
Research article

Power, principal, and isotone (\odot, \vee) -higher derivations on MV-algebras

Xueting Zhao¹ and Yichuan Yang^{2,*}

¹ College of Science, North China University of Technology, Beijing 100144, China

² School of Mathematical Sciences, Shahe Campus, Beihang University, Beijing 102206, China

* Correspondence: Email: ycyang@buaa.edu.cn.

Abstract: This paper studies three types of (\odot, \vee) -higher derivations on MV-algebras: power, principal, and isotone (\odot, \vee) -higher derivations. We show that every principal (\odot, \vee) -higher derivation is both power and isotone. However, counterexamples demonstrate that no pairwise implications hold beyond the established one. Furthermore, explicit constructions of power (\odot, \vee) -higher derivations are provided. Additionally, we characterize isotone (\odot, \vee) -higher derivations and show that the fixed point set of any principal (\odot, \vee) -higher derivation forms a lattice ideal.

Keywords: MV-algebra; higher derivation; MV-chain; semigroup; fixed point; lattice ideal

Mathematics Subject Classification: 03G20, 06B10, 06D35, 08B26

1. Introduction

Hasse and Schmidt [9] introduced the concept of higher derivations on associative algebras. Subsequent work extended the study of higher derivations to various algebraic structures. Heerema [11, 12] investigated higher derivations on local rings, focusing on their representation of inertial automorphisms, ramification group structures, and convergence properties. Ferrero [8] studied higher derivations of prime and semiprime rings satisfying linear relations. Ribenboim [23] conducted a systematic study of higher derivations on arbitrary rings and modules. Specifically, for a commutative ring R , a higher derivation (or Hasse-Schmidt derivation [7]), on an R -algebra A is a sequence of R -linear maps $D = (d_n)_{n \in \mathbb{N}}$ on A such that $d_0 = \text{Id}_A$ and

$$d_n(ab) = \sum_{i+j=n} d_i(a)d_j(b), \text{ for all } a, b \in A \text{ and } n \geq 1.$$

Further extensions include derivations and higher derivations on lattices [3, 26, 27], incidence algebras [14, 15], triangular algebras [24, 25], and more recently, logical algebras. This line of research

has been further expanded to encompass other logical algebraic structures fundamental to fuzzy logic and many-valued reasoning, such as BL-algebras [19], residuated lattices [10], BCK-algebras [6], basic algebras [16], and MV-algebras [1, 21, 28].

This paper is motivated by the need to bridge the gap between classical derivation theory and its generalizations in MV-algebraic frameworks. The main contributions of this paper are as follows:

- 1) We introduce and compare three types of (\odot, \vee) -higher derivations: power, principal, and isotone. We prove that principal (\odot, \vee) -higher derivations imply power and isotone properties (Propositions 3.6 and 3.8), while other pairwise implications fail (Remarks 3.9, 3.10, 3.14; Figure 1).
- 2) We provide explicit constructions of power (\odot, \vee) -higher derivations on two typical MV-chains: the infinite chain C and the finite chain L_m (Theorems 4.1 and 4.2).
- 3) We characterize a power (\odot, \vee) -higher derivation to be isotone (Theorem 3.12).
- 4) We show that the fixed point set of a principal (\odot, \vee) -higher derivation forms a lattice ideal (Proposition 5.2).

2. Preliminaries

An **MV-algebra** [5] is an abelian monoid $(A, \oplus, 0)$ with a unary operation * , which satisfies:

- 1) $x^{**} = x$;
- 2) $x \oplus 0^* = 0^*$;
- 3) $(x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x$.

Example 2.1. [5] Let L be the real unit interval $[0, 1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$. Define

$$x \oplus y = \min\{1, x + y\} \text{ and } x^* = 1 - x \text{ for any } x, y \in L.$$

Then $(L, \oplus, {}^*, 0)$ is an MV-algebra.

For each positive integer $m \geq 2$, the m -element subset of L

$$L_m = \left\{0, \frac{1}{m-1}, \frac{2}{m-1}, \dots, \frac{m-2}{m-1}, 1\right\}$$

with the same operations is a subalgebra of MV-algebra L , which is an MV-algebra.

Example 2.2. [4] Let the following two sets of formal symbols be

$$C_0 = \{0, c, 2c, 3c, \dots\}, \quad C_1 = \{1, c^*, (2c)^*, (3c)^*, \dots\},$$

where $0c = 0$, $1c = c$, $uc = vc \Leftrightarrow u = v$, $0^* = 1$, $(kc)^* = 1 - kc$ and $(kc)^{**} = ((kc)^*)^* = kc$ for any $u, v, k \in \mathbb{N}$.

Let $+$ (respectively, $-$) be the ordinary sum (respectively, subtraction) between integers. Define the binary operation \oplus on $C = C_0 \cup C_1$ for any $u, v \in \mathbb{N}$:

- $uc \oplus vc = (u + v)c$;
- $(uc)^* \oplus (vc)^* = 1$;
- $(uc)^* \oplus vc = vc \oplus (uc)^* = \begin{cases} 1, & u \leq v, \\ ((u - v)c)^*, & u > v. \end{cases}$

Then, $(C, \oplus, ^*, 0)$ is an MV-algebra.

For every MV-algebra A , denote the constant $1 = 0^*$ and the operation $x \odot y = (x^* \oplus y^*)^*$. Recall that an archimedean MV-algebra [2] is defined to be an MV-algebra satisfying for any $x, y \in A$, $nx \leq y$ for any $n \in \mathbb{N}$ implies $x \odot y = x$.

Let A be an MV-algebra. For any $x, y \in A$, define the natural order of A by $x \leq y$ iff $x^* \oplus y = 1$ iff $x \odot y^* = 0$ [5]. Furthermore, the natural order determines a structure of bounded distributive lattice $(A, \vee, \wedge, 0, 1)$, and

$$x \vee y = (x \odot y^*) \oplus y \text{ and } x \wedge y = x \odot (x^* \oplus y).$$

A linearly ordered MV-algebra is called an MV-chain.

Lemma 2.1. [4, 5] *Let A be an MV-algebra and $x, y, z \in A$. Then the following statements hold:*

- 1) $x \odot y \leq x \wedge y \leq x \leq x \vee y \leq x \oplus y$;
- 2) If $x \leq y$, then $x \vee z \leq y \vee z$, $x \wedge z \leq y \wedge z$;
- 3) If $x \leq y$, then $x \oplus z \leq y \oplus z$, $x \odot z \leq y \odot z$;
- 4) $x \odot (y \wedge z) = (x \odot y) \wedge (x \odot z)$;
- 5) $x \odot (y \vee z) = (x \odot y) \vee (x \odot z)$.

An element a of MV-algebra A is called idempotent if $a \oplus a = a$. Denote the set of all idempotent elements of A by $\mathbf{B}(A)$. It is known that $\mathbf{B}(A)$ is a subalgebra of the MV-algebra A [5, Corollary 1.5.4].

Lemma 2.2. [5, Theorem 1.5.3] *For every element x in an MV-algebra A , the following conditions are equivalent:*

- 1) $x \in \mathbf{B}(A)$;
- 2) $x \oplus x = x$;
- 3) $x \odot x = x$;
- 4) $x \odot y = x \wedge y$ for all $y \in A$.

Definition 2.3. [5] A subset I of a lattice L is a lattice ideal if it satisfies:

- 1) $0 \in I$;
- 2) $x, y \in I$ imply $x \vee y \in I$;
- 3) $x \in I$ and $y \leq x$ imply $y \in I$.

By [5, Proposition 1.1.5], a lattice ideal of an MV-algebra (A, \vee, \wedge) is the same as an ideal of the underlying lattice.

