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Abstract: In this paper, we introduced the concepts of (strongly) v-conull FDK-spaces, which can
be regarded as double-indexed versions of FK-spaces (sequence space with coordinate functionals), by
utilizing the notion of v-convergence for double sequences. We provided fundamental characterizations
of these new spaces and established several inclusion relations among them. Furthermore, we
investigated the conditions under which the summability domain Eg) is (strongly) v-conull, thereby
providing new insights into its structural and topological properties.
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1. Introduction

An important class of spaces (E,7) with interesting applications in Schauder basis theory
and summability theory is conull and coregular classifications introduced by Wilansky [1]. The
characterizations of these properties without matrices were given by Yurimyae in [2] and by Snyder
in [3]. Accordingly, an FK-space (E, 1) is called conull if ¢ is weakly convergent to e in o<(E, E*),
where E™ is the topological dual of £ and o (E, E*) is the weak topology on E. In his work, Bennett [4]
introduced spaces that exhibit strong connections to conull spaces, thereby furthering the development
of summability theory. He examined the relation between wedge and conull FK-spaces and obtained
some characterizations of both these classes. Then, some results of Bennett [4] were improved by
Ince [5] and Dagadur [6] for all (strongly) conull FK-spaces. These studies motivated us to define
the concept of v-conull FDK-space by using v-convergence for double sequences, where v represents
one of the notions of Pringsheim, bounded and regular convergence. The motivation for this research
lies in extending the well-established theory of FK-spaces to the broader class of FDK-spaces, thereby
developing a more comprehensive understanding of convergence, completeness, and transformation
behavior in the context of double sequence spaces.
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In Section 3, we introduce the key generalizations of conull and wedge spaces to double sequences,
define weak and strong v-convergence, and prove basic equivalences that mirror the classical single-
sequence theory. In Section 4, we explore the relationship between v-conullity and inclusion of
bounded-variation spaces, proving criteria for when an FDK-space inherits strong or weak conullity.
In Section 35, using gliding-hump methods, we show that certain nontrivial elements exist in v-wedge
FDK-spaces and that some natural subspaces are non-separable. In Section 6, we apply our framework
to summability domains Eg’) , deriving necessary and sufficient conditions for v-conullity in terms of
matrix rows/columns and compactness properties.

2. Notations and preliminaries

Let Q denote the set of all double sequences with the vector space operations defined
coordinatewise. Any linear subspace E C Q is referred to as a double sequence space.

A subspace E of the vector space Q2 is called a DK-space, if all the seminorms ry; : E — R, x = |xy]
(k,l € N) are continuous. An FDK-space is a DK-space with a complete, metrizable, locally convex
topology. A normable FDK-space is called a BDK-space [7].

e denotes the double sequence of 1’s; (6¥), i, j = 1,2,..., with 1 in the (i, j)-th position. Also,
® := span{e’ : k,l € N}and @, := O U {e}.

Traditionally, a bounded double sequence means a uniform bounded double sequence. The space
of all uniformly bounded double sequences is defined as

M, = {x €Q : |x|lo :=sup|xyl < oo},
kil
which is a BDK-space with a supremum norm [8]. A double sequence x = (x) is said to be
Pringsheim’s sense convergent to a (p-convergentto a) if Ve > 0dAN e N : k, [ > N = |xy—al < €[9].
Also, if sup, ; |xx| < oo, or the limits lim; x;; (I € N) and lim; x; (k € N) exist, then x is said to be
boundedly convergent to a in Pringsheim’s sense (bp-convergent) and regularly convergent to a (-
convergent). Throughout the paper, v represents the symbols p, bp, r and, C, denotes the space of all
v-convergent double sequences. The set of all null sequences contained in the space C, is denoted by
C,o. Moreover, we consider the following spaces.

CSV = {XGQ : V—Z)Ckl<00},

*l
L= {er LD b < oo},

xl
Ly={xe L, : (xihk €, Yl €Nand (xp); € p, Yk € N},

X
BYV = {X €Q : |lxllgy := Z Xkt = Xk1,0 = Xiee1 + X1 p41] < 00} ,

k,l

<m}.

