AIMS Mathematics, 10(11): 25791-25810.
DOI:10.3934/math.20251141

ATMS Mathematics Received: 23 August 2025

Revised: 02 October 2025

Accepted: 15 October 2025
https://www.aimspress.com/journal/Math Published: 10 November 2025

Research article

Power, principal, and isotone (©, V)-higher derivations on MV-algebras

Xueting Zhao' and Yichuan Yang?*

' College of Science, North China University of Technology, Beijing 100144, China
2 School of Mathematical Sciences, Shahe Campus, Beithang University, Beijing 102206, China

* Correspondence: Email: ycyang @buaa.edu.cn.

Abstract: This paper studies three types of (®, V)-higher derivations on MV-algebras: power,
principal, and isotone (®, V)-higher derivations. We show that every principal (®, V)-higher derivation
is both power and isotone. However, counterexamples demonstrate that no pairwise implications hold
beyond the established one. Furthermore, explicit constructions of power (®, V)-higher derivations are
provided. Additionally, we characterize isotone (O, V)-higher derivations and show that the fixed point
set of any principal (®, V)-higher derivation forms a lattice ideal.

Keywords: MV-algebra; higher derivation; MV-chain; semigroup; fixed point; lattice ideal
Mathematics Subject Classification: 03G20, 06B10, 06D35, 08B26

1. Introduction

Hasse and Schmidt [9] introduced the concept of higher derivations on associative algebras.
Subsequent work extended the study of higher derivations to various algebraic structures. Heerema [11,
12] investigated higher derivations on local rings, focusing on their representation of inertial
automorphisms, ramification group structures, and convergence properties. Ferrero [8] studied higher
derivations of prime and semiprime rings satisfying linear relations. Ribenboim [23] conducted a
systematic study of higher derivations on arbitrary rings and modules. Specifically, for a commutative
ring R, a higher derivation (or Hasse-Schmidt derivation [7]), on an R-algebra A is a sequence of
R-linear maps D = (d,),; on A such that dy = 1d4 and

dy(ab) = " di(@yd,(b), foralla,b € Aandn > 1.

i+j=n

Further extensions include derivations and higher derivations on lattices [3, 26, 27], incidence
algebras [14,15], triangular algebras [24,25], and more recently, logical algebras. This line of research
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has been further expanded to encompass other logical algebraic structures fundamental to fuzzy logic
and many-valued reasoning, such as BL-algebras [19], residuated lattices [10], BCK-algebras [6], basic
algebras [16], and MV-algebras [1,21,28].

This paper is motivated by the need to bridge the gap between classical derivation theory and its
generalizations in MV-algebraic frameworks. The main contributions of this paper are as follows:

1) We introduce and compare three types of (®,V)-higher derivations: power, principal, and
isotone. We prove that principal (®, V)-higher derivations imply power and isotone properties
(Propositions 3.6 and 3.8), while other pairwise implications fail (Remarks 3.9, 3.10, 3.14; Figure
D).

2) We provide explicit constructions of power (®, V)-higher derivations on two typical MV-chains:
the infinite chain C and the finite chain L,, (Theorems 4.1 and 4.2).

3) We characterize a power (O, V)-higher derivation to be isotone (Theorem 3.12).
4) We show that the fixed point set of a principal (®, V)-higher derivation forms a lattice ideal
(Proposition 5.2).

2. Preliminaries

An MV-algebra [5] is an abelian monoid (A, @, 0) with a unary operation *, which satisfies:
1) x* =x;
2) x® 0" =07%;
3 (X*ey)yey=0"®x) ®x.
Example 2.1. [5] Let L be the real unit interval [0, 1] = {x €e R| 0 < x < 1}. Define
x®y=min{l,x+y} and x* =1 — x forany x,y € L.

Then (L, ®,",0) is an MV-algebra.
For each positive integer m > 2, the m-element subset of L

with the same operations is a subalgebra of MV-algebra L, which is an MV-algebra.

Example 2.2. [4] Let the following two sets of formal symbols be
Co =1{0,¢,2¢,3¢c,---},  Cr={L,c",(2c)",(3¢), -},

where Oc = 0, lc = c,uc =ve © u =v,0" =1, (k¢)" = 1 — kc and (kc)™ = ((kc)*)* = kc for any
u,v,k € N.

Let + (respectively, —) be the ordinary sum (respectively, subtraction) between integers. Define the
binary operation @ on C = Cy U C; for any u,v € N:
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e ucdve = (u+vc;
e (uc)* ® (vo): = 1;

1 usv,

o (uc)" ®ve =ve® (uc) :{ (Gt = )0, .
Then, (C,®,”,0) is an MV-algebra.

For every M V-algebra A, denote the constant 1 = 0" and the operation x®y = (x* @ y*)". Recall that
an archimedean MV-algebra [2] is defined to be an M V-algebra satisfying for any x,y € A, nx <y for
any n € N implies x Oy = x.

