ[0, π]. When the value of θ is 0, π/2, or π, the 

spatial locations of the dung beetles shows no significant variation. 

2.2. The reproductive dung beetle 

The dung beetles primarily consume dung. Certain dung beetles convey dung balls to safe 

locations for reproduction. The area selected for spawning is dynamically modified based on the 

current optimal position. The mathematical formula used to define the safe area for reproduction is as 

follows. 

 

 

 

max (1 ),

min (1 ),

1 /

b b

b b

L X R L

U X R U

R t T

 

 

 = −



= +


= −

, (3) 

where T denotes the maximum number of iterations; for the given optimization problem, Lb and Ub, 

indicate the minimum and maximum constraint values respectively; X* denotes the current local 

optimal position; Lb* and Ub* represent the minimum and maximum limits of the solution domain, 

respectively; and R is the linear adjustment factor. 

Female dung beetles exhibit selective behavior when choosing dung balls for spawning, 

embedding their eggs within these nutrient-rich substrates to provide an optimal developmental 

habitat for their offspring. Furthermore, according to Eq (3), the spatial distribution of dung beetles’ 

spawning area exhibits substantial variation, primarily governed by parameter R. Consequently, the 

positional trajectory of the dung ball throughout the process of iterative optimization can be 

mathematically expressed as follows: 

 
1 2( 1) ( ) ( )i i b i bB t x b B t L b B t U     + = + − + −    , (4) 

where ( )iB t  denotes the position of the ith dung ball at iteration t, b1 and b2 are two independent 

random vectors of size 1×D, and D denotes the dimension of the optimization problem to be solved. 
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2.3. The small dung beetle 

After hatching from the brood balls, dung beetle larvae, known as small dung beetles, begin 

their foraging activities. This foraging activity typically occurs within a defined area. The formula 

for the boundary of this area is as follows: 

 
 

 

max (1 ),

min (1 ),

b b

b

b

b

b

L X R L

U X R U





 = −


= +

, (5) 

where 
bx  denotes the global optimal position, and Lb and Ub denote the lower and upper bounds of 

the foraging area, respectively. 

The formula for the position update of the dung beetles during foraging is described as follows. 

 ( ) ( )1 2( 1) ( ) ( ) ( )i i i b i bx t x t C x t L C x t U + = +  − +  −  (6) 

where C1 follows a standard normal distribution, and C2 represents a uniformly distributed random 

vector over the interval (0, 1). 

2.4. The thief dung beetle 

Some dung beetles exhibit theft behavior, whereby certain individuals steal dung balls from 

others for consumption or spawning. Theft typically occurs at favorable locations, and the position 

update mechanism is described as follows. 

 ( )( 1) ( ) ( )b b

i i ix t x S g x t x x t x+ = +   − + −  (7) 

where g is normally distributed, and S remains a fixed parameter. 

3. Improved dung beetle optimizer algorithm 

The improvements to the IDBO algorithm primarily incorporate the following five strategies. 

First, population diversity is enhanced by using the Sobol sequence, which ensures a more uniform 

and comprehensive distribution. Second, the nonlinear convergence factor strategy is introduced to 

modify the search range during the reproduction and foraging phases, successfully achieving a 

balanced optimization of the algorithm's overall performance. Third, the positions of thief dung 

beetles are adjusted by incorporating Lévy flight, which improves the algorithm’s ability to explore 

the global search space. Fourth, the adaptive Cauchy–Gaussian hybrid mutation significantly boosts 

the algorithm’s performance, enhancing convergence speed and accuracy. Finally, the greedy strategy 

focuses on retaining superior individuals, which significantly enhances the overall quality of the 

solution. This paper explores diverse improvement strategies and presents experimental validations 

that demonstrate the effectiveness of an enhanced algorithm. 
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3.1. Sobol sequence 

The optimization performance and convergence rate of swarm intelligence algorithms are 

highly dependent on the initial spatial distribution of the population, as demonstrated in previous 

studies [28,29]. A uniformly distributed initial population can facilitate faster entry into the optimal 

region, thereby enhancing the algorithm's search accuracy. Traditionally, population initialization in 

such algorithms relies on random generation. Although this approach enables rapid population 

creation, the resulting spatial distribution is often irregular, leading to uneven dispersion of 

individuals and potential clustering effects [30,31]. With the advancement of population optimization 

techniques, researchers have employed chaotic mapping to generate the initial populations. By 

leveraging its randomness, ergodicity, and regularity, chaotic mapping improves the population’s 

diversity by determining the initial positions of individuals more effectively than randomly generated 

populations. Chaotic mappings demonstrate significant sensitivity to the initial conditions and 

parameter values, resulting in uneven distributions within the initial populations, which manifest as 

clustered and sparse regions. The resulting unevenness may cause inadequate or excessively 

intensive exploration, which ultimately compromises the overall optimization efficiency of the 

population. To mitigate the influence of the initial positioning methods on the algorithm’s 

performance, the initial population of dung beetles was generated utilizing the Sobol sequence, with 

the detailed mathematical formulation presented below. 

 -i b n b bx L S U L= + （ ）, (8) 

where Sn is a random number generated by the Sobol sequence; Sn[0, 1]. 

Assume the population size is set to 500. Three comparison diagrams for initializing the 

population are presented below (Figures 1–3). 

 

Figure 1. A comparison of sequence iterations across three population initialization methods.  
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Figure 2. A comparison of histograms across three population initialization methods. 

 

Figure 3. A comparison of scatter plots across three population initialization methods. 

It can be observed from Figures 1–3 that the dung beetle population generated using the Sobol 

sequence exhibits a more uniform distribution, superior ergodicity, and more comprehensive 

coverage of the solution space compared with those generated by the other two methods, thereby 

preserving greater population diversity. 
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3.2. Nonlinear convergence factor 

The DBO algorithm exhibits significant constraints due to its invariant parameter ranges during 

both the reproductive and feeding phases. During the spawning phase, small brood balls facilitate the 

clustering of newly generated individuals, effectively guiding them towards the optimal solution. 

This clustering mechanism, while accelerating convergence toward optimal solution, significantly 

reduces population diversity and increases the likelihood of early convergence to local optima. 

Similarly, if the foraging area is limited, the small dung beetles are confined to a small area around 

their parents' positions, which hampers their ability to reach the global optima. Consequently, fixed 

spawning and foraging ranges fail to accommodate the dynamic changes in the algorithm's 

optimization performance, which significantly contributes to premature convergence and entrapment 

in the optimal solution. 

Given the perspectives above, we conducted an analysis to identify the limitations inherent in 

the DBO algorithm, particularly in its spawning and foraging stages. As indicated by Eqs (3)–(6), the 

boundary convergence factor R diminishes with increased iterations, resulting in a significant 

reduction in both the spawning and foraging areas for dung beetles. However, this linearly 

decreasing boundary convergence factor presents certain limitations. During the early phases of 

population iteration, the dung beetles require a rapid expansion of their spawning and foraging areas 

to enhance their global exploration capability; however, the small boundary convergence factor at 

this stage results in insufficient searching. Conversely, in the later iterations, the population needs to 

converge quickly, but the relatively large boundary convergence factor hinders the convergence 

speed. To tackle these restrictions, this paper proposes an enhanced boundary convergence factor that 

exhibits a nonlinear variation trend, aiming to achieve a more balanced overall performance of the 

algorithm. The boundary convergence factor has been updated as follows: 

 (cos( *( / )) 1)*0.5R t T = +  (9) 

The iterative curves of these factors were plotted for intuitive understanding and analysis, and 

the results are presented in Figure 4. 

 

Figure 4. A comparison of the convergence factor before and after improvement. 
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As illustrated in Figure 4, during the initial phases, the population exhibits high diversity, which 

broadens the global exploration scope. Meanwhile, compared with the linear convergence factor, the 

linear convergence factor, the nonlinear convergence factor has a higher initial value and exhibits a 

slower rate of decrease. Consequently, the algorithm's global exploration ability is enhanced. In the 

later iterations, population diversity gradually diminishes, allowing for a more refined local search. 

As a result, the marked decline in the nonlinear convergence factor not only reinforces the 

algorithm's capability for local exploitation but also promotes accelerated convergence. Therefore, 

the enhanced convergence factor ensures a balance in the algorithm's performance. 

The proposed nonlinear convergence factor improves the local exploration ability of dung 

beetles in both the spawning and foraging phases, leading to the following modified formulation. 

 
 

 

max (1 ),

min (1 ),

b b

b b

L x R L

U x R U










 = −

 = +



, (10) 

    1 2( 1) ( ) ( )i i b i bB t x b B t L b B t U  + = + − + − , (11) 
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max (1 ),
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b
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b
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L x R L

U x R U






 = −

 = +



, (12) 

 ( ) ( )1 2( 1) ( ) ( ) ( )i i i b i bx t x t C x t L C x t U + = +  − +  − . (13) 

3.3. Lévy flight 

Lévy flight represents a stochastic movement pattern that follows a power law distribution, 

distinct from Gaussian random walks, and is defined by alternating phases of localized exploration 

and sporadic long-range jumps [32–34]. This unique movement pattern originates from the 

optimized foraging behaviors developed through the evolution of natural organisms, such as 

albatrosses and bees. It has since become a key technique in intelligent optimization algorithms for 

overcoming the limitations of local optima. In function optimization, the Lévy flight mechanism 

facilitates frequent long-range jumps, which significantly enhances the algorithm's ability to avoid 

being trapped in local optima [35], thereby preserving its global exploration capability and 

maintaining population diversity. 

The role of the thief dung beetle in the algorithm is primarily to explore new, potentially viable, 

and unoccupied regions or to attempt to "steal" resources from existing individuals within the 

population. The long-distance jumping behavior associated with Lévy flight endows this search 

strategy with a more extensive and efficient random search pattern. Therefore, this paper uses Lévy 

flight to enhance the position update process of the thief dung beetles. Specifically, according to Eq (7), 

the initial position updating strategy of the thief dung beetle primarily depends on the positional 

differences between two randomly selected individuals, along with a normally distributed random 

disturbance term. Although this approach exhibits a certain level of exploratory capability, its step 
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size variation is relatively moderate, which may limit its efficacy in escaping local optima when 

addressing intricate multimodal optimization challenges. More importantly, the purpose of 

incorporating Lévy flight is to replace the random step length (S * g) in the original update formula 

with a step length (L(β)) generated through Lévy flight. This improvement in the formula enables the 

thief dung beetle to expand its search range to areas farther away from the current population 

concentration, which may potentially contain superior solutions, enhancing its global exploration 

capability. The specific formula is presented below. 

 
1/( ) / | |L u v  = , (14) 

 

1

1

2

Γ(1 )sin
2

1
Γ 2

2




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




−

  
+  

  =
+  

  
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, (15) 

where u ~ N (0, σ2), v ~ N (0, 1), and Γ(x)=(x–1)!; β is commonly assumed to be 1.5, β∈(1, 3]. 

The DBO algorithm incorporates Lévy flight to optimize the position update mechanism of thief 

dung beetles. The modified formula is displayed in the subsequent expression. 

 ( )( 1) ( ) ( ) ( )b b

i i ix t X L x t X x t X + = +  − + − . (16) 

In a two-dimensional coordinate system, the initial point was iterated 500 times using the Lévy 

flight strategy, with α set to 1.5 and β set to 1. The flight path is illustrated as follows (Figure 5). 

 

Figure 5. The flight path of Lévy flight. 
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The results depicted in Figure 5 demonstrate that employing Lévy flight markedly expands the 

exploration scope of the algorithm across the solution space, consequently improving its ability to 

discover global optima. 

3.4. Adaptive Cauchy–Gaussian hybrid mutation 

In intelligent optimization algorithms, introducing perturbations to the optimal position through 

a mutation strategy is a commonly adopted approach for performance enhancement. Typical 

perturbation strategies include Cauchy mutation and Gaussian mutation. Cauchy mutation exhibits a 

heavy-tailed distribution [36], allowing for the generation of larger mutation step lengths, whereas 

Gaussian mutation produces perturbations that are more concentrated around the mean. Consequently, 

Cauchy mutation facilitates global exploration, while Gaussian mutation enhances local exploitation. 

Consequently, depending solely on a single mutation approach may result in an inadequate balance 

between exploratory and exploitative behaviors. To overcome this constraint, the present study 

introduces an enhanced approach utilizing a hybrid mutation mechanism that adaptively integrates 

Cauchy and Gaussian distributions. The enhanced mutation strategy significantly boosts the 

algorithm's performance by augmenting population diversity and accelerating convergence efficiency. 

