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1. Introduction

Hasse and Schmidt [9] introduced the concept of higher derivations on associative algebras.
Subsequent work extended the study of higher derivations to various algebraic structures. Heerema [11,
12] investigated higher derivations on local rings, focusing on their representation of inertial
automorphisms, ramification group structures, and convergence properties. Ferrero [8] studied higher
derivations of prime and semiprime rings satisfying linear relations. Ribenboim [23] conducted a
systematic study of higher derivations on arbitrary rings and modules. Specifically, for a commutative
ring R, a higher derivation (or Hasse-Schmidt derivation [7]), on an R-algebra A is a sequence of
R-linear maps D = (dn)n∈N on A such that d0 = IdA and

dn(ab) =
∑
i+ j=n

di(a)d j(b), for all a, b ∈ A and n ≥ 1.

Further extensions include derivations and higher derivations on lattices [3, 26, 27], incidence
algebras [14,15], triangular algebras [24,25], and more recently, logical algebras. This line of research
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has been further expanded to encompass other logical algebraic structures fundamental to fuzzy logic
and many-valued reasoning, such as BL-algebras [19], residuated lattices [10], BCK-algebras [6], basic
algebras [16], and MV-algebras [1, 21, 28].

This paper is motivated by the need to bridge the gap between classical derivation theory and its
generalizations in MV-algebraic frameworks. The main contributions of this paper are as follows:

1) We introduce and compare three types of (⊙,∨)-higher derivations: power, principal, and
isotone. We prove that principal (⊙,∨)-higher derivations imply power and isotone properties
(Propositions 3.6 and 3.8), while other pairwise implications fail (Remarks 3.9, 3.10, 3.14; Figure
1).

2) We provide explicit constructions of power (⊙,∨)-higher derivations on two typical MV-chains:
the infinite chain C and the finite chain Lm (Theorems 4.1 and 4.2).

3) We characterize a power (⊙,∨)-higher derivation to be isotone (Theorem 3.12).

4) We show that the fixed point set of a principal (⊙,∨)-higher derivation forms a lattice ideal
(Proposition 5.2).

2. Preliminaries

An MV-algebra [5] is an abelian monoid (A,⊕, 0) with a unary operation ∗, which satisfies:

1) x∗∗ = x;

2) x ⊕ 0∗ = 0∗;

3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Example 2.1. [5] Let L be the real unit interval [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}. Define

x ⊕ y = min{1, x + y} and x∗ = 1 − x for any x, y ∈ L.

Then (L,⊕,∗ , 0) is an MV-algebra.
For each positive integer m ≥ 2, the m-element subset of L

Lm =

{
0,

1
m − 1

,
2

m − 1
, · · · ,

m − 2
m − 1

, 1
}

with the same operations is a subalgebra of MV-algebra L, which is an MV-algebra.

Example 2.2. [4] Let the following two sets of formal symbols be

C0 = {0, c, 2c, 3c, · · · }, C1 = {1, c∗, (2c)∗, (3c)∗, · · · },

where 0c = 0, 1c = c, uc = vc ⇔ u = v, 0∗ = 1, (kc)∗ = 1 − kc and (kc)∗∗ = ((kc)∗)∗ = kc for any
u, v, k ∈ N.

Let + (respectively, −) be the ordinary sum (respectively, subtraction) between integers. Define the
binary operation ⊕ on C = C0 ∪ C1 for any u, v ∈ N:
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• uc ⊕ vc = (u + v)c;

• (uc)∗ ⊕ (vc)∗ = 1;

• (uc)∗ ⊕ vc = vc ⊕ (uc)∗ =
{

1, u ≤ v,
((u − v)c)∗, u > v.

Then, (C,⊕,∗ , 0) is an MV-algebra.

For every MV-algebra A, denote the constant 1 = 0∗ and the operation x⊙ y = (x∗ ⊕ y∗)∗. Recall that
an archimedean MV-algebra [2] is defined to be an MV-algebra satisfying for any x, y ∈ A, nx ≤ y for
any n ∈ N implies x ⊙ y = x.

Let A be an MV-algebra. For any x, y ∈ A, define the natural order of A by x ≤ y iff x∗ ⊕ y = 1
iff x ⊙ y∗ = 0 [5]. Furthermore, the natural order determines a structure of bounded distributive lattice
(A,∨,∧, 0, 1), and

x ∨ y = (x ⊙ y∗) ⊕ y and x ∧ y = x ⊙ (x∗ ⊕ y).

A linearly ordered MV-algebra is called an MV-chain.

Lemma 2.1. [4, 5] Let A be an MV-algebra and x, y, z ∈ A. Then the following statements hold:

1) x ⊙ y ≤ x ∧ y ≤ x ≤ x ∨ y ≤ x ⊕ y;

2) If x ≤ y, then x ∨ z ≤ y ∨ z, x ∧ z ≤ y ∧ z;

3) If x ≤ y, then x ⊕ z ≤ y ⊕ z, x ⊙ z ≤ y ⊙ z;

4) x ⊙ (y ∧ z) = (x ⊙ y) ∧ (x ⊙ z);

5) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z).

An element a of MV-algebra A is called idempotent if a ⊕ a = a. Denote the set of all idempotent
elements of A by B(A). It is known that B(A) is a subalgebra of the MV-algebra A [5, Corollary 1.5.4].

Lemma 2.2. [5, Theorem 1.5.3] For every element x in an MV-algebra A, the following conditions
are equivalent:

1) x ∈ B(A);

2) x ⊕ x = x;

3) x ⊙ x = x;

4) x ⊙ y = x ∧ y for all y ∈ A.

Definition 2.3. [5] A subset I of a lattice L is a lattice ideal if it satisfies:

1) 0 ∈ I;

2) x, y ∈ I imply x ∨ y ∈ I;

3) x ∈ I and y ≤ x imply y ∈ I.
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By [5, Proposition 1.1.5], a lattice ideal of an MV-algebra (A,∨,∧) is the same as an ideal of the
underlying lattice.