Let A be an MV-algebra. For any x,y € A, define the natural orderof Aby x < yiff x* @y =1
iff x © y* = 0 [5]. Furthermore, the natural order determines a structure of bounded distributive lattice
(A,V,A,0,1), and

xVy=xoy)ey and xAy=x0(x"®y).

A linearly ordered MV-algebra is called an MV-chain.
Lemma 2.1. [4,5] Let A be an MV-algebra and x,y, z € A. Then the following statements hold:
) xOy<xAy<x<xVy<x®y;
2y f x<y,thenxVz<yVz, xAzZ<YyAZ
3) Ifx<y thenx®z<y®z,x0z<y0z;
H xO0WA)=xOYA(XO2);
5 x0(yvVy)=x0y V(x02).

An element a of MV-algebra A is called idempotent if a @ a = a. Denote the set of all idempotent
elements of A by B(A). It is known that B(A) is a subalgebra of the MV-algebra A [5, Corollary 1.5.4].

Lemma 2.2. [5, Theorem 1.5.3] For every element x in an MV-algebra A, the following conditions
are equivalent:

1) x € B(A);
2) x®x=x;
3)) xOx=ux;

4) xO0y=xAyforallyeA.

Definition 2.3. [5] A subset I of a lattice L is a lattice ideal if it satisfies:
1)0el;
2) x,yelimplyxVvyel;

3) xelandy < ximply y € .
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By [5, Proposition 1.1.5], a lattice ideal of an MV-algebra (A, V, A) is the same as an ideal of the
underlying lattice.

Definition 2.4. [28, Definition 3.1] Let A be an MV-algebra. A mapd : A — A is called an (O, V)-
derivation on A if it satisfies:

d(x0y) = [@d(x)0y) V (x0d(y) forallx,y € A. 2.1)

Denote the set of all (®, V)-derivations on A by Der(A). For a finite set X = {xo, x;, -, X,,—1} and a
map d : X — X, we shall write d as

( X0 X1 Xm-1 )
d(xo) d(xi) -+ d(xu-1))’

If d € Der(L,,), then x; and d(x;) can be written by ﬁ and 2=, where 0 < i < m — 1 and Ji <L

m—12

For convenience, we abbreviate d as joji - - ja_1( = [(m — )d(x0)][(m — 1)d(x1)] - - - [(m — Dd(x,,-1)])
without ambiguity.

Proposition 2.5. [28, Proposition 3.3] Let A be an MV-algebra, x € A and d € Der(A). Then for any
n € Ny, the following statements hold:

1) d(0) = 0;
2) d(x) < x.

Lemma 2.6. [28, Corollary 3.12] Let A be an MV-algebra and d € Der(A). Let u € A be given with
u < d(1) and define an operator d* on A by

u, if x=1;
d"(x) :=

d(x), otherwise.

Then, d* is also in Der(A).
For a given a € A, define the map d,, : A — A by

d(x):=a0x forall x € A.

Then d,, is an (©, V)-derivation, called a principal (®, V)-derivation. Recall that the order structure of
all (®, v)-derivations on m-element MV-chain L,, (m > 2) is given in [28, Theorem 5.6]. Indeed, the
lattice Der(L,,) = {daz) | (a,b) € A(L,,)} is isomorphic to the lattice A(L,,), where

ALp) ={(x,y) € Ly X Ly, |y < x}\{(0,0)},

and
b, if x=1;

d,o(x) =a0©x, otherwise.

d(a,h)(x) = {
Example 2.3. We list all (®, V)-derivations of L,, L3, and L, in Tables 1-3, respectively:
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Table 1. Der(L,).

X € Lz Isz(X) 0L2(X)
0 0 0
1 1 0
Table 2. Der(L5).
T
x €L Id, (x) d1o(%) 1d; (x) 0.,(x) 1d), (x)
0 0 0 0 0 0
1h 1 0 1h 0
1 1 e o) 0 0
Table 3. Der(L,).
z T
x€Lsy Idg(x) d%o(x) Idz4(x) d%e(x) d(%,%)(x) Idz4(x) 0.,(x) d(%’o)(x) Id(z4(x)
0 0 0 0 0 0 0 0 0 0
/3 /3 0 /3 0 0 /3 0 0 /3
2/3 2/3 /3 2f3 0 /3 2f3 0 /3 2f3
1 1 2/3 2f3 1 1/3 13 0 0 0

Definition 2.7. Let A be an MV-algebra, k € N, and D, = (dn)]f,=o be a finite sequence of operators of
A such that dy = Id4. Then Dy is called an (O, V)-higher derivation of length k on A if for every n < k
and x,y € A, we have

dy(xOy) = \/(di(x) O dy-i(y)). (2.2)
i=0

Let HD,(A) denote the set of all such derivations.

Example 2.4. 1) The identity and zero (®, V)-higher derivation of length k¥ € N, on A are
respectively defined by
D" = (d,)*_,, whered, =1d, forO<n<k,
D) = (d,)_,, wheredy=1d,andd,=0,forl<n<k.

2) We list all (®, V)-higher derivations of length 2 on L; in Table 4.