AIMS Mathematics Volume 10, Issue 11, 25708-25728.

m,n
Xkl
k.l

m,n

BS::{er : sup




25710

The above double sequence spaces were also studied in [10-16].
The set of all continuous linear functionals on a space E is denoted by E’ and called the dual spaces
of E. Recall that a, B(v), ¥, and the f-duals of a subset E of Q are defined as follows:

E* :={x=(xy) : xyeL,, ¥Yy= () € E},

EFY = {x=(xy) : xy€CS,, Yy= () € E},

E":={x=(xy) : xyeBS, Vy=(n) €E},
={(f@) : vfeE),

respectively, where xy = (xyyu)-
Let E be a sequence space. x € E is said to have AK(v) if x = v — ¥;; xi6". E is said to be an
AK(v)-space if each element of E has AK(v) [17, 18].

Theorem 2.1. [7] Let v be a notion of convergence for double sequences such that C, is an FDK-space
and the limit functional v —lim is continuous on C,. If E is an AK(v)-FDK-space, then for every f € E’,
there exists u € EPY) such that

f)y=v- Z ugxy (x € E).

k1l

Moreover, every functional f having the representation (2.1) is in E’.

Let A = (a,,,1) be any four-dimensional matrix. Consider
Q(V) {x €eQ|VmneN : [Ax]p =V — Z A1 Xl ex1sts}

The map
A: QS’) 4 Q, X Ax = ([Ax]mn)m,n

is called a matrix map of type v. The summability domain of a matrix A = (@) is defined as
E(V) {x € Q: Axexists and Ax € E}.

Also, f(m") amnkl},‘:"l“’l is called the (k, [)-th row of the matrix A, and ¢} (kD) {amnkz}m,, | is called the
(k, I)-th column of the matrix A.

In the following result, Zeltser [7] describes the topology of the space E
are FDK-spaces.

) and the spaces C, and E

Theorem 2.2. [7] Let v be some notion of convergence for double sequences such that C, is an FDK-
space and let {t; : k € N} be a system of seminorms, defining the FDK topology of C,. Let A = (Guni1)
be a four-dimensional matrix and E be an FDK-space with the FDK topology generated by a system
of seminorms {0y : k € N}.

i. The space Eiy) is an FDK-space and the FDK topology is generated by the system of seminorms
{(rmn :m,neN}U{t,0A,, :r,mneN}U{p,0A :reN}, where

Apn(X) 1= (Z Z amnklxkl) (xe EV).

k=1 I=1

AIMS Mathematics Volume 10, Issue 11, 25708-25728.



25711

ii. The topological dual (ES’))’ consists of all linear functionals f of the form
f(0) = g(0) + h(Ax) (x € E)
with certain g € (QX))’ and h € E'.
iii. If C, and E are separable, then Eiv) is separable.
In [19] the authors defined the v-wedgeness for any FDK-space as follows.

Definition 2.1. [19] Let (E,7) D ® be a DK-space. (E,7) is called a v-wedge FDK-space, if the
sequence (0V) is v-convergent to 0 in .

Definition 2.2. [19] Let (E,7) D ® be a DK-space. (E,7) is called a weak v-wedge FDK-space, if the
sequence (67) is weak v-convergent to 0 in 7.

With these preliminaries in place, we are now equipped to extend the notions of conull and wedge
spaces to double sequences and study their structural properties in detail.
3. Main results

In this section, v-conullity is defined for an FDK-space including @;. In addition, some important
results have been obtained on this subject.