The modified formula is presented below. 

 
1 1

1

[ (0,1) (1 )  (0,1)]

1 sin(0.5 / )

new bX X w Cauchy w Gassian

w t T

=   + − 


= −
, (17) 

where Xnew denotes the new individual after perturbation and w1 is the inertia weight. 

3.5. Greedy strategy 

Although new individuals are generated by perturbing the optimal position, there is no 

guarantee that the quality of these solutions will be superior to the global optimum. To enhance the 

algorithm's local exploitation efficiency, the greedy strategy is adopted to maintain high-quality 

candidates, ensuring the preservation of optimal solutions and improving computational 

performance. 

 
  ,       ( ) ( )

   ,              

new new b

b

b

X f X f X
X

X otherwise


= 


, (18) 

where f(x) denotes the fitness function. 

A common approach is to formulate the fitness function using the mean square error derived 

from the objective function. A smaller error value corresponds to a higher fitness value, indicating 

the higher quality of the resulting individual solution. The greedy strategy is applied to update the 

global optimal solution by evaluating and comparing the fitness values of solutions both prior to and 

following the mutation operation. 
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3.6. Flowchart of the IDBO algorithm 

The flowchart depicting the IDBO algorithm's procedural framework is shown below (Figure 6). 

 

Figure 6. The flowchart of the IDBO algorithm. 

3.7. Verification of the algorithm’s performance 

To assess the optimization efficacy and robustness of the IDBO algorithm, this paper conducts a 

comparative analysis with eight metaheuristic algorithms: The sparrow search algorithm (SSA) [37], 

the grey wolf optimizer (GWO) algorithm [38], the Harris hawk optimizer (HHO) algorithm [39], the 

honey badger algorithm (HBA) [40], the genetic algorithm (GA) [41], the particle swarm optimizer 

(PSO) algorithm [42], the DBO algorithm, and the IDBO algorithm. The maximum iteration count 

was set at 400 generations, while a consistent population size of 60 individuals was maintained. The 

parameter settings of the comparison algorithms are as follows (Table 1). 

Table 1. The parameter settings of the comparison algorithms. 

Algorithm Parameter settings 

SSA ST=0.6, PD=0.2, SD=0.1 

GWO r1= rand(), r2= rand(), C=2 * r2 

HHO 𝐸0∈(−2,2), J=2×(1−rand()) 

HBA β=6, C=2 

GA pc=0.6, pm=0.3 

PSO w=0.7, c1=1.2; c2=1.2 

DBO k (0,0.2], b(0,1), [0,1], φ=0.9, θ[0, π] 

3.7.1. Benchmark test function 

To rigorously assess the efficacy of the IDBO algorithm, this paper employs a series of 
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standardized benchmark test functions for a comparative performance analysis. Considering that the 

CEC2005 test function set has been widely used in earlier studies, its effectiveness and 

representativeness have become limited in reflecting current algorithms’ capabilities. To address 

increasingly complex optimization problems, the CEC2017 test function set was adopted to 

thoroughly and systematically evaluate the algorithm’s performance, which is currently the most 

comprehensive and widely accepted benchmark in the research field [43,44]. Detailed information on 

the CEC2017 test function set is shown in Table 2. 

Table 2. CEC2017 test function set. 

Type Functions Description Optima 

Unimodal 

functions 

F1 Shifted and rotated bent cigar function 100 

F3 Shifted and rotated Zakharov function 300 

Multimodal 

functions 

F4 Shifted and rotated Rosenbrock’s function 400 

F5 Shifted and rotated Rastrigin’s function 500 

F6 Shifted and rotated expanded Scaffer’s F6 function 600 

F7 Shifted and rotated Lunacek Bi_Rastrigin function 700 

F8 Shifted and rotated non-continuous Rastrigin’s function 800 

F9 Shifted and rotated Levy function 900 

F10 Shifted and rotated Schwefel’s function 1000 

Hybrid 

functions 

F11 Hybrid function 1 (N=3) 1100 

F12 Hybrid function 2 (N=3) 1200 

F13 Hybrid function 3 (N=3) 1300 

F14 Hybrid function 4 (N=4) 1400 

F15 Hybrid function 5 (N=4) 1500 

F16 Hybrid function 6 (N=4) 1600 

F17 Hybrid function 6 (N=5) 1700 

F18 Hybrid function 6 (N=5) 1800 

F19 Hybrid function 6 (N=5) 1900 

F20 Hybrid function 6 (N=6) 2000 

Composite 

functions 

F21 Composite function 1(N=3) 2100 

F22 Composite function 2(N=3) 2200 

F23 Composite function 3(N=4) 2300 

F24 Composite function 4(N=4) 2400 

F25 Composite function 5(N=5) 2500 

F26 Composite function 6(N=5) 2600 

F27 Composite function 7(N=6) 2700 

F28 Composite function 8(N=6) 2800 

F29 Composite function 9(N=3) 2900 

F30 Composite function 10(N=3) 3000 

Note: The F2 function has been officially removed and the algorithm operates in the 30 or 50 dimensional optimization space. 

3.7.2. Analysis of algorithm optimization capability 

To eliminate the influence of randomness, each of the eight algorithms above was independently 

executed on the benchmark functions for 30 independent runs. Each algorithm was iterated 400 times 

for every run. The average result across these 30 runs was used as the final performance value for 

each algorithm. The corresponding evaluation criteria include four indicators: The minimum value, 

standard deviation, average, and median. These indicators are designed to gauge the algorithm's 

capability in solving optimization problems. The experimental data are summarized below. 
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Table 3. The result of algorithm optimization (Dim=30). 

Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

 Min 1.367E+04 1.054E+08 7.255E+07 2.406E+04 2.836E+09 9.003E+03 2.003E+10 2.860E+02 

 Std 7.258E+04 2.556E+09 2.020E+08 3.636E+05 5.337E+09 2.047E+09 4.656E+09 2.663E+03 

F1 Avg 6.970E+04 2.316E+09 3.760E+08 3.032E+05 9.513E+09 1.145E+09 2.855E+10 2.928E+03 

 Median 4.971E+04 1.731E+09 3.413E+08 1.578E+05 9.768E+09 1.904E+07 2.849E+10 1.886E+03 

 Worse 2.816E+05 1.183E+10 8.363E+08 1.266E+06 2.430E+10 7.988E+09 3.842E+10 9.646E+03 

F3 

Min 4.410E+04 4.110E+04 3.600E+04 2.420E+04 1.540E+05 2.170E+04 6.590E+04 4.710E+04 

Std 7.210E+03 1.420E+04 8.100E+03 7.620E+03 7.080E+04 1.880E+04 2.230E+04 2.190E+04 

Avg 5.600E+04 5.770E+04 5.110E+04 3.680E+04 2.880E+05 5.180E+04 8.980E+04 8.360E+04 

Median 5.650E+04 5.430E+04 5.240E+04 3.510E+04 2.920E+05 5.080E+04 8.810E+04 8.480E+04 

Worse 6.820E+04 8.390E+04 6.470E+04 5.290E+04 4.120E+05 8.940E+04 1.770E+05 1.360E+05 

F4 

Min 4.866E+02 5.140E+02 5.780E+02 4.710E+02 9.840E+02 4.791E+02 3.790E+03 4.706E+02 

Std 2.430E+01 5.170E+01 9.410E+01 2.970E+01 3.829E+02 4.900E+01 1.513E+03 1.210E+01 

Avg 5.117E+02 6.093E+02 6.912E+02 5.182E+02 1.488E+03 5.434E+02 6.284E+03 5.103E+02 

median 5.158E+02 6.112E+02 6.779E+02 5.180E+02 1.510E+03 5.328E+02 6.203E+03 5.148E+02 

Worse 5.580E+02 7.159E+02 1.036E+03 6.074E+02 2.422E+03 6.495E+02 9.087E+03 5.226E+02 

F5 

Min 6.313E+02 5.839E+02 7.012E+02 5.793E+02 8.220E+02 5.867E+02 7.915E+02 5.717E+02 

Std 5.190E+01 3.570E+01 3.460E+01 2.740E+01 4.630E+01 3.990E+01 2.470E+01 1.240E+01 

Avg 7.532E+02 6.264E+02 7.682E+02 6.245E+02 8.999E+02 6.657E+02 8.391E+02 6.136E+02 

Median 7.547E+02 6.296E+02 7.682E+02 6.196E+02 8.990E+02 6.751E+02 8.420E+02 6.166E+02 

Worse 8.234E+02 7.238E+02 8.276E+02 6.794E+02 9.795E+02 7.334E+02 8.755E+02 6.334E+02 

F6 

Min 6.368E+02 6.046E+02 6.517E+02 6.055E+02 6.817E+02 6.136E+02 6.610E+02 5.982E+02 

Std 9.300E+00 3.600E+00 6.800E+00 6.400E+00 1.560E+01 1.140E+01 5.800E+00 1.937E-03 

Avg 6.521E+02 6.109E+02 6.656E+02 6.146E+02 7.096E+02 6.322E+02 6.705E+02 5.833E+02 

Median 6.511E+02 6.099E+02 6.653E+02 6.142E+02 7.086E+02 6.307E+02 6.704E+02 6.002E+02 

Worse 6.654E+02 6.179E+02 6.800E+02 6.283E+02 7.393E+02 6.594E+02 6.812E+02 6.003E+02 

F7 

Min 1.067E+03 8.343E+02 1.194E+03 8.282E+02 1.337E+03 8.288E+02 1.180E+03 8.222E+02 

Std 8.020E+01 5.040E+01 4.300E+01 5.830E+01 1.317E+02 4.460E+01 3.460E+01 1.370E+01 

Avg 1.245E+03 8.867E+02 1.287E+03 9.126E+02 1.541E+03 9.105E+02 1.224E+03 8.595E+02 

Median 1.260E+03 8.731E+02 1.293E+03 8.928E+02 1.526E+03 9.069E+02 1.215E+03 8.593E+02 

Worse 1.334E+03 1.023E+03 1.370E+03 1.036E+03 1.768E+03 1.010E+03 1.304E+03 8.823E+02 

F8 

Min 9.373E+02 8.675E+02 9.381E+02 8.613E+02 1.051E+03 8.737E+02 1.025E+03 8.823E+02 

Std 3.150E+01 3.370E+01 2.700E+01 1.930E+01 4.330E+01 3.750E+01 2.270E+01 1.640E+01 

Avg 9.812E+02 9.056E+02 9.852E+02 9.030E+02 1.777E+03 9.317E+02 1.071E+03 9.150E+02 

Median 9.786E+02 8.990E+02 9.873E+02 9.042E+02 1.171E+03 9.236E+02 1.067E+03 9.179E+02 

Worse 1.053E+03 9.964E+02 1.031E+03 9.324E+02 1.258E+03 1.033E+03 1.111E+03 9.385E+02 

F9 

Min 3.639E+03 1.365E+03 6.804E+03 1.548E+03 3.361E+03 1.700E+03 5.880E+03 9.004E+02 

Std 4.134E+02 6.084E+02 9.342E+02 8.753E+02 2.061E+03 1.060E+03 1.303E+03 8.003E+01 

Avg 5.333E+03 2.101E+03 8.544E+03 2.641E+03 6.111E+03 3.709E+03 8.176E+03 9.005E+02 

Median 5.451E+03 1.918E+03 8.807E+03 2.611E+03 5.369E+03 3.439E+03 8.232E+03 9.007E+02 

Worse 5.571E+03 3.717E+03 1.022E+04 4.544E+03 1.015E+04 6.245E+03 1.060E+04 9.028E+02 

F10 
Min 4.101E+03 3.372E+03 5.128E+03 3.946E+03 6.689E+03 3.925E+03 7.093E+03 6.136E+03 

Std 7.477E+02 1.082E+03 6.573E+02 1.076E+03 7.643E+02 6.880E+02 6.380E+02 5.269E+02 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F10 

Avg 5.563E+03 4.889E+03 6.079E+03 5.308E+03 7.861E+03 4.996E+03 8.272E+03 7.038E+03 

Median 5.494E+03 4.658E+03 6.091E+03 5.361E+03 7.905E+03 5.042E+03 8.460E+03 7.157E+03 

