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Abstract: A density-equalizing map (DEM) serves as a powerful technique for creating shape
deformations with the area changes reflecting an underlying density function. In recent decades,
DEMs have found widespread applications in fields such as data visualization, geometry processing,
and medical imaging. Traditional approaches to the DEM primarily rely on iterative numerical solvers
for diffusion equations or optimization-based methods that minimize handcrafted energy functionals.
However, these conventional techniques often face several challenges: they may suffer from limited
accuracy, produce overlapping artifacts in extreme cases, and require substantial algorithmic redesign
when extended from 2D to 3D, due to the derivative-dependent nature of their energy formulations. In
this work, we proposed a novel learning-based density-equalizing mapping framework (LDEM) using
deep neural networks. Specifically, we introduced a loss function that enforces density uniformity and
geometric regularity, and utilized a hierarchical approach to predict the transformations at both the
coarse and dense levels. Our method demonstrated superior density-equalizing and bijectivity properties
compared to prior methods for a wide range of simple and complex density distributions, and can be
easily applied to surface remeshing with different effects. Also, it generalizes seamlessly from 2D to 3D
domains without structural changes to the model architecture or loss formulation. Altogether, our work
opens up new possibilities for scalable and robust computation of density-equalizing maps for practical
applications.
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1. Introduction

Density-equalizing maps (DEMs) [1] are spatial transformations that reallocate area in proportion to
a given density distribution based on the principle of density diffusion. They were originally developed
for cartography, in which it is common to create value-by-area cartograms for mapping and data
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visualization [2—4]. In particular, under a DEM, different regions in a geographical map are often
distorted so that their areas in the new map reflect certain prescribed data values, yet the mapping ideally
remains continuous and recognizable.

DEMs have broad applications across different domains. In cartography, they have been
extensively used in recent decades to visualize data such as census results [1], international factors of
democratization [5], housing wealth [6], epidemiological spread [7], climate warming [8], trends in
information and communication technology [9], social media usage [10], and academic publication
and citation [11, 12]. More recently, DEMs have also been found useful for many important tasks in
science and engineering. For instance, in medical imaging, density-equalizing map algorithms have been
applied to flatten anatomical surfaces or register medical images while preserving area-based quantities
of interest [13]. In geometry processing, similar principles have been used for surface parameterization
and remeshing [14], where a mesh is mapped to a parameter domain with controlled area changes.
These examples highlight the utility of DEMs in creating maps or flattenings that faithfully follow the
prescribed shape change effects.

Traditionally, DEMs are computed through iterative physics-based procedures. Gastner and
Newman [1] introduced an algorithm for generating diffusion-based cartograms: the map is treated as
a medium in which a variable (e.g., population density) diffuses over time, causing regions to expand
or contract until the density is uniform. This approach solves a series of partial differential equations
(PDEs) to incrementally deform the domain. Later, Choi and Rycroft [14] extended the density diffusion
principle to deform 3D surfaces, flattening them into 2D maps while equalizing a prescribed surface
density. Despite the effectiveness of iterative DEM algorithms, they have notable limitations. First,
solving the diffusion (or related) equations can be computationally intensive and may require careful
tuning for stability and accuracy. High-resolution maps demand many iterations for the density to
equalize, and the result might require extra smoothing procedures to avoid extreme local distortions [1].
Moreover, ensuring a bijective (overlap-free) deformation is nontrivial—small mesh overlaps or fold-
overs can occur if the deformation is too aggressive or the numerical method is not carefully constrained.
Extending these methods to more complex domains is also challenging, typically necessitating custom
adaptations of the algorithm [15, 16].

In this paper, we propose a learning-based density-equalizing mapping approach (abbreviated as
LDEM) that addresses these challenges. Instead of solving PDEs from scratch for each new dataset, we
train a convolutional neural network to learn the mapping that equalizes density. Our method produces
high-accuracy density-equalizing mappings for a wide range of prescribed density distributions. Also,
the learned model inherently strives to preserve bijectivity, yielding mappings without mesh overlaps.
Furthermore, the framework is flexible and can be easily generalized from two dimensions to higher
dimensions. Our key contributions are as follows:

(1) We introduce a novel method for the computation of density-equalizing maps using deep neural
networks. In particular, we introduce a loss function involving both the density uniformity and
geometric regularity of the mapping. Also, we follow a hierarchical approach to capture both
deformations at both the coarse and dense levels.

(2) Our proposed method can handle a wider range of population distributions and achieve a higher
mapping accuracy when compared to the traditional diffusion-based approaches, while maintaining
low local geometric distortion and bijectivity.
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(3) Our method can be easily applied for surface remeshing to achieve different desired remeshing
effects.

(4) The proposed learning-based framework naturally extends from 2D domains to 3D domains with
minimal changes, demonstrating the versatility of the approach.

The rest of this paper is organized as follows. In Section 2, we review previous work on density-
equalizing map techniques, including the diffusion-based cartogram and the extension to triangulated
surface maps. Section 3 provides the mathematical background, covering the diffusion equation and the
principle of density-equalizing maps, the Beltrami coefficient for quantifying geometric distortion and
bijectivity, and an overview of convolutional neural networks. Section 4 details our proposed learning-
based DEM methodology, and Section 5 presents experimental results comparing our method with
prior approaches. In Section 6, we demonstrate the effectiveness of our method for surface remeshing.
In Section 7, we describe the extension of our method for 3D mapping problems. Finally, Section 8
concludes the paper and discusses future directions.

2. Previous work

Over the past few decades, various computational methods have been developed to construct density-
equalizing maps. Below, we highlight two representative approaches and discuss related developments.

2.1. Diffusion-based cartogram

Conventional methods for generating contiguous cartograms (density-adjusted maps) often required
iterative “rubber-sheet” deformations that could produce overlapping or hard-to-read maps [17-19].
In 2004, Gastner and Newman [1] addressed these issues by introducing a diffusion-based cartogram
algorithm. In their method, the input density (e.g., population per region) is treated as a fluid that diffuses
across the map. As the density flows from higher to lower concentration areas, the map is continuously
deformed—regions with surplus density expand while those with deficit contract—in order to conserve
the total “mass” in any region. Formally, the method solves the heat diffusion equation dp/dt = V?p on
the map domain, with appropriate boundary conditions, and concurrently advects the map coordinates
using the density flux (ensuring that areas change in proportion to the diffusing mass). The process is
run until a steady state is reached where p becomes uniform; at that point, the deformation of the map
yields a density-equalized cartogram.

This diffusion-based approach produces contiguous, non-overlapping cartograms that largely preserve
relative locality and shape, thereby improving readability over earlier methods [1]. Gastner and Newman
illustrated the technique with examples ranging from electoral maps to disease incidence, showing that
it avoided the axis-alignment biases and region overlaps that plagued previous algorithms. One practical
consideration is that fine-grained density variations can lead to very local distortions in the map; in
practice, a slight smoothing of the input density (e.g., via Gaussian blur) is often applied to maintain
cartographic readability at the expense of small accuracy loss [1]. The original algorithm also involves
computationally intensive PDE integration, typically requiring many time steps on a grid, which can be
slow for high-resolution outputs. Subsequent work by Gastner et al. [20] introduced a faster, flow-based
implementation that significantly accelerates cartogram generation. Nonetheless, the diffusion-based
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method set a new standard for contiguous cartograms, and its success spurred further extensions to new
domains.