Definition 2.4. [28, Definition 3.1] Let A be an MV-algebra. A map $d : A \rightarrow A$ is called an (\odot, \vee) -derivation on A if it satisfies:

$$d(x \odot y) = (d(x) \odot y) \vee (x \odot d(y)) \quad \text{for all } x, y \in A. \quad (2.1)$$

Denote the set of all (\odot, \vee) -derivations on A by $\text{Der}(A)$. For a finite set $X = \{x_0, x_1, \dots, x_{m-1}\}$ and a map $d : X \rightarrow X$, we shall write d as

$$\begin{pmatrix} x_0 & x_1 & \cdots & x_{m-1} \\ d(x_0) & d(x_1) & \cdots & d(x_{m-1}) \end{pmatrix}.$$

If $d \in \text{Der}(L_m)$, then x_i and $d(x_i)$ can be written by $\frac{i}{m-1}$ and $\frac{j_i}{m-1}$, where $0 \leq i \leq m-1$ and $j_i \leq i$. For convenience, we abbreviate d as $j_0 j_1 \cdots j_{m-1}$ ($= [(m-1)d(x_0)][(m-1)d(x_1)] \cdots [(m-1)d(x_{m-1})]$) without ambiguity.

Proposition 2.5. [28, Proposition 3.3] Let A be an MV-algebra, $x \in A$ and $d \in \text{Der}(A)$. Then for any $n \in \mathbb{N}_+$, the following statements hold:

$$1) \ d(0) = 0;$$

$$2) \ d(x) \leq x.$$

Lemma 2.6. [28, Corollary 3.12] Let A be an MV-algebra and $d \in \text{Der}(A)$. Let $u \in A$ be given with $u \leq d(1)$ and define an operator d^u on A by

$$d^u(x) := \begin{cases} u, & \text{if } x = 1; \\ d(x), & \text{otherwise.} \end{cases}$$

Then, d^u is also in $\text{Der}(A)$.

For a given $a \in A$, define the map $d_{a\odot} : A \rightarrow A$ by

$$d_{a\odot}(x) := a \odot x \quad \text{for all } x \in A.$$

Then $d_{a\odot}$ is an (\odot, \vee) -derivation, called a principal (\odot, \vee) -derivation. Recall that the order structure of all (\odot, \vee) -derivations on m -element MV-chain L_m ($m \geq 2$) is given in [28, Theorem 5.6]. Indeed, the lattice $\text{Der}(L_m) = \{d_{(a,b)} \mid (a, b) \in \mathcal{A}(L_m)\}$ is isomorphic to the lattice $\mathcal{A}(L_m)$, where

$$\mathcal{A}(L_m) = \{(x, y) \in L_m \times L_m \mid y \leq x\} \setminus \{(0, 0)\},$$

and

$$d_{(a,b)}(x) := \begin{cases} b, & \text{if } x = 1; \\ d_{a\odot}(x) = a \odot x, & \text{otherwise.} \end{cases}$$

Example 2.3. We list all (\odot, \vee) -derivations of L_2 , L_3 , and L_4 in Tables 1–3, respectively:

Table 1. $\text{Der}(L_2)$.

$x \in L_2$	$\text{Id}_{L_2}(x)$	$\mathbf{0}_{L_2}(x)$
0	0	0
1	1	0

Table 2. $\text{Der}(L_3)$.

$x \in L_3$	$\text{Id}_{L_3}(x)$	$d_{\frac{1}{2}\odot}(x)$	$\text{Id}_{L_3}^{\frac{1}{2}}(x)$	$\mathbf{0}_{L_3}(x)$	$\text{Id}_{L_3}^0(x)$
0	0	0	0	0	0
$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
1	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0

Table 3. $\text{Der}(L_4)$.

$x \in L_4$	$\text{Id}_{L_4}(x)$	$d_{\frac{2}{3}\odot}(x)$	$\text{Id}_{L_4}^{\frac{2}{3}}(x)$	$d_{\frac{1}{3}\odot}(x)$	$d_{(\frac{2}{3}, \frac{1}{3})}(x)$	$\text{Id}_{L_4}^{\frac{1}{3}}(x)$	$\mathbf{0}_{L_4}(x)$	$d_{(\frac{2}{3}, 0)}(x)$	$\text{Id}_{L_4}^0(x)$
0	0	0	0	0	0	0	0	0	0
$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	0	$\frac{1}{3}$
$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{2}{3}$
1	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0

Definition 2.7. Let A be an MV-algebra, $k \in \mathbb{N}_+$, and $D_k = (d_n)_{n=0}^k$ be a finite sequence of operators of A such that $d_0 = \text{Id}_A$. Then D_k is called an (\odot, \vee) -higher derivation of length k on A if for every $n \leq k$ and $x, y \in A$, we have

$$d_n(x \odot y) = \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \quad (2.2)$$

Let $\text{HD}_k(A)$ denote the set of all such derivations.

Example 2.4. 1) The identity and zero (\odot, \vee) -higher derivation of length $k \in \mathbb{N}_+$ on A are respectively defined by

$$D_k^{\text{Id}_A} = (d_n)_{n=0}^k, \quad \text{where } d_n = \text{Id}_A \text{ for } 0 \leq n \leq k,$$

$$D_k^{\mathbf{0}_A} = (d_n)_{n=0}^k, \quad \text{where } d_0 = \text{Id}_A \text{ and } d_n = \mathbf{0}_A \text{ for } 1 \leq n \leq k.$$

2) We list all (\odot, \vee) -higher derivations of length 2 on L_3 in Table 4.

Table 4. $\text{HD}_2(L_3) = \{(d_0, d_1, d_2) \mid d_0 = \text{Id}_{L_3}, \text{ and } d_1, d_2 \text{ satisfy Eq (2.2).}\}$

$[2d(0)][2d(\frac{1}{2})][2d(1)]$																	
d_0	012																
d_1	000																
d_2	000	001	010	011	012	000	001	010	011	012	000	001	010	011	012	000	001

Proposition 2.8. Let A be an MV-algebra, $k \in \mathbb{N}_+$, and $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$. Then the following statements hold for all $x, y \in A$:

- 1) $d_n(0) = 0$, for any $n \leq k$;
- 2) $d_i(x) \odot d_{n-i}(x^*) = 0$, for any $n \leq k$ and $i \leq n$. In particular, $d_n(x) \leq x$;
- 3) $d_i(x) \odot d_{n-i}(1) \leq d_n(x)$, for any $n \leq k$ and $i \leq n$. In particular, $x \odot d_n(1) \leq d_n(x)$;
- 4) If $d_1 = \text{Id}_A$, then $d_n = \text{Id}_A$ for all $2 \leq n \leq k$.

Proof. (1) We prove $d_n(0) = 0$ for any $n \leq k$ by induction on n . First, if $n = 0$, then $d_0(0) = 0$.

Assume $d_l(0) = 0$ for all $0 < l < n$. Putting $x = y = 0$ in Eq (2.2), we get

$$d_n(0) = d_n(0 \odot 0) = \bigvee_{i=0}^n (d_i(0) \odot d_{n-i}(0)) = (0 \odot d_n(0)) \vee (d_n(0) \odot 0) \vee \bigvee_{i=1}^{n-1} (d_i(0) \odot d_{n-i}(0)) = 0,$$

since $d_i(0) \odot d_{n-i}(0) = 0$ for all $1 \leq i \leq n-1$. Hence, $d_n(0) = 0$ for any $n \leq k$.

(2) Since $x \odot x^* = 0$, it follows that for any $n \leq k$,

$$0 = d_n(0) = d_n(x \odot x^*) = \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(x^*))$$

by (1) and Eq. (2.2). Thus $d_i(x) \odot d_{n-i}(x^*) = 0$, for all $i \leq n$. In particular, we have $d_n(x) \odot x^* = 0$, which implies $d_n(x) \leq x$.

(3) Since $x \odot 1 = x$, it follows from Eq (2.2) that for any $n \leq k$,

$$d_n(x) = d_n(x \odot 1) = \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(1)).$$

Thus $d_i(x) \odot d_{n-i}(1) \leq d_n(x)$ for all $i \leq n$. In particular, when $i = 0$, we get $x \odot d_n(1) \leq d_n(x)$.