Definition 2.4. [28, Definition 3.1] Let A be an MV-algebra. A map d : A → A is called an (⊙,∨)-
derivation on A if it satisfies:

d(x ⊙ y) = (d(x) ⊙ y) ∨ (x ⊙ d(y)) for all x, y ∈ A. (2.1)

Denote the set of all (⊙,∨)-derivations on A by Der(A). For a finite set X = {x0, x1, · · · , xm−1} and a
map d : X → X, we shall write d as (

x0 x1 · · · xm−1

d(x0) d(x1) · · · d(xm−1)

)
.

If d ∈ Der(Lm), then xi and d(xi) can be written by i
m−1 and ji

m−1 , where 0 ≤ i ≤ m − 1 and ji ≤ i.
For convenience, we abbreviate d as j0 j1 · · · jm−1

(
= [(m − 1)d(x0)][(m − 1)d(x1)] · · · [(m − 1)d(xm−1)]

)
without ambiguity.

Proposition 2.5. [28, Proposition 3.3] Let A be an MV-algebra, x ∈ A and d ∈ Der(A). Then for any
n ∈ N+, the following statements hold:

1) d(0) = 0;

2) d(x) ≤ x.

Lemma 2.6. [28, Corollary 3.12] Let A be an MV-algebra and d ∈ Der(A). Let u ∈ A be given with
u ≤ d(1) and define an operator du on A by

du(x) :=

u, if x = 1;
d(x), otherwise.

Then, du is also in Der(A).
For a given a ∈ A, define the map da⊙ : A→ A by

da⊙(x) := a ⊙ x for all x ∈ A.

Then da⊙ is an (⊙,∨)-derivation, called a principal (⊙,∨)-derivation. Recall that the order structure of
all (⊙,∨)-derivations on m-element MV-chain Lm (m ≥ 2) is given in [28, Theorem 5.6]. Indeed, the
lattice Der(Lm) = {d(a,b) | (a, b) ∈ A(Lm)} is isomorphic to the latticeA(Lm), where

A(Lm) = {(x, y) ∈ Lm × Lm | y ≤ x}\{(0, 0)},

and

d(a,b)(x) :=

b, if x = 1;
da⊙(x) = a ⊙ x, otherwise.

Example 2.3. We list all (⊙,∨)-derivations of L2, L3, and L4 in Tables 1–3, respectively:
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Table 1. Der(L2).

x ∈ L2 IdL2(x) 0L2(x)
0 0 0
1 1 0

Table 2. Der(L3).

x ∈ L3 IdL3(x) d 1
2⊙

(x) Id
1
2
L3

(x) 0L3(x) Id0
L3

(x)
0 0 0 0 0 0
1/2 1/2 0 1/2 0 1/2

1 1 1/2 1/2 0 0

Table 3. Der(L4).

x ∈ L4 IdL4(x) d 2
3⊙

(x) Id
2
3
L4

(x) d 1
3⊙

(x) d( 2
3 ,

1
3 )(x) Id

1
3
L4

(x) 0L4(x) d( 2
3 ,0)(x) Id0

L4
(x)

0 0 0 0 0 0 0 0 0 0
1/3 1/3 0 1/3 0 0 1/3 0 0 1/3
2/3 2/3 1/3 2/3 0 1/3 2/3 0 1/3 2/3

1 1 2/3 2/3 1/3 1/3 1/3 0 0 0

Definition 2.7. Let A be an MV-algebra, k ∈ N+, and Dk = (dn)k
n=0 be a finite sequence of operators of

A such that d0 = IdA. Then Dk is called an (⊙,∨)-higher derivation of length k on A if for every n ≤ k
and x, y ∈ A, we have

dn(x ⊙ y) =
n∨

i=0

(di(x) ⊙ dn−i(y)). (2.2)

Let HDk(A) denote the set of all such derivations.

Example 2.4. 1) The identity and zero (⊙,∨)-higher derivation of length k ∈ N+ on A are
respectively defined by

DIdA
k = (dn)k

n=0, where dn = IdA for 0 ≤ n ≤ k,

D0A
k = (dn)k

n=0, where d0 = IdA and dn = 0A for 1 ≤ n ≤ k.

2) We list all (⊙,∨)-higher derivations of length 2 on L3 in Table 4.

Table 4. HD2(L3) = {(d0, d1, d2) | d0 = IdL3 , and d1, d2 satisfy Eq (2.2).
[2d(0)][2d( 1

2 )][2d(1)]

d0 012

d1 000 001 010 011 012

d2 000 001 010 011 012 000 001 010 011 012 000 001 010 011 012 000 001 010 011 012 012
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Proposition 2.8. Let A be an MV-algebra, k ∈ N+, and Dk = (dn)k
n=0 ∈ HDk(A). Then the following

statements hold for all x, y ∈ A:

1) dn(0) = 0, for any n ≤ k;

2) di(x) ⊙ dn−i(x∗) = 0, for any n ≤ k and i ≤ n. In particular, dn(x) ≤ x;

3) di(x) ⊙ dn−i(1) ≤ dn(x), for any n ≤ k and i ≤ n. In particular, x ⊙ dn(1) ≤ dn(x);

4) If d1 = IdA, then dn = IdA for all 2 ≤ n ≤ k.

Proof. (1) We prove dn(0) = 0 for any n ≤ k by induction on n. First, if n = 0, then d0(0) = 0.
Assume dl(0) = 0 for all 0 < l < n. Putting x = y = 0 in Eq (2.2), we get

dn(0) = dn(0 ⊙ 0) =
n∨

i=0

(di(0) ⊙ dn−i(0)) = (0 ⊙ dn(0)) ∨ (dn(0) ⊙ 0) ∨
n−1∨
i=1

(di(0) ⊙ dn−i(0)) = 0,

since di(0) ⊙ dn−i(0) = 0 for all 1 ≤ i ≤ n − 1. Hence, dn(0) = 0 for any n ≤ k.
(2) Since x ⊙ x∗ = 0, it follows that for any n ≤ k,

0 = dn(0) = dn(x ⊙ x∗) =
n∨

i=0

(di(x) ⊙ dn−i(x∗))

by (1) and Eq. (2.2). Thus di(x) ⊙ dn−i(x∗) = 0, for all i ≤ n. In particular, we have dn(x) ⊙ x∗ = 0,
which implies dn(x) ≤ x.