2.2. Density-equalizing maps for surface flattening

Choi and Rycroft [14] extended the computation of density-equalizing maps to 3D triangulated
surfaces, enabling the flattening of a curved surface into the plane while redistributing area according to
a given density function. Their method operates analogously to the planar case: a scalar density defined
on the surface is allowed to diffuse over time, and the surface’s parameterization (mapping to 2D) is
iteratively updated to reflect the diffusion. In practice, the algorithm starts with an initial flattening of
the surface (for example, a conformal map of the 3D surface onto a 2D domain) and defines a density p
on the surface (such as one proportional to some scalar field or the area element). As p diffuses across
the surface, the 2D coordinates of the mesh vertices are adjusted so that areas in the parameterization
change in proportion to the mass flow. By the end of the process, the surface is flattened in such a way
that regions with higher initial density occupy larger areas in the planar map. This allows, for instance,
one to obtain an area-preserving parameterization by simply setting p based on the area element of the
surface. Choi and Rycroft demonstrated applications of the surface DEM method in data visualization
and surface remeshing, laying the groundwork for subsequent improvements in surface and volumetric
domains.

While effective, the surface DEM algorithm shares some limitations with its planar predecessor. It
requires solving a time-dependent PDE on a triangle mesh, which can be computationally heavy for
complex or high-resolution surfaces. The method is inherently restricted to simply connected open
surfaces and does not directly handle domains with other topologies. Additionally, large variations
in the prescribed density can cause significant distortion of the mesh, and ensuring that the flattening
remains bijective (without any fold-overs) is nontrivial. In practice, careful implementation and possibly
mesh refinement are needed to minimize element inversion.

2.3. Other related works

Beyond the above approaches, there have been numerous refinements and extensions of DEM
techniques. In cartography, researchers have also examined the usability and perception of cartograms;
for instance, user studies have evaluated the effectiveness of contiguous area cartograms in conveying
information [21]. On the algorithmic side, Gastner et al.’s flow-based method [20] significantly improved
the runtime of diffusion cartograms, making high-resolution density-equalizing maps more practical.
DEM algorithms have also been adapted to different domain topologies. Li and Aryana [22] proposed a
diffusion-based density-equalizing map for spherical surfaces, effectively creating cartograms on the
globe. More recently, the computation of surface density-equalizing maps has also been developed for
genus-0 closed surfaces [23,24] and surfaces with other topologies [15,25-27]. In addition, volumetric
extensions have been explored: Li and Aryana [28] developed a volumetric method for handling
subsurface data. Choi and Rycroft [16] also presented a general density-equalizing mapping framework
for volumetric datasets, deforming a 3D volume so that a given density becomes uniform throughout the
interior. Each of these extensions addresses specific challenges (such as enforcing bijectivity or handling
complex geometries) with tailored algorithmic modifications. However, all of the above methods still
rely on solving physical diffusion equations or iterative optimizations for each new input, underscoring
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the need for more efficient solutions. This has motivated interest in data-driven approaches, as we
propose in this paper, to learn the mapping function directly, bypassing the costly iterative solves for
each instance.

3. Mathematical background

In this section, we review the key mathematical tools underpinning our proposed learning-based
method for density-equalizing maps. These include the basic concepts of the diffusion equation and
density-equalizing maps, the Beltrami coefficient in quasi-conformal theory, and convolutional neural
networks.

3.1. Diffusion equation and density-equalizing maps

The diffusion equation models how a density distribution p(X, f) spreads over time:
%(x, 1) =Ap(x,1), X€Q, (3.1)
where A is the Laplacian operator. We impose the no-flux boundary conditions
Vp-n=0 onoQ, (3.2)

where n is the unit outward normal, so that mass is conserved within the domain.
In density-equalizing maps, given a density distribution p, the above diffusion equation is solved
iteratively, with the density gradient driving the shape deformation of the domain:

\Y
=--£, (33)
p
so that the displacement of the vertices in the domain satisfies
t
x(t) = x(0) + f u(x(7), 7)dr. (3.4)
0
As t — oo, the solution converges to
1
pX,1) — p=—= fP(X, 0) dx, (3.5)
1€ Ja

i.e., a uniform density. In other words, this uniformization drives the domain deformation so that
different regions expand or contract based on p, yielding a transformation with prescribed area changes.

3.2. Beltrami coefficient

A quasi-conformal map f : Q ¢ C — C satisfies the Beltrami equation

fZ = ,U(Z)fz, (36)

where f; and f; are the Wirtinger derivatives
f=3f=if), f=3(f+if), (3.7)
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and pu(z) is a complex-valued function (called the Beltrami coefficient) with |||, < 1. In other words,
we have
fz

uz) = A (3.8)

Intuitively, a quasi-conformal map f maps infinitesimal circles to infinitesimal ellipses, with the local

aspect ratio change expressed as
1+ |l

K(f) =1 :
= |ul
Therefore, |u| can effectively measure the quasi-conformal distortion of a mapping, with |u| = 0 if and
only if f is conformal. Also, any local fold-overs can be captured by a value of |u| > 1. In other words,
|| also provides us with a simple way for assessing the bijectivity of the mapping results produced by
our method.

(3.9

3.3. Convolutional neural network (CNN)

In our proposed method, the convolutional neural network (CNN) is employed to approximate the
density transformation. CNNs are a class of deep neural networks designed to process data with grid-like
structures, such as images or volumetric data. A CNN applies a series of convolution operations, which
compute the weighted sum of local neighborhoods, to extract hierarchical features from the input
data [29].

Mathematically, a convolution operation between an input /(x) and a kernel K(x) is defined as:

(F * K)(x) = f I(w)K(x — u)du, (3.10)

R4
where F = K denotes the convolution, d is the dimensionality of the input space, and K(x) represents the
learnable filter or kernel. For discrete data, this becomes:

(F+ Kl = ) ILIKT - jl, (3.11)
J

where the summation is over the neighborhood defined by the kernel size.

The network is composed of multiple layers, including convolutional layers, activation functions,
pooling layers, and fully connected layers. Specifically, the convolutional layers apply filters to extract
spatial features. The activation functions introduce non-linearity, commonly using ReLLU:

o(x) = max(0, x). (3.12)

The pooling layers reduce the spatial dimension for computational efficiency, typically using max
pooling:

P(x) = max F[i], (3.13)
ieN(x)

where N (x) is the neighborhood of x. The fully connected layers combine features for final predictions.
The CNN is trained to minimize a loss function, typically defined as the mean squared error (MSE)
between the predicted and target values:

1 < 2
= NZ Vpredlcted(xl _Vtarget(xz)) s (314)

i=1
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where N is the number of training samples, and Vpredicied(Xi) and vie(x;) are the predicted and target
values at x;, respectively.

By leveraging the ability of CNNs to learn complex transformations, our method effectively computes
density-equalizing maps with improved scalability and generalizability.