Worse 7.054E+03 7.716E+03 7.791E+03 7.898E+03 9.100E+03 6.575E+03 9.115E+03 7.827E+03 

F11 

Min 1.175E+03 1.329E+03 1.280E+03 1.196E+03 3.992E+03 1.174E+03 2.755E+03 1.163E+03 

Std 6.760E+01 7.955E+02 1.262E+02 6.600E+01 7.880E+03 6.050E+01 1.438E+03 2.860E+01 

Avg 1.304E+03 2.126E+03 1.480E+03 1.285E+03 1.351E+04 1.273E+03 5.015E+03 1.218E+03 

Median 1.293E+03 1.839E+03 1.463E+03 1.275E+03 1.261E+04 1.282E+03 4.682E+03 1.213E+03 

Worse 1.437E+03 3.932E+03 1.746E+03 1.457E+03 4.285E+04 1.381E+03 7.727E+03 1.284E+03 

F12 

Min 1.968E+05 1.088E+06 5.325E+06 9.024E+04 3.632E+06 2.641E+04 5.484E+08 6.552E+04 

Std 1.267E+06 6.303E+07 2.209E+07 9.533E+05 2.967E+08 1.712E+08 2.322E+09 8.879E+05 

Avg 1.821E+06 6.148E+07 3.641E+07 8.074E+05 1.972E+08 5.747E+07 5.782E+09 1.021E+06 

Median 1.774E+06 3.021E+07 3.576E+07 4.193E+05 9.572E+07 6.881E+05 5.643E+09 7.744E+05 

Worse 5.106E+06 2.055E+08 8.020E+07 4.193E+06 1.329E+09 6.157E+08 9.999E+09 3.446E+06 

 Min 3.155E+03 7.356E+04 1.351E+05 6.102E+03 4.638E+05 6.370E+03 1.376E+08 2.225E+03 

 Std 1.608E+04 5.205E+07 1.082E+06 3.050E+04 7.961E+07 2.609E+07 2.290E+09 1.563E+04 

F13 Avg 1.831E+04 1.434E+07 8.953E+05 4.056E+04 4.787E+07 1.122E+07 2.547E+09 1.774E+04 

 Median 1.182E+04 2.028E+05 6.547E+05 3.624E+04 1.400E+07 3.438E+04 1.606E+09 1.165E+04 

 Worse 5.634E+04 2.305E+08 5.260E+06 1.155E+05 3.064E+08 7.168E+07 8.629E+09 4.821E+04 

F14 

Min 6.348E+03 2.132E+04 1.695E+04 4.024E+03 2.352E+05 1.994E+03 8.594E+04 2.855E+03 

Std 9.353E+04 7.162E+05 1.428E+06 3.164E+04 6.825E+06 7.519E+04 5.328E+05 2.444E+05 

Avg 1.037E+05 7.681E+05 1.428E+06 3.490E+04 6.511E+06 5.684E+04 6.969E+05 1.311E+05 

Median 9.390E+04 5.656E+05 9.658E+05 3.120E+04 4.821E+06 2.642E+04 6.661E+05 5.276E+04 

Worse 4.291E+05 2.519E+06 5.211E+06 1.037E+05 2.873E+07 2.743E+05 2.022E+06 1.114E+06 

F15 

Min 1.731E+03 2.001E+04 4.633E+04 2.153E+03 7.321E+04 2.608E+03 3.469E+05 1.671E+03 

Std 7.678E+03 5.654E+05 4.170E+04 2.776E+04 8.030E+06 1.659E+04 6.254E+06 4.733E+03 

Avg 8.142E+03 3.158E+05 9.653E+04 2.241E+04 2.729E+06 1.438E+04 5.773E+06 5.628E+03 

Median 6.159E+03 9.149E+04 9.063E+04 1.250E+04 4.977E+05 6.731E+03 3.533E+06 3.967E+03 

Worse 3.004E+04 2.318E+06 2.180E+05 1.217E+05 3.644E+07 6.099E+04 2.245E+07 1.678E+04 

F16 

Min 2.203E+03 2.168E+03 2.645E+03 2.229E+03 2.913E+03 2.210E+03 3.077E+03 2.079E+03 

Std 4.103E+02 4.242E+02 4.825E+02 3.509E+02 4.003E+02 3.177E+02 4.383E+02 1.927E+02 

Avg 2.914E+03 2.694E+03 3.410E+03 2.755E+03 3.690E+03 2.697E+03 3.996E+03 2.528E+03 

Median 2.780E+03 2.567E+03 3.288E+03 2.759E+03 3.679E+03 2.710E+03 4.059E+03 2.533E+03 

Worse 3.747E+03 3.783E+03 4.588E+03 3.641E+03 4.611E+03 3.243E+03 4.675E+03 2.870E+03 

F17 

Min 2.126E+03 1.923E+03 2.305E+03 1.908E+03 2.331E+03 1.800E+03 2.202E+03 1.756E+03 

Std 2.300E+02 1.296E+02 2.103E+02 2.467E+02 1.896E+02 2.037E+02 2.492E+02 1.005E+02 

Avg 2.556E+03 2.135E+03 2.672E+03 2.368E+03 2.701E+03 2.209E+03 2.809E+03 1.883E+03 

Median 2.539E+03 2.115E+03 2.657E+03 2.349E+03 2.741E+03 2.213E+03 2.823E+03 1.894E+03 

Worse 2.888E+03 2.449E+03 3.103E+03 2.789E+03 3.071E+03 2.498E+03 3.326E+03 2.092E+03 

F18 

Min 1.127E+05 1.123E+05 2.152E+05 7.419E+04 8.326E+05 4.274E+04 1.006E+06 1.043E+05 

Std 1.264E+06 4.502E+06 5.988E+06 3.119E+05 1.542E+07 2.334E+05 2.860E+06 1.256E+06 

Avg 1.294E+06 2.955E+06 5.199E+06 3.807E+05 1.403E+07 2.605E+05 4.935E+06 1.179E+06 

Median 9.317E+05 1.406E+06 2.682E+06 2.543E+05 7.182E+06 1.564E+05 4.311E+06 7.578E+05 

Worse 5.282E+06 1.913E+07 2.012E+07 1.150E+06 5.505E+07 7.839E+05 9.595E+06 5.429E+06 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F19 

Min 2.083E+03 3.308E+04 1.070E+05 2.168E+03 4.004E+05 2.086E+03 9.872E+06 1.989E+03 

Std 1.349E+04 9.591E+06 1.114E+06 7.825E+03 4.052E+06 4.576E+03 1.335E+08 9.072E+03 

Avg 1.027E+04 4.069E+06 1.342E+06 8.879E+03 3.179E+06 7.157E+03 1.836E+08 8.829E+03 

Median 4.010E+03 1.176E+06 8.922E+05 6.377E+03 1.359E+06 5.566E+03 1.553E+08 5.326E+03 

Worse 5.343E+04 4.185E+07 3.961E+06 2.628E+04 1.337E+07 1.560E+04 6.097E+08 3.636E+04 

F20 

Min 2.281E+03 2.233E+03 2.310E+03 2.218E+03 2.586E+03 2.300E+03 2.473E+03 2.044E+03 

Std 2.473E+02 1.522E+02 2.136E+02 1.946E+02 2.669E+02 1.830E+02 1.864E+02 1.395E+02 

Avg 2.715E+03 2.388E+03 2.800E+03 2.502E+03 3.012E+03 2.599E+03 2.837E+03 2.298E+03 

Median 2.767E+03 2.337E+03 2.867E+03 2.474E+03 3.008E+03 2.614E+03 2.842E+03 2.312E+03 

Worse 3.136E+03 2.660E+03 3.107E+03 2.955E+03 3.490E+03 2.939E+03 3.124E+03 2.573E+03 

F21 

Min 2.444E+03 2.365E+03 2.463E+03 2.212E+03 2.680E+03 2.394E+03 2.385E+03 2.380E+03 

Std 4.334E+01 4.179E+01 5.372E+01 5.309E+01 5.256E+01 3.748E+01 7.864E+01 1.280E+01 

Avg 2.526E+03 2.420E+03 2.592E+03 2.405E+03 2.759E+03 2.442E+03 2.585E+03 2.413E+03 

Median 2.522E+03 2.407E+03 2.591E+03 2.409E+03 2.757E+03 2.437E+03 2.608E+03 2.413E+03 

Worse 2.623E+03 2.515E+03 2.688E+03 2.476E+03 2.887E+03 2.530E+03 2.669E+03 2.439E+03 

F22 

Min 2.302E+03 2.462E+03 2.745E+03 2.303E+03 3.521E+03 2.417E+03 4.610E+03 2.300E+03 

Std 2.037E+03 1.635E+03 1.514E+03 2.769E+03 2.124E+03 2.000E+03 6.438E+02 2.847E+02 

Avg 5.932E+03 4.353E+03 6.866E+03 5.270E+03 8.088E+03 4.554E+03 5.865E+03 3.895E+03 

Median 6.372E+03 4.934E+03 7.341E+03 6.455E+03 8.862E+03 4.295E+03 5.944E+03 2.304E+03 

Worse 8.467E+03 9.164E+03 8.849E+03 8.648E+03 1.052E+04 7.488E+03 6.762E+03 6.555E+03 

F23 

Min 2.765E+03 2.726E+03 3.036E+03 2.711E+03 3.065E+03 2.817E+03 3.024E+03 2.703E+03 

Std 9.018E+01 2.952E+01 1.187E+02 4.907E+01 8.786E+01 6.670E+01 9.583E+01 2.035E+01 

Avg 2.940E+03 2.766E+03 3.220E+03 2.794E+03 3.236E+03 2.932E+03 3.188E+03 2.752E+03 

Median 2.928E+03 2.760E+03 3.189E+03 2.786E+03 3.243E+03 2.927E+03 3.200E+03 2.754E+03 

Worse 3.123E+03 2.807E+03 3.466E+03 2.913E+03 3.395E+03 3.042E+03 3.357E+03 2.788E+03 

F24 

Min 2.970E+03 2.874E+03 3.170E+03 2.886E+03 3.329E+03 2.975E+03 3.250E+03 2.923E+03 

Std 1.043E+02 5.757E+01 1.434E+02 1.781E+02 1.031E+02 7.629E+01 9.264E+01 1.209E+01 

Avg 3.119E+03 2.933E+03 3.402E+03 3.077E+03 3.505E+03 3.114E+03 3.397E+03 2.942E+03 

Median 3.093E+03 2.915E+03 3.396E+03 3.027E+03 3.488E+03 3.105E+03 3.375E+03 2.945E+03 

Worse 3.396E+03 3.089E+03 3.787E+03 3.578E+03 3.724E+03 3.276E+03 3.595E+03 2.963E+03 

F25 

Min 2.887E+03 2.934E+03 2.930E+03 2.887E+03 3.577E+03 2.887E+03 3.517E+03 2.884E+03 

Std 1.624E+01 3.958E+01 4.245E+01 1.173E+01 3.798E+02 3.391E+01 2.133E+02 8.362E+00 

Avg 2.902E+03 3.003E+03 3.008E+03 2.909E+03 4.068E+03 2.927E+03 3.979E+03 2.892E+03 

Median 2.897E+03 2.994E+03 3.013E+03 2.911E+03 4.050E+03 2.926E+03 3.989E+03 2.889E+03 

Worse 2.942E+03 3.082E+03 3.072E+03 2.925E+03 5.326E+03 3.017E+03 4.260E+03 2.921E+03 

F26 

Min 2.914E+03 3.962E+03 4.082E+03 2.924E+03 6.666E+03 4.024E+03 6.944E+03 2.857E+03 

Std 1.059E+03 3.290E+02 1.095E+03 9.684E+02 9.004E+02 1.384E+03 6.681E+02 2.265E+02 

Avg 6.494E+03 4.783E+03 8.326E+03 5.171E+03 8.013E+03 5.183E+03 7.997E+03 4.526E+03 

Median 6.454E+03 4.753E+03 8.519E+03 5.151E+03 7.897E+03 5.339E+03 7.942E+03 4.553E+03 

Worse 8.055E+03 5.399E+03 9.355E+03 7.150E+03 1.072E+04 7.361E+03 9.498E+03 4.845E+03 