(4) Assume $d_1 = \text{Id}_A$; we have $d_1(x) = x$ for any $x \in A$.

We prove the conclusion by induction; when $n = 2$, we get

$$\begin{aligned} d_2(x) &= d_2(x \odot 1) \\ &= (x \odot d_2(1)) \vee (d_2(x) \odot 1) \vee (d_1(x) \odot d_1(1)) \quad (\text{Eq. (2.2)}) \\ &= (x \odot d_2(1)) \vee d_2(x) \vee x \quad (d_1 = \text{Id}_A) \\ &= x. \quad (\text{Proposition 2.8 (2) and (3)}) \end{aligned}$$

Now, assume $d_l = \text{Id}_A$ for all $l \leq n$. It follows that

$$\begin{aligned} d_{n+1}(x) &= d_{n+1}(x \odot 1) \\ &= \bigvee_{i=0}^{n+1} (d_i(x) \odot d_{n+1-i}(1)) \quad (\text{Eq. (2.2)}) \end{aligned}$$

$$\begin{aligned}
&= (x \odot d_{n+1}(1)) \vee (d_{n+1}(x) \odot 1) \vee \bigvee_{i=1}^n (d_i(x) \odot d_{n+1-i}(1)) \\
&= (x \odot d_{n+1}(1)) \vee d_{n+1}(x) \vee x && \text{(Assumptions)} \\
&= x. && \text{(Proposition 2.8 (2) and (3))}
\end{aligned}$$

Hence, $d_n = \text{Id}_A$ for all $n \geq 2$. \square

Notation summary: To enhance readability and avoid potential confusion in heavy notation, we provide the following summary of frequently used symbols and their meanings; see Table 5.

Table 5. Summary of notations used throughout the paper.

Notation	Meaning
A	An MV-algebra
\mathbb{N}_+	Set of positive integers
d	A single (\odot, \vee) -derivation on A
d^n	The n -fold composition of d with itself ($d \circ d \circ \dots \circ d$, n times)
d_n	The n -th component of an (\odot, \vee) -higher derivation sequence $D_k = (d_0, d_1, \dots, d_k)$
$d_{a\odot}$	The principal (\odot, \vee) -derivation defined by $d_{a\odot}(x) = a \odot x$
$d_{(a,b)}$	An (\odot, \vee) -derivation on L_m with parameters a, b (see Lemma 2.6)
d^u	The (\odot, \vee) -derivation obtained by modifying d at $x = 1$: $d^u(x) = \begin{cases} u, & \text{if } x = 1 \\ d(x), & \text{otherwise} \end{cases}$ (for $u \leq d(1)$)
$d_{a\odot}^b$	The (\odot, \vee) -derivation defined as $d_{a\odot}^b(x) = \begin{cases} b, & \text{if } x = 1 \\ a \odot x, & \text{otherwise} \end{cases}$ (for $b \leq a$)
D_k	An (\odot, \vee) -higher derivation of length k , i.e., a sequence (d_0, d_1, \dots, d_k)
$D_{\{k,a\}}$	A principal (\odot, \vee) -higher derivation of length k generated by a
$\text{Der}(A)$	The set of all (\odot, \vee) -derivations on A
$\text{HD}_k(A)$	The set of all (\odot, \vee) -higher derivations of length k on A
$\mathbf{B}(A)$	The set of all idempotent elements of A
$\text{Fix}_{D_k}(A)$	The set of all fixed points of the (\odot, \vee) -higher derivation D_k

3. Power, principal, and isotone (\odot, \vee) -higher derivations on MV-algebras

3.1. Definitions of the three type (\odot, \vee) -higher derivations

Let us get started with the definition of a power (\odot, \vee) -higher derivation.

Definition 3.1. Let A be an MV-algebra and $k \in \mathbb{N}_+$. An (\odot, \vee) -higher derivation $D_k = (d_n)_{n=0}^k$ of length k is power if $d_n = d_1^n$ for any $1 \leq n \leq k$. Here, d_1 is called the generator of D_k .

Remark 3.2. 1) Clearly, for any $k \in \mathbb{N}_+$, the identity and zero (\odot, \vee) -higher derivation of length k (cf. Example 2.4), $D_k^{\text{Id}_A}$ and $D_k^{\mathbf{0}_A}$ are power.

2) We will construct explicitly some power (\odot, \vee) -higher derivations on MV-chains C and L_m in Theorems 4.1 and 4.2. However, by the counterexample in Remark 4.3, we will see that not all (\odot, \vee) -higher derivations on an MV-algebra are power.

Let A be an MV-algebra, $k \in \mathbb{N}_+$, and $D_k = (d_n)_{n=0}^k$ be an operator sequence of A . Recall that D_k is decreasing on n if $n_1, n_2 \in \mathbb{N}_+$ and $n_1 \leq n_2 \leq k$, then $d_{n_2}(x) \leq d_{n_1}(x)$ for any $x \in A$.

Proposition 3.3. *Let A be an MV-algebra and $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$ be power. Then the following statements hold for all $x, y \in A$:*

- 1) D_k is decreasing on n ;
- 2) $d_n(x) \odot d_n(y) \leq d_n(x \odot y)$, for all $n \leq k$;
- 3) $(d_n(x))^m \leq d_n(x^m)$, for all $m \geq 1$ and $n \leq k$;
- 4) If there exists $m \leq k$ such that $d_m(x) = x$, then $d_m(y) = y$ for any $y \leq x$.

Proof. 1) Since $d_1 \in \text{Der}(A)$, we know $d_1(x) \leq x$ for all $x \in A$ by Proposition 2.5 (2). Definition 3.1 of power (\odot, \vee) -higher derivation implies $d_n(x) = d_1(d_{n-1}(x))$ for any $1 \leq n \leq k$, so $d_n(x) \leq d_{n-1}(x)$ for any $1 \leq n \leq k$ and $x \in A$. Hence, D_k is decreasing on n .

2) Taking a certain $n \leq k$. By Proposition 3.3 (1), it is easy to see that for all $i \leq n$,

$$d_n(x) \leq d_i(x), d_n(y) \leq d_{n-i}(y).$$

Hence, by Lemma 2.1 (3) for each $i \leq n$,

$$d_n(x) \odot d_n(y) \leq d_i(x) \odot d_{n-i}(y).$$

Finally, we get $d_n(x) \odot d_n(y) \leq \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)) = d_n(x \odot y)$ by Lemma 2.1 (1) and Eq. (2.2). Due to the arbitrariness of n selection, $d_n(x) \odot d_n(y) \leq d_n(x \odot y)$ for all $n \leq k$.

3) For every $n \leq k$, we prove it by induction on m . First, if $m = 1$, it is clear that $(d_n(x))^1 = d_n(x) = d_n(x^1)$. Now, assume that $(d_n(x))^m \leq d_n(x^m)$; we need to show the case of $m + 1$. By Lemma 2.1 (3), we have

$$(d_n(x))^{m+1} = (d_n(x))^m \odot d_n(x) \leq d_n(x^m) \odot d_n(x).$$

According to Proposition 3.3 (2), we know $d_n(x^m) \odot d_n(x) \leq d_n(x^m \odot x) = d_n(x^{m+1})$. Hence, $(d_n(x))^{m+1} \leq d_n(x^{m+1})$ for all $m \geq 1$ and $n \leq k$.