4. Proposed method
The proposed learning-based density-equalizing mapping method (LDEM) follows a hierarchical

pipeline consisting of five main stages, as illustrated in Figure 1:

(1) Data initialization: The process begins with an input map represented on an n X n meshgrid.
Population values are assigned to each triangular element formed by a triangulation of this grid.

(2) Dense-to-coarse transformation: The fine-grained input is downsampled into a coarser
representation to reduce computational complexity and capture global structural information.

(3) Coarse model processing: A neural network model processes the coarse data to produce a
preliminary transformation field.

(4) Coarse-to-dense transformation: The intermediate output is upsampled using an interpolation
scheme, transferring the coarse prediction back to the original resolution.

(5) Fine-tuning with a dense model: A separate dense-level model further refines the interpolated
output, resulting in a final transformation map that achieves high spatial accuracy.

In the following sections, we will describe the five stages in detail.

Dense to Coarse Model for
- 5 Coarse Data —>
Coarse Data

Coarse to Dense l

Fine-Tuning Model for

-— -
Dense Data Dense Data

Figure 1. An overview of the proposed learning-based density-equalizing mapping (LDEM)
method.

4.1. Data initialization

We initialize the domain using a regular n X n meshgrid. A triangulation is applied to divide the
domain into non-overlapping triangles, each associated with a given population (a real positive scalar).
An example of the initial configuration is shown in Figure 2(a).

The objective of the transformation is to relocate the mesh points such that the resulting map equalizes
the population density: Each triangle is transformed in a way that its area becomes approximately
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proportional to the original population weight, effectively producing a near-uniform density across the
domain. Figure 2(b) illustrates the result of this transformation. Visually, the adjusted triangles vary in
size to accommodate different population levels, while maintaining continuity and avoiding overlaps.

225 225

1.00 1.00

075 075

(a) Initial domain (b) Final density-equalizing mapping result

Figure 2. An illustration of density-equalizing maps. Both the initial domain and final
mapping result are triangulated and color-coded with the given population. The transformation
of the initial triangulated domain adjusts the vertex positions so that the population density,
i.e., the population per unit area in the deformed domain, is equalized.

4.2. Dense-to-coarse transformation

To improve computational efficiency, we first approximate the dense input data using a coarser
representation. This step enables fast processing while retaining essential global structures of the
original data distribution.

We start by generating a coarse grid in the domain. Specifically, a coarse grid of resolution D gyrse X
Deoarse 15 defined over the unit square [0, 1]%, with uniformly spaced vertices:

1 ..
xi,yje{O,m,...,l}, la]:1’2a--~aDcoarse- 4.1
The vertex set is denoted as:

Veoarse = {(X,', yj) | i,j= L,2,..., Dcoarse} . 4.2)

Then, each square cell in the coarse grid is divided into two right-angled triangles. Let k = i- Dcoarse + J
denote the linear index of the grid point (7, j). Then the two triangles covering the cell are:

fk,l = [ka k+1,k+ Dcoarse],

4.3)
fk,2 = [k + 1’ k + Dcoarse + 19 k + Dcoarse]'
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After performing the triangulation of the coarse grid, for each triangle f; = [v,, v;, v.], where v,, v, v,
are the three vertices of the triangle f;, we calculate the centroid by:
_ Vat vVt V.

C = # (44)

Next, we perform the following population aggregation step to define the population on the coarse
grid. Given dense triangle centroids Cgense With corresponding population values pgense, the population
value for each coarse triangle is computed via neighborhood averaging. For a coarse centroid Ccoprse.is
we define its neighborhood as:

DCO&I‘SC

. 1
M = {] | ||cdense,j - ccoarse,i” < } (45)
The aggregated population is then:

1
Pcoarse,i = M jGZNI Pdense, - (46)

This preserves local density structure while significantly reducing resolution.

4.3. Coarse model processing

To learn the transformation fields on the coarse and dense grids, we design an efficient neural network
architecture with bottleneck and sparse convolutional layers. The model is lightweight, flexible, and
effective for grid-based population data.

4.3.1. Model configuration

Below, we describe the configuration of our model.

As for the input and output dimensions, the model receives a vector of population values as input
and outputs a corresponding transformation vector. Input/output dimensions are adjusted according to
the grid resolution.

For the dimensionality reduction, a fully connected layer reduces the input dimension / to a low-
dimensional bottleneck space B, typically setas B = 1:

z=0c(W;x+by), zeRE “4.7)

Here, o denotes the sigmoid activation.
The model performs sparse processing via 1D convolution. Specifically, a 1D convolution layer with
group-wise operations is used to extract nonlinear features:

h = ReLU(Conv1D(z)). 4.8)

The feature vector is then mapped back to the original output dimension using another fully connected
layer:
y = W)h + b,. 4.9)
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The end-to-end computation of the model is summarized as:
y = W, - ReLU (ConvlD ((Wx + b;))) + bs. (4.10)

Two independent models are constructed for coarse and dense grid processing. Here we first focus on
the problem on the coarse grids. Later, we will extend it for the dense model.

Altogether, this configuration ensures the model is both scalable and adaptable to grid resolution
changes, supporting the hierarchical structure of the proposed framework.

4.3.2. Training process

The model training process consists of three key components: loss function design, model
initialization, and multi-stage training.

As for the loss function, recall that density-equalizing maps aim to create shape deformations based
on the prescribed population. Therefore, one fundamental element in the loss function is the density
equalization measure. Also, it is desired that the shape deformations are smooth and natural, without
sharp changes or even mesh fold-overs. Hence, our proposed training objective combines population
consistency and geometric regularity criteria.

Specifically, consider an N X N coarse grid in a 2D domain discretized into 2(N — 1)? triangles, in
which a population value p; is defined on each triangle #;. The density equalization aims to produce
a new configuration where the area of each transformed triangle ¢/ is proportional to the associated
population p;, thereby yielding a uniform density. To assess the uniformity of the density, we define the
density uniformity loss as follows:

std(py)
nsity — s 4.11
Lde sity mean(pf) ( )
where pr = (071,072, - - ., Pranv-1y) 18 the vector of face-wise densities defined by
Di
= —, 4.12
PR = Area(r)) (12)

withi=1,2,...,2(N — 1)%. Itis easy to see that Lensity = 0 1f and only if the density is fully equalized
in the entire domain.

Next, to ensure that the shape deformation is smooth and natural, we consider the following two
geometric regularization loss terms:

N
Liiope = (slope,; + slope, ) (4.13)
=1

1
N«

and

N
Ldistance = Z (distancex,i + distancew) 5 (4 14)

1
N i=1
where the terms are defined as follows:

e Each group i corresponds to a one-dimensional sequence of vertices extracted either along the
x-axis (a horizontal row) or along the y-axis (a vertical column) of the mesh grid. Specifically, an
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x-axis group contains all vertices sharing the same y-coordinate index and ordered by increasing
x, while a y-axis group contains vertices sharing the same x-coordinate index and ordered by
increasing y. In this way, each group represents a line of connected grid points used to measure
local geometric variation along one coordinate direction.
- Yij+1 = Yj
e Slope,; = 2?212 S)‘Ci')l - Sg'X) E'X) - xjﬂj — x; j_ e
the i-th group along the x-axis. Here, £ = 107® is a small constant to ensure numerical stability in
slope calculations.