F27 

Min 3.226E+03 3.221E+03 3.303E+03 3.226E+03 3.581E+03 3.247E+03 3.355E+03 3.201E+03 

Std 3.936E+01 2.787E+01 1.890E+02 1.245E+02 2.133E+02 3.145E+01 1.534E+02 4.734E+00 

Avg 3.280E+03 3.254E+03 3.537E+03 3.310E+03 3.852E+03 3.298E+03 3.627E+03 3.213E+03 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F27 
Median 3.277E+03 3.254E+03 3.519E+03 3.270E+03 3.787E+03 3.299E+03 3.617E+03 3.215E+03 

Worse 3.373E+03 3.339E+03 3.949E+03 3.722E+03 4.302E+03 3.361E+03 3.907E+03 3.218E+03 

F28 

Min 3.220E+03 3.261E+03 3.357E+03 3.215E+03 3.754E+03 3.238E+03 4.613E+03 3.213E+03 

Std 2.638E+01 1.088E+02 7.592E+01 2.836E+01 5.766E+02 5.812E+01 3.338E+02 1.907E+01 

Avg 3.256E+03 3.419E+03 3.460E+03 3.256E+03 4.888E+03 3.321E+03 5.125E+03 3.251E+03 

Median 3.258E+03 3.408E+03 3.446E+03 3.258E+03 4.970E+03 3.305E+03 5.107E+03 3.258E+03 

Worse 3.322E+03 3.808E+03 3.611E+03 3.304E+03 6.153E+03 3.456E+03 5.712E+03 3.277E+03 

F29 

Min 3.782E+03 3.487E+03 4.403E+03 3.623E+03 4.424E+03 3.729E+03 4.317E+03 3.429E+03 

Std 2.784E+02 3.550E+02 3.089E+02 5.892E+02 3.553E+02 1.949E+02 4.795E+02 1.166E+02 

Avg 4.225E+03 3.883E+03 4.861E+03 4.499E+03 4.991E+03 4.084E+03 5.148E+03 3.586E+03 

Median 4.243E+03 3.825E+03 4.825E+03 4.323E+03 4.978E+03 4.151E+03 5.096E+03 3.570E+03 

Worse 4.727E+03 5.194E+03 5.468E+03 6.080E+03 5.763E+03 4.383E+03 6.439E+03 3.922E+03 

F30 

Min 8.846E+03 3.259E+06 2.715E+06 1.034E+04 2.850E+05 1.430E+04 5.224E+07 7.604E+03 

Std 1.281E+04 4.865E+06 7.715E+06 4.206E+04 1.901E+07 9.148E+04 1.921E+08 6.192E+03 

Avg 2.046E+04 8.079E+06 1.005E+07 4.697E+04 1.473E+07 8.713E+04 1.781E+08 1.502E+04 

Median 1.557E+04 6.722E+06 8.978E+06 2.859E+04 9.583E+06 3.818E+04 1.338E+08 1.358E+04 

Worse 4.753E+04 2.348E+07 3.788E+07 1.726E+05 8.651E+07 2.828E+05 9.452E+08 3.439E+04 

Note: The performance metrics of the best-performing algorithm are presented in bold to indicate superior performance. 

Table 4. The results of algorithm optimization (Dim=50). 

Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

 Min 3.027E+06 2.360E+09 1.431E+09 2.690E+07 3.002E+10 2.218E+08 6.284E+10 1.138E+06 

 Std 3.267E+06 4.296E+09 1.216E+09 2.402E+09 2.415E+10 2.965E+09 6.067E+09 4.821E+05 

F1 Avg 7.375E+06 7.512E+09 3.020E+09 1.057E+09 7.811E+10 3.773E+09 7.279E+10 1.905E+06 

 Median 6.846E+06 6.913E+09 2.707E+09 8.661E+07 7.798E+10 3.008E+09 7.214E+10 1.960E+06 

 Worse 1.886E+07 2.221E+10 6.160E+09 9.928E+09 1.299E+11 1.288E+10 8.760E+10 3.404E+06 

F3 

Min 1.575E+05 9.882E+04 9.345E+04 9.983E+04 2.329E+05 9.744E+04 1.523E+05 1.571E+05 

Std 5.700E+04 2.124E+04 1.922E+04 1.724E+04 1.034E+05 5.047E+04 3.553E+04 3.815E+04 

Avg 2.637E+05 1.354E+05 1.432E+05 1.289E+05 4.272E+05 1.770E+05 2.177E+05 2.167E+05 

Median 2.766E+05 1.354E+05 1.439E+05 1.295E+05 3.989E+05 1.688E+05 2.146E+05 2.177E+05 

Worse 4.031E+05 1.797E+05 1.799E+05 1.679E+05 7.152E+05 3.257E+05 3.058E+05 2.934E+05 

F4 

Min 5.353E+02 7.593E+02 1.050E+03 5.410E+02 3.993E+03 6.699E+02 1.314E+04 5.023E+02 

Std 4.507E+01 3.841E+02 3.683E+02 6.728E+01 4.900E+03 3.635E+02 1.799E+03 3.502E+01 

Avg 6.226E+02 1.176E+03 1.535E+03 6.557E+02 1.121E+04 9.446E+02 1.570E+04 5.699E+02 

Median 6.258E+02 1.146E+03 1.417E+03 6.635E+02 1.053E+04 8.338E+02 1.543E+04 5.696E+02 

Worse 6.949E+02 2.685E+03 2.492E+03 8.245E+02 2.245E+04 2.469E+03 1.998E+04 6.341E+02 

F5 

Min 8.354E+02 6.424E+02 8.508E+02 6.973E+02 1.142E+03 6.918E+02 1.037E+03 5.976E+02 

Std 2.098E+01 5.333E+01 3.426E+01 3.777E+01 8.304E+01 5.046E+01 3.437E+01 2.794E+01 

Avg 8.771E+02 7.343E+02 9.172E+02 7.559E+02 1.285E+03 7.819E+02 1.097E+03 6.434E+02 

Median 8.767E+02 7.265E+02 9.171E+02 7.513E+02 1.274E+03 7.764E+02 1.101E+03 6.500E+02 

Worse 9.459E+02 9.474E+02 9.855E+02 8.362E+02 1.527E+03 9.310E+02 1.153E+03 6.961E+02 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F6 

Min 6.468E+02 6.112E+02 6.670E+02 6.172E+02 7.088E+02 6.328E+02 6.723E+02 6.006E+02 

Std 6.127E+00 4.058E+00 4.353E+00 7.696E+00 9.926E+00 6.591E+00 5.762E+00 4.651E-01 

Avg 6.627E+02 6.196E+02 6.779E+02 6.311E+02 7.295E+02 6.463E+02 6.857E+02 6.012E+02 

Median 6.630E+02 6.193E+02 6.784E+02 6.310E+02 7.292E+02 6.465E+02 6.852E+02 6.012E+02 

Worse 6.719E+02 6.295E+02 6.857E+02 6.519E+02 7.478E+02 6.618E+02 6.958E+02 6.024E+02 

F7 

Min 1.114E+03 9.757E+02 1.149E+03 9.968E+02 1.398E+03 9.677E+02 1.347E+03 8.827E+02 

Std 2.981E+01 6.541E+01 3.355E+01 4.388E+01 8.494E+01 5.321E+01 2.505E+01 2.334E+01 

Avg 1.203E+03 1.044E+03 1.209E+03 1.066E+03 1.528E+03 1.087E+03 1.397E+03 9.402E+02 

Median 1.217E+03 1.032E+03 1.209E+03 1.064E+03 1.537E+03 1.096E+03 1.396E+03 9.455E+02 

Worse 1.244E+03 1.352E+03 1.271E+03 1.180E+03 1.788E+03 1.180E+03 1.445E+03 9.784E+02 

F8 

Min 1.114E+03 9.757E+02 1.149E+03 9.968E+02 1.398E+03 9.677E+02 1.347E+03 8.827E+02 

Std 2.981E+01 6.541E+01 3.355E+01 4.388E+01 8.494E+01 5.321E+01 2.505E+01 2.334E+01 

Avg 1.203E+03 1.044E+03 1.209E+03 1.066E+03 1.528E+03 1.087E+03 1.397E+03 9.402E+02 

Median 1.217E+03 1.032E+03 1.209E+03 1.064E+03 1.537E+03 1.096E+03 1.396E+03 9.455E+02 

Worse 1.244E+03 1.352E+03 1.271E+03 1.180E+03 1.788E+03 1.180E+03 1.445E+03 9.784E+02 

F9 

Min 1.099E+04 2.975E+03 2.442E+04 4.903E+03 1.356E+04 5.240E+03 1.949E+04 2.407E+03 

Std 2.008E+03 4.335E+03 2.983E+03 4.016E+03 7.080E+03 2.428E+03 4.396E+03 1.332E+03 

Avg 1.377E+04 8.291E+03 3.035E+04 9.801E+03 2.734E+04 1.007E+04 3.280E+04 5.602E+03 

Median 1.360E+04 7.857E+03 3.017E+04 8.353E+03 2.658E+04 1.004E+04 3.276E+04 5.590E+03 

Worse 1.979E+04 1.772E+04 3.783E+04 2.308E+04 3.980E+04 1.579E+04 3.966E+04 1.171E+04 

F10 

Min 6.569E+03 6.678E+03 8.593E+03 5.339E+03 1.158E+04 5.249E+03 1.191E+04 4.315E+03 

Std 8.497E+02 2.210E+03 7.644E+02 1.962E+03 8.773E+02 9.411E+02 8.664E+02 5.399E+02 

Avg 8.531E+03 8.560E+03 1.003E+04 8.636E+03 1.391E+04 7.765E+03 1.432E+04 5.898E+03 

Median 8.548E+03 7.788E+03 9.998E+03 8.708E+03 1.404E+04 7.717E+03 1.457E+04 5.976E+03 

Worse 1.009E+04 1.542E+04 1.261E+04 1.356E+04 1.593E+04 9.579E+03 1.564E+04 6.775E+03 

F11 

Min 1.366E+03 1.968E+03 1.765E+03 1.325E+03 1.598E+04 1.229E+03 8.349E+03 1.265E+03 

Std 8.821E+01 1.964E+03 4.226E+02 3.319E+02 1.393E+04 1.232E+02 2.228E+03 7.662E+02 

Avg 1.493E+03 4.778E+03 2.364E+03 1.587E+03 4.067E+04 1.504E+03 1.263E+04 1.834E+03 

Median 1.494E+03 4.404E+03 2.266E+03 1.515E+03 4.166E+04 1.482E+03 1.265E+04 1.484E+03 

Worse 1.719E+03 9.528E+03 3.729E+03 3.209E+03 6.762E+04 1.790E+03 1.626E+04 3.955E+03 

F12 

Min 4.245E+06 2.769E+07 1.153E+08 3.984E+06 2.371E+09 2.861E+07 2.321E+10 2.566E+06 

Std 8.707E+06 5.755E+08 3.060E+08 1.254E+07 5.109E+09 2.255E+09 6.060E+09 5.064E+06 

Avg 1.681E+07 7.363E+08 5.291E+08 1.547E+07 8.425E+09 1.304E+09 3.513E+10 9.520E+06 

Median 1.631E+07 6.081E+08 4.178E+08 1.119E+07 7.677E+09 2.681E+08 3.469E+10 8.300E+06 

Worse 5.074E+07 1.965E+09 1.224E+09 5.320E+07 2.153E+10 1.035E+10 5.067E+10 2.610E+07 

F13 

Min 4.245E+06 2.769E+07 1.153E+08 3.984E+06 2.371E+09 2.861E+07 2.321E+10 2.566E+06 

Std 8.707E+06 5.755E+08 3.060E+08 1.254E+07 5.109E+09 2.255E+09 6.060E+09 5.064E+06 

Avg 1.681E+07 7.363E+08 5.291E+08 1.547E+07 8.425E+09 1.304E+09 3.513E+10 9.520E+06 

Median 1.631E+07 6.081E+08 4.178E+08 1.119E+07 7.677E+09 2.681E+08 3.469E+10 8.300E+06 

Worse 5.074E+07 1.965E+09 1.224E+09 5.320E+07 2.153E+10 1.035E+10 5.067E+10 2.610E+07 

F14 Min 1.602E+05 1.189E+05 3.316E+05 5.209E+04 2.617E+06 1.072E+04 1.441E+06 1.263E+05 

 Std 4.319E+05 1.551E+06 1.982E+06 1.959E+05 3.140E+07 2.935E+05 7.357E+06 7.619E+05 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F14 