Table 4. HDQ(L’;) = {(d(), d],dz) | d() = IdL3, and d;, d, satisfy Eq (22)
[2d(0)][2d(3)][2d(1)]

dy 012

d, 000 001 010 011 012
d, 000 001 010 O11 012 000 001 o010 o011 012 000 001 010 O11 012 000 001 010 O11 012 o012
AIMS Mathematics Volume 10, Issue 11, 25791-25810.
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Proposition 2.8. Let A be an MV-algebra, k € N,, and D), = (dn)ﬁ:o € HD(A). Then the following
statements hold for all x,y € A:

1) d,(0) =0, for any n < k;

2) di(x) ©d,-i(x*) =0, for any n < k and i < n. In particular, d,(x) < x;

3) di(x)©d,_i(1) <d,(x), forany n < k and i < n. In particular, x © d,(1) < d,(x);
4) If d; = 1d4, thend, = 1d, forall2 <n <k.

Proof. (1) We prove d,(0) = 0 for any n < k by induction on n. First, if n = 0, then dy(0) = 0.
Assume d;(0) = 0 for all 0 < [ < n. Putting x = y = 0 in Eq (2.2), we get

n n-1
d,(0) =d,(000) = \/(di(O) ©d,-(0)) = (00 d,(0)) v (d,(0) ©0) v \/(di(O) 0 d,-i(0)) =0,
i=0 i=1

since d;(0) ©d,_;(0) =0forall 1 <i <n-1. Hence, d,(0) = 0 for any n < k.
(2) Since x © x* = 0, it follows that for any n < k,

n

0= dy(0) = dy(x0 ) = \/ (di(x) © dy-i(x))

i=0
by (1) and Eq. (2.2). Thus d;(x) © d,_i(x*) = 0, for all i < n. In particular, we have d,(x) © x* = 0,
which implies d,(x) < x.

(3) Since x ® 1 = x, it follows from Eq (2.2) that for any n < k,

n

dy(x) = dy(x© 1) = \/ (di(x) © d,-i(1)).

i=0

Thus d;(x) ©d,_(1) < d,(x) for all i < n. In particular, when i = 0, we get x © d,, (1) < d,(x).
(4) Assume d; = Id4; we have d,(x) = x for any x € A.
We prove the conclusion by induction; when n = 2, we get

dr(x) = dr(x© 1)
=(x0d (1) V(d(x) 0 1)V (di(x)0di(1)) (Eq.(2.2))
= (x0dy(1) Vda(x) V x (dy = 1dy)
=Xx. (Proposition 2.8 (2) and (3))

Now, assume d; = Id, for all [ < n. It follows that

dn+l(x) = dn+l(x® 1)

n+l

= \/ (@i(x) @ dy1-i(1) (Eq. (2.2))

i=0
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= (X0 1 (D) V (dus1 (9 © DV \/(di() © dys1 (1)
i=1

=(xo0d (D) Vd(x)Vx (Assumptions)

(Proposition 2.8 (2) and (3))

Hence, d, = Id4 for all n > 2. O

Notation summary: To enhance readability and avoid potential confusion in heavy notation, we
provide the following summary of frequently used symbols and their meanings; see Table 5.

Table 5. Summary of notations used throughout the paper.

Notation Meaning

A An MV-algebra

Ny Set of positive integers

d A single (©, V)-derivation on A

d’ The n-fold composition of d with itself (d od o - - - o d, n times)

d, The n-th component of an (®, V)-higher derivation sequence Dy = (dy,d;, ... ,d;)

d.o The principal (®, V)-derivation defined by d,o(x) = a © x

diap) An (O, V)-derivation on L,, with parameters a, b (see Lemma 2.6)

d* The (®, V)-derivation obtained by modifying d at x = 1: d"(x) = “ fa=1 (foru < d(1))

d(x), otherwise

b, ifx=1

dfl’@ The (O, V)-derivation defined as dfl’o(x) = (for b < a)
a®x, otherwise

Dy An (O, V)-higher derivation of length k, i.e., a sequence (dy, d;, . .., d;)

Dyt A principal (®, V)-higher derivation of length k generated by a

Der(A) The set of all (®, V)-derivations on A

HD,(A) The set of all (®, V)-higher derivations of length k on A

B(A) The set of all idempotent elements of A

Fixp, (A) The set of all fixed points of the (®, V)-higher derivation Dy

3. Power, principal, and isotone (O, V)-higher derivations on MV-algebras

3.1. Definitions of the three type (®, V)-higher derivations

Let us get started with the definition of a power (®, V)-higher derivation.

Definition 3.1. Let A be an MV-algebra and k € N,. An (O, V)-higher derivation D; = (dn)]f,:o of
length k is power if d, = d{ for any 1 < n < k. Here, d, 1s called the generator of Dy.

Remark 3.2.

1) Clearly, for any k € N, the identity and zero (O, V)-higher derivation of length k

(cf. Example 2.4), Didf‘ and DzA are power.