(3) Since x ⊙ 1 = x, it follows from Eq (2.2) that for any n ≤ k,

dn(x) = dn(x ⊙ 1) =
n∨

i=0

(di(x) ⊙ dn−i(1)).

Thus di(x) ⊙ dn−i(1) ≤ dn(x) for all i ≤ n. In particular, when i = 0, we get x ⊙ dn(1) ≤ dn(x).
(4) Assume d1 = IdA; we have d1(x) = x for any x ∈ A.
We prove the conclusion by induction; when n = 2, we get

d2(x) = d2(x ⊙ 1)

= (x ⊙ d2(1)) ∨ (d2(x) ⊙ 1) ∨ (d1(x) ⊙ d1(1)) (Eq. (2.2))

= (x ⊙ d2(1)) ∨ d2(x) ∨ x (d1 = IdA)

= x. (Proposition 2.8 (2) and (3))

Now, assume dl = IdA for all l ≤ n. It follows that

dn+1(x) = dn+1(x ⊙ 1)

=

n+1∨
i=0

(di(x) ⊙ dn+1−i(1)) (Eq. (2.2))
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= (x ⊙ dn+1(1)) ∨ (dn+1(x) ⊙ 1) ∨
n∨

i=1

(di(x) ⊙ dn+1−i(1))

= (x ⊙ dn+1(1)) ∨ dn+1(x) ∨ x (Assumptions)

= x. (Proposition 2.8 (2) and (3))

Hence, dn = IdA for all n ≥ 2. □

Notation summary: To enhance readability and avoid potential confusion in heavy notation, we
provide the following summary of frequently used symbols and their meanings; see Table 5.

Table 5. Summary of notations used throughout the paper.

Notation Meaning

A An MV-algebra

N+ Set of positive integers

d A single (⊙,∨)-derivation on A

dn The n-fold composition of d with itself (d ◦ d ◦ · · · ◦ d, n times)

dn The n-th component of an (⊙,∨)-higher derivation sequence Dk = (d0, d1, . . . , dk)

da⊙ The principal (⊙,∨)-derivation defined by da⊙(x) = a ⊙ x

d(a,b) An (⊙,∨)-derivation on Lm with parameters a, b (see Lemma 2.6)

du The (⊙,∨)-derivation obtained by modifying d at x = 1: du(x) =

u, if x = 1

d(x), otherwise
(for u ≤ d(1))

db
a⊙ The (⊙,∨)-derivation defined as db

a⊙(x) =

b, if x = 1

a ⊙ x, otherwise
(for b ≤ a)

Dk An (⊙,∨)-higher derivation of length k, i.e., a sequence (d0, d1, . . . , dk)

D{k,a} A principal (⊙,∨)-higher derivation of length k generated by a

Der(A) The set of all (⊙,∨)-derivations on A

HDk(A) The set of all (⊙,∨)-higher derivations of length k on A

B(A) The set of all idempotent elements of A

FixDk (A) The set of all fixed points of the (⊙,∨)-higher derivation Dk

3. Power, principal, and isotone (⊙,∨)-higher derivations on MV-algebras

3.1. Definitions of the three type (⊙,∨)-higher derivations

Let us get started with the definition of a power (⊙,∨)-higher derivation.

Definition 3.1. Let A be an MV-algebra and k ∈ N+. An (⊙,∨)-higher derivation Dk = (dn)k
n=0 of

length k is power if dn = dn
1 for any 1 ≤ n ≤ k. Here, d1 is called the generator of Dk.

Remark 3.2. 1) Clearly, for any k ∈ N+, the identity and zero (⊙,∨)-higher derivation of length k
(cf. Example 2.4), DIdA

k and D0A
k are power.
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2) We will construct explicitly some power (⊙,∨)-higher derivations on MV-chains C and Lm in
Theorems 4.1 and 4.2. However, by the counterexample in Remark 4.3, we will see that not all
(⊙,∨)-higher derivations on an MV-algebra are power.

Let A be an MV-algebra, k ∈ N+, and Dk = (dn)k
n=0 be an operator sequence of A. Recall that Dk is

decreasing on n if n1, n2 ∈ N+ and n1 ≤ n2 ≤ k, then dn2(x) ≤ dn1(x) for any x ∈ A.

Proposition 3.3. Let A be an MV-algebra and Dk = (dn)k
n=0 ∈ HDk(A) be power. Then the following

statements hold for all x, y ∈ A:

1) Dk is decreasing on n;

2) dn(x) ⊙ dn(y) ≤ dn(x ⊙ y), for all n ≤ k;

3) (dn(x))m ≤ dn(xm), for all m ≥ 1 and n ≤ k;

4) If there exists m ≤ k such that dm(x) = x, then dm(y) = y for any y ≤ x.

Proof. 1) Since d1 ∈ Der(A), we know d1(x) ≤ x for all x ∈ A by Proposition 2.5 (2). Definition 3.1
of power (⊙,∨)-higher derivation implies dn(x) = d1(dn−1(x)) for any 1 ≤ n ≤ k, so dn(x) ≤ dn−1(x) for
any 1 ≤ n ≤ k and x ∈ A. Hence, Dk is decreasing on n.

2) Taking a certain n ≤ k. By Proposition 3.3 (1), it is easy to see that for all i ≤ n,

dn(x) ≤ di(x), dn(y) ≤ dn−i(y).