Avg 6.654E+05 1.379E+06 2.757E+06 2.347E+05 3.168E+07 1.917E+05 9.495E+06 1.124E+06 

Median 5.570E+05 8.633E+05 1.974E+06 1.467E+05 2.089E+07 1.152E+05 8.832E+06 8.490E+05 

Worse 1.950E+06 5.220E+06 8.725E+06 7.702E+05 1.533E+08 1.541E+06 3.621E+07 2.685E+06 

F15 

Min 3.382E+03 4.537E+04 1.995E+05 3.778E+03 6.977E+05 4.218E+03 2.385E+08 1.750E+03 

Std 7.003E+03 1.776E+07 3.826E+05 2.236E+04 8.053E+08 9.076E+03 7.541E+08 7.001E+03 

Avg 1.543E+04 1.408E+07 9.763E+05 3.469E+04 2.635E+08 1.619E+04 1.670E+09 8.725E+03 

Median 1.761E+04 9.597E+06 9.267E+05 2.680E+04 3.221E+07 1.363E+04 1.738E+09 4.740E+03 

Worse 2.840E+04 6.145E+07 1.933E+06 1.060E+05 4.303E+09 3.961E+04 3.846E+09 1.968E+04 

F16 

Min 2.621E+03 2.718E+03 3.127E+03 2.638E+03 3.792E+03 2.747E+03 4.181E+03 2.485E+03 

Std 5.052E+02 4.585E+02 7.365E+02 4.841E+02 7.097E+02 4.521E+02 6.207E+02 2.738E+02 

Avg 3.875E+03 3.345E+03 4.531E+03 3.371E+03 5.476E+03 3.560E+03 5.658E+03 3.006E+03 

Median 3.972E+03 3.247E+03 4.483E+03 3.443E+03 5.563E+03 3.569E+03 5.607E+03 3.042E+03 

Worse 4.733E+03 4.861E+03 6.318E+03 4.393E+03 6.776E+03 4.543E+03 7.320E+03 3.557E+03 

F17 

Min 2.661E+03 2.389E+03 3.012E+03 2.552E+03 3.420E+03 2.556E+03 4.148E+03 2.319E+03 

Std 4.452E+02 3.460E+02 4.338E+02 3.687E+02 6.432E+02 3.556E+02 4.789E+02 2.276E+02 

Avg 3.499E+03 3.002E+03 3.822E+03 3.228E+03 4.445E+03 3.294E+03 4.851E+03 2.774E+03 

Median 3.460E+03 2.962E+03 3.800E+03 3.265E+03 4.378E+03 3.282E+03 4.796E+03 2.773E+03 

Worse 4.692E+03 4.199E+03 4.838E+03 3.816E+03 5.881E+03 3.890E+03 5.826E+03 3.303E+03 

F18 

Min 4.175E+05 7.331E+05 1.802E+06 1.570E+05 1.478E+06 1.069E+05 1.570E+06 1.880E+05 

Std 2.318E+06 5.368E+06 7.078E+06 2.397E+06 5.477E+07 1.565E+06 1.834E+07 1.471E+06 

Avg 3.670E+06 6.049E+06 7.756E+06 1.875E+06 5.725E+07 1.157E+06 2.449E+07 2.150E+06 

Median 3.583E+06 4.511E+06 6.410E+06 1.222E+06 3.633E+07 6.488E+05 1.904E+07 1.774E+06 

Worse 8.364E+06 2.615E+07 3.877E+07 1.077E+07 2.282E+08 7.591E+06 6.319E+07 5.452E+06 

F19 

Min 3.489E+03 1.264E+05 1.798E+05 2.530E+03 4.652E+06 2.269E+03 1.257E+08 2.108E+03 

Std 1.329E+04 9.524E+06 1.529E+06 1.442E+04 4.603E+07 1.623E+05 4.945E+08 6.146E+03 

Avg 2.074E+04 6.194E+06 1.669E+06 1.937E+04 3.685E+07 5.125E+04 9.719E+08 8.325E+03 

Median 1.700E+04 1.313E+06 1.166E+06 1.912E+04 2.064E+07 1.552E+04 1.049E+09 6.274E+03 

Worse 4.442E+04 3.748E+07 5.856E+06 4.976E+04 2.288E+08 9.059E+05 2.448E+09 2.270E+04 

F20 

Min 2.281E+03 2.233E+03 2.310E+03 2.218E+03 2.586E+03 2.300E+03 2.473E+03 2.044E+03 

Std 2.473E+02 1.522E+02 2.136E+02 1.946E+02 2.669E+02 1.830E+02 1.864E+02 1.395E+02 

Avg 2.715E+03 2.388E+03 2.800E+03 2.502E+03 3.012E+03 2.599E+03 2.837E+03 2.298E+03 

Median 2.767E+03 2.337E+03 2.867E+03 2.474E+03 3.008E+03 2.614E+03 2.842E+03 2.312E+03 

Worse 3.136E+03 2.660E+03 3.107E+03 2.955E+03 3.490E+03 2.939E+03 3.124E+03 2.573E+03 

F21 

Min 2.597E+03 2.447E+03 2.782E+03 2.439E+03 3.045E+03 2.499E+03 2.888E+03 2.417E+03 

Std 9.609E+01 3.662E+01 7.586E+01 5.027E+01 1.027E+02 5.657E+01 4.565E+01 1.910E+01 

Avg 2.759E+03 2.523E+03 2.923E+03 2.520E+03 3.225E+03 2.606E+03 2.977E+03 2.452E+03 

Median 2.761E+03 2.524E+03 2.926E+03 2.517E+03 3.231E+03 2.610E+03 2.969E+03 2.451E+03 

Worse 3.058E+03 2.586E+03 3.048E+03 2.621E+03 3.427E+03 2.702E+03 3.061E+03 2.499E+03 

F22 

Min 2.302E+03 2.462E+03 2.745E+03 2.303E+03 3.521E+03 2.417E+03 4.610E+03 2.300E+03 

Std 2.037E+03 1.635E+03 1.514E+03 2.769E+03 2.124E+03 2.000E+03 6.438E+02 2.847E+02 

Avg 5.932E+03 4.353E+03 6.866E+03 5.270E+03 8.088E+03 4.554E+03 5.865E+03 3.895E+03 

Median 6.372E+03 4.934E+03 7.341E+03 6.455E+03 8.862E+03 4.295E+03 5.944E+03 2.304E+03 

Worse 8.467E+03 9.164E+03 8.849E+03 8.648E+03 1.052E+04 7.488E+03 6.762E+03 6.555E+03 

Continued on next page 
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Functions Statistic SSA GWO HHO HBA GA PSO DBO IDBO 

F23 

Min 8.547E+03 7.593E+03 1.033E+04 7.255E+03 1.491E+04 7.558E+03 1.261E+04 5.839E+03 

Std 1.026E+03 1.464E+03 8.249E+02 2.616E+03 7.094E+02 9.408E+02 1.198E+03 7.360E+02 

Avg 1.040E+04 9.411E+03 1.199E+04 1.086E+04 1.645E+04 9.761E+03 1.571E+04 7.670E+03 

Median 1.057E+04 9.092E+03 1.210E+04 1.033E+04 1.660E+04 9.972E+03 1.600E+04 7.808E+03 

Worse 1.209E+04 1.532E+04 1.331E+04 1.880E+04 1.805E+04 1.125E+04 1.731E+04 8.824E+03 

F24 

Min 3.335E+03 3.062E+03 3.796E+03 3.091E+03 3.938E+03 3.184E+03 3.798E+03 3.043E+03 

Std 1.397E+02 9.309E+01 2.199E+02 1.219E+02 2.081E+02 1.424E+02 1.849E+02 4.510E+01 

Avg 3.530E+03 3.147E+03 4.207E+03 3.236E+03 4.348E+03 3.526E+03 4.123E+03 3.106E+03 

Median 3.512E+03 3.120E+03 4.228E+03 3.206E+03 4.344E+03 3.531E+03 4.089E+03 3.105E+03 

Worse 3.757E+03 3.409E+03 4.653E+03 3.591E+03 4.863E+03 3.854E+03 4.541E+03 3.249E+03 

F25 

Min 3.049E+03 3.158E+03 3.335E+03 3.055E+03 7.731E+03 3.124E+03 8.798E+03 3.005E+03 

Std 4.033E+01 3.397E+02 1.242E+02 9.160E+01 4.098E+03 3.471E+02 8.641E+02 2.249E+01 

Avg 3.137E+03 3.693E+03 3.586E+03 3.220E+03 1.335E+04 3.372E+03 1.071E+04 3.067E+03 

Median 3.132E+03 3.660E+03 3.584E+03 3.201E+03 1.371E+04 3.296E+03 1.089E+04 3.071E+03 

Worse 3.230E+03 4.820E+03 3.784E+03 3.526E+03 2.365E+04 5.028E+03 1.239E+04 3.116E+03 

F26 

Min 3.615E+03 5.637E+03 1.023E+04 3.940E+03 1.101E+04 4.818E+03 1.161E+04 3.218E+03 

Std 2.651E+03 9.453E+02 8.059E+02 1.113E+03 1.526E+03 1.592E+03 9.196E+02 3.856E+02 

Avg 9.407E+03 6.673E+03 1.202E+04 6.557E+03 1.402E+04 8.535E+03 1.385E+04 5.163E+03 

Median 1.041E+04 6.497E+03 1.208E+04 6.600E+03 1.415E+04 8.762E+03 1.388E+04 5.168E+03 

Worse 1.245E+04 9.320E+03 1.340E+04 9.447E+03 1.795E+04 1.143E+04 1.530E+04 6.008E+03 

F27 

Min 3.226E+03 3.221E+03 3.303E+03 3.226E+03 3.581E+03 3.247E+03 3.355E+03 3.201E+03 

Std 3.936E+01 2.787E+01 1.890E+02 1.245E+02 2.133E+02 3.145E+01 1.534E+02 4.734E+00 

Avg 3.280E+03 3.254E+03 3.537E+03 3.310E+03 3.852E+03 3.298E+03 3.627E+03 3.213E+03 

Median 3.277E+03 3.254E+03 3.519E+03 3.270E+03 3.787E+03 3.299E+03 3.617E+03 3.215E+03 

Worse 3.373E+03 3.339E+03 3.949E+03 3.722E+03 4.302E+03 3.361E+03 3.907E+03 3.218E+03 

F28 

Min 3.355E+03 3.663E+03 3.769E+03 3.365E+03 6.876E+03 3.579E+03 6.692E+03 3.292E+03 

Std 5.547E+01 3.640E+02 3.951E+02 1.491E+02 1.323E+03 5.384E+02 6.312E+02 1.714E+01 

Avg 3.458E+03 4.354E+03 4.546E+03 3.530E+03 9.429E+03 4.076E+03 8.356E+03 3.345E+03 

Median 3.445E+03 4.297E+03 4.567E+03 3.497E+03 9.697E+03 3.889E+03 8.327E+03 3.346E+03 

Worse 3.589E+03 5.042E+03 5.480E+03 3.914E+03 1.157E+04 5.478E+03 9.544E+03 3.376E+03 

F29 

Min 4.055E+03 4.164E+03 5.777E+03 4.112E+03 5.997E+03 4.095E+03 7.514E+03 3.370E+03 

Std 4.154E+02 3.077E+02 7.046E+02 1.024E+03 9.280E+02 5.912E+02 1.831E+03 2.262E+02 

Avg 5.161E+03 4.759E+03 6.813E+03 5.049E+03 7.591E+03 5.288E+03 1.036E+04 3.901E+03 

Median 5.168E+03 4.754E+03 6.721E+03 4.737E+03 7.439E+03 5.257E+03 1.040E+04 3.920E+03 

Worse 5.824E+03 5.382E+03 8.889E+03 9.153E+03 9.591E+03 6.791E+03 1.493E+04 4.332E+03 

F30 

Min 4.055E+03 4.164E+03 5.777E+03 4.112E+03 5.997E+03 4.095E+03 7.514E+03 3.370E+03 

Std 4.154E+02 3.077E+02 7.046E+02 1.024E+03 9.280E+02 5.912E+02 1.831E+03 2.262E+02 

Avg 5.161E+03 4.759E+03 6.813E+03 5.049E+03 7.591E+03 5.288E+03 1.036E+04 3.901E+03 

Median 5.168E+03 4.754E+03 6.721E+03 4.737E+03 7.439E+03 5.257E+03 1.040E+04 3.920E+03 

Worse 5.824E+03 5.382E+03 8.889E+03 9.153E+03 9.591E+03 6.791E+03 1.493E+04 4.332E+03 

Note: The performance metrics of the best-performing algorithm are presented in bold to indicate superior performance. 
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As presented in Table 3, when the dimension is 30, the IDBO algorithm demonstrates superior 

performance compared with its counterparts. For unimodal functions, the IDBO algorithm 

outperforms most comparative methods, with the exception of F3. The IDBO algorithm demonstrates 

superior performance in optimizing multimodal functions, with the exception of its performance on 

F8 and F10. Moreover, for hybrid and composite functions, the IDBO algorithm outperforms other 

algorithms, except for F12, F14, F18, F19, F21, and F24. 