AIMS Mathematics
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2) We will construct explicitly some power (©, V)-higher derivations on MV-chains C and L,, in
Theorems 4.1 and 4.2. However, by the counterexample in Remark 4.3, we will see that not all
(®, V)-higher derivations on an MV-algebra are power.

Let A be an MV-algebra, k € N, and Dy = (d,)*_, be an operator sequence of A. Recall that Dy is
decreasing on n if ny,n, € N, and n; < ny < k, then d,,,(x) < d,,,(x) for any x € A.

Proposition 3.3. Let A be an MV-algebra and D, = (d,,)’,‘l:0 € HDy(A) be power. Then the following
statements hold for all x,y € A:

1) Dy is decreasing on n;
2) d,(x)0d,(y) <d,(x®y), foralln < k;
3) (d,(x))" <d,(x™"),forallm>1andn < k;

4) If there exists m < k such that d,,(x) = x, then d,,(y) = y for any y < x.

Proof. 1) Since d; € Der(A), we know d,(x) < x for all x € A by Proposition 2.5 (2). Definition 3.1
of power (©, V)-higher derivation implies d,(x) = d;(d,-1(x)) for any 1 < n <k, so d,(x) < d,_(x) for
any | <n <kand x € A. Hence, D, is decreasing on n.

2) Taking a certain n < k. By Proposition 3.3 (1), it is easy to see that for all i < n,

dn(-x) < d,'()C), dn(y) < dn—i(y)-
Hence, by Lemma 2.1 (3) for each i < n,
dy(x) © dy(y) < di(x) © dy—i(y).

Finally, we get d,(x) © d,(y) < V(di(x) © d,—i(y)) = d,(x ©y) by Lemma 2.1 (1) and Eq. (2.2).
Due to the arbitrariness of n selection, d,(x) © d,(y) < d,(x©®y) forall n < k.

3) For every n < k, we prove it by induction on m. First, if m = 1, it is clear that (d,(x))! = d,(x) =
d,(x"). Now, assume that (d,(x))" < d,(x™); we need to show the case of m + 1. By Lemma 2.1 (3), we
have

(dp ()™ = (dy(x))" © d(x) < dy(X") © dy(x).

According to Proposition 3.3 (2), we know d,(x™)0d,(x) < d,(x"©x) = d,(x""). Hence, (d,(x))""! <
d,(x™ " forallm>1andn < k.
4) Assume d,,(x) = x for m < k. Since y < x, it follows that

dp(y) = du(x N Yy)
= m(-x® (X* EB)’))

m—1

= (@dp() O (¥ @) V (x 0 dp(x* @) V \/ (di() © dpi(x" &) (Eq. (2.2))
i=1
m—1
= (X0 (' ®)) V (x0du(x’ @) V \/(di(x) 0 dy i(x" @) (dn(x) = %)

i=1
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xO X' ®y) (Proposition 3.3 (1))
=XAYy
=y. O

We next introduce the principal and isotone (®, V)-higher derivations.

Definition 3.4. Let A be an MV-algebra, a € A, and k € N,. Define Dy, = (dane)’,‘lzo by duyno(x) = a"Ox,
foralln < kand x € A. Let x,y € A. Then,

dpo(x0y) =d"0x0y=\/(d ©x0d" 0y) = \/(duo(x) © dpis(y),
i=0 i=0
which implies that Dy, = (dun@)’,‘l:0 € HDy(A). We call Dy a principal (O, V)-higher derivation of
length k on A.

Definition 3.5. An (®, V)-higher derivation Dy = (a’n)’,‘l:0 of length k on A is isotone if, for any n < k,
d, is isotone. That is, x < y implies d,(x) < d,(y) for all n < k and x,y € A.

3.2. The relationship between principal and power (O, V)-higher derivations

We have mentioned in Remark 3.2 that D}{d*‘ and Dg*‘ are power. Clearly, both Dzd*‘ and Dg" are also
principal. We note that a principal (®, V)-higher derivation is power in general.

Proposition 3.6. Let A be an MV-algebra. Then all principal (O, V)-higher derivations on A are power.

Proof. Without loss of generality, assume a € A, and Dy, = (dano)’};:0 is an arbitrary principal (O, V)-
higher derivation of length k on A.

For any n < k and x € A, we have ds(x) = @" © x by the definition of principal (®, V)-higher
derivations.

Also, (d.)(x) = d"5(do(x)) = d'5' (a©x) =a"© xforany 1 <n < kand x € A.

Hence, d,»o = d,, which indicates the generator of Dy, is d,o. Thus Dy, is power. O
Remark 3.7. Conversely, a power (©, V)-higher derivation Dy = (dn)fl:o of length k on A may not be
principal, and a counterexample that is more general than might be anticipated will be constructed in
Remark 3.9. In fact, we note here in advance that the interested reader will get a clear relationship

picture among principal, power, and isotone (O, V)-higher derivations, as shown in Figure 1 after
Remark 3.14.