4) Assume $d_m(x) = x$ for $m \leq k$. Since $y \leq x$, it follows that

$$\begin{aligned} d_m(y) &= d_m(x \wedge y) \\ &= d_m(x \odot (x^* \oplus y)) \\ &= (d_m(x) \odot (x^* \oplus y)) \vee (x \odot d_m(x^* \oplus y)) \vee \bigvee_{i=1}^{m-1} (d_i(x) \odot d_{m-i}(x^* \oplus y)) && (\text{Eq. (2.2)}) \\ &= (x \odot (x^* \oplus y)) \vee (x \odot d_m(x^* \oplus y)) \vee \bigvee_{i=1}^{m-1} (d_i(x) \odot d_{m-i}(x^* \oplus y)) && (d_m(x) = x) \end{aligned}$$

$$\begin{aligned}
&= x \odot (x^* \oplus y) && \text{(Proposition 3.3 (1))} \\
&= x \wedge y \\
&= y. && \square
\end{aligned}$$

We next introduce the principal and isotone (\odot, \vee) -higher derivations.

Definition 3.4. Let A be an MV-algebra, $a \in A$, and $k \in \mathbb{N}_+$. Define $D_{\{k,a\}} = (d_{a^n \odot})_{n=0}^k$ by $d_{a^n \odot}(x) = a^n \odot x$, for all $n \leq k$ and $x \in A$. Let $x, y \in A$. Then,

$$d_{a^n \odot}(x \odot y) = a^n \odot x \odot y = \bigvee_{i=0}^n (a^i \odot x \odot a^{n-i} \odot y) = \bigvee_{i=0}^n (d_{a^i \odot}(x) \odot d_{a^{n-i} \odot}(y)),$$

which implies that $D_{\{k,a\}} = (d_{a^n \odot})_{n=0}^k \in \text{HD}_k(A)$. We call $D_{\{k,a\}}$ a principal (\odot, \vee) -higher derivation of length k on A .

Definition 3.5. An (\odot, \vee) -higher derivation $D_k = (d_n)_{n=0}^k$ of length k on A is isotone if, for any $n \leq k$, d_n is isotone. That is, $x \leq y$ implies $d_n(x) \leq d_n(y)$ for all $n \leq k$ and $x, y \in A$.

3.2. The relationship between principal and power (\odot, \vee) -higher derivations

We have mentioned in Remark 3.2 that $D_k^{\text{Id}_A}$ and $D_k^{\mathbf{0}_A}$ are power. Clearly, both $D_k^{\text{Id}_A}$ and $D_k^{\mathbf{0}_A}$ are also principal. We note that a principal (\odot, \vee) -higher derivation is power in general.

Proposition 3.6. Let A be an MV-algebra. Then all principal (\odot, \vee) -higher derivations on A are power.

Proof. Without loss of generality, assume $a \in A$, and $D_{\{k,a\}} = (d_{a^n \odot})_{n=0}^k$ is an arbitrary principal (\odot, \vee) -higher derivation of length k on A .

For any $n \leq k$ and $x \in A$, we have $d_{a^n \odot}(x) = a^n \odot x$ by the definition of principal (\odot, \vee) -higher derivations.

Also, $(d_{a \odot}^n)(x) = d_{a \odot}^{n-1}(d_{a \odot}(x)) = d_{a \odot}^{n-1}(a \odot x) = a^n \odot x$ for any $1 \leq n \leq k$ and $x \in A$.

Hence, $d_{a^n \odot} = d_{a \odot}^n$, which indicates the generator of $D_{\{k,a\}}$ is $d_{a \odot}$. Thus $D_{\{k,a\}}$ is power. \square

Remark 3.7. Conversely, a power (\odot, \vee) -higher derivation $D_k = (d_n)_{n=0}^k$ of length k on A may not be principal, and a counterexample that is more general than might be anticipated will be constructed in Remark 3.9. In fact, we note here in advance that the interested reader will get a clear relationship picture among principal, power, and isotone (\odot, \vee) -higher derivations, as shown in Figure 1 after Remark 3.14.

3.3. The relationship between principal and isotone (\odot, \vee) -higher derivations

Propositions 3.6 and 3.8 establish that a principal (\odot, \vee) -higher derivation is both power and isotone.

Proposition 3.8. Let A be an MV-algebra. Then any principal (\odot, \vee) -higher derivation is isotone.

Proof. Without loss of generality, assume $a \in A$, and $D_{\{k,a\}} = (d_{a^n \odot})_{n=0}^k$ is an arbitrary principal (\odot, \vee) -higher derivation of length k on A .

Let $x \leq y$. Then $a^n \odot x \leq a^n \odot y$ for any $n \leq k$ by Lemma 2.1 (3) and so $d_{a^n \odot}(x) \leq d_{a^n \odot}(y)$ for any $n \leq k$. Thus $D_{\{k,a\}}$ is isotone. \square

However, an isotone (\odot, \vee) -higher derivation is not always principal. Example 3.1 below shows that there are isotone (\odot, \vee) -higher derivations on an MV-algebra A other than the principal ones.

Example 3.1. Let $D_2 = (d_n)_{n=0}^2$ with $d_0 = 012, d_1 = 001, d_2 = 011$ be an (\odot, \vee) -higher derivation on L_3 in Table 4. Then D_2 is isotone, while D_2 is not principal, since $d_2(1) = \frac{1}{2} = \frac{1}{2} \odot 1$, but $d_2(\frac{1}{2}) = \frac{1}{2} \neq 0 = \frac{1}{2} \odot \frac{1}{2}$.

Remark 3.9. Here we construct a promised counterexample to show that a power isotone (\odot, \vee) -higher derivation is not principal. On L_4 , let $d = 0122$ be Example 3.1 in [28] (as $\text{Id}_{L_4}^{\frac{2}{3}}$ in Table 3) and $d_n = d^n = d$. It is clear that $D_k = (d_n)_{n=0}^k \in \text{HD}_k(L_4)$ is power and isotone, but $d_2(1) = \frac{2}{3} \neq a^2 = a^2 \odot 1$ for any $a \in L_4$, hence it is not principal.

Theorem 3.12 will tell us that if $D_k = (d_n)_{n=0}^k$ is a power (\odot, \vee) -higher derivation on an MV-algebra A with $d_1(1) \in \mathbf{B}(A)$, then D_k is isotone iff D_k is principal.

3.4. The relationship between power and isotone (\odot, \vee) -higher derivations

Remarks 3.10 and 3.14 illustrate that the power and isotone cannot imply each other for (\odot, \vee) -higher derivations.

Remark 3.10. A power (\odot, \vee) -higher derivation may not be isotone. For example, let $D_2 = (d_n)_{n=0}^2$ with $d_0 = 012, d_1 = 010$, and $d_2 = 010$ on L_3 as in Table 4; we can verify that $d_2 = d_1^2$. Then D_2 is a power (\odot, \vee) -higher derivation but is not isotone. Indeed, $\frac{1}{2} \leq 1$ but $d_2(\frac{1}{2}) = \frac{1}{2} \geq 0 = d_2(1)$.

In what condition will a power (\odot, \vee) -higher derivation be isotone? Proposition 3.11 gives a sufficient condition.

Proposition 3.11. Let $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$ be power. If for some m , $d_m(1) = 1$, then D_k is the identity (\odot, \vee) -higher derivation, and thus it is isotone.

Proof. By Proposition 3.3 (4), we know that $d_m(1) = 1$ implies $d_m(x) = x$ for all $x \in A$. By Proposition 3.3 (1), for all $i \leq m$, $d_m(x) \leq d_i(x)$, it implies $d_i(x) = x$. Furthermore, $d_i = \text{Id}_A$ for $m+1 \leq i \leq k$ by Proposition 2.8 (4). Thus we conclude that D_k is the identity (\odot, \vee) -higher derivation, so is isotone naturally. \square

Moreover, we give 5 equivalent characterizations of a power (\odot, \vee) -higher derivation to be isotone.