As presented in Table 4, when the dimension is 50, the performance of the IDBO algorithm was 

exceptional across F1 to F30. Its various evaluation criteria consistently ranked first in most 

functions, exhibiting only minor deficiencies in F3, F11, F14, and F18. 

3.7.3. Analysis of the algorithm’s convergence capability 

In addition to assessing the algorithm's optimization capability, its convergence capability is 

also a crucial factor in evaluating its overall performance. Therefore, to further assess the convergence 

capability of the IDBO algorithm, this paper comparatively analyzes the convergence trends of eight 

optimization algorithms using the CEC2017 benchmark test set. As shown in Figures 7–26, the 

obtained results are graphically demonstrated. 

 

Figure 7. Convergence curves of F1–F4 (Dim=30). 

 

Figure 8 Convergence curves of F5–F7 (Dim=30). 
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Figure 9. Convergence curves of F8–F10 (Dim=30). 

 

Figure 10. Convergence curves of F11–F13 (Dim=30). 

 

Figure 11. Convergence curves of F14–F16 (Dim=30). 

 

Figure 12. Convergence curves of F17–F19 (Dim=30). 
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Figure 13. Convergence curves of F20–F22 (Dim=30). 

 

Figure 14. Convergence curves of F23–F25 (Dim=30). 

 

Figure 15. Convergence curves of F26–F28 (Dim=30). 

 

Figure 16. Convergence curves of F29–F30 (Dim=30). 
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Figure 17. Convergence curves of F1–F4 (Dim=50). 

 

Figure 18. Convergence curves of F5–F7 (Dim=50). 

 

Figure 19. Convergence curves of F8–F10 (Dim=50). 

 

Figure 20. Convergence curves of F11–F13 (Dim=50). 



25835 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

 

Figure 21. Convergence curves of F14–F16 (Dim=50). 

 

Figure 22. Convergence curves of F17–F19 (Dim=50). 

 

Figure 23. Convergence curves of F20–F22 (Dim=50). 

 

Figure 24. Convergence curves of F23–F25 (Dim=50). 
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Figure 25. Convergence curves of F26–F28 (Dim=50). 

 

Figure 26. Convergence curves of F29-F30 (Dim=50). 

According to the convergence curves of the eight algorithms above, the IDBO algorithm 

achieves superior convergence speed and achieves a higher degree of accuracy than the other seven 

algorithms. For unimodal functions, the IDBO algorithm's convergence curve rapidly approaches or 

reaches the theoretically optimal solution, allowing for the swift identification and localization of the 

promising region containing the global optimal solution and efficiently converging toward it. For 

multimodal functions, the proposed enhanced strategy in the IDBO algorithm significantly improves 

its global exploration performance during the initial iterations, enabling multimodal function 

optimization to reach comparable precision with fewer computational cycles. The IDBO algorithm 

demonstrates fluctuations and a gradual decline in optimization values during the late phases in 

handling hybrid and composite functions, which enhances its ability to overcome local optima 

stagnation and achieve superior optimization outcomes. The analysis of the algorithm's convergence 

behavior above confirms that the proposed optimization strategy effectively accelerates the 

algorithm’s convergence rate while substantially improving its overall performance. 

According to the performance evaluation across the CEC2017 benchmark test, the IDBO 

algorithm demonstrates outstanding convergence efficiency and optimization capability in handling 

unimodal optimization problems. For multimodal functions, the IDBO algorithm effectively avoids 

local optima and prevents premature convergence to extreme points. For complex functions, the 

algorithm maintains a high level of stability while showcasing robust global exploration and local 

exploitation capabilities. Overall, the proposed improvement strategy enhances the IDBO algorithm’s 

optimization performance, making it more effective and stable than the other algorithms. 
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3.7.4. Wilcoxon rank-sum test 

To comprehensively validate the superiority of the IDBO algorithm, it is insufficient to merely 

analyze its optimization and convergence capabilities. Therefore, to statistically evaluate the 

performance disparities between each algorithm, the Wilcoxon rank-sum test was employed in this 

paper. When analyzing the differences between two independent datasets, the Wilcoxon rank-sum 

test is generally used as a nonparametric comparative tool. The fundamental approach involves 

combining the data from all algorithms, ranking them, and then computing a test statistic based on 

these ranks to assess whether there is a statistically significant difference between the distributions of 

the datasets. Each algorithm was independently executed 30 times, each algorithm was 

independently executed 30 times, and pairwise p-values were then calculated between all algorithms. 

Most notably, as the IDBO algorithm is inherently identical to itself, the p-value for the 

self-comparison of the IDBO algorithm is omitted. The statistical analysis reveals that when p-values 

fall below the 0.05 threshold, they demonstrate a significant distinction between the two algorithmic 

approaches; conversely, p-values reaching or exceeding this critical value suggest no observable 

difference in performance. The relevant results are presented in Table 5. 

Table 5. The results of the Wilcoxon rank-sum test. 

Functions Dim SSA GWO HHO HBA GA PSO DBO 

F1 
30 

50 

5.896E-05 7.111E-07 7.111E-07 2.218E-07 7.111E-07 7.111E-07 7.111E-07 

1.734E-06 1.734E-06 1.734E-06 1.734E-06 1.734E-06 1.734E-06 1.734E-06 

F3 
30 1.431E-07 1.376E-06 7.111E-07 7.111E-07 7.111E-07 1.803E-06 9.246E-03 

50 2.353E-06 1.734E-06 1.921E-06 2.353E-06 2.603E-06 3.589E-04 5.193E-02 

F4 
30 9.461E-01 1.047E-06 7.111E-07 3.648E-02 7.111E-07 1.444E-04 7.111E-07 

50 1.734E-06 1.734E-06 3.112E-05 1.734E-06 1.734E-06 1.734E-06 2.370E-05 

F5 
30 1.431E-07 8.604E-04 7.111E-07 1.136E-02 7.111E-07 5.091E-04 7.111E-07 

50 1.734E-06 4.072E-05 1.921E-06 1.734E-06 4.729E-06 1.734E-06 1.734E-06 

F6 
30 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 

50 1.734E-06 1.734E-06 1.734E-06 1.734E-06 1.127E-05 1.734E-06 1.734E-06 

F7 
30 7.111E-07 1.794E-04 7.111E-07 6.040E-03 7.111E-07 5.629E-04 7.111E-07 

50 1.734E-06 1.360E-05 1.734E-06 1.734E-06 1.734E-06 8.217E-03 1.734E-06 

F8 
30 7.111E-07 8.355E-03 3.939E-07 7.764E-03 7.111E-07 4.570E-02 7.111E-07 

50 1.921E-06 1.779E-01 1.734E-06 1.734E-06 1.921E-06 1.734E-06 1.734E-06 

F9 
30 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 7.111E-07 

50 1.742E-04 1.734E-06 2.585E-03 1.734E-06 2.585E-03 1.734E-06 1.734E-06 

F10 
30 1.201E-06 1.576E-06 1.794E-04 1.251E-05 4.112E-02 7.898E-08 4.601E-04 

50 3.112E-05 2.831E-04 6.288E-01 1.734E-06 2.163E-05 1.734E-06 1.734E-06 

F11 
30 2.222E-04 7.111E-07 7.898E-08 1.803E-06 7.111E-07 4.539E-07 7.111E-07 

50 1.921E-06 1.734E-06 1.414E-01 1.734E-06 7.271E-03 1.734E-06 1.044E-02 

F12 
30 8.357E-04 7.111E-07 7.111E-07 8.103E-02 7.111E-07 4.407E-01 7.111E-07 

50 1.734E-06 1.734E-06 3.709E-01 1.734E-06 2.127E-06 1.734E-06 7.712E-04 

F13 
30 4.388E-02 7.111E-07 7.111E-07 9.748E-06 7.111E-07 4.540E-06 7.111E-07 

50 1.734E-06 1.734E-06 1.114E-03 1.734E-06 6.984E-06 1.734E-06 1.127E-05 

Continued on next page 
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Functions Dim SSA GWO HHO HBA GA PSO DBO 

F14 
30 3.369E-02 1.436E-02 7.948E-07 3.605E-02 1.657E-07 1.636E-01 2.356E-06 

50 1.986E-01 1.494E-05 3.317E-04 1.734E-06 6.035E-03 1.734E-06 3.820E-01 

F15 
30 4.249E-02 1.065E-07 7.111E-07 2.390E-02 1.065E-07 2.944E-02 7.111E-07 

50 1.734E-06 1.734E-06 2.765E-03 1.734E-06 5.999E-01 1.734E-06 5.792E-05 

F16 
30 5.166E-06 1.782E-03 9.173E-08 5.629E-04 1.657E-07 5.874E-06 7.111E-07 

50 1.127E-05 1.973E-05 1.484E-03 1.734E-06 9.271E-03 1.734E-06 1.921E-06 

F17 
30 7.111E-07 4.155E-04 3.939E-07 1.251E-05 9.173E-08 2.690E-06 7.111E-07 

50 7.271E-03 1.605E-04 8.730E-03 3.515E-06 2.895E-02 1.734E-06 1.921E-06 

F18 
30 2.733E-02 1.333E-02 8.585E-03 4.679E-02 1.803E-06 8.357E-04 8.597E-06 

50 1.852E-02 4.860E-05 5.706E-04 1.921E-06 4.992E-03 1.494E-05 1.319E-02 

F19 
30 8.181E-01 1.235E-07 7.111E-07 7.972E-04 7.898E-08 8.604E-03 7.111E-07 

50 1.734E-06 1.734E-06 2.059E-01 1.734E-06 3.872E-02 1.734E-06 3.609E-03 

F20 
30 1.918E-07 2.596E-05 1.431E-07 5.166E-06 7.111E-07 1.047E-06 7.111E-07 

50 4.196E-04 3.501E-02 1.593E-03 1.238E-05 1.150E-04 8.307E-04 1.734E-06 

F21 
30 9.173E-08 4.112E-02 7.111E-07 1.404E-04 7.111E-07 9.278E-05 9.209E-04 

50 1.734E-06 5.792E-05 1.734E-06 1.734E-06 1.973E-05 2.603E-06 1.734E-06 

F22 
30 1.625E-03 1.227E-03 7.579E-04 1.481E-03 1.415E-05 1.227E-03 8.357E-04 

50 1.779E-02 2.127E-06 2.304E-02 1.734E-06 1.752E-02 1.734E-06 2.353E-06 

F23 
30 9.127E-07 7.643E-03 7.111E-07 1.014E-03 7.111E-07 7.111E-07 7.111E-07 

50 1.734E-06 1.734E-06 1.734E-06 1.921E-06 2.712E-02 2.127E-06 1.734E-06 

F24 
30 7.111E-07 1.636E-03 7.111E-07 3.336E-03 7.111E-07 1.431E-07 7.111E-07 

50 2.353E-06 1.734E-06 8.944E-04 1.734E-06 1.470E-01 1.734E-06 1.734E-06 

F25 
30 1.667E-02 7.111E-07 7.111E-07 4.166E-05 7.111E-07 1.918E-07 7.111E-07 

50 1.734E-06 1.734E-06 1.639E-05 1.734E-06 1.734E-06 1.734E-06 6.339E-06 

F26 
30 1.600E-05 7.579E-04 7.111E-07 3.336E-03 7.111E-07 8.357E-04 7.111E-07 

50 4.897E-04 2.585E-03 6.424E-03 1.734E-06 7.499E-02 1.921E-06 2.597E-05 

F27 
30 1.431E-07 7.948E-07 7.111E-07 1.657E-07 7.111E-07 7.111E-07 7.111E-07 

50 6.564E-03 1.734E-06 5.706E-04 1.734E-06 4.492E-02 1.734E-06 1.734E-06 

F28 
30 1.636E-02 7.111E-07 7.111E-07 8.817E-04 7.111E-07 9.173E-08 7.111E-07 

50 1.734E-06 1.734E-06 5.307E-05 1.734E-06 2.127E-06 1.734E-06 1.921E-06 

F29 
30 7.111E-07 1.803E-06 7.111E-07 1.576E-06 7.111E-07 7.111E-07 7.111E-07 

50 1.470E-02 1.734E-06 2.989E-02 1.734E-06 4.897E-04 1.734E-06 1.734E-06 

F30 
30 1.227E-03 7.111E-07 7.111E-07 1.953E-03 7.111E-07 1.803E-06 7.111E-07 

50 1.734E-06 1.734E-06 3.589E-04 1.734E-06 1.734E-06 1.734E-06 2.585E-03 

Note: The test results (p-values) that exceed 0.05 have been marked in bold. 