3.3. The relationship between principal and isotone (®, V)-higher derivations
Propositions 3.6 and 3.8 establish that a principal (®, V)-higher derivation is both power and isotone.
Proposition 3.8. Let A be an MV-algebra. Then any principal (®, V)-higher derivation is isotone.

Proof. Without loss of generality, assume a € A, and Dy, = (dan@)ﬁzo is an arbitrary principal (©, V)-
higher derivation of length k on A.

Letx <y. Thena"® x < a" ©y for any n < k by Lemma 2.1 (3) and so d(x) < dne(y) for any
n < k. Thus Dy 4 is isotone. m]
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However, an isotone (®, V)-higher derivation is not always principal. Example 3.1 below shows that
there are isotone (®, V)-higher derivations on an M V-algebra A other than the principal ones.

Example 3.1. Let D, = (a’n)i:0 with dy = 012,d, = 001,d, = 011 be an (®, V)-higher derivation on L;
1

in Table 4. Then D, is isotone, while D, is not principal, since d,(1) = % =501, but dz(%) = % #0=
1~
107
Remark 3.9. Here we construct a promised counterexample to show that a power isotone (O, V)-

2
higher derivation is not principal. On Ly, let d = 0122 be Example 3.1 in [28] (as Id;, in Table 3) and
d, = d" = d. 1t is clear that Dy = (d,)*_, € HDi(Ly) is power and isotone, but d>(1) = 3 £ a*> =a*© 1
for any a € L4, hence it is not principal.

Theorem 3.12 will tell us that if D; = (dn)]:,:o is a power (©, V)-higher derivation on an MV-algebra
A with d;(1) € B(A), then Dy is isotone iff Dy is principal.

3.4. The relationship between power and isotone (©, V)-higher derivations

Remarks 3.10 and 3.14 illustrate that the power and isotone cannot imply each other for (®, V)-
higher derivations.

Remark 3.10. A power (©, V)-higher derivation may not be isotone. For example, let D, = (dn)ﬁ:O
with dy = 012,d; = 010, and d, = 010 on Lj as in Table 4; we can verify that d, = dlz. Then D, is a
power (O, V)-higher derivation but is not isotone. Indeed, 1 < 1 but dp(3) = 3 > 0 = d(1).

In what condition will a power (®, V)-higher derivation be isotone? Proposition 3.11 gives a
sufficient condition.

Proposition 3.11. Let D), = (a’,,)ﬁ=0 € HDy(A) be power. If for some m, d,,(1) = 1, then Dy is the

identity (®, V)-higher derivation, and thus it is isotone.

Proof. By Proposition 3.3 (4), we know that d,,(1) = 1 implies d,,(x) = x for all x € A. By Proposition
3.3 (1), foralli < m, d,(x) < d;(x), it implies d;(x) = x. Furthermore, d; = Idy form+ 1 <i <k
by Proposition 2.8 (4). Thus we conclude that D is the identity (®, V)-higher derivation, so is isotone
naturally. m|

Moreover, we give 5 equivalent characterizations of a power (®, V)-higher derivation to be isotone.

Theorem 3.12. Let D; = (d,,)’r‘l:0 € HDy(A) be power and d\(1) € B(A). The following statements are
equivalent for all x,y € A andn < k:

1) Dy is isotone;

2) dy(x) < dy(1);

3) dy(x) = dy(1) © x = (d,(1))" O x;
4) du(x Ay) = dn(x) A dy(y);

5) dn(x V' y) = dn(x) V dn(y);

AIMS Mathematics Volume 10, Issue 11, 25791-25810.
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6) du(x©y) = du(x) © du(y).
We need Lemma 3.13 to prepare for the proof of Theorem 3.12.
Lemma 3.13. Let D, = (a’,,)‘:‘l=O € HDy(A) be power. If d,,(1) € B(A) for some m € N, thend,,(d,(1)) =
dn(1).

Proof. Letd,(1) € B(A). Then d,,(d,,(1)) < d,,(1) by Proposition 3.3 (1). Also, d,(1) € B(A) implies
that d,,(1) © d,.(1) = d,,(1), and so,

dn(dn(1)) = d,u(1 © dy(1))
m—1

= (dn(1) ©dy(1)) vV (1 © du(dn(1)) v \/(di(l) O dy-i(1))
i=1

m—1

= dy(1) V dy(d (1)) v \/ (@i(1) © dy (1)),

i=1
then we get that d,,(1) < d,,(d,,(1)). Hence, d,,(d,,(1)) = d,,(1). O
We next prove Theorem 3.12 by demonstrating the following cyclical implication chains: (1) =

2)=03)=>=@=>0),H=2)=0B)=0)=(1),and (2) = 3) = (6) = (2).