Definition 3.1. Let E O ®, be an FDK-space. The space E is called a v-conull FDK-space if the
sequence (e™) is weakly v-convergent to e; that is, for all f € E’,

f(e) = v—1lim Z (8.
=1

Definition 3.2. Let E D ® be an FDK-space. The space E is called a strongly v-conull FDK-space if
the sequence (") is v-convergent to e; that is,

m,n
e = v—limZékl.
m,n

k=1

Clearly, each v-conull FDK-space is also strongly v-conull. Additionally, there is a relationship
between (weak) v-wedge and (strongly) v-conull FDK-spaces as follows.

y-conull FDK

N
strongly v-conull FDK weak v-wedge FDK

/
v-wedge FDK

In fact, let E be a strong v-conull FDK-space. Then we have %) — e. Hence g(e*” —e) — 0
(k,l — oo) for any seminorm ¢ in 7. For k,/ > 2, using the following equation

S = o®D _ kil _ LD | ki)

AIMS Mathematics Volume 10, Issue 11, 25708-25728.
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we have

q(ékl) — q(e(k,l) N GVl DI (S ) IR (g Wt R e)

q (e(k’l) - e) +q (e(k’l_” - e) +q (e(k_l’l) - e) +q (e(k_l’l_l) - e) .

IA

It is clear that since ¢ (5"’) — 0, k,l — oo, E is a v-wedge space.

Now, let us consider the surjection mapping S : Q — Q,

m,n

(S (Z)X)mn = Zxkl-

k=1
Clearly, (S®)™' : M, - 8BS,
((S (2))_1x)mn = Xon — Xmp-1 — Xm—-1,n + Xim—1,n-1-

Theorem 3.1. i. (E,7) is a strongly v-conull FDK-space iff the space (S®)\(E) is a v-wedge FDK-
space.
ii. (E,7) is a v-conull FDK-space iff the space (S®)"\(E) is a weak v-wedge FDK-space.

Proof. 1) Neccessary. Let the topology 7 be generated by the seminorms {P,,,}. Then a topology with
the set of seminorms {g,,,} makes (S ®)~!(E) is an FDK-space such that

an(x) = Pmn(S (2)()C)).

By hypothesis, P,,, (e - e(’"”)) — 0 (m,n — o0). Since (S@) (e — ") = gm+ll 4 ghntl _ gmln+l
we get

qmn(6m+l,l + 51,n+1 _ 5m+l’n+1) — Pmn(e _ e(mn)) (31)

So we can say g, (6" + gttt — gmlatly 5 0 (m,n — o). In this case, we have (6" + 1! —
omttatly 0 (m,n — o0) according to the topology of the space (S®) }(E). As ™! — 0 and
ottt — 0, gm+lntl — 0 hold, (S @)~!(E) is a v-wedge FDK-space.

Sufficient. Assume that (S@®)~!(E) is a v-wedge FDK-space. Then we have g, (6™ + ¢!+ —
&1y 5 0 (m,n — o0). By Eq (3.1), we obtain Py, (e = £}, 67) — 0 (m,n — ). So Eisa
strongly v-conull FDK-space.

ii) Let (E, ) be a v-conull FDK-space and let us define the topology of (S ®)~!(E) as the proof of (i).
Then g, (%) := P,,,(S ®(x)) and we have (3.1). Since E is a v-conull FDK-space, P,,, (e -2 5"’) -
0 (weak) (m,n — oo0). Hence 6™+ + ghntl — gm+lntl 5 (weak) (m,n — o). Consequently
omrhatl 5 () (weak) (m,n — oo) is obtained. That is, (S ®)~!(E) is a weak v-wedge FDK-space.

The other part of the proof follows in the same way as the proof of (i). O

In the following, with the help of the transformation S, we define a new double sequence space.
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x € BV(¢) means that

X111 X2 ... Xy b b

X - 8§ &
X= Xk oo oo Xg

a d ... f ¢ ¢

a d f c

for any a, b, c,d, f, g, h € R. Now we shall give one of the interesting results.
Proposition 3.2. S@(L,) = BV(p).
Proof.