Theorem 3.12. Let $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$ be power and $d_1(1) \in \mathbf{B}(A)$. The following statements are equivalent for all $x, y \in A$ and $n \leq k$:

- 1) D_k is isotone;
- 2) $d_n(x) \leq d_n(1)$;
- 3) $d_n(x) = d_n(1) \odot x = (d_1(1))^n \odot x$;
- 4) $d_n(x \wedge y) = d_n(x) \wedge d_n(y)$;
- 5) $d_n(x \vee y) = d_n(x) \vee d_n(y)$;

6) $d_n(x \odot y) = d_n(x) \odot d_n(y)$.

We need Lemma 3.13 to prepare for the proof of Theorem 3.12.

Lemma 3.13. *Let $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$ be power. If $d_m(1) \in \mathbf{B}(A)$ for some $m \in \mathbb{N}_+$, then $d_m(d_m(1)) = d_m(1)$.*

Proof. Let $d_m(1) \in \mathbf{B}(A)$. Then $d_m(d_m(1)) \leq d_m(1)$ by Proposition 3.3 (1). Also, $d_m(1) \in \mathbf{B}(A)$ implies that $d_m(1) \odot d_m(1) = d_m(1)$, and so,

$$\begin{aligned} d_m(d_m(1)) &= d_m(1 \odot d_m(1)) \\ &= (d_m(1) \odot d_m(1)) \vee (1 \odot d_m(d_m(1))) \vee \bigvee_{i=1}^{m-1} (d_i(1) \odot d_{m-i}(1)) \\ &= d_m(1) \vee d_m(d_m(1)) \vee \bigvee_{i=1}^{m-1} (d_i(1) \odot d_{m-i}(1)), \end{aligned}$$

then we get that $d_m(1) \leq d_m(d_m(1))$. Hence, $d_m(d_m(1)) = d_m(1)$. \square

We next prove Theorem 3.12 by demonstrating the following cyclical implication chains: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (1), (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (1), and (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (2).

Proof of Theorem 3.12. By Lemma 3.13, $d_1(1) \in \mathbf{B}(A)$ implies $d_n(1) = d_1(1) \in \mathbf{B}(A)$ for any $1 \leq n \leq k$.

(1) \Rightarrow (2): By the definition of isotone (\odot, \vee) -higher derivations.

(2) \Rightarrow (3): Assume $d_n(x) \leq d_n(1)$. Proposition 3.3 (1) induces $d_n(x) \leq x$; it follows that

$$\begin{aligned} d_n(x) &= d_n(1) \wedge d_n(x) && (d_n(x) \leq d_n(1)) \\ &= d_n(1) \odot d_n(x) && (\text{Lemma 2.2 (4)}) \\ &\leq d_n(1) \odot x. && (\text{Lemma 2.1 (3)}) \end{aligned}$$

Proposition 2.8 (3) gives $d_n(1) \odot x \leq d_n(x)$. Thus, $d_n(x) = d_n(1) \odot x$. Furthermore, $d_n(1) = d_1(1) = (d_1(1))^n$ by Lemma 2.2 (3).

(3) \Rightarrow (4): Assume $d_n(x) = d_n(1) \odot x$. By Lemma 2.1 (4), we have

$$d_n(x \wedge y) = d_n(1) \odot (x \wedge y) = (d_n(1) \odot x) \wedge (d_n(1) \odot y) = d_n(x) \wedge d_n(y).$$

(4) \Rightarrow (1): If $x \leq y$, then

$$d_n(x) = d_n(x \wedge y) = d_n(x) \wedge d_n(y).$$

Hence, $d_n(x) \leq d_n(y)$.

(3) \Rightarrow (5): Assume $d_n(x) = d_n(1) \odot x$. By Lemma 2.1 (5), we have

$$d_n(x \vee y) = d_n(1) \odot (x \vee y) = (d_n(1) \odot x) \vee (d_n(1) \odot y) = d_n(x) \vee d_n(y).$$

(5) \Rightarrow (1): If $x \leq y$, then

$$d_n(x) \leq d_n(x) \vee d_n(y) = d_n(x \vee y) = d_n(y).$$

Thus, $d_n(x) \leq d_n(y)$.

(3) \Rightarrow (6): Since $d_n(1) \in \mathbf{B}(A)$, we know $d_n(1) \odot d_n(1) = d_n(1)$, it follows that

$$\begin{aligned} d_n(x \odot y) &= d_n(1) \odot (x \odot y) \\ &= d_n(1) \odot d_n(1) \odot (x \odot y) \\ &= (d_n(1) \odot x) \odot (d_n(1) \odot y) \\ &= d_n(x) \odot d_n(y). \end{aligned}$$

(6) \Rightarrow (2): Since $d_n(1) \in \mathbf{B}(A)$, it follows that

$$d_n(x) = d_n(x \odot 1) = d_n(x) \odot d_n(1) = d_n(x) \wedge d_n(1)$$

by Lemma 2.2 (4). Hence, $d_n(x) \leq d_n(1)$. \square

The equivalences established in Theorem 3.12 reveal that for a power (\odot, \vee) -higher derivation with idempotent generator value $d_1(1)$, the isotone property is equivalent to the derivation behaving as a “localization” or “restriction” to the principal ideal generated by $d_1(1)$. Specifically, condition (3) $d_n(x) = (d_1(1))^n \odot x$ shows that each d_n acts as multiplication by the idempotent element $(d_1(1))^n$, which naturally preserves order. Conditions (4)–(6) further demonstrate that such derivations respect the lattice operations and the MV-algebraic product in a well-behaved manner. This provides a clear structural characterization of when power derivations preserve the natural order of the MV-algebra.

Remark 3.14. Note that $D_2 = (d_n)_{n=0}^2$ with $d_0 = 012, d_1 = 001, d_2 = 011$ on L_3 , as in Table 4, is an example of isotone (\odot, \vee) -higher derivations but not power since $d_2 \neq d_1 \circ d_1$. Now, we have finished the following Figure 1.

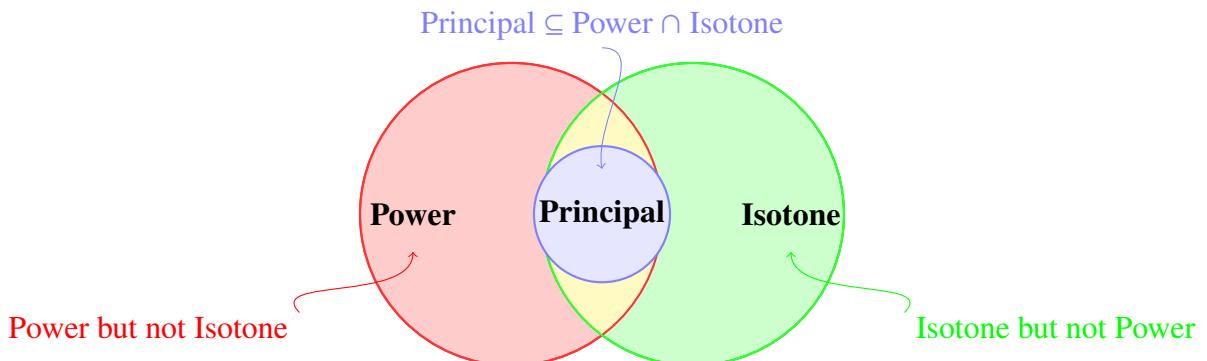


Figure 1. Interrelations among the three (\odot, \vee) -higher derivations.

4. Power (\odot, \vee) -higher derivations on two typical MV-chains

In this section, we construct explicitly power (\odot, \vee) -higher derivations on two typical MV-chains C and L_m .

Theorem 4.1. *Let C be the infinite MV-algebra in Example 2.2 and $k \in \mathbb{N}_+$. Let $a, b \in C$ with $b \leq a$. Define*

$$d_1(x) = \begin{cases} b \odot x, & \text{if } x \in C_1; \\ a \odot x, & \text{if } x \in C_0, \end{cases} \quad \text{and} \quad d_n(x) = d_1^n(x) = \begin{cases} b^n \odot x, & \text{if } x \in C_1; \\ a^n \odot x, & \text{if } x \in C_0. \end{cases}$$

for any $n \leq k$. Then $D_k = (d_n)_{n=0}^k$ is a power (\odot, \vee) -higher derivation on C .