Proof of Theorem 3.12. By Lemma 3.13, d;(1) € B(A) implies d,(1) = d,(1) € B(A) forany 1 < n < k.
(1) = (2): By the definition of isotone (®, V)-higher derivations.
(2) = (3): Assume d,(x) < d,(1). Proposition 3.3 (1) induces d,(x) < x; it follows that

dy(x) = du(1) A dy(x) (du(x) < du(1))
=d,(1)od,(x) (Lemma 2.2 (4))
<d,(1)0ox. (Lemma 2.1 (3))

Proposition 2.8 (3) gives d,(1) © x < d,(x). Thus, d,(x) = d,(1) © x. Furthermore, d,(1) = d,(1) =
(di(1))" by Lemma 2.2 (3).
(3) = (4): Assume d,(x) = d,(1) © x. By Lemma 2.1 (4), we have

dp(x Ay) = dy(1) © (x Ay) = (du(1) © x) A (dy(1) O y) = dn(x) A dn(y).

4)=(1): If x <y, then
dp(x) = dy(x A y) = du(x) A dn().

Hence, d,(x) < d,(y).
(3) = (5): Assume d,(x) = d,(1) © x. By Lemma 2.1 (5), we have

dy(xVy)=d,(1)0(xVYy) =(d(1) ©x) V (d,(1) ©y) = du(x) V du(y).
(5) = (1): If x <y, then
dy(x) < dy,(x) vV dn()}) =d,(x vV y) = dn(y)
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Thus, d,(x) < d,(y).
(3) = (6): Since dy(1) € B(A), we know d,(1) © d,(1) = d,(1), it follows that

dy(x©y) =dy(1) ©(xOy)
=dy(1)0d,(1)©(x0Oy)
= (dn(1) ©x) © (d,y(1) ©y)
= dn(x) © du(y).

(6) = (2): Since d,(1) € B(A), it follows that
dn(x) = dn(XG D= dn(x) G)dn(l) = dn(x) A dn(l)

by Lemma 2.2 (4). Hence, d,(x) < d,(1). O

The equivalences established in Theorem 3.12 reveal that for a power (®, V)-higher derivation with
idempotent generator value d;(1), the isotone property is equivalent to the derivation behaving as a
“localization” or “restriction” to the principal ideal generated by d;(1). Specifically, condition (3)
d,(x) = (d(1))" © x shows that each d, acts as multiplication by the idempotent element (d;(1))",
which naturally preserves order. Conditions (4)—(6) further demonstrate that such derivations respect
the lattice operations and the MV-algebraic product in a well-behaved manner. This provides a clear
structural characterization of when power derivations preserve the natural order of the MV-algebra.

Remark 3.14. Note that D, = (a,’n)ﬁ:0 with dy = 012,d; = 001,d, = 011 on Ls, as in Table 4, is an
example of isotone (®, V)-higher derivations but not power since d, # d; o d;. Now, we have finished
the following Figure 1.

A

Power Principal Isotone

Power but not Isotone /

Figure 1. Interrelations among the three (®, V)-higher derivations.

4. Power (O, V)-higher derivations on two typical MV-chains

In this section, we construct explicitly power (®, V)-higher derivations on two typical MV-chains C
and L,,.

Theorem 4.1. Let C be the infinite MV-algebra in Example 2.2 and k € N,. Let a,b € C with b < a.
Define
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box, if xe(Cy; b"ox, if xeCy;
diw={""" T g d =di =0 P TS
ao®x, if xe(Cy, atox, if xeC,.

for any n < k. Then D), = (dn)]f,:o is a power (®, V)-higher derivation on C.

Proof. Let x,y € C. It suffices to prove that D, € HDy(C) since d, = d] for any n < k. Consider the
following four cases:
Case 1: x,y € Cp. Then,

dy(x0y) =d" 0 (x0Y)

n

\/(ai Ox)0 W@ oy)

i=0

= \/(dl(X) © dn—i(y))-

i=0

Case 2: x,y € C;. Then

dy(xOy) =b" 0 (x0Oy)

- \/(bl’ ox) 0B 0y)

i=0

= \/(d(x) 0d, ().
i=0

Case 3: x € Cy,y € Cp; let x = (uc)*,y = vc, where u, v € N,.
Ifu>v,thenxoy=0,and

d(x0y)=d0)=0=\/0
i=0
= \/biea"‘ica(x@y)
i=0

- \/(bi Ox) 0@ oY)
i=0

= \/(dl(X) O] dn—i(y))'
i=0

If u < v, then
d,(x0y)=d"0(x0Yy)

=0 0ox0d" 0y

- \/(bf 0x) 0@ 0y) (b < a)

i=0
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- \/(d,-(x) O dy-i(y)).
i=0

Case 4: x € Cy,y € C;. Symmetry of Case 3, we can show that d,(x ©y) = \/_y(di(x) © d,—i(y)).
Summarizing the above arguments, Dy is a power (®, V)-higher derivation on C. O

Theorem 4.1 constructs some power (©, V)-higher derivation on a typical non-archimedean infinite
MV-chain C. Next, we consider the construction of an archimedean finite MV-chain, which gives a
method to construct some (O, V)-higher derivations on a general MV-algebra in Corollary 4.4.

Theorem 4.2. Let d € Der(L,,) and k € N.. Then Dy = (d,)*_, € HDy(L,,), where d, = d" for any
n<k.