— yN-2| O 6]
e Slope,; = X,y |87, = §;

s , where s is the slope between consecutive points in

) Xjy1 — Xj . . .
, where s;’ = —————— is the slope between interleaved points in
J v
Yirir Yt €
the i-th group along the y-axis, and & = 1075,

d;i)l —d|, where d = (xj,1 — x;* + (yjs1 — y;)? is the squared distance
between neighboring points in x-axis groups.

: —_ VN2 | ;0
e Distance,; = 2/ ‘dﬂl

between neighboring points in y-axis groups (arranged interleaved).

e Distance,; = Z;V:_lz

- d;y)|, where d;y) = (xj31 — X;)* + (yj+1 — y;)* is the squared distance

Intuitively, the terms slope, ; and slope, ; in Lo effectively capture the spatial variation of the slope
of the edges in each cell in the grid. Also, the terms distance,; and distance,; in Lgisance assess the
spatial variation in the length of the edges in each cell in the grid. By organizing the vertices into
horizontal and vertical groups, the losses separately evaluate the smoothness of deformation along
both coordinate directions, ensuring that the mapping preserves geometric coherence and avoids local
distortions. By minimizing Lepe and Lgisiance, W can ensure a smooth change across the entire domain,
thereby effectively enhancing the geometric regularity and naturally avoiding mesh fold-overs.

Combining the above loss functions, we have the overall loss function for training as follows:

—E = /ld : ~Edensity + /13 : leope + /11 : Ldistance» (415)

where A, A;, A; are nonnegative parameters.

As for the model initialization, in the initialization phase, we use the Adam optimizer and the mean
squared error (MSE) loss to establish a stable baseline.

Finally, as for the model training phases, the model is first trained with MSE loss in the initialization
phase:

arse 1 Dcoarse .
e = > @-yr (4.16)

Dcoarse i=1

Here, y; € R? denotes the target output coordinates corresponding to the identity mapping, and §; is the
model’s predicted output for the input point x;. In this initialization process, the goal is to encourage the
network to behave approximately as the identity function over the spatial domain, i.e., §; ~ Xx;. This
provides a stable starting point for subsequent training phases that enforce density equalization, helping
to prevent large initial distortions in the learned transformation. Then, in the fine-tuning phase, training
proceeds using the proposed loss function £ in Eq (4.15). Gradient clipping is applied in both stages to
enhance training stability.

Altogether, the above coarse model produces a preliminary coarse transformation field, which is then
used in the subsequent stages.
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4.4. Coarse-to-dense transformation

To bridge the coarse and dense resolutions, we employ interpolation techniques [30] that transfer
the transformation field predicted on the coarse grid to the dense grid. This enables high-resolution
refinement while preserving coarse-level consistency.

First, the coarse function values f.oarse (i, y;) are defined on the coarse grid in Eq (4.1). Then, we
construct a bilinear interpolation function:

FEY) = D w06 3) - Frouse(Xi 1)), (4.17)
Lj

where w;;(x, y) are bilinear weights based on the proximity of (x, y) to coarse grid nodes. A dense grid
is defined as:

1
IV €EROQ,———, ..., 1, kI=1,2,..., Dgense- 4.18
e 1 { Ddense_1 } ¢ ( )

The interpolated function values on this grid are:

Jaense (X, Y1) = f(xx, y1)- (4.19)

Finally, the interpolation is applied to both coordinate components independently:

Xdense(xk’ yl) = fx(xka )71),

(4.20)
Yiense(Xks )’1) = fy(xka yl),

where

£l 3) = > wii(63) « [feoarse(Xi ¥ )11
i.j

: (4.21)
A6 = D w063 - [feouse(Xi ¥,
i.j

with [-]; and [-], denoting the first and second components, respectively. The final dense transformation
grid is then:

Vdense = {(Xdense(xkv yl)a Ydense(xka yl)) | k’ [ = 17 27 ) Ddense} . (422)

4.5. Fine-tuning with a dense model

After the interpolation, we use a separate dense-level model to fine-tune the interpolated output and
result in the final transformation. The model undergoes a two-stage training process similar to that of
the coarse model in Section 4.3.

First, an initialization phase is conducted using the MSE loss to bring the dense model close to the
interpolated map. The objective is to preserve spatial coherence and ensure a smooth starting point for
subsequent fine-tuning. This phase uses a relatively high learning rate to allow faster convergence:

Ddense
1 N
L =5 — )M=Y, (4.23)
ense i=1
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where Y; € R? denotes the interpolated coordinates from the coarse model, and Y; is the predicted
output from the dense model.

Following this, we perform a fine-tuning phase with a smaller learning rate to refine the
transformation. The training objective again uses the same customized loss function defined in
Section 4.3.2, which balances density-equalization accuracy and geometric regularity. The fine-tuning
stage allows the model to capture finer spatial details and reduce residual distortion in the transformation
output.

This two-phase training procedure enables the dense model to achieve high-fidelity density-equalizing
transformations while remaining consistent with the initialization provided by the coarse model.

4.6. Hyperparameter settings

To ensure stable and effective learning, we configure hyperparameters specifically for the coarse and
dense models. Each model undergoes two training phases: an initialization phase and a main training
phase.

For the coarse model, we have the following settings:

e For the initialization phase, we set the learning rate as init_Ir_coarse = 1 x 1072 and the number of
epochs as init_epochs_coarse = 800. This stage provides a well-conditioned starting point for later
optimization.

e For the training phase, we set the learning rate as train_Ir_coarse = 3 X 1073, the maximum number
of epochs as max_epochs_coarse = 5000, the early stopping patience as 500 epochs, the minimum
improvement threshold as min_delta = 1 x 107*, and the warm-up period as 150 epochs (during
which early stopping is disabled). Early stopping is used to prevent overfitting, and the warm-up
period helps stabilize training before convergence is monitored.

For the dense model, we have the following settings:

e For the initialization phase, we set the learning rate as init_Ir_dense = 1 x 1072 and the number of
epochs as init_epochs_dense = 800.

e For the training phase, we set the learning rate as train_Ir_dense = 2x10~* and the number of epochs
as train_epochs_dense = 300. Here, the lower learning rate ensures fine-grained adjustments to
high-resolution predictions.

These hyperparameters are empirically selected to balance convergence speed, stability, and final
model accuracy for both coarse and dense transformations.

5. Experimental results

5.1. Experimental setup

The proposed method is implemented in Python, leveraging the PyTorch deep learning framework for
model definition, training, and optimization. Key packages used in our implementation include torch,
torch.nn, torch.optim for neural network components and training routines, numpy for numerical
array operations and grid generation, and matplotlib.pyplot for visualization.

In the following experiments, we generate test cases by creating coarse and dense grids and defining
different population distributions on their triangular faces. The grid dimensions are set as Dgepse = 51
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for the dense grid and D ouse = 16 for the coarse grid. For the hyperparameters in the loss function, we
choose A; = D.yarse, As = 1, and A; = 10 for the coarse model, and A; = Dyepse, As = 1, and A4; = 10 for
the dense model.