As shown in Table 5, on the one hand, when the dimension is 30, for all test functions except F4, 

F12, F14, and F19, the optimization results of the IDBO algorithm are significantly different from 

those of other comparative algorithms. On the other hand, when the dimension is increased to 50, 

significant differences are observed for all test functions except F11, F14, F19, and F24. Notably, for 

the majority of the test functions, the p-values between IDBO and the other algorithms are all below 

0.05. These results strongly indicate that the IDBO algorithm exhibits a statistically significant 
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performance advantage and possesses theoretical superiority in terms of optimization. 

4. Simulation experiment and result analysis 

4.1. UAV path planning problem 

The UAV path planning problem can fundamentally be characterized as an optimization 

challenge in a complex environment. The primary objective is to identify an optimal flight path that 

enables the UAV to safely and efficiently navigate from its origin to a specified target location. To 

achieve this, this paper formulates a comprehensive objective function that integrates multiple 

criteria, including the length cost, threat cost, altitude cost and smoothness cost. The specific 

description is presented below. 

4.1.1. Length cost 

The shorter the flight path generated by the UAV path planning algorithm, the lower the flight 

time and energy consumption. Consequently, path length is considered one of the key performance 

indicators for evaluating the efficiency of path planning. The formula used to calculate the length 

cost is presented in Eq (19). 

 ( ) ( ) ( ) ( )
2 2 2

1 1 1 1
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n

i i i i i i i
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F X x x y y z z+ + +
=

=  − + − + − , (19) 

where n is the number of path points and (xi, yi, zi) denotes the coordinates of the ith path point. 

4.1.2. Threat cost 

In addition to optimizing for path length, the considerations of flight safety and operational 

feasibility must also be incorporated. To ensure the safe operation of the UAVs, it is essential to 

design flight paths rationally and avoid areas that pose potential threats (threat areas). Therefore, the 

flight threat cost function is introduced to enhance flight safety. The formula is given below. 
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where Rt denotes the radius of the obstacle, S denotes the threat influence range, D is defined as the 

minimum safe flight distance for the UAV, and dₖ indicates the perpendicular distance between the 

UAV's path point and the obstacle. 

4.1.3. Altitude cost 

The altitude at which the UAV operates is a critical factor affecting both its stability and safety 
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during flight. Consequently, UAVs’ flight altitude is typically subject to restrictions. The 

corresponding calculation formula for calculating altitude cost is presented as follows: 
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where Hi denotes the flight altitude. 

4.1.4. Smoothness cost 

When a UAV performs turning or climbing maneuvers, the complexity of flight control increases, 

and fuel consumption accelerates accordingly. Meanwhile, the UAV’s flight path should minimize 

sharp turns and abrupt ascents or descents as much as possible. These constraints must align with the 

UAV’s actual angular limitations; otherwise, the path planning model may fail to generate a feasible 

trajectory. Therefore, ensuring the smoothness of the flight path is essential during the UAV’s 

navigation. The corresponding path smoothness cost function is presented as follows: 
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4.1.5. Comprehensive path cost 

This paper presents a weighted aggregation of the four costs above and establishes a 

comprehensive objective function, as shown in Eq (26). 

 1 1 2 2 3 3 4 4F b F b F b F b F= + + +  (26) 

where b1, b2, b3, and b4 denote the weight coefficients corresponding to the length cost, threat cost, 

altitude cost, and smoothness cost, respectively. A smaller F value indicates a path with higher quality. 

4.1.6. Path planning experiment 

To assess the performance of the IDBO algorithm in UAV path planning within complex 

environments, simulation experiments were conducted in 3D space based on the established UAV path 

planning model. The IDBO algorithm was evaluated in comparison with several algorithms, including 

the SSA, GWO, HHO, HBA, GA, PSO, and DBO algorithms. The experimental environment was 
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defined as a flight area measuring 1000 m × 1000 m × 400 m, with the starting point located at (100, 50, 

180) and the target point at (950, 700, 50), which included 10 mountain peaks as obstacles. The 

population size was set to 100, and the maximum number of iterations was set to 400. To minimize the 

impact of randomness, 30 independent runs were conducted. The detailed spatial environment settings 

of the threat areas are presented in Table 6. 

Table 6. The spatial environment settings of the threat areas. 

Number Coordinates Radius 

1 (200,180,150) 70 

2 (400,150,125) 70 

3 (550,300,150) 80 

4 (350,650,150) 90 

5 (470,500,150) 70 

6 (300,350,150) 80 

7 (600,700,100) 70 

8 (650,500,130) 80 

9 (850,600,130) 90 

10 (750,250,150) 90 

To more effectively illustrate the actual performance of UAV path planning, the path planning 

results of each algorithm based on three views, along with their corresponding convergence curve, are 

presented as follows. The threat areas are represented by a red cylinder. 

 

Figure 27. The result of UAV path planning (3D view). 
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Figure 28. The result of UAV path planning (side view). 

 

Figure 29. The result of UAV path planning (top view). 
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Figure 30. Convergence curve of the UAV path planning problem. 

It can be clearly observed from Figures 27–29 that the paths generated by the IDBO algorithm are 

not only shorter but also smoother compared with those produced by the other seven algorithms, 

indicating its stable performance in path planning and its ability to avoid mountainous and threatening 

areas effectively. As illustrated in Figure 30, The IDBO algorithm reaches the optimum solution more 

rapidly and with greater precision than other algorithms, showcasing superior convergence 

performance. Furthermore, the proposed IDBO algorithm achieves the optimal result with the 

minimum cost function value. 

4.2. Analysis of optimization results 

Combining the optimization results of the four above engineering optimization problems, the 

IDBO algorithm demonstrates the ability to continue searching even after falling into a local optimal 

solution, ultimately converging to the global optimal solution with a faster convergence speed and 

higher accuracy compared with the other algorithms. Moreover, the IDBO algorithm exhibits strong 

robustness and effectively balances local exploitation and global exploration, indicating that the IDBO 

algorithm achieves excellent performance in engineering applications. 

5. Conclusions 

This paper presents an improved dung beetle optimizer algorithm, designed to address the 

limitations of the original dung beetle optimizer algorithm during the later phases of the iterative 

process. Multiple enhancement strategies are incorporated to improve the algorithm’s performance. 

Specifically, the Sobol sequence is introduced to enhance the population’s diversity, while the 

nonlinear convergence factor is employed to better balance global exploration and local exploitation. 

To enhance the algorithm’s ability to escape from local optima, Lévy flight is integrated. Additionally, 

the adaptive Cauchy–Gaussian hybrid mutation and the greedy strategy are introduced to refine the 

search process, thereby contributing to accelerated convergence toward the global optimum. The 
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efficacy of the proposed IDBO algorithm is thoroughly assessed using the CEC2017 benchmark set. 

The experimental results indicate that the enhanced method achieves superior convergence speed and 

improved solution accuracy. Furthermore, the IDBO algorithm is applied to actual engineering 

optimization problem, where it outperforms the other optimization algorithms, showcasing its superior 

stability and competitiveness. Subsequent investigations will explore the utilization of the proposed 

IDBO algorithm to assess its viability in solving practical problems across various engineering 

disciplines, such as fault diagnosis, energy management, and supply chain optimization, thereby 

enhancing its applicability in solving complex optimization problems. 

6. Discussion 

The IDBO algorithm proposed in this paper significantly enhances the efficiency and stability of 

UAV path planning in complex environments. This technological advancement offers essential 

support for the development and upgrading of the low-altitude economy industry. The specific 

contributions and practical applications are reflected in the following three aspects: 

6.1. Overcome the challenges associated with operational bottlenecks in complex terrain 

Traditional UAVs face significant challenges in meeting the operational demands of industrial 

and economic activities—such as agricultural, forestry pest control, and emergency rescue—in 

extreme environments like mountainous areas and canyons. These challenges primarily stem from 

limitations in their path planning capabilities. The IDBO algorithm addresses these limitations by 

enhancing both global search and local exploitation performance, thereby substantially reducing 

path-related costs, including flight time, energy consumption, and risk. This advancement effectively 

overcomes technical barriers to enabling large-scale operations in complex terrain. 

6.2. Drive the improvement of industrial economic efficiency 

(1) Reducing operating costs: Efficient path planning reduces unnecessary flight mileage, 

directly cutting down operating costs in scenarios such as logistics distribution and mapping 

exploration. 

(2) Expanding application scenarios: In areas such as mines, wind power bases, and border 

patrols, where traditional manned aviation is difficult to cover, UAVs can perform high-risk operations 

and help create new economic growth points. 

(3) Promoting industrial integration: The high reliability of algorithms serves as a solid 

technical foundation for the "UAV+ industry" (such as "UAV+ logistics" and "UAV+ smart 

agriculture"), thereby accelerating its collaborative innovation with traditional sectors. 

6.3. Enhance the competitiveness of the low-altitude economy 

As a core element of autonomous decision-making, UAV path planning directly impacts flight 

safety and the success rate of missions. The notable advantages of the IDBO algorithm can enhance the 

reliability of low-altitude aviation services, encourage regulatory authorities to allocate additional 

airspace resources, and unlock the potential for large-scale industry development, thereby effectively 

promoting high-quality regional economic growth. 



25845 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

Author contributions 

The authors confirm contribution to the paper as follows: Conception and design, Qing Hu; data 

collection, Qing Hu; software, Qing Hu; analysis and interpretation of results, Fenhua Zhu; draft 

manuscript preparation, Qing Hu. All authors reviewed the results and approved the final version of 

the manuscript. 

Use of Generative-AI tools declaration 

The authors declare that they have not used artificial intelligence (AI) tools in the creation of 

this article. 

Availability of data and materials 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

Acknowledgements 

This work is supported by the Philosophy and Social Science Foundation of Anhui Province 

(No. AHSKQ2022D047). 

Conflict of interest 

The authors declare no conflicts of interest to report regarding the present study. 