Proof. Recall that
Der(L,) = {dws) | (a,b) € A(Ln)},
where
A(Ly) = {(a,b) € Ly X Ly, | b < ab\{(0,0)}.

Assume (a,b) € A(L,) and d = d,p € Der(L,). In the case of n = 0, we know dy = 1d,,,, then
do(xOy) =x0y =dy(x) ©dy(y), so Eq. (2.2) holds.
Hence, it is enough to verify the cases 1 < n < k. Since d, = d", we can get d, with

a'ob, if x=1;
dn(x) = _ 4.1)
a* o x, otherwise.
There are only three cases:
Case 1. If x = 1 and y = 1, then we have
d,(x0y)=d"'ob (Eq (4.1))
n—1
=(a"ob)v (e ob)v\/ (a0 b?) (b < a)

i=1

n—1
=(a"oboy)v(xeaob)v\/(doboa T Ob) (x=y=1)
i=1

-1

= (dn(x) © do(y)) V (do(x) © du(y)) V \/ (di(x) © dy-i(y) (Eq (4.1))
i=1

n

=\/ (di(x) 0d, (7). (right side of Eq (2.2))

i=0
Case 2. If x = 1 or y = 1 (but not both), say x # 1 and y = 1, then
d,(x0y)=d,(x)=d"Ox (Eq 4.1))

n—1

=@oxVv(@'obox)v\/ (¢ obox) (b < a)

i=1
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n—1

=(@oxoyV(xeaob)v\/(doxea " 0b) (y=1)
i=1
n—1
= (du(x) © do(y) V (do(x) © du(y) V \/(di(x) © dy-i()) (Eq (4.1))
i=1
= \/(di(x) O d_i(). (right side of Eq (2.2))
i=0

Case 3. If x < 1,y < 1, then

d,(x0y)=d"0x0y (Eq (4.1))
n—1
=@ox0y)VExod oy V (a"(Dx@a’H.@y)
i=0

n—1

= (dn(x) © dp(y) V (do(x) © du(y) V \/(di(x) O dy-i(y)) (Eq (4.1))
i=1

= \/ (@(x) © d,-(y). (right side of Eq (2.2))
i=0
Thus, we conclude that D, € HDy(L,,). O

Remark 4.3. The converse of Theorem 4.2 is not true. That is, not all D; = (dn)’fl:o € HD,(L,,) can be
expressed as d, = d" for some d € Der(L,,). For example, consider D, = (d,f,)i:O with dy = 012,d, =
000,d, = 001 on L3 as in Table 4, D, € HD,(L3) and d; € Der(L5), but d, = 001 # 000 = d, o d;.

By observing the proof of Theorem 4.2, we find that the proof is only related to whether the values
of x,y are 1 or less than 1. Hence, we wonder if the conclusion holds on any MV-algebra? We will
show below that the conclusion does hold for general M V-algebras.

Let d, be a principal (®, V)-derivation on A and b < a. It is known that dﬁe is an (®, V)-derivation
on A by Lemma 2.6. Note that d’_ on A is same as d, ) on L, except for the range of values for a, b
which is A and L,,, respectively.

Corollary 4.4. Let a,b € A withb < a. Let d,, be a principal (O, V)-derivation on A and k € N,. Then
Dy = (d,)*_, € HD(A), where d, = (d%,)" for any n < k.

Proof. The proof is similar to that of Theorem 4.2. m|
To prove Proposition 4.6, we need first to show that d" € Der(L,,) for every d € Der(L,,).
Lemma 4.5. (Der(L,,), o) is a semigroup.

Proof. Let d,d’ € Der(L,). Since the associative law is guaranteed by composite operations of
mappings, it is sufficient to prove that d o d’ € Der(L,,).
Thereexistb <a <1, f <e < 1suchthatd = dy, d = d.r. There are only two cases:
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Case 1. f < 1. We have

o f, if x =1;
a’od’(x):{a f if x

a®e®x, otherwise.

Since f < e and © is order-preserving (Lemma 2.1 (3)),a ® f < a®e. Hence, d o d’ € Der(L,,).
Case 2. f = 1. In this case, f < e implies e = 1. Hence,

b, ifx=1;

a®x, otherwise.

dod(x) = {
Thend od’ = d € Der(L,,).
Therefore, (Der(L,,), o) is a semigroup. O

It is clear that the subsemigroup generated by d of Der(L,,) is finite since Der(L,,) is finite. We next
introduce the period and index of a generator d of Dy = (d")ﬁ:O on L,,.

As noted in [13], the index and period of d can be defined based on the repetitions that occur among
its compositions. We define the index of d, denoted by /, as the least element of non-empty set

(xeN|@QyeN) d" =d" x#y},
and the period of d, denoted by r, as the least element of the non-empty set
{xen|a™=d}.