5.2. Test cases and results

Below, we consider six scenarios (Figures 3—8) with a diverse set of population distributions to
evaluate the model’s ability to handle both simple and complex variations. The Input shows the input
population distribution on the dense grid, the Coarse Model Output shows the intermediate output of
the coarse model on the coarse grid, and the Dense Model Output shows the final output of the dense
model after refinement. From the color maps of the population distribution, we can have a qualitative
assessment of the performance of the density-equalizing maps.

We start by considering an example of Basic Sinusoidal Variation as shown in Figure 3, with a
smooth variation generated using sinusoidal functions:

p(c) = 2 +sin(2ncy) - cos(2ncy), 5.1

where ¢, and ¢, are the x- and y-coordinates of the centroid ¢. From the coarse and dense model outputs,
we can easily see that regions with a lower population shrink and regions with a higher population
expand. This suggests that the method can effectively produce area changes based on the prescribed
population distributions.

Input Result Result

(a) Input (b) Coarse Model Output (c) Dense Model Output

Figure 3. The experimental result obtained by our proposed LDEM method for the Basic
Sinusoidal Variation test case.

Then, we consider an example of Complex Sinusoidal Variation in Figure 4. Specifically, to introduce
additional complexity, exponential and logarithmic transformations are applied to the coordinates:

p(e) =2 + sin(exp(cy) - 2) - cos (log(cy) - 7). (5.2)

In the mapping result, one can see that the method can successfully generate shape deformations with
the desired area changes even for the nonlinear population variations with sharp transitions and unique
patterns across the grid.
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Input Result Result

0.0 02 04 06 08 10 00 02 04 06 08 10 0.0 0.2 0.4 06 0.8 10

(a) Input (b) Coarse Model Output (c) Dense Model Output

Figure 4. The experimental result obtained by our proposed LDEM method for the Complex
Sinusoidal Variation test case.

Another example we consider is the Ring-Shaped Population Distribution in Figure 5. Here, a
ring-like population distribution is introduced, centered at (0.5, 0.5) with a specified radius and thickness.
The population decreases smoothly as the distance from the center of the ring deviates from the target
radius. The distribution is defined as:

(d(c) - R)’

! (5:3)

p(e) = exp |-

where d(c) = \/ (cx —0.5)? + (¢y, — 0.5)? is the distance from the centroid c to the center of the ring, R
is the radius of the ring and 7 is the thickness of the ring. This distribution creates a smooth circular
band of population. From the density-equalizing mapping result, we can see that the central part is
significantly shrunk while the four corner regions are enlarged.

Input Result

ANYVNRVNNNNNNNN
NNVWAUVRVNNNNYNRR
AAVVINVNNNNNA
RRARINNNNNSSNNS 07
ARRRRISSSSS

SRENSNSN N N
SRR N

S
SRRRRNSRNNY
RRRRANRSTNY

RNNNNNVINNVNNNNNNN
SNNNINVIVNINNTNNN
NNV VNNV
ANNNNANVANNNNN

N
N
N

(a) Input (b) Coarse Model Output (¢) Dense Model Output

Figure 5. The experimental result obtained by our proposed LDEM method for the Ring-
Shaped Population Distribution test case.

Next, to simulate more complex scenarios, we consider the Localized Population Peaks example in
Figure 6. Here, specific rectangular regions within the grid are assigned higher population values. For a
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rectangle defined by [Xmin, Xmax] and [Ymin, Ymax], the population is updated as:

Ppeaka if Cx € [-xmin’ xmax] and Cy € [.Ymina ymax]’

C) =
p() p(c), otherwise.

(5.4)

It can be observed that even for such an input population with sharp localized peaks, the proposed
method can effectively create a density-equalizing map with different regions enlarged or shrunk,
respectively.

Input Result Result

NV
e

1.00
0.0 02 04 06 08 10 00 02 04 06 08 10 0.0 02 0.4 0.6 0.8 10

(a) Input (b) Coarse Model Output (¢) Dense Model Output

Figure 6. The experimental result obtained by our proposed LDEM method for the Localized
Population Peaks test case.

Another complex scenario we consider is the Smooth Blended Quadrants as shown in Figure 7. To
create smoother variations, a blend function is used to transition between different population levels
across the grid quadrants. The smooth blending function is defined as:

1

S(x;e,w) = m,

(5.5)

where c is the center, and w controls the blending width. The population is then defined for each
quadrant:
pe)=1-(1-5(c;0.5,0.02)) - S(cy;0.5,0.02)
+2.5-85(c,;0.5,0.02) - S(cy;0.5,0.02)
+3-(1-5(c,;0.5,0.02)) - (1 = S(cy;0.5,0.02))
+4-85(cy;0.5,0.02) - (1 = S(cy;0.5,0.02)).

(5.6)

This gives an input population distribution consisting of four extreme regions with a smooth transition
in between. From the mapping result, we can see that the regions are deformed smoothly, with the
top-left region significantly shrunk and the bottom-right region enlarged.
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Result

Result
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(¢) Dense Model Output

(b) Coarse Model Output

(a) Input

Figure 7. The experimental result obtained by our proposed LDEM method for the Smooth

Blended Quadrants test case.

the population distribution is
“CU”. A binary mask is used

]

we consider the Complex Patterns example in Figure 8. Here

Finally,
further extended to include predefined patterns, such as the characters

to define the locations of the pattern, and the population values within these regions are set to higher

values to simulate localized emphasis:

(5.7)

Result

Result

for centroids within the pattern.

p(€) = Ppase + Apattern’

Input

Even for such a complex input population distribution, it can be observed in the final output that the

shape deformation satisfies the desired effect very well.

08

06

00

10

08

0.0

(¢) Dense Model Output

(b) Coarse Model Output

(a) Input

Figure 8. The experimental result obtained by our proposed LDEM method for the CU

Pattern test case.

The above examples demonstrate the effectiveness of our proposed method for generating density-

equalizing maps with a large variety of desired effects. Next, for a more quantitative assessment of the

quality of the mappings

we compute the density distribution using the given population and the initial

b
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or final mapping result:

_ Population on face (5.8)

Area of face

In Figures 9-14, we plot the histograms of the initial density (fgﬁ‘:ﬁ;‘;‘;) and final density (1;?5;111 frl:;) for

all mapping examples. For a better visualization, we further divide p by mean(p) in the histograms. It can
be observed that for all examples, the final density distribution is highly concentrated and significantly
sharper than the initial density distribution. This indicates that the mapping results produced by our
proposed method are highly density-equalizing.

Initial density Final density
400
200 4 350
300
0 0
o K
o o
150
E & 250
b=} =
K] S 200
s uy
2 100 2
E E 1504
= =4
100
50 4
50 -
0+ T 0 T T T T T
-0.5 0.0 0.5 10 15 2.0 2.5 -0.5 0.0 0.5 1.0 15 2.0 2.5 3.0
Ratio (p / mean(p)) Ratio (p / mean(p))

Figure 9. The histograms of the density distribution for the Basic Sinusoidal Variation test
case.
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Figure 10. The histograms of the density distribution for the Complex Sinusoidal Variation
test case.
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Initial density Final density
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Figure 11. The histograms of the density distribution for the Ring-Shaped Population
Distribution test case.
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Figure 12. The histograms of the density distribution for the Localized Population Peaks test
case.
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Figure 13. The histograms of the density distribution for the Smooth Blended Quadrants test
case.
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Figure 14. The histograms of the density distribution for the CU Pattern test case.