References 

1. C. Gambella, B. Ghaddar, J. Naoum-Sawaya, Optimization problems for machine learning: a 

survey, Eur. J. Oper. Res., 290 (2021), 807–828. https://doi.org/10.1016/j.ejor.2020.08.045 

2. B. Duan, C. Guo, H. Liu, A hybrid genetic-particle swarm optimization algorithm for 

multi-constraint optimization problems, Soft Comput., 26 (2022), 11695–11711. 

https://doi.org/10.1007/s00500-022-07489-8 

3. Z. Cao, Z. Wang, L. Zhao, F. Fan, Y. Sun, Multi-constraint and multi-objective optimization of 

free-form reticulated shells using improved optimization algorithm, Eng. Struct., 250 (2022), 

113442. https://doi.org/10.1016/j.engstruct.2021.113442 

4. G. Hu, F. Huang, K. Chen, G. Wei, MNEARO: a meta swarm intelligence optimization 

algorithm for engineering applications, Comput. Method. Appl. Mech. Eng., 419 (2024), 116664. 

https://doi.org/10.1016/j.cma.2023.116664 

5. X. Wang, H. Hu, Y. Liang, L. Zhou, On the mathematical models and applications of swarm 

intelligent optimization algorithms, Arch. Computat. Method. Eethods. Eng., 29 (2022), 3815–

3842. https://doi.org/10.1007/s11831-022-09717-8 

6. X. Deng, T. Lv, Power system planning with increasing variable renewable energy: a review of 

optimization models, J. Clean. Prod., 246 (2020), 118962. 

https://doi.org/10.1016/j.jclepro.2019.118962 

https://doi.org/10.1016/j.ejor.2020.08.045
https://doi.org/10.1007/s00500-022-07489-8
https://doi.org/10.1016/j.engstruct.2021.113442
https://doi.org/10.1016/j.cma.2023.116664
https://doi.org/10.1016/j.jclepro.2019.118962


25846 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

7. W. C. Wang, W. C. Tian, D. M. Xu, H. F. Zang, Arctic puffin optimization: A bio-inspired 

metaheuristic algorithm for solving engineering design optimization, Adv. Eng. Softw., 195 

(2024), 103694. https://doi.org/10.1016/j.advengsoft.2024.103694 

8. M. Jones, S. Djahel, K. Welsh, Path-planning for unmanned aerial vehicles with environment 

complexity considerations: a survey, ACM Comput. Surv., 55 (2023), 1–39. 

https://doi.org/10.1145/3570723 

9. Y. Liu, B. Cao, A novel ant colony optimization algorithm with Levy flight, IEEE Access, 8 

(2020), 67205–67213. https://doi.org/10.1109/ACCESS.2020.2985498 

10. A. Fath, An efficient spider wasp optimizer-based tracker for enhancing the harvested power 

from thermoelectric generation sources, Case Stud. Therm. Eng., 61 (2024), 104878. 

https://doi.org/10.1016/j.csite.2024.104878 

11. Z. Duan, H. Yu, Q. Zhang, L. Tian, Parameter extraction of solar photovoltaic model based on 

nutcracker optimization algorithm, Appl. Sci., 13 (2023), 6710. 

https://doi.org/10.3390/app13116710 

12. F. S. Gharehchopogh, H. Gholizadeh, A comprehensive survey: Whale Optimization Algorithm 

and its applications, Swarm Evol. Comput., 48 (2019), 1–24. 

https://doi.org/10.1016/j.swevo.2019.03.004 

13. W. Zhao, L. Wang, S. Mirjalili, Artificial hummingbird algorithm: a new bio-inspired optimizer 

with its engineering applications, Comput. Method. Appl. M., 388 (2022), 114194. 

https://doi.org/10.1016/j.cma.2021.114194 

14. P. Chakraborty, S. Sharma, A. K. Saha, Convergence analysis of butterfly optimization 

algorithm, Soft Comput., 27 (2023), 7245–7257. https://doi.org/10.1007/s00500-023-07920-8 

15. J. Xue, B. Shen, Dung beetle optimizer: a new meta-heuristic algorithm for global optimization, 

J. Supercomput., 79 (2023), 7305–7336. https://doi.org/10.1007/s11227-022-04959-6 

16. R. Gong, Z. Wei, Y. Qin, T. Liu, J. Xu, Short-term electrical load forecasting based on 

IDBO-PTCN-GRU model, Energies, 17 (2024), 4667. https://doi.org/10.3390/en17184667 

17. Y. Niu, M. Meng, X. Li, T. Pang, Operational decisions of wind–photovoltaic–storage hybrid 

power systems using improved dung beetle optimizer, J. Energy Storage, 117 (2025), 116225. 

https://doi.org/10.1016/j.est.2025.116225 

18. Y. Li, K. Sun, Q. Yao, L. Wang, A dual-optimization wind speed forecasting model based on 

deep learning and improved dung beetle optimization algorithm, Energy, 286 (2024), 129604. 

https://doi.org/10.1016/j.energy.2023.129604 

19. J. Liu, Z. Lv, L. Zhao, A dual-optimization building energy prediction framework based on 

improved dung beetle algorithm, variational mode decomposition and deep learning, Energ. 

Buildings, 328 (2025), 115143. https://doi.org/10.1016/j.enbuild.2024.115143 

20. W. Gu, F. Wang, A multi-strategy improved dung beetle optimisation algorithm and its 

application, Cluster Comput., 28 (2025), 49. https://doi.org/10.1007/s10586-024-04704-z 

21. W. Zhang, H. Zhang, X. Zhang, An enhanced dung beetle optimizer with adaptive node 

selection and dynamic step search for mobile robots path planning, Meas. Sci. Technol., 36 

(2025), 036301. https://doi.org/10.1088/1361-6501/adac02 

22. Q. Wu, H. Xu, M. Liu, Applying an improved Dung Beetle Optimizer algorithm to network 

traffic identification, Comput. Mater. Con., 78 (2024), 4091–4107. 

https://doi.org/10.32604/cmc.2024.048461 

23. F. Zhu, G. Li, H. Tang, Y. Li, X. Lv, X. Wang, Dung beetle optimization algorithm based on 

quantum computing and multi-strategy fusion for solving engineering problems, Expert Syst. 

Appl., 236 (2024), 121219. https://doi.org/10.1016/j.eswa.2023.121219 

https://doi.org/10.1016/j.advengsoft.2024.103694
https://doi.org/10.1145/3570723
https://doi.org/10.1109/ACCESS.2020.2985498
https://doi.org/10.1016/j.csite.2024.104878
https://doi.org/10.3390/app13116710
https://doi.org/10.1016/j.swevo.2019.03.004
https://doi.org/10.1016/j.cma.2021.114194
https://doi.org/10.1007/s00500-023-07920-8
https://doi.org/10.1007/s11227-022-04959-6
https://doi.org/10.3390/en17184667
https://doi.org/10.1016/j.est.2025.116225
https://doi.org/10.1016/j.energy.2023.129604
https://doi.org/10.1016/j.enbuild.2024.115143
https://doi.org/10.1007/s10586-024-04704-z
https://doi.org/10.1088/1361-6501/adac02
https://doi.org/10.32604/cmc.2024.048461
https://doi.org/10.1016/j.eswa.2023.121219


25847 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

24. Q. Chen, Y. Wang, Y. Sun, An improved dung beetle optimizer for UAV 3D path planning, J. 

Supercomput., 80 (2024), 26537–26567. https://doi.org/10.1007/s11227-024-06414-0 

25. C. Hu, F. Wu, H. Zou, New PID parameter tuning based on improved dung beetle optimization 

algorithm, Can. J. Chem. Eng., 102 (2024), 4297–4316. https://doi.org/10.1002/cjce.25343 

26. R. Zhang, X. Chen, M. Li, Multi-UAV cooperative task assignment based on multi-strategy 

improved DBO, Cluster Comput., 28 (2025), 195. https://doi.org/10.1007/s10586-024-04912-7 

27. D. Zhang, C. Zhang, X. Han, C. Wang, Improved DBO-VMD and optimized DBN-ELM based 

fault diagnosis for control valve, Meas. Sci. Technol., 35 (2024), 075103. 

https://doi.org/10.1088/1361-6501/ad3be0 

28. H. Liu, A. Kadir, C. Xu, Cryptanalysis and constructing S-box based on chaotic map and 

backtracking, App. Math. Comput., 376 (2020), 125153. 

https://doi.org/10.1016/j.amc.2020.125153 

29. S. Benaissi, N. Chikouche, R. Hamza, A novel image encryption algorithm based on hybrid 

chaotic maps using a key image, Optik, 272 (2023), 170316. 

https://doi.org/10.1016/j.ijleo.2022.170316 

30. N. Tsafack, S. Sankar, B. Abd-El-Atty, J. Kengne, J. KC, A. Belazi, A new chaotic map with 

dynamic analysis and encryption application in internet of health things, IEEE Access, 8 (2020), 

137731–137744. https://doi.org/10.1109/ACCESS.2020.3010794 

31. D. Singh, S. Kaur, M. Kaur, S. Singh, M. Kaur, H. N. Lee, A systematic literature review on 

chaotic maps-based image security techniques, Comput. Sci. Rev., 54 (2024), 100659. 

https://doi.org/10.1016/j.cosrev.2024.100659 

32. J. Li, Q. An, H. Lei, Q. Deng, G. G. Wang, Survey of Lévy flight-based metaheuristics for 

optimization, Mathematics, 10 (2022), 2785. https://doi.org/10.3390/math10152785 

33. W. Kaidi, M. Khishe, M. Mohammadi, Dynamic levy flight chimp optimization, Knowl-Based. 

Syst., 235 (2022), 107625. https://doi.org/10.1016/j.knosys.2021.107625 

34. G. Saravanan, S. Neelakandan, P. Ezhumalai, S. Maurya, Improved wild horse optimization with 

levy flight algorithm for effective task scheduling in cloud computing, J. Cloud Comput., 12 

(2023), 24. https://doi.org/10.1186/s13677-023-00401-1 

35. X. L. Lu, G. He, QPSO algorithm based on Lévy flight and its application in fuzzy portfolio, 

Appl. Soft Comput., 99 (2021), 106894. https://doi.org/10.1016/j.asoc.2020.106894 

36. J. Zhang, H. Li, M. K. Parizi, HWMWOA: a hybrid WMA–WOA algorithm with adaptive 

cauchy mutation for global optimization and data classification, Int. J. Inf. Tech. Decis., 22 

(2023), 1195–1252. https://doi.org/10.1142/S0219622022500675 

37. J. Xue, B. Shen, A survey on sparrow search algorithms and their applications, Int. J. Syst. Sci., 

55 (2024), 814–832. https://doi.org/10.1080/00207721.2023.2293687 

38. M. Ghalambaz, R. J. Yengejeh, A. H. Davami, Building energy optimization using grey wolf 

optimizer (GWO), Case Stud. Therm. Eng., 27 (2021), 101250. 

https://doi.org/10.1016/j.csite.2021.101250 

39. H. Gezici, H. Livatyalı, Chaotic Harris hawks optimization algorithm, J. Comput. Des. Eng., 9 

(2022), 216–245. https://doi.org/10.1093/jcde/qwab082 

40. Y. Xu, R. Zhong, Y. Cao, C. Zhang, J. Yu, Symbiotic mechanism-based honey badger algorithm 

for continuous optimization, Cluster Comput., 28 (2025), 133. 

https://doi.org/10.1007/s10586-024-04765-0 

41. S. M. Ardelean, M. Udrescu, Hybrid quantum search with genetic algorithm optimization, PeerJ 

Comput. Sci., 10 (2024), e2210. https://doi.org/10.7717/peerj-cs.2210 

https://doi.org/10.1007/s11227-024-06414-0
https://doi.org/10.1002/cjce.25343
https://doi.org/10.1007/s10586-024-04912-7
https://doi.org/10.1088/1361-6501/ad3be0
https://doi.org/10.1016/j.amc.2020.125153
https://doi.org/10.1016/j.ijleo.2022.170316
https://doi.org/10.1109/ACCESS.2020.3010794
https://doi.org/10.1016/j.cosrev.2024.100659
https://doi.org/10.3390/math10152785
https://doi.org/10.1016/j.knosys.2021.107625
https://doi.org/10.1186/s13677-023-00401-1
https://doi.org/10.1016/j.asoc.2020.106894
https://doi.org/10.1142/S0219622022500675
https://doi.org/10.1080/00207721.2023.2293687
https://doi.org/10.1016/j.csite.2021.101250
https://doi.org/10.1093/jcde/qwab082
https://doi.org/10.1007/s10586-024-04765-0
https://doi.org/10.7717/peerj-cs.2210


25848 

AIMS Mathematics  Volume 10, Issue 11, 25811–25848. 

42. D. D. Ramírez-Ochoa, L. A. Pérez-Domínguez, E. A. Martínez-Gómez, D. Luviano-Cruz, PSO, 

a swarm intelligence-based evolutionary algorithm as a decision-making strategy: a review, 

Symmetry, 14 (2022), 455. https://doi.org/10.3390/sym14030455 

43. M. Sagheer, M. Asif Jan, Z. Shah, W. K. Mashwani, R. Adeeb Khanum, M. Shutaywi, 

Enhancing teaching learning based optimization algorithm through group discussion strategy for 

CEC 2017 benchmark problems, Soft Comput., 29 (2025), 895–932. 

https://doi.org/10.1007/s00500-025-10409-1 

44. X. Wu, S. Li, X. Jiang, Y. Zhou, Information acquisition optimizer: a new efficient algorithm for 

solving numerical and constrained engineering optimization problems, J. Supercomput., 80 

(2024), 25736–25791. https://doi.org/10.1007/s11227-024-06384-3 

©2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.3390/sym14030455
https://doi.org/10.1007/s00500-025-10409-1
https://doi.org/10.1007/s11227-024-06384-3