Proof. Let $x, y \in C$. It suffices to prove that $D_k \in \text{HD}_k(C)$ since $d_n = d_1^n$ for any $n \leq k$. Consider the following four cases:

Case 1: $x, y \in C_0$. Then,

$$\begin{aligned} d_n(x \odot y) &= a^n \odot (x \odot y) \\ &= \bigvee_{i=0}^n (a^i \odot x) \odot (a^{n-i} \odot y) \\ &= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \end{aligned}$$

Case 2: $x, y \in C_1$. Then

$$\begin{aligned} d_n(x \odot y) &= b^n \odot (x \odot y) \\ &= \bigvee_{i=0}^n (b^i \odot x) \odot (b^{n-i} \odot y) \\ &= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \end{aligned}$$

Case 3: $x \in C_1, y \in C_0$; let $x = (uc)^*$, $y = vc$, where $u, v \in \mathbb{N}_+$.

If $u \geq v$, then $x \odot y = 0$, and

$$\begin{aligned} d_n(x \odot y) &= d(0) = 0 = \bigvee_{i=0}^n 0 \\ &= \bigvee_{i=0}^n b^i \odot a^{n-i} \odot (x \odot y) \\ &= \bigvee_{i=0}^n (b^i \odot x) \odot (a^{n-i} \odot y) \\ &= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \end{aligned}$$

If $u < v$, then

$$\begin{aligned} d_n(x \odot y) &= a^n \odot (x \odot y) \\ &= b^0 \odot x \odot a^n \odot y \\ &= \bigvee_{i=0}^n (b^i \odot x) \odot (a^{n-i} \odot y) \quad (b \leq a) \end{aligned}$$

$$= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)).$$

Case 4: $x \in C_0, y \in C_1$. Symmetry of Case 3, we can show that $d_n(x \odot y) = \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y))$.

Summarizing the above arguments, D_k is a power (\odot, \vee) -higher derivation on C . \square

Theorem 4.1 constructs some power (\odot, \vee) -higher derivation on a typical non-archimedean infinite MV-chain C . Next, we consider the construction of an archimedean finite MV-chain, which gives a method to construct some (\odot, \vee) -higher derivations on a general MV-algebra in Corollary 4.4.

Theorem 4.2. *Let $d \in \text{Der}(L_m)$ and $k \in \mathbb{N}_+$. Then $D_k = (d_n)_{n=0}^k \in \text{HD}_k(L_m)$, where $d_n = d^n$ for any $n \leq k$.*

Proof. Recall that

$$\text{Der}(L_m) = \{d_{(a,b)} \mid (a, b) \in \mathcal{A}(L_m)\},$$

where

$$\mathcal{A}(L_m) = \{(a, b) \in L_m \times L_m \mid b \leq a\} \setminus \{(0, 0)\}.$$

Assume $(a, b) \in \mathcal{A}(L_m)$ and $d = d_{(a,b)} \in \text{Der}(L_m)$. In the case of $n = 0$, we know $d_0 = \text{Id}_{L_m}$, then $d_0(x \odot y) = x \odot y = d_0(x) \odot d_0(y)$, so Eq. (2.2) holds.

Hence, it is enough to verify the cases $1 \leq n \leq k$. Since $d_n = d^n$, we can get d_n with

$$d_n(x) = \begin{cases} a^{n-1} \odot b, & \text{if } x = 1; \\ a^n \odot x, & \text{otherwise.} \end{cases} \quad (4.1)$$

There are only three cases:

Case 1. If $x = 1$ and $y = 1$, then we have

$$\begin{aligned} d_n(x \odot y) &= a^{n-1} \odot b && \text{(Eq (4.1))} \\ &= (a^{n-1} \odot b) \vee (a^{n-1} \odot b) \vee \bigvee_{i=1}^{n-1} (a^{n-2} \odot b^2) && (b \leq a) \\ &= (a^{n-1} \odot b \odot y) \vee (x \odot a^{n-1} \odot b) \vee \bigvee_{i=1}^{n-1} (a^{i-1} \odot b \odot a^{n-i-1} \odot b) && (x = y = 1) \\ &= (d_n(x) \odot d_0(y)) \vee (d_0(x) \odot d_n(y)) \vee \bigvee_{i=1}^{n-1} (d_i(x) \odot d_{n-i}(y)) && \text{(Eq (4.1))} \\ &= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). && \text{(right side of Eq (2.2))} \end{aligned}$$

Case 2. If $x = 1$ or $y = 1$ (but not both), say $x \neq 1$ and $y = 1$, then

$$\begin{aligned} d_n(x \odot y) &= d_n(x) = a^n \odot x && \text{(Eq (4.1))} \\ &= (a^n \odot x) \vee (a^{n-1} \odot b \odot x) \vee \bigvee_{i=1}^{n-1} (a^{n-1} \odot b \odot x) && (b \leq a) \end{aligned}$$

$$\begin{aligned}
&= (a^n \odot x \odot y) \vee (x \odot a^{n-1} \odot b) \vee \bigvee_{i=1}^{n-1} (a^i \odot x \odot a^{n-i-1} \odot b) \quad (y = 1) \\
&= (d_n(x) \odot d_0(y) \vee (d_0(x) \odot d_n(y) \vee \bigvee_{i=1}^{n-1} (d_i(x) \odot d_{n-i}(y))) \quad (\text{Eq (4.1)}) \\
&= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \quad (\text{right side of Eq (2.2)})
\end{aligned}$$

Case 3. If $x < 1, y < 1$, then

$$\begin{aligned}
d_n(x \odot y) &= a^n \odot x \odot y \quad (\text{Eq (4.1)}) \\
&= (a^n \odot x \odot y) \vee (x \odot a^n \odot y) \vee \bigvee_{i=0}^{n-1} (a^i \odot x \odot a^{n-i} \odot y) \\
&= (d_n(x) \odot d_0(y) \vee (d_0(x) \odot d_n(y) \vee \bigvee_{i=1}^{n-1} (d_i(x) \odot d_{n-i}(y))) \quad (\text{Eq (4.1)}) \\
&= \bigvee_{i=0}^n (d_i(x) \odot d_{n-i}(y)). \quad (\text{right side of Eq (2.2)})
\end{aligned}$$

Thus, we conclude that $D_k \in \text{HD}_k(L_m)$. \square

Remark 4.3. The converse of Theorem 4.2 is not true. That is, not all $D_k = (d_n)_{n=0}^k \in \text{HD}_k(L_m)$ can be expressed as $d_n = d^n$ for some $d \in \text{Der}(L_m)$. For example, consider $D_2 = (d_n)_{n=0}^2$ with $d_0 = 012, d_1 = 000, d_2 = 001$ on L_3 as in Table 4, $D_2 \in \text{HD}_2(L_3)$ and $d_1 \in \text{Der}(L_3)$, but $d_2 = 001 \neq 000 = d_1 \circ d_1$.

By observing the proof of Theorem 4.2, we find that the proof is only related to whether the values of x, y are 1 or less than 1. Hence, we wonder if the conclusion holds on any MV-algebra? We will show below that the conclusion does hold for general MV-algebras.

Let $d_{a \odot}$ be a principal (\odot, \vee) -derivation on A and $b \leq a$. It is known that $d_{a \odot}^b$ is an (\odot, \vee) -derivation on A by Lemma 2.6. Note that $d_{a \odot}^b$ on A is same as $d_{(a,b)}$ on L_m except for the range of values for a, b which is A and L_m , respectively.

Corollary 4.4. Let $a, b \in A$ with $b \leq a$. Let $d_{a \odot}$ be a principal (\odot, \vee) -derivation on A and $k \in \mathbb{N}_+$. Then $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$, where $d_n = (d_{a \odot}^b)^n$ for any $n \leq k$.