Hence, by Lemma 2.1 (3) for each i ≤ n,

dn(x) ⊙ dn(y) ≤ di(x) ⊙ dn−i(y).

Finally, we get dn(x) ⊙ dn(y) ≤
∨n

i=0(di(x) ⊙ dn−i(y)) = dn(x ⊙ y) by Lemma 2.1 (1) and Eq. (2.2).
Due to the arbitrariness of n selection, dn(x) ⊙ dn(y) ≤ dn(x ⊙ y) for all n ≤ k.

3) For every n ≤ k, we prove it by induction on m. First, if m = 1, it is clear that (dn(x))1 = dn(x) =
dn(x1). Now, assume that (dn(x))m ≤ dn(xm); we need to show the case of m+ 1. By Lemma 2.1 (3), we
have

(dn(x))m+1 = (dn(x))m ⊙ dn(x) ≤ dn(xm) ⊙ dn(x).

According to Proposition 3.3 (2), we know dn(xm)⊙dn(x) ≤ dn(xm⊙ x) = dn(xm+1). Hence, (dn(x))m+1 ≤

dn(xm+1) for all m ≥ 1 and n ≤ k.
4) Assume dm(x) = x for m ≤ k. Since y ≤ x, it follows that

dm(y) = dm(x ∧ y)

= dm(x ⊙ (x∗ ⊕ y))

= (dm(x) ⊙ (x∗ ⊕ y)) ∨ (x ⊙ dm(x∗ ⊕ y)) ∨
m−1∨
i=1

(di(x) ⊙ dm−i(x∗ ⊕ y)) (Eq. (2.2))

= (x ⊙ (x∗ ⊕ y)) ∨ (x ⊙ dm(x∗ ⊕ y)) ∨
m−1∨
i=1

(di(x) ⊙ dm−i(x∗ ⊕ y)) (dm(x) = x)
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= x ⊙ (x∗ ⊕ y) (Proposition 3.3 (1))

= x ∧ y

= y. □

We next introduce the principal and isotone (⊙,∨)-higher derivations.

Definition 3.4. Let A be an MV-algebra, a ∈ A, and k ∈ N+. Define D{k,a} = (dan⊙)k
n=0 by dan⊙(x) = an⊙x,

for all n ≤ k and x ∈ A. Let x, y ∈ A. Then,

dan⊙(x ⊙ y) = an ⊙ x ⊙ y=
n∨

i=0

(ai ⊙ x ⊙ an−i ⊙ y) =
n∨

i=0

(dai⊙(x) ⊙ dan−i⊙(y)),

which implies that D{k,a} = (dan⊙)k
n=0 ∈ HDk(A). We call D{k,a} a principal (⊙,∨)-higher derivation of

length k on A.

Definition 3.5. An (⊙,∨)-higher derivation Dk = (dn)k
n=0 of length k on A is isotone if, for any n ≤ k,

dn is isotone. That is, x ≤ y implies dn(x) ≤ dn(y) for all n ≤ k and x, y ∈ A.

3.2. The relationship between principal and power (⊙,∨)-higher derivations

We have mentioned in Remark 3.2 that DIdA
k and D0A

k are power. Clearly, both DIdA
k and D0A

k are also
principal. We note that a principal (⊙,∨)-higher derivation is power in general.

Proposition 3.6. Let A be an MV-algebra. Then all principal (⊙,∨)-higher derivations on A are power.

Proof. Without loss of generality, assume a ∈ A, and D{k,a} = (dan⊙)k
n=0 is an arbitrary principal (⊙,∨)-

higher derivation of length k on A.
For any n ≤ k and x ∈ A, we have dan⊙(x) = an ⊙ x by the definition of principal (⊙,∨)-higher

derivations.
Also, (dn

a⊙)(x) = dn−1
a⊙ (da⊙(x)) = dn−1

a⊙ (a ⊙ x) = an ⊙ x for any 1 ≤ n ≤ k and x ∈ A.
Hence, dan⊙ = dn

a⊙, which indicates the generator of D{k,a} is da⊙. Thus D{k,a} is power. □

Remark 3.7. Conversely, a power (⊙,∨)-higher derivation Dk = (dn)k
n=0 of length k on A may not be

principal, and a counterexample that is more general than might be anticipated will be constructed in
Remark 3.9. In fact, we note here in advance that the interested reader will get a clear relationship
picture among principal, power, and isotone (⊙,∨)-higher derivations, as shown in Figure 1 after
Remark 3.14.

3.3. The relationship between principal and isotone (⊙,∨)-higher derivations

Propositions 3.6 and 3.8 establish that a principal (⊙,∨)-higher derivation is both power and isotone.

Proposition 3.8. Let A be an MV-algebra. Then any principal (⊙,∨)-higher derivation is isotone.

Proof. Without loss of generality, assume a ∈ A, and D{k,a} = (dan⊙)k
n=0 is an arbitrary principal (⊙,∨)-

higher derivation of length k on A.
Let x ≤ y. Then an ⊙ x ≤ an ⊙ y for any n ≤ k by Lemma 2.1 (3) and so dan⊙(x) ≤ dan⊙(y) for any

n ≤ k. Thus D{k,a} is isotone. □
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However, an isotone (⊙,∨)-higher derivation is not always principal. Example 3.1 below shows that
there are isotone (⊙,∨)-higher derivations on an MV-algebra A other than the principal ones.

Example 3.1. Let D2 = (dn)2
n=0 with d0 = 012, d1 = 001, d2 = 011 be an (⊙,∨)-higher derivation on L3

in Table 4. Then D2 is isotone, while D2 is not principal, since d2(1) = 1
2 =

1
2 ⊙ 1, but d2( 1

2 ) = 1
2 , 0 =

1
2 ⊙

1
2 .