5.3. Comparison with the traditional diffusion-based iterative method

In Table 1, we further compare our proposed DNN-based method with the traditional diffusion-based
iterative method [14], which requires iteratively solving the diffusion equation and updating the vertex
positions. First, we define the density-equalizing error (DE error) as the ratio std(p)/mean(p) and use
it to quantify how uniformly the population is distributed in the mapping result. It can be observed
that the proposed method achieves comparable DE error values with the traditional iterative method in
all examples. Moreover, for the examples with sharp or complex population transitions (Figures 4, 6,
and 8), our method can significantly reduce the DE error by over 30% when compared to the traditional
method. We also assess the conformal distortion and the bijectivity of the mappings using the Beltrami
coeflicient. Specifically, the average norm of the Beltrami coefficient of the mapping, denoted as the
BC-mean, gives a measure of the conformal distortion. It can be observed that the BC-mean values
achieved by our method are all close to 0 and comparable to those obtained from the traditional method.
This suggests that the local geometric distortion of the mappings is small. Also, the maximum value of
the norm of the Beltrami coefficient (BC-max) is less than 1 for all examples, which indicates that the
mappings are locally homeomorphic, i.e., the mappings do not contain any local mesh fold-overs.

Furthermore, to better understand the generalization capability of our model, we also evaluate the
performance of the proposed LDEM method without fine-tuning. As shown in Table 1, even without
any case-specific optimization, the model still produces stable, bijective mappings with low DE error
and minimal geometric distortion. This demonstrates that the learned network captures a transferable
density-equalizing prior that can generalize well to unseen population distributions, while the optional
fine-tuning step further refines local accuracy.

We also performed a quantitative comparison of the computational efficiency between the proposed
methods and the traditional diffusion-based approach, as summarized in Table 2. The three grid
resolutions (Dgense = 51, 101, 151) correspond to progressively denser discretizations. All experiments
were implemented in Python 3.8.10 and executed on an Intel(R) Xeon(R) Gold 6238R CPU @ 2.20
GHz. All methods were run on the CPU without GPU acceleration. For each method, the recorded
runtime measures the duration from initialization to near convergence, defined as the point where the
relative change in density uniformity std(p)/mean(p) falls below 107, where p denotes the density
field. The diffusion-based iterative solver adopts the default step size specified in Eq (4.39) of [14],
while both variants of our LDEM model use the default hyperparameter configuration described in
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Section 4.6. From the results, we see that our LDEM model without fine-tuning has a comparable
computational cost to the diffusion-based method at low grid resolutions. At higher grid resolutions, our
model becomes significantly more efficient than the diffusion-based method. Moreover, even with the
fine-tuning included, our model is still much faster than the diffusion-based DEM method at high grid
resolutions. This demonstrates the efficiency of our proposed method.

Table 1. Comparison among the proposed LDEM method without fine-tuning, the fine-tuned
LDEM, and the diffusion-based iterative method [14] for six test cases, including Basic
Sinusoidal Variation (Figure 3(a)), Complex Sinusoidal Variation (Figure 4(a)), Ring-Shaped
Population Distribution (Figure 5(a)), Localized Population Peaks (Figure 6(a)), Smooth
Blended Quadrants (Figure 7(a)), and CU Pattern (Figure 8(a)). Here, BC-mean represents
the average norm of the Beltrami coeflicient |u|, BC-max represents the maximum value of
the norm of the Beltrami coefficient |u|, and the DE error represents the density-equalizing
error, defined as the ratio std(p)/mean(p).

Test Case Metric LDEM (no FT) LDEM (FT) Diffusion
BC-mean 0.1074 0.1144 0.1109
Figure 3(a) BC-max 0.2454 0.2732 0.2600
DE error 0.0341 0.0069 0.0057
BC-mean 0.0936 0.1136 0.1125
Figure 4(a) BC-max 0.3424 0.3836 0.3071
DE error 0.0980 0.0436 0.0733
BC-mean 0.1431 0.1479 0.1451
Figure 5(a) BC-max 0.2716 0.2786 0.3146
DE error 0.0385 0.0084 0.0071
BC-mean 0.1319 0.1390 0.1413
Figure 6(a) BC-max 0.3087 0.3964 0.4389
DE error 0.0871 0.0127 0.0246
BC-mean 0.1829 0.1847 0.1819
Figure 7(a) BC-max 0.3742 0.3844 0.3564
DE error 0.0495 0.0102 0.0088
BC-mean 0.0956 0.1059 0.1042
Figure 8(a) BC-max 0.2450 0.3512 0.3203
DE error 0.0978 0.0233 0.0340
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Table 2. Comparison of the computation time (in seconds) among the LDEM without fine-
tuning, LDEM with fine-tuning, and diffusion-based iterative method for different test cases
with different grid resolutions (Dgense = 51, 101, 151).

LDEM (no fine-tuning) LDEM (fine-tuned) Diffusion
Test Case Ddense Ddense Ddense
51 101 151 51 101 151 51 101 151

Figure 3(a) 1.1910 1.4728 1.6723 4.5719 7.8785 13.6589 2.3995 9.7139 >30
Figure 4(a) 1.3664 1.1564 1.3583 4.7429 7.3036 13.5228 1.2269 7.0303 >30
Figure 5(a) 1.2757 1.9302 1.5887 4.5977 8.4441 13.5776 1.1874 7.1366 >30
Figure 6(a) 1.2034 1.1552 1.2314 4.5275 7.6101 13.4317 1.6513 13.7870 >30
Figure 7(a) 5.4161 5.7188 5.5220 8.7590 11.9857 17.3941 1.6966 >30 >30
Figure 8(a) 0.9622 1.3250 1.5933 4.3219 7.4733 13.3977 1.9210 13.1257 >30

Next, we further consider a test case with Extreme populations as shown in Figure 15(a). Specifically,
we consider a prescribed population distribution with an extremely large value of 10 inside a specific
rectangular region, and much smaller values outside the rectangular region. From Figures 15(b,c), it can
be observed that our proposed method can handle such an extreme case very well, resulting in a large
shape deformation without mesh overlaps.

Input Result

(a) Input (b) Coarse Model Output (c) Dense Model Output

Figure 15. The experimental result obtained by our proposed method for the Extreme test
case.

On the contrary, for the traditional diffusion-based iterative method, using the default step size
(defined by Eq (4.39) in [14]) will lead to severe mesh overlaps (Figure 16(a)). A possible explanation
is that the default step size ot in [14] is dependent on the distribution of the initial density p, and for this
extreme test case, 0t becomes very large and hence the algorithm produces severe overlaps. We also
consider reducing the step size to a much smaller value (67 = 5 x 107>) in the diffusion-based method to
alleviate the overlapping issue, but that leads to an inaccurate mapping result in which the high-density
region is not sufficiently enlarged in the final mapping result (Figure 16(b)). In Table 3, we further
compare the mapping results obtained by different approaches in terms of the density-equalizing error
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(DE error), local geometric distortion (BC-mean), and bijectivity measure (BC-max). It is easy to see
that the diffusion-based method with the default step size gives a highly inaccurate and non-bijective
result. While reducing the step size can alleviate the overlapping issue, the result is still non-bijective,
and the density-equalizing error remains large. By contrast, our proposed method can significantly
reduce the density-equalizing error by over 98% and preserve the bijectivity.