SOL) =8P : xe L)
= (%) : Z x| < 00, VI € N (xu)k € ¢, Yk € N (x1); € ¢}
= {x : Z (S )l < 00, Y1 € N ((SP) ' ()i €
Vk e N (S®) ™ () € ¢}
Let us prove the last part of the above equation. Assume that VI € N (((S®)~'(x))i)x € ¢. Then

X11 X12 — X711
Xop — X11 Xo2 — X12 — X1 + Xq1

€ .
Xkl — Xi—1 — Xk—1,1 + Xg—1,1-1

k

This means that every column sequence of the matrix is finite. So we get the following system:

(X115 X210 = X115 oy Xkl — Xp—115- . .) € @,

(X12 = X11, X020 — X2 = X21 + X115+ s Xj2 — Xk—12 = Xk1 + Xk—1,15--.) € @,

(X1 = Xm0, X2 = X1 o1 = X1+ X1gcts v X — Xko1d — Xkio1 + Xk—1,-15- - -) € @.
Assume that xy; = 0. Considering the first row, we obtain
iy Yk > ki 2 xkp = xk-11 = 0 © X1 = X1 (3.2)
Then from (3.2), we have
Jky Yk > ky @ X0 — Xp—12 = X1 + Xe-11 = 0 © X0 = Xp1 2.
So by continuing, we get

Jk, Yk > ky 0 X — Xim1 g — X1 + Xk-1-1 = 0 © X = X1y,

AIMS Mathematics Volume 10, Issue 11, 25708-25728.
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which means that the terms of the sequence ((xy);) VI € N are constant and equal to each other for
k > k,. If the same steps are applied for (((S @)™ (x))u); € ¢, we get

ALNVE> 1 Xy — Xi—1p — Xig-1 + X—1-1 = 0 © X = X1,

which means that the terms of the sequence ((xy);) Yk € N are constant and equal to each other for
[ >1,. By (3.3) and (3.3), we get x € BV (yp). O

Before giving our main theorem, let us consider the following space. Let s = (s,,), t = (¢,) be two
strictly increasing sequences of nonnegative integers with s; = 0, #; = 0.

Sm+1 I+
m|(s, 1) = {x €Q : sup Z Z || < oo},

M k=s,+1 I=t,+1
which is a BDK-space with the following norm:

Sm+1 In+l

(1%l nis.0) = sup Z Z |z
M k= s+1 1=ty +1

Theorem 3.3. For any E FDK-space, the following conditions are equivalent.
i. E is strongly v-conull,
1. for ZE€ Cyo,

00,00
2 .
S = {X €Q: Z Xk — Xk—10 = Xag-1 + X ra-tllaul < 00} CE,
k=1

iii. E contains the space M|(s,t)| for some s, t and the inclusion map I : M|(s,t)| = E is compact,
iv. E 2 BV(p) and the inclusion map I : BV (¢) — E is compact,

Za = {y e Zyklel},

k1l

where

Sm+1,In+1

M|(s, )] ;== {x € Q : sup Z ks = Xp—10 = Xig—1 + Xp—1-1] < 00
mn = s,+1
I=t,+1

Proof. In the proof of this theorem, we apply the technique introduced in [20].
(i = ii) If the space E is a strongly v-conull space, by Theorem 3.1, (S ®)~!(E) is a v-wedge space.
Hence, for z9 € Cy0, 2% € (S@)"!(E) and

SPEMH <SPS UE) = E.
On the other hand,
S(z)(z") — {S(Z)(y) L ye Zw}

AIMS Mathematics Volume 10, Issue 11, 25708-25728.
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{S%) : ) bzl <, ye Q}

k=1

8
8

= {X : ’ |((S<2))_1(X))k1| |zxl < o0, XGQ}

k,

With the above equation, the proof is complete.
(ii = iii) Suppose that S ®(z%) C E for z € C,y. Then z% c (S®)~!(E) and

=

~
Il

—_

8
8

Xk — X170 — Xig—1 + X1 -1 llaul < 00, x € Q}-

~

ml(s, ) € 2" € (§®)U(E)

hold [19]. Thus, the inclusion map I : ml(s,?)] — (SP)Y(E) is compact. Since M|(s,t)| =
S@(m|(s, 1)) C E, the inclusion map S® o I o (§@)' : M|(s,f)] — E is compact. Let us show
that M|(s, t)] = S @ (ml(s, D).