Remark 3.9. Here we construct a promised counterexample to show that a power isotone (⊙,∨)-
higher derivation is not principal. On L4, let d = 0122 be Example 3.1 in [28] (as Id

2
3
L4

in Table 3) and
dn = dn = d. It is clear that Dk = (dn)k

n=0 ∈ HDk(L4) is power and isotone, but d2(1) = 2
3 , a2 = a2 ⊙ 1

for any a ∈ L4, hence it is not principal.

Theorem 3.12 will tell us that if Dk = (dn)k
n=0 is a power (⊙,∨)-higher derivation on an MV-algebra

A with d1(1) ∈ B(A), then Dk is isotone iff Dk is principal.

3.4. The relationship between power and isotone (⊙,∨)-higher derivations

Remarks 3.10 and 3.14 illustrate that the power and isotone cannot imply each other for (⊙,∨)-
higher derivations.

Remark 3.10. A power (⊙,∨)-higher derivation may not be isotone. For example, let D2 = (dn)2
n=0

with d0 = 012, d1 = 010, and d2 = 010 on L3 as in Table 4; we can verify that d2 = d2
1. Then D2 is a

power (⊙,∨)-higher derivation but is not isotone. Indeed, 1
2 ≤ 1 but d2(1

2 ) = 1
2 ≥ 0 = d2(1).

In what condition will a power (⊙,∨)-higher derivation be isotone? Proposition 3.11 gives a
sufficient condition.

Proposition 3.11. Let Dk = (dn)k
n=0 ∈ HDk(A) be power. If for some m, dm(1) = 1, then Dk is the

identity (⊙,∨)-higher derivation, and thus it is isotone.

Proof. By Proposition 3.3 (4), we know that dm(1) = 1 implies dm(x) = x for all x ∈ A. By Proposition
3.3 (1), for all i ≤ m, dm(x) ≤ di(x), it implies di(x) = x. Furthermore, di = IdA for m + 1 ≤ i ≤ k
by Proposition 2.8 (4). Thus we conclude that Dk is the identity (⊙,∨)-higher derivation, so is isotone
naturally. □

Moreover, we give 5 equivalent characterizations of a power (⊙,∨)-higher derivation to be isotone.

Theorem 3.12. Let Dk = (dn)k
n=0 ∈ HDk(A) be power and d1(1) ∈ B(A). The following statements are

equivalent for all x, y ∈ A and n ≤ k:

1) Dk is isotone;

2) dn(x) ≤ dn(1);

3) dn(x) = dn(1) ⊙ x = (d1(1))n ⊙ x;

4) dn(x ∧ y) = dn(x) ∧ dn(y);

5) dn(x ∨ y) = dn(x) ∨ dn(y);
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6) dn(x ⊙ y) = dn(x) ⊙ dn(y).

We need Lemma 3.13 to prepare for the proof of Theorem 3.12.

Lemma 3.13. Let Dk = (dn)k
n=0 ∈ HDk(A) be power. If dm(1) ∈ B(A) for some m ∈ N+, then dm(dm(1)) =

dm(1).

Proof. Let dm(1) ∈ B(A). Then dm(dm(1)) ≤ dm(1) by Proposition 3.3 (1). Also, dm(1) ∈ B(A) implies
that dm(1) ⊙ dm(1) = dm(1), and so,

dm(dm(1)) = dm(1 ⊙ dm(1))

= (dm(1) ⊙ dm(1)) ∨ (1 ⊙ dm(dm(1))) ∨
m−1∨
i=1

(di(1) ⊙ dm−i(1))

= dm(1) ∨ dm(dm(1)) ∨
m−1∨
i=1

(di(1) ⊙ dm−i(1)),

then we get that dm(1) ≤ dm(dm(1)). Hence, dm(dm(1)) = dm(1). □

We next prove Theorem 3.12 by demonstrating the following cyclical implication chains: (1) ⇒
(2)⇒ (3)⇒ (4)⇒ (1), (1)⇒ (2)⇒ (3)⇒ (5)⇒ (1), and (2)⇒ (3)⇒ (6)⇒ (2).

Proof of Theorem 3.12. By Lemma 3.13, d1(1) ∈ B(A) implies dn(1) = d1(1) ∈ B(A) for any 1 ≤ n ≤ k.
(1)⇒ (2): By the definition of isotone (⊙,∨)-higher derivations.
(2)⇒ (3): Assume dn(x) ≤ dn(1). Proposition 3.3 (1) induces dn(x) ≤ x; it follows that

dn(x) = dn(1) ∧ dn(x) (dn(x) ≤ dn(1))

= dn(1) ⊙ dn(x) (Lemma 2.2 (4))

≤ dn(1) ⊙ x. (Lemma 2.1 (3))

Proposition 2.8 (3) gives dn(1) ⊙ x ≤ dn(x). Thus, dn(x) = dn(1) ⊙ x. Furthermore, dn(1) = d1(1) =
(d1(1))n by Lemma 2.2 (3).

(3)⇒ (4): Assume dn(x) = dn(1) ⊙ x. By Lemma 2.1 (4), we have

dn(x ∧ y) = dn(1) ⊙ (x ∧ y) = (dn(1) ⊙ x) ∧ (dn(1) ⊙ y) = dn(x) ∧ dn(y).

(4)⇒ (1): If x ≤ y, then
dn(x) = dn(x ∧ y) = dn(x) ∧ dn(y).

Hence, dn(x) ≤ dn(y).
(3)⇒ (5): Assume dn(x) = dn(1) ⊙ x. By Lemma 2.1 (5), we have

dn(x ∨ y) = dn(1) ⊙ (x ∨ y) = (dn(1) ⊙ x) ∨ (dn(1) ⊙ y) = dn(x) ∨ dn(y).

(5)⇒ (1): If x ≤ y, then

dn(x) ≤ dn(x) ∨ dn(y) = dn(x ∨ y) = dn(y).
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Thus, dn(x) ≤ dn(y).
(3)⇒ (6): Since dn(1) ∈ B(A), we know dn(1) ⊙ dn(1) = dn(1), it follows that

dn(x ⊙ y) = dn(1) ⊙ (x ⊙ y)

= dn(1) ⊙ dn(1) ⊙ (x ⊙ y)

= (dn(1) ⊙ x) ⊙ (dn(1) ⊙ y)

= dn(x) ⊙ dn(y).