Proof. The proof is similar to that of Theorem 4.2. \square

To prove Proposition 4.6, we need first to show that $d^n \in \text{Der}(L_m)$ for every $d \in \text{Der}(L_m)$.

Lemma 4.5. $(\text{Der}(L_m), \circ)$ is a semigroup.

Proof. Let $d, d' \in \text{Der}(L_m)$. Since the associative law is guaranteed by composite operations of mappings, it is sufficient to prove that $d \circ d' \in \text{Der}(L_m)$.

There exist $b \leq a \leq 1, f \leq e \leq 1$ such that $d = d_{(a,b)}, d' = d_{(e,f)}$. There are only two cases:

Case 1. $f < 1$. We have

$$d \circ d'(x) = \begin{cases} a \odot f, & \text{if } x = 1; \\ a \odot e \odot x, & \text{otherwise.} \end{cases}$$

Since $f \leq e$ and \odot is order-preserving (Lemma 2.1 (3)), $a \odot f \leq a \odot e$. Hence, $d \circ d' \in \text{Der}(L_m)$.

Case 2. $f = 1$. In this case, $f \leq e$ implies $e = 1$. Hence,

$$d \circ d'(x) = \begin{cases} b, & \text{if } x = 1; \\ a \odot x, & \text{otherwise.} \end{cases}$$

Then $d \circ d' = d \in \text{Der}(L_m)$.

Therefore, $(\text{Der}(L_m), \circ)$ is a semigroup. \square

It is clear that the subsemigroup generated by d of $\text{Der}(L_m)$ is finite since $\text{Der}(L_m)$ is finite. We next introduce the period and index of a generator d of $D_k = (d^n)_{n=0}^k$ on L_m .

As noted in [13], the index and period of d can be defined based on the repetitions that occur among its compositions. We define the index of d , denoted by l , as the least element of non-empty set

$$\{x \in \mathbb{N} \mid (\exists y \in \mathbb{N}) \ d^x = d^y, x \neq y\},$$

and the period of d , denoted by r , as the least element of the non-empty set

$$\{x \in \mathbb{N} \mid d^{l+x} = d^l\}.$$

Thus, there exist index l and period r such that

$$d^l = d^{l+r},$$

for any $d \in \text{Der}(L_m)$.

Now, let us calculate l and r of d .

Proposition 4.6. *Let $d = d_{(a,b)} \in \text{Der}(L_m)$, where $a = \frac{i}{m-1}$, $b = \frac{j}{m-1}$, $0 \leq j \leq i \leq m-1$. Let $k \in \mathbb{N}_+$ and $D_k = (d_n)_{n=0}^k$ by $d_n = d^n$ for any $0 \leq n \leq k$. Then the period r of d is 1 and the index l of d is*

$$l = \begin{cases} 1, & \text{if } a = 1; \\ i, & \text{if } b < a < 1; \\ i + 1, & \text{if } b = a < 1. \end{cases}$$

Proof. The cases $d = \text{Id}_{L_m}$ or $d = \mathbf{0}_{L_m}$ are clear. We have known that $b \leq a$, so there are only two cases according to the value of a .

Case 1. If $a = 1$ (i.e., $i = m - 1$), then

$$d(x) = \begin{cases} b, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \quad \text{and} \quad d_n(x) = \begin{cases} b, & \text{if } x = 1; \\ x, & \text{otherwise.} \end{cases}$$

This shows that $d^n = d^1$ for all $n \geq 1$. Therefore, the sequence stabilizes immediately after $n = 1$, giving index $l = 1$ and period $r = 1$.

Case 2. If $a < 1$ (i.e., $i < m - 1$), then

$$d(x) = \begin{cases} b, & \text{if } x = 1; \\ a \odot x, & \text{otherwise,} \end{cases} \quad \text{and} \quad d_n(x) = \begin{cases} a^{n-1} \odot b, & \text{if } x = 1; \\ a^n \odot x, & \text{otherwise.} \end{cases}$$

In this case, $d(x) < x$, and so d must be nilpotent. Denote $M = \{n \in \mathbb{N} \mid a^{n-1} \odot b = 0\}$ and $N = \{n \in \mathbb{N} \mid a^n \odot \frac{m-2}{m-1} = 0\}$. To explore the index, we consider the following two cases:

Subcase 2.1: $b < a$ (i.e., $j < i$).

M and N represent the nilpotency indices for the sequences at $x = 1$ and at the largest non-unit element $x = \frac{m-2}{m-1}$, respectively. Since $b < a$, we have $N \subseteq M$. The minimal element of N is i , because $a^i = (\frac{i}{m-1})^i = 0$ when multiplied by any element less than 1. For $n \geq i$, we have $d^n(x) = 0$ for all $x < 1$, and $d^n(1) = a^{n-1} \odot b = 0$ (since $n-1 \geq i-1 \geq j$ and $b = \frac{j}{m-1}$). Thus, $d^n = \mathbf{0}_{L_m}$ for all $n \geq i$, and d^i is the first zero map in the sequence. Hence, $l = \min N = i$ and $r = 1$.

Subcase 2.2: $b = a$ (i.e., $j = i$).

In this subcase, we have $d^n(1) = a^{n-1} \odot a = a^n$. Hence, $M = \{n \in \mathbb{N} \mid a^n = 0\}$. Since $a = b \leq \frac{m-2}{m-1}$, we have $M \subseteq N$. The minimal element of M is $i+1$, because $a^i = (\frac{i}{m-1})^i > 0$ but $a^{i+1} = 0$. For $n \geq i+1$, $d^n(1) = 0$ and $d^n(x) = 0$ for all $x < 1$. Thus, $d^n = \mathbf{0}_{L_m}$ for all $n \geq i+1$, and d^{i+1} is the first zero map. Hence, $l = \min M = i+1$ and $r = 1$.

In all cases, period $r = 1$ because once the sequence reaches the zero map, it remains constant. \square

5. Fixed point sets of power (\odot, \vee) -higher derivations

In this section, we discuss the set of fixed points of power (\odot, \vee) -higher derivations and show that it is a lattice ideal in the case of principal (\odot, \vee) -higher derivations. Note the condition is different from [3, Theorem 3.12], where d_n is an increasing function for all $n \in I$ of a higher derivation $D = (d_n)_{n \in I}$ of length n on a lattice.

Definition 5.1. Let A be an MV-algebra. If $D_k = (d_n)_{n=0}^k \in \text{HD}_k(A)$ is power, define the set of all fixed points of D_k by Fix_{D_k} :

$$\text{Fix}_{D_k}(A) = \{x \in A \mid d_n(x) = x \text{ for all } n \leq k\}.$$

Then, $0 \in \text{Fix}_{D_k}(A)$, and $\text{Fix}_{D_k}(A)$ is a downset of A by Proposition 3.3 (4).

Proposition 5.2. Let A be an MV-algebra and $a \in A$. If $D_{\{k,a\}} = (d_{a^n \odot})_{n=0}^k$ is a principal (\odot, \vee) -higher derivation on A , then $\text{Fix}_{D_{\{k,a\}}}(A)$ is a lattice ideal of A .

Proof. It can be verified that $0 \in \text{Fix}_{D_{\{k,a\}}}(A)$ by Proposition 2.8 (1). By Definition 5.1, $\text{Fix}_{D_{\{k,a\}}}(A)$ is a downset of A .

Furthermore, for any $x, y \in \text{Fix}_{D_{\{k,a\}}}(A)$, we have $d_{a^n \odot}(x) = x$, $d_{a^n \odot}(y) = y$; it follows that

$$d_{a^n \odot}(x \vee y) = a^n \odot (x \vee y) = (a^n \odot x) \vee (a^n \odot y) = d_{a^n \odot}(x) \vee d_{a^n \odot}(y) = x \vee y$$

by Lemma 2.1 (5). Hence, we get $x \vee y \in \text{Fix}_{D_{\{k,a\}}}(A)$.