Altogether, the experimental results show that our proposed LDEM method not only achieves
accuracy comparable to or better than the traditional diffusion-based approaches but also exhibits
remarkable efficiency and robustness. Even without fine-tuning, the model generalizes well across
various population distributions, while fine-tuning further enhances precision in highly nonuniform
cases. This combination of adaptability, speed, and stability underscores the advantage of the deep
learning framework for density-equalizing mappings.

Result Result

10

Result

0.0 02 0.4 0.6 0.8 10

025 R - - R 0.1 0.2 03 0.4 05 06 0.7 08 0.9

(a) Diffusion (Default step size) (b) Diffusion (Reduced step size) (¢) Our Method

Figure 16. The mapping results obtained by the traditional diffusion-based iterative
method [14] with different step sizes and our proposed method for the Extreme test case.

Table 3. Quantitative comparison between the traditional diffusion-based iterative method [14]
and our proposed method for the Extreme test case.

Method BC-mean BC-max DE error

Diffusion with default step size (Figure 16(a)) 1.4108 25.8513  46.6316
Diffusion with reduced step size (Figure 16(b))  0.1127 1.8490 2.6494
Our proposed LDEM method (Figure 16(c)) 0.3028 0.7778 0.0371

6. Application to surface remeshing

In engineering and graphics, it is common to remesh surfaces to control the triangulation density and
quality. This is important for many applications such as shape modeling, solving PDEs on surfaces,
and visualization. Using the proposed LDEM method, we can easily perform surface remeshing with
different desired effects.

More specifically, given a simply-connected open triangulated surface M, we can first follow
the procedure in [14] and parameterize it onto a square domain using the Tutte embedding method.
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Denote this initial mapping as g : M — [0, 1]>. Then, we can easily compute a density-equalizing
map f : [0, 1]*> — [0, 1]* on the unit square using the proposed LDEM method, with the prescribed
population controlling the desired effect. Here, for regions that we desire to have a denser triangulation,
a higher population can be set. Conversely, for regions that we desire to have a coarser triangulation,
a lower population can be set. Then, under the LDEM mapping f, different regions will be enlarged
or shrunk accordingly. After getting the mapping result, we can use the inverse mapping (f o g)~! to
map a uniform triangulation generated on the unit square back to the original surface M. Because
of the shape deformation achieved by the LDEM, the new triangulation on M will generally become
non-uniform, with different regions having higher or lower mesh densities following the prescribed
effect. This completes the surface remeshing process.
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Figure 17. Surface remeshing achieved by our proposed LDEM method. Left to right: Peaks,
Max Planck, and Chinese Lion. The top row shows the original surfaces, and the bottom row
shows the remeshed surfaces with different effects.

Figure 17 shows three sets of surface remeshing examples with different effects achieved by our
method. For the Peaks example, which is a surface with multiple peaks, we would like to have a higher
mesh resolution at the central peak in the remeshing result. To achieve this, we set the population in the
central region to be much larger than that in the other regions and apply the above-mentioned approach.
It can be observed that because of the density-equalizing property of our method, the remeshed surface
achieves the desired effect very well. In the Max Planck example, we set the population in the top left
region of the surface to be lower than that in the top right region. Consequently, the mesh density in the
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top left region is lower in the remeshing result. Alternatively, we can also achieve a relatively uniform
remeshing result, as shown in the Chinese Lion example, by adjusting the population in different regions.
Besides, as mentioned in the previous section, our proposed method preserves the bijectivity very well.
Here in the surface remeshing experiments, it can also be observed that the remeshed surfaces are all
folding-free.

Altogether, the experiments demonstrate the advantage of our proposed method for surface remeshing
for engineering applications.

7. Extension to 3D

Our proposed LDEM method can be naturally extended to 3D. In particular, note that the extension
to 3D (denoted as LDEM-3D) does not require modifying the general model structure. Instead, we will
only need to minimally adjust the training data and the loss function for the 3D case.

7.1. Model formulation

Extending the LDEM approach to 3D naturally follows the methodology developed for the 2D case.
The primary objective remains to transform an initial 3D domain into one with uniform population
density, achieved by adjusting local volumes proportional to assigned population values. To achieve
this, we initialize the domain using a regular N X N X N meshgrid. A tetrahedralization is applied to
divide the domain into non-overlapping tetrahedra, each associated with a given population value. The
3D density-equalizing map aims to relocate the mesh points such that the resulting map equalizes the
density, defined as the population per unit volume (see Figure 18 for an illustration).

(a) Initial domain (b) Final 3D density-equalizing mapping result

Figure 18. An illustration of the 3D density-equalizing maps. Both the initial domain and
final mapping result are tetrahedralized and color-coded with the given population. The
transformation of the initial tetrahedralized domain adjusts the vertex positions so that the
tetrahedron volumes match the target density values.
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More specifically, consider a 3D domain discretized into tetrahedra. Each tetrahedron 7; has an
initial population value p;. The density equalization aims to produce a new configuration where the
volume of each transformed tetrahedron 77 satisfies:

vol(T?) o< p;. (7.1)

Analogous to the 2D case, here we can consider a coarse model with the aid of a coarse 3D grid.
The grid is constructed with D¢garse X Deoarse X Deoarse Vertices uniformly distributed over the unit cube
[0, 1]°. The vertex coordinates are given by:

1 2

x,-,yj,zke{O,D 1,...,1}, i, yk=1,2,..., Deoarse- (7.2)

coarse 1 ’ Dcoarse -
Tetrahedral elements are defined by connecting adjacent vertices to form multiple tetrahedra within each
cubic cell. This ensures that the dense 3D grid is fully tetrahedralized. The population distribution is
modeled as a continuous function over the centroids of tetrahedral elements. For a tetrahedron with
vertices V,, Vp, V¢, V4, the centroid is given by:

Vo+V,+V.+Vy
1 .

A population value p; can then be defined at every centroid c;.
To quantify the density-equalizing effect, we define the density uniformity loss analogous to the 2D
case, but now employing volume measures:

(7.3)

std(pr)
ensi = 7.4
Ld ty3D mean(pT) ( )
where pr is the vector of tetrahedron-wise densities defined by
Di
i = . 7.5
pr, vol(T?) (7.5)

For geometric regularization, the loss function Lgisance in Eq (4.14) can be extended naturally to

distances in R3:
N

Ldistance3d = % Z (distancex,,- + distance,; + distancez,,-) , (7.6)
i=1
where distance, ;, distance, ;, distance,; are defined based on the squared distance between neighboring
points in the x-, y-, and z-axis groups, respectively. Note that one could also generalize the Lgope in
Eq (4.13) to 3D, but the consideration of slope in 3D involves several more terms. For simplicity, we
omit this function in the subsequent discussion and experiments.
Altogether, we have the following overall loss function for training in the 3D case:

L3p = Ag * Laensity3p + Ai + Laistance3n- (7.7)

By following this formulation, the model directly generalizes to three-dimensional scenarios without
altering its core architecture, requiring only adjustments to the input data representation and
dimensionality of computations.