(6)⇒ (2): Since dn(1) ∈ B(A), it follows that

dn(x) = dn(x ⊙ 1) = dn(x) ⊙ dn(1) = dn(x) ∧ dn(1)

by Lemma 2.2 (4). Hence, dn(x) ≤ dn(1). □

The equivalences established in Theorem 3.12 reveal that for a power (⊙,∨)-higher derivation with
idempotent generator value d1(1), the isotone property is equivalent to the derivation behaving as a
“localization” or “restriction” to the principal ideal generated by d1(1). Specifically, condition (3)
dn(x) = (d1(1))n ⊙ x shows that each dn acts as multiplication by the idempotent element (d1(1))n,
which naturally preserves order. Conditions (4)–(6) further demonstrate that such derivations respect
the lattice operations and the MV-algebraic product in a well-behaved manner. This provides a clear
structural characterization of when power derivations preserve the natural order of the MV-algebra.

Remark 3.14. Note that D2 = (dn)2
n=0 with d0 = 012, d1 = 001, d2 = 011 on L3, as in Table 4, is an

example of isotone (⊙,∨)-higher derivations but not power since d2 , d1 ◦ d1. Now, we have finished
the following Figure 1.

Power IsotonePrincipal

Principal ⊆ Power ∩ Isotone

Power but not Isotone Isotone but not Power

Figure 1. Interrelations among the three (⊙,∨)-higher derivations.

4. Power (⊙,∨)-higher derivations on two typical MV-chains

In this section, we construct explicitly power (⊙,∨)-higher derivations on two typical MV-chains C
and Lm.

Theorem 4.1. Let C be the infinite MV-algebra in Example 2.2 and k ∈ N+. Let a, b ∈ C with b ≤ a.
Define
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d1(x) =

b ⊙ x, if x ∈ C1;
a ⊙ x, if x ∈ C0,

and dn(x) = dn
1(x) =

bn ⊙ x, if x ∈ C1;
an ⊙ x, if x ∈ C0.

for any n ≤ k. Then Dk = (dn)k
n=0 is a power (⊙,∨)-higher derivation on C.

Proof. Let x, y ∈ C. It suffices to prove that Dk ∈ HDk(C) since dn = dn
1 for any n ≤ k. Consider the

following four cases:
Case 1: x, y ∈ C0. Then,

dn(x ⊙ y) = an ⊙ (x ⊙ y)

=

n∨
i=0

(ai ⊙ x) ⊙ (an−i ⊙ y)

=

n∨
i=0

(di(x) ⊙ dn−i(y)).

Case 2: x, y ∈ C1. Then

dn(x ⊙ y) = bn ⊙ (x ⊙ y)

=

n∨
i=0

(bi ⊙ x) ⊙ (bn−i ⊙ y)

=

n∨
i=0

(di(x) ⊙ dn−i(y)).

Case 3: x ∈ C1, y ∈ C0; let x = (uc)∗, y = vc, where u, v ∈ N+.
If u ≥ v, then x ⊙ y = 0, and

dn(x ⊙ y) = d(0) = 0 =
n∨

i=0

0

=

n∨
i=0

bi ⊙ an−i ⊙ (x ⊙ y)

=

n∨
i=0

(bi ⊙ x) ⊙ (an−i ⊙ y)

=

n∨
i=0

(di(x) ⊙ dn−i(y)).

If u < v, then

dn(x ⊙ y) = an ⊙ (x ⊙ y)

= b0 ⊙ x ⊙ an ⊙ y

=

n∨
i=0

(bi ⊙ x) ⊙ (an−i ⊙ y) (b ≤ a)
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=

n∨
i=0

(di(x) ⊙ dn−i(y)).

Case 4: x ∈ C0, y ∈ C1. Symmetry of Case 3, we can show that dn(x ⊙ y) =
∨n

i=0(di(x) ⊙ dn−i(y)).
Summarizing the above arguments, Dk is a power (⊙,∨)-higher derivation on C. □

Theorem 4.1 constructs some power (⊙,∨)-higher derivation on a typical non-archimedean infinite
MV-chain C. Next, we consider the construction of an archimedean finite MV-chain, which gives a
method to construct some (⊙,∨)-higher derivations on a general MV-algebra in Corollary 4.4.

Theorem 4.2. Let d ∈ Der(Lm) and k ∈ N+. Then Dk = (dn)k
n=0 ∈ HDk(Lm), where dn = dn for any

n ≤ k.

Proof. Recall that
Der(Lm) = {d(a,b) | (a, b) ∈ A(Lm)},

where
A(Lm) = {(a, b) ∈ Lm × Lm | b ≤ a}\{(0, 0)}.

Assume (a, b) ∈ A(Lm) and d = d(a,b) ∈ Der(Lm). In the case of n = 0, we know d0 = IdLm , then
d0(x ⊙ y) = x ⊙ y = d0(x) ⊙ d0(y), so Eq. (2.2) holds.