Thus, there exist index / and period r such that

dl — dl+r
for any d € Der(L,,).
Now, let us calculate [ and r of d.
Proposition 4.6. Let d = d, ) € Der(L,,), where a = m#_l,b = ﬁ, 0<j<i<m-1.LetkeN, and

D, = (d,,)’;:0 by d, = d" for any 0 < n < k. Then the period r of d is 1 and the index | of d is

1, if a=1,;
[ =11, if b<a<l,
i+1, ifb=a<]l.

Proof. The cases d = 1d;, ord = 0, are clear. We have known that b < a, so there are only two cases

m

according to the value of a.
Casel.Ifa=1(i.e.,i =m—1), then

b, if x=1; b, ifx=1;
d(x) = and d,(x) =
x, otherwise, x, otherwise.
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This shows that d" = d' for all n > 1. Therefore, the sequence stabilizes immediately after n = 1,
giving index / = 1 and period r = 1.
Case2.Ifa< 1 (i.e.,,i <m—1), then

b, if x=1; a'ob, ifx=1;
d(x) = and d,(x) =
a®x, otherwise, a'ox, otherwise.

In this case, d(x) < x, and so d must be nilpotent. Denote M = {n eN|a"'ob= 0} and N =

{n eN|a" 0o ﬁ—j = ()}. To explore the index, we consider the following two cases:
Subcase 2.1: b < a (i.e., j < Q).

M and N represent the nilpotency indices for the sequences at x = 1 and at the largest non-unit
element x = an:%’ respectively. Since b < a, we have N C M. The minimal element of N is i, because
a = (mL;l)i = 0 when multiplied by any element less than 1. For n > i, we have d"(x) = 0 for all x < 1,
andd"(1) =a"'©b=0(sincen—1>i—-1> jand b = m%1)' Thus, d" = 0;,, for all n > i, and d' is
the first zero map in the sequence. Hence, / = min N =iand r = 1.

Subcase 2.2: b = a (i.e., j = i).

In this subcase, we have d"(1) = a" '©a = a". Hence, M = {n e N | @" = 0}. Sincea = b < n”;—j, we
have M C N. The minimal element of M is i + 1, because ¢’ = (=)' > O but @' = 0. Forn > i + 1,
d"(1) = 0 and d"(x) = O for all x < 1. Thus, d" = 0;, foralln > i + 1, and d"*' is the first zero map.
Hence,=minM =i+ 1and r = 1.

In all cases, period r = 1 because once the sequence reaches the zero map, it remains constant.

5. Fixed point sets of power (O, V)-higher derivations

In this section, we discuss the set of fixed points of power (®, V)-higher derivations and show that it
is a lattice 1deal in the case of principal (O, V)-higher derivations. Note the condition is different from
[3, Theorem 3.12], where d,, is an increasing function for all n € I of a higher derivation D = (d,),c; of
length n on a lattice.

Definition 5.1. Let A be an MV-algebra. If Dy = (a’n)fi:0 € HD,(A) is power, define the set of all fixed
points of Dy by Fixp,:

Fixp,(A) = {x € A | d,(x) = x forall n < k}.
Then, 0 € Fixp,(A), and Fix), (A) is a downset of A by Proposition 3.3 (4).

Proposition 5.2. Let A be an MV-algebra and a € A. If Dy, = (dwo)*_, is a principal (®, V)-higher
derivation on A, then Fixp, (A) is a lattice ideal of A.

Proof. Tt can be verified that 0 € Fixp,,(A) by Proposition 2.8 (1). By Definition 5.1, Fixp, (A) is a
downset of A.
Furthermore, for any x, y € Fixp, , (A), we have do(x) = x, dpwo(y) = y; it follows that

dpo(xVy)=d"0(xVy) =@ 0x) V(@ 0y) =dp(x)Vdm(y)=xVy
by Lemma 2.1 (5). Hence, we get x V y € Fixp, , (A).

Therefore, Fixp, ,(A) is a lattice ideal of A. m]
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6. Conclusions

In this paper, the power (©, V)-higher derivations, principal (®, V)-higher derivations, and isotone
(®, V)-higher derivations on an MV-algebra A have been studied. We have obtained all relationships
among them as concluded in Figure 1. Moreover, we have obtained 5 equivalent conditions for a
power (O, V)-higher derivation D; = (dn)fz:O to be isotone. For typical MV-chains C and L,,, we have
constructed explicitly some power (O, V)-higher derivations. Furthermore, we have discussed the sets
of fixed points of power (O, V)-higher derivations. This work opens several avenues for future research:

1) Characterize when an isotone (O, V)-higher derivation is power. The challenge lies in bridging
the inherent gap between isotonicity and the power condition, which requires profound insight.

2) Determine whether non-principal power higher derivations exist whose fixed point set is a lattice
ideal. The difficulty stems from the more intricate interaction between the derivation’s algebraic
structure and the order structure of its fixed points in the non-principal case.

3) Connect MV-algebraic derivations with recent advances in fractional calculus and impulsive
systems [17,18,22], where the iterative nature of higher derivations might provide algebraic tools
for studying controllability and stability in logical networks.
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