Therefore, $\text{Fix}_{D_{\{k,a\}}}(A)$ is a lattice ideal of A . \square

6. Conclusions

In this paper, the power (\odot, \vee) -higher derivations, principal (\odot, \vee) -higher derivations, and isotone (\odot, \vee) -higher derivations on an MV-algebra A have been studied. We have obtained all relationships among them as concluded in Figure 1. Moreover, we have obtained 5 equivalent conditions for a power (\odot, \vee) -higher derivation $D_k = (d_n)_{n=0}^k$ to be isotone. For typical MV-chains C and L_m , we have constructed explicitly some power (\odot, \vee) -higher derivations. Furthermore, we have discussed the sets of fixed points of power (\odot, \vee) -higher derivations. This work opens several avenues for future research:

- 1) Characterize when an isotone (\odot, \vee) -higher derivation is power. The challenge lies in bridging the inherent gap between isotonicity and the power condition, which requires profound insight.
- 2) Determine whether non-principal power higher derivations exist whose fixed point set is a lattice ideal. The difficulty stems from the more intricate interaction between the derivation's algebraic structure and the order structure of its fixed points in the non-principal case.
- 3) Connect MV-algebraic derivations with recent advances in fractional calculus and impulsive systems [17, 18, 22], where the iterative nature of higher derivations might provide algebraic tools for studying controllability and stability in logical networks.

Author contributions

Xueting Zhao: Conceptualization, methodology, validation, writing-original draft preparation, writing-review and editing, funding acquisition; Yichuan Yang: Conceptualization, methodology, validation, writing-review and editing, supervision, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The work is supported by CNNSF (Grants: 12571487, 12171022), the Youth Research Special Project of NCUT (No. 2025NCUTYRSP059), and the North China University of Technology Research Fund Program for Young Scholars (No. 11005136025XN076-091).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. N. O. Alshehri, Derivations of MV-algebras, *International Journal of Mathematics and Mathematical Sciences*, **2010** (2010), 312027. <https://doi.org/10.1155/2010/312027>

2. L. P. Belluce, Semisimple algebras of infinite valued logic and Bold fuzzy set theory, *Can. J. Math.*, **38** (1986), 1356–1379. <https://doi.org/10.4153/CJM-1986-069-0>
3. Y. Çeven, On higher derivations of lattices, *Mathematical Theory and Modeling*, **7** (2017), 116–121.
4. C. C. Chang, Algebraic analysis of many-valued logic, *Trans. Amer. Math. Soc.*, **88** (1958), 467–490. <https://doi.org/10.1090/S0002-9947-1958-0094302-9>
5. R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici, *Algebraic foundations of Many-Valued reasoning*, Dordrecht: Springer, 2000. <https://doi.org/10.1007/978-94-015-9480-6>
6. L. C. Ciungu, Derivation operators on generalized algebras of BCK logic, *Fuzzy Set. Syst.*, **407** (2021), 175–191. <https://doi.org/10.1016/j.fss.2020.04.020>
7. M. Fernandez-Lebron, L. Narvaez-Macarro, Hasse-Schmidt derivations and coefficient fields in positive characteristics, *J. Algebra*, **265** (2003), 200–210. [https://doi.org/10.1016/S0021-8693\(03\)00238-2](https://doi.org/10.1016/S0021-8693(03)00238-2)
8. M. Ferrero, C. Haetinger, Higher derivations of semiprime rings, *Commun. Algebra*, **30** (2002), 2321–2333. <https://doi.org/10.1081/AGB-120003471>
9. F. K. Schmidt, H. Hasse, Noch eine Begründung der theorie der höheren differentialquotienten in einem algebraischen funktionenkörper einer unbestimmten, *J. Reine Angew. Math.*, **177** (1937), 215–237. <https://doi.org/10.1515/crll.1937.177.215>
10. P. F. He, X. L. Xin, J. M. Zhan, On derivations and their fixed point sets in residuated lattices, *Fuzzy Set. Syst.*, **303** (2016), 97–113. <https://doi.org/10.1016/j.fss.2016.01.006>
11. N. Heerema, Convergent higher derivations on local rings, *Trans. Amer. Math. Soc.*, **132** (1968), 31–44. <https://doi.org/10.2307/1994879>
12. N. Heerema, Derivations and automorphisms of complete regular local rings, *Am. J. Math.*, **88** (1966), 33–42. <https://doi.org/10.2307/2373045>
13. J. M. Howie, *An introduction to semigroup theory*, New York: Academic Press, 1976.
14. I. Kaygorodov, M. Khrypchenko, F. Wei, Higher derivations of finitary incidence algebras, *Algebr. Represent. Theor.*, **22** (2019), 1331–1341. <https://doi.org/10.1007/s10468-018-9822-4>
15. M. Koppinen, Automorphisms and higher derivations of incidence algebras, *J. Algebra*, **174** (1995), 698–723. <https://doi.org/10.1006/jabr.1995.1147>
16. J. Krňávek, J. Kühr, A note on derivations on basic algebras, *Soft Comput.*, **19** (2015), 1765–1771. <https://doi.org/10.1007/s00500-014-1586-0>
17. Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order $r \in (1, 2)$, *Alex. Eng. J.*, **61** (2022), 9929–9939. <https://doi.org/10.1016/j.aej.2022.03.010>
18. M. M. Raja, V. Vijayakumar, K. C. Veluvolu, An analysis on approximate controllability results for impulsive fractional differential equations of order $1 < r < 2$ with infinite delay using sequence method, *Math. Method. Appl. Sci.*, **47** (2024), 336–351. <https://doi.org/10.1002/mma.9657>

19. S. Motamed, S. Ehterami, New types of derivations in BL-algebras, *New Math. Nat. Comput.*, **16** (2020), 627–643. <https://doi.org/10.1142/S1793005720500386>

20. E. C. Posner, Derivations in prime rings, *Proc. Amer. Math. Soc.*, **8** (1957), 1093–1100. <https://doi.org/10.2307/2032686>

21. J. Rachňek, D. Šalounová, Derivations on algebras of a non-commutative generalization of the Łukasiewicz logic, *Fuzzy Set. Syst.*, **333** (2018), 11–16. <https://doi.org/10.1016/j.fss.2017.01.013>

22. M. M. Raja, V. Vijayakumar, K. C. Veluvolu, Higher-order caputo fractional integrodifferential inclusions of Volterra–Fredholm type with impulses and infinite delay: existence results, *J. Appl. Math. Comput.*, **71** (2025), 4849–4874. <https://doi.org/10.1007/s12190-025-02412-4>

23. P. Ribenboim, Higher derivations of rings I, *Rev. Roum. Math. Pures*, **16** (1971), 77–110.

24. F. Wei, Z. K. Xiao, Higher derivations of triangular algebras and its generalizations, *Linear Algebra Appl.*, **435** (2011), 1034–1054. <https://doi.org/10.1016/j.laa.2011.02.027>

25. Z. K. Xiao, F. Wei, Jordan higher derivations on triangular algebras, *Linear Algebra Appl.*, **432** (2010), 2615–2622. <https://doi.org/10.1016/j.laa.2009.12.006>

26. X. L. Xin, T. Y. Li, J. H. Lu, On derivations of lattices, *Inform. Sciences*, **178** (2008), 307–316. <https://doi.org/10.1016/j.ins.2007.08.018>

27. X. L. Xin, The fixed set of a derivation in lattices, *Fixed Point Theory Appl.*, **2012** (2012), 218. <https://doi.org/10.1186/1687-1812-2012-218>

28. X. T. Zhao, A. P. Gan, Y. C. Yang, (\odot, \vee) -Derivations on MV-algebras, *Soft Comput.*, **28** (2024), 1833–1849. <https://doi.org/10.1007/s00500-023-09384-2>.

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)