Hence, it is enough to verify the cases 1 ≤ n ≤ k. Since dn = dn, we can get dn with

dn(x) =

an−1 ⊙ b, if x = 1;

an ⊙ x, otherwise.
(4.1)

There are only three cases:
Case 1. If x = 1 and y = 1, then we have

dn(x ⊙ y) = an−1 ⊙ b (Eq (4.1))

=
(
an−1 ⊙ b

)
∨

(
an−1 ⊙ b

)
∨

n−1∨
i=1

(
an−2 ⊙ b2

)
(b ≤ a)

=
(
an−1 ⊙ b ⊙ y

)
∨

(
x ⊙ an−1 ⊙ b

)
∨

n−1∨
i=1

(
ai−1 ⊙ b ⊙ an−i−1 ⊙ b

)
(x = y = 1)

= (dn(x) ⊙ d0(y)) ∨ (d0(x) ⊙ dn(y)) ∨
n−1∨
i=1

(di(x) ⊙ dn−i(y)) (Eq (4.1))

=

n∨
i=0

(di(x) ⊙ dn−i(y)) . (right side of Eq (2.2))

Case 2. If x = 1 or y = 1 (but not both), say x , 1 and y = 1, then

dn(x ⊙ y) = dn(x) = an ⊙ x (Eq (4.1))

= (an ⊙ x) ∨
(
an−1 ⊙ b ⊙ x

)
∨

n−1∨
i=1

(
an−1 ⊙ b ⊙ x

)
(b ≤ a)
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= (an ⊙ x ⊙ y) ∨
(
x ⊙ an−1 ⊙ b

)
∨

n−1∨
i=1

(
ai ⊙ x ⊙ an−i−1 ⊙ b

)
(y = 1)

= (dn(x) ⊙ d0(y) ∨ (d0(x) ⊙ dn(y) ∨
n−1∨
i=1

(di(x) ⊙ dn−i(y)) (Eq (4.1))

=

n∨
i=0

(di(x) ⊙ dn−i(y)). (right side of Eq (2.2))

Case 3. If x < 1, y < 1, then

dn(x ⊙ y) = an ⊙ x ⊙ y (Eq (4.1))

= (an ⊙ x ⊙ y) ∨ (x ⊙ an ⊙ y) ∨
n−1∨
i=0

(
ai ⊙ x ⊙ an−i ⊙ y

)
= (dn(x) ⊙ d0(y) ∨ (d0(x) ⊙ dn(y) ∨

n−1∨
i=1

(di(x) ⊙ dn−i(y)) (Eq (4.1))

=

n∨
i=0

(di(x) ⊙ dn−i(y)). (right side of Eq (2.2))

Thus, we conclude that Dk ∈ HDk(Lm). □

Remark 4.3. The converse of Theorem 4.2 is not true. That is, not all Dk = (dn)k
n=0 ∈ HDk(Lm) can be

expressed as dn = dn for some d ∈ Der(Lm). For example, consider D2 = (dn)2
n=0 with d0 = 012, d1 =

000, d2 = 001 on L3 as in Table 4, D2 ∈ HD2(L3) and d1 ∈ Der(L3), but d2 = 001 , 000 = d1 ◦ d1.

By observing the proof of Theorem 4.2, we find that the proof is only related to whether the values
of x, y are 1 or less than 1. Hence, we wonder if the conclusion holds on any MV-algebra? We will
show below that the conclusion does hold for general MV-algebras.

Let da⊙ be a principal (⊙,∨)-derivation on A and b ≤ a. It is known that db
a⊙ is an (⊙,∨)-derivation

on A by Lemma 2.6. Note that db
a⊙ on A is same as d(a,b) on Lm except for the range of values for a, b

which is A and Lm, respectively.

Corollary 4.4. Let a, b ∈ A with b ≤ a. Let da⊙ be a principal (⊙,∨)-derivation on A and k ∈ N+. Then
Dk = (dn)k

n=0 ∈ HDk(A), where dn = (db
a⊙)

n for any n ≤ k.

Proof. The proof is similar to that of Theorem 4.2. □

To prove Proposition 4.6, we need first to show that dn ∈ Der(Lm) for every d ∈ Der(Lm).

Lemma 4.5. (Der(Lm), ◦) is a semigroup.

Proof. Let d, d′ ∈ Der(Lm). Since the associative law is guaranteed by composite operations of
mappings, it is sufficient to prove that d ◦ d′ ∈ Der(Lm).

There exist b ≤ a ≤ 1, f ≤ e ≤ 1 such that d = d(a,b), d′ = d(e, f ). There are only two cases:
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Case 1. f < 1. We have

d ◦ d′(x) =

a ⊙ f , if x = 1;

a ⊙ e ⊙ x, otherwise.

Since f ≤ e and ⊙ is order-preserving (Lemma 2.1 (3)), a ⊙ f ≤ a ⊙ e. Hence, d ◦ d′ ∈ Der(Lm).
Case 2. f = 1. In this case, f ≤ e implies e = 1. Hence,

d ◦ d′(x) =

b, if x = 1;

a ⊙ x, otherwise.

Then d ◦ d′ = d ∈ Der(Lm).
Therefore, (Der(Lm), ◦) is a semigroup. □

It is clear that the subsemigroup generated by d of Der(Lm) is finite since Der(Lm) is finite. We next
introduce the period and index of a generator d of Dk = (dn)k

n=0 on Lm.
As noted in [13], the index and period of d can be defined based on the repetitions that occur among

its compositions. We define the index of d, denoted by l, as the least element of non-empty set

{x ∈ N | (∃y ∈ N) dx = dy, x , y} ,

and the period of d, denoted by r, as the least element of the non-empty set{
x ∈ N | dl+x = dl

}
.

Thus, there exist index l and period r such that

dl = dl+r,

for any d ∈ Der(Lm).
Now, let us calculate l and r of d.

Proposition 4.6. Let d = d(a,b) ∈ Der(Lm), where a = i
m−1 , b =

j
m−1 , 0 ≤ j ≤ i ≤ m − 1. Let k ∈ N+ and

Dk = (dn)k
n=0 by dn = dn for any 0 ≤ n ≤ k. Then the period r of d is 1 and the index l of d is

l =


1, if a = 1;

i, if b < a < 1;

i + 1, if b = a < 1.

Proof. The cases d = IdLm or d = 0Lm are clear. We have known that b ≤ a, so there are only two cases
according to the value of a.

Case 1. If a = 1 (i.e., i = m − 1), then

d(x) =

b, if x = 1;

x, otherwise,
and dn(x) =

b, if x = 1;

x, otherwise.
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This shows that dn = d1 for all n ≥ 1. Therefore, the sequence stabilizes immediately after n = 1,
giving index l = 1 and period r = 1.