For the hyperparameters, we have the following settings:
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e For the initialization phase, we set the learning rate as init_Ir_coarse = 1 x 1072 and the number
of epochs as init_epochs_coarse = 1500. This stage provides a well-conditioned starting point for
later optimization.

e For the training phase, we set the learning rate as train_Ir_coarse = 1 x 10~ and the maximum
number of epochs as max_epochs_coarse = 5000. The early stopping patience is set as 200 epochs.
The minimum improvement threshold is min_delta = 1 x 10, and the warm-up period is 150
epochs (during which early stopping is disabled). Early stopping is used to prevent overfitting, and
the warm-up period helps stabilize training before convergence is monitored.

All other parts of the 2D framework, including the coarse-to-dense transformation and fine-tuning
with a dense model, can be extended to 3D in a similar manner.

7.2. Experimental results

To simplify the experiment process, we only test the coarse model for the 3D extension as we could
deal with the dense case similarly as we did in the 2D cases. Below, we set D¢ouse = 16 and Ay = 4; = 1.
Different population distributions are designed to capture various scenarios, ranging from simple to
complex spatial variations.

More specifically, we consider four distinct test cases (Figures 19-22) to evaluate the model’s
capability in handling diverse 3D population distributions. The Input shows the initial 3D grid color-
coded with the input population distribution, and the Output shows the final 3D mapping result obtained
by our method.

200

175

150

125

10 00 10 00

(a) Input (b) Output

Figure 19. The experimental result obtained by our proposed LDEM-3D method for the 3D
Basic Sinusoidal Variation test case.

In Figure 19, we first consider an example of 3D Basic Sinusoidal Variation generated using the
sinusoidal function as follows:

p(¢) = 1.2 + sin(2nc,) - cos(2mey) - sin(2nc,), (7.8)
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where c,, ¢, c; denote the x-, y-, and z-coordinates of the centroid c¢. It can be observed that, analogous
to the 2D case, the proposed method can successfully create shape deformation with different regions
enlarged or shrunk based on the input p.

Next, we consider the 3D Complex Sinusoidal Variation in Figure 20, in which a more intricate
population pattern is defined using exponential and logarithmic transformations in 3D:

p(e) = 1.2 + sin(exp(c,) - 27) - cos (log(cy + €) - m) - sin(27c.), (7.9)

where € = 107 is a small constant added to avoid singularity at ¢, = 0. This function produces sharper
transitions and more irregular spatial structures. Again, an admissible mapping result with prominent
shape deformation can be observed.

275
250
225
200
175
150

125

10 00 10 00

(a) Input (b) Output

Figure 20. The experimental result obtained by our proposed LDEM-3D method for the 3D
Complex Sinusoidal Variation test case.

We then consider the Spherical Shell Population Distribution example (Figure 21). Here, the
distribution is defined by a central axis and a fixed radius R:

(7.10)

(d(c) - R
2-T? ’

p(c) = exp (—

where T controls the thickness of the shell. This simulates a spherical band of density concentrated
around a 3D loop. It is easy to see that the central region of the 3D grid shrinks significantly in the
mapping result, which matches the desired effect prescribed in p very well.
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Figure 21. The experimental result obtained by our proposed LDEM-3D method for the
Spherical Shell Population Distribution test case.

Finally, we consider the Smooth Blended Octants test case in Figure 22. Specifically, to model
smooth transitions across eight spatial regions (octants), we use a 3D extension of the smooth blending
function:

1

S(x;e,w) = W,

(7.11)

where ¢ = 0.5 is the center of the transition and w = 0.02 controls the sharpness of the blend. Then,
given a point ¢ = (cy, ¢y, ¢;), the population is defined as:

p(©) = 1-(1=5(c,:0.5,0.02)) - (1 = S(cy:0.5,0.02)) - (1 = S (c.:0.5,0.02))

+2-5(c;0.5,0.02) - (1 = S(cy:0.5,0.02)) - (1 = S(c=; 0.5,0.02))
+3-(1=8(c,;0.5,0.02)) - S(cy:0.5,0.02) - (1 = S(c-; 0.5,0.02))
+4-5(c,;0.5,0.02) - §(c,;0.5,0.02) - (1 = S(c.;0.5,0.02))
+5-(1=8(c,;0.5,0.02)) - (1 = S(c,;0.5,0.02)) - S (c:; 0.5,0.02)
+6-5(c;0.5,0.02) - (1 = S(cy:0.5,0.02)) - S (c.; 0.5,0.02)
+7-(1=8(c,;0.5,0.02)) - S(cy:0.5,0.02) - S (c.; 0.5,0.02)
+8-5(c,;0.5,0.02) - S(c,;0.5,0.02) - S (c.; 0.5,0.02).

(7.12)

This expression smoothly interpolates population values across all eight octants in the unit cube using
only the coordinates (c,, ¢y, c;). From the mapping result, it is easy to see that the eight regions are
enlarged or shrunk proportionally.
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Figure 22. The experimental result obtained by our proposed LDEM-3D method for the
Smooth Blended Octants test case.

For a more quantitative analysis, we also present the histograms of the initial density distribution
%) and the final density distribution (%) for each test case (see Figures 23-26). In all
examples, it can be observed that the final density distribution is much more concentrated at 1 when
compared with the initial density distribution. This shows that our LDEM-3D method can effectively

achieve 3D density-equalizing maps with the desired shape deformation effects.
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Figure 23. The histogram of the density distribution for the 3D Basic Sinusoidal Variation
test case.
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Figure 24. The histogram of the density distribution for the 3D Complex Sinusoidal Variation

test case.
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Figure 25. The histogram of the density distribution for the Spherical Shell Population
Distribution test case.
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Figure 26. The histogram of the density distribution for the Smooth Blended Octants test case.
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8. Conclusions

In this paper, we have developed a novel learning-based framework for constructing density-
equalizing maps. By utilizing deep neural networks, we allow the model to generalize across arbitrary
continuous population distributions, achieving robust performance without retraining for each new
case. Our approach combines density equalization objectives with smoothness regularization, ensuring
both fidelity and geometric plausibility of the resulting maps. Numerical experiments demonstrate the
effectiveness of our method in producing accurate and visually coherent transformations for a wide range
of prescribed population distributions. We have also applied our method for surface remeshing with
different desired remeshing effects. Altogether, our method allows for scalable and robust computation
of density-equalizing maps for practical applications.

As shown in the previous section, our proposed method can be easily extended from 2D to 3D for
producing volumetric deformations based on prescribed population distributions. A natural next step is
to further extend the proposed framework for more complex surface and volumetric domains to handle
a wider class of shape mapping problems. Also, while the experimental results for both the 2D and
3D cases do not exhibit mesh overlaps, we do not have a theoretical guarantee for the positivity of the
Jacobian determinants currently. Therefore, we plan to explore more of the theoretical properties of the
learned mappings in our future work to better understand their limitations.
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