Case 2. If a < 1 (i.e., i < m − 1), then

d(x) =

b, if x = 1;

a ⊙ x, otherwise,
and dn(x) =

an−1 ⊙ b, if x = 1;

an ⊙ x, otherwise.

In this case, d(x) < x, and so d must be nilpotent. Denote M =
{
n ∈ N | an−1 ⊙ b = 0

}
and N ={

n ∈ N | an ⊙ m−2
m−1 = 0

}
. To explore the index, we consider the following two cases:

Subcase 2.1: b < a (i.e., j < i).
M and N represent the nilpotency indices for the sequences at x = 1 and at the largest non-unit

element x = m−2
m−1 , respectively. Since b < a, we have N ⊆ M. The minimal element of N is i, because

ai = ( i
m−1 )i = 0 when multiplied by any element less than 1. For n ≥ i, we have dn(x) = 0 for all x < 1,

and dn(1) = an−1 ⊙ b = 0 (since n − 1 ≥ i − 1 ≥ j and b = j
m−1 ). Thus, dn = 0Lm for all n ≥ i, and di is

the first zero map in the sequence. Hence, l = min N = i and r = 1.
Subcase 2.2: b = a (i.e., j = i).

In this subcase, we have dn(1) = an−1⊙a = an. Hence, M = {n ∈ N | an = 0}. Since a = b ≤ m−2
m−1 , we

have M ⊆ N. The minimal element of M is i + 1, because ai = ( i
m−1 )i > 0 but ai+1 = 0. For n ≥ i + 1,

dn(1) = 0 and dn(x) = 0 for all x < 1. Thus, dn = 0Lm for all n ≥ i + 1, and di+1 is the first zero map.
Hence, l = min M = i + 1 and r = 1.

In all cases, period r = 1 because once the sequence reaches the zero map, it remains constant.
□

5. Fixed point sets of power (⊙,∨)-higher derivations

In this section, we discuss the set of fixed points of power (⊙,∨)-higher derivations and show that it
is a lattice ideal in the case of principal (⊙,∨)-higher derivations. Note the condition is different from
[3, Theorem 3.12], where dn is an increasing function for all n ∈ I of a higher derivation D = (dn)n∈I of
length n on a lattice.

Definition 5.1. Let A be an MV-algebra. If Dk = (dn)k
n=0 ∈ HDk(A) is power, define the set of all fixed

points of Dk by FixDk :
FixDk(A) = {x ∈ A | dn(x) = x for all n ≤ k}.

Then, 0 ∈ FixDk(A), and FixDk(A) is a downset of A by Proposition 3.3 (4).

Proposition 5.2. Let A be an MV-algebra and a ∈ A. If D{k,a} = (dan⊙)k
n=0 is a principal (⊙,∨)-higher

derivation on A, then FixD{k,a}(A) is a lattice ideal of A.

Proof. It can be verified that 0 ∈ FixD{k,a}(A) by Proposition 2.8 (1). By Definition 5.1, FixD{k,a}(A) is a
downset of A.

Furthermore, for any x, y ∈ FixD{k,a}(A), we have dan⊙(x) = x, dan⊙(y) = y; it follows that

dan⊙(x ∨ y) = an ⊙ (x ∨ y) = (an ⊙ x) ∨ (an ⊙ y) = dan⊙(x) ∨ dan⊙(y) = x ∨ y

by Lemma 2.1 (5). Hence, we get x ∨ y ∈ FixD{k,a}(A).
Therefore, FixD{k,a}(A) is a lattice ideal of A. □
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6. Conclusions

In this paper, the power (⊙,∨)-higher derivations, principal (⊙,∨)-higher derivations, and isotone
(⊙,∨)-higher derivations on an MV-algebra A have been studied. We have obtained all relationships
among them as concluded in Figure 1. Moreover, we have obtained 5 equivalent conditions for a
power (⊙,∨)-higher derivation Dk = (dn)k

n=0 to be isotone. For typical MV-chains C and Lm, we have
constructed explicitly some power (⊙,∨)-higher derivations. Furthermore, we have discussed the sets
of fixed points of power (⊙,∨)-higher derivations. This work opens several avenues for future research:

1) Characterize when an isotone (⊙,∨)-higher derivation is power. The challenge lies in bridging
the inherent gap between isotonicity and the power condition, which requires profound insight.

2) Determine whether non-principal power higher derivations exist whose fixed point set is a lattice
ideal. The difficulty stems from the more intricate interaction between the derivation’s algebraic
structure and the order structure of its fixed points in the non-principal case.

3) Connect MV-algebraic derivations with recent advances in fractional calculus and impulsive
systems [17,18,22], where the iterative nature of higher derivations might provide algebraic tools
for studying controllability and stability in logical networks.

Author contributions

Xueting Zhao: Conceptualization, methodology, validation, writing-original draft preparation,
writing-review and editing, funding acquisition; Yichuan Yang: Conceptualization, methodology,
validation, writing-review and editing, supervision, funding acquisition. All authors have read and
agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The work is supported by CNNSF (Grants: 12571487, 12171022), the Youth Research Special
Project of NCUT (No. 2025NCUTYRSP059), and the North China University of Technology Research
Fund Program for Young Scholars (No. 11005136025XN076-091).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. N. O. Alshehri, Derivations of MV-algebras, International Journal of Mathematics and
Mathematical Sciences, 2010 (2010), 312027. https://doi.org/10.1155/2010/312027

AIMS Mathematics Volume 10, Issue 11, 25791–25810.

https://dx.doi.org/https://doi.org/10.1155/2010/312027


25809

2. L. P. Belluce, Semisimple algebras of infinite valued logic and Bold fuzzy set theory, Can. J. Math.,
38 (1986), 1356–1379. https://doi.org/10.4153/CJM-1986-069-0
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