S @ (mi(s, D)

w@u):xEmme

Sm+15In+1
= {85 : sup Z |xy] < o0

mn k=s,+1
I=t,+1

Sm1In+1

= {Y ! sup Z I(SP) ' O)ial < 00, y €Q, Yoo = yor = Y10 =0

m.n k=s,+1
I=t,+1

Sm+1sIn+1

= QY ¢ sup Z Vit = Y10 = Yii—1 + Yi-1-11 <00, y € Q, yoo = Yo1 =y10 =0
m,n
o k=sp,+1
I=t,+1

M|(s,1)|.

(iii = iv) Since BV(p) ¢ SP(m|(s,1)|) and from the hypothesis we have BV(¢) C E. Thus, the
inclusion map I : BV(p) — SP(m|(s,1)|) is continuous, and the inclusion map I : S @(m|(s, 1)) — E
is compact.

(iv = i) Let E 2 BV(¢) and the inclusion map I : BV(p) — E be compact. Then the set
A ={e—e"™ :m,n,...}is a bounded subset of BV(p). Thus, the set I(A) = A is relatively compact
on E. Hence, the topology of coordinat-wise convergence on A and the topology 7 are coincident.
According to the topology generated by the seminorms of r,,,(x) = |x,,,| (m,n = 1,2,...),

0, (k1)< (@m,n)

m@_émbz{L (k, 1) > (m,n)

and ry(e — e™) — 0 (myn = 1,2,...),s0e — ™ — 0 (m,n = 1,2,...) on (E, 7). This completes
the proof. O

AIMS Mathematics Volume 10, Issue 11, 25708-25728.
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The following result demonstrates that the space obtained in the intersection can vary depending on
the chosen notion of convergence.

Theorem 3.4. i. Let E, be strongly p—conull FDK-spaces. Then (\ E, = BV ().
ii. Let E, be strongly v-conull FDK-spaces for v € {bp,r}. Then ( E, = BYV.

Proof. For z € C,g, S P (%) is strongly v-conull and B8V(¢) C E. Then, we obtain

(WSPE) = zeCal = SP(( )i : 2€Co))
SOLY)=8BYV, velbpr)
_ Q)pa\ —
= S (CVO)_{ SA(L,) =BV(p), v=p.

It is clear that the equality S ®(L,) = BV(¢) holds from Proposition 3.2. The first equality is obtained
as follows.

SAL)  =15PW) : xe L)
=8P > lxul < o)

={x ) IS @)l < oo}

={x: Z Xk — Xg—10 = Xis—1 + Xp—1,-1] < 00}
= BYV.

O

Theorem 3.5. An FDK-space E is v-conull iff BV(p) C E, and moreover, the inclusion map I :
BYV(p) — E is weakly compact.

Proof. Let E be a v-conull FDK-space. By Theorem 3.1 the space (S®)7!(E) is a weak v-wedge
space. Using the fact that S is a bijection and a topological isomorphism, we identify (S ®)~!(E)
with E. Hence E is a weak v-wedge space. So L, C E, and J : £, — E is compact. Moreover,
since S@(L,) ¢ SP(E) = E and SP(L,) = BV(¢), we have BV(¢) C E and the inclusion map
I : BV(p) — E is weakly compact because it is obtained from the compact map J : L, — E
conjugation with the topological isomorphism S .

Conversely, if BV(¢) D L,, we obtain L, = (S@)"(BV(p)) c (S?P)'(E) = E and the inclusion
mapping I : L, — BV(p) is continuous. Hence J : L, — E is weakly compact. Consequently,
(SP)~Y(E) is a weak v-wedge space, that is, E is a v-conull FDK-space. o

Corollary 3.6. i. Let E, be p—conull FDK-spaces. Then (\ E,, = BV (p).
ii. Let E, be v-conull FDK-spaces for v € {bp,r}. Then  E, = BYV.

Proof. Let E be a v-conull FDK-space. By Theorem 3.5, we have the inclusion 8V(¢) C E. If z € C,y,
then S (z?) is strongly v-conull and so S ®(z%) is v-conull. Let us denote all v-conull spaces by Y.
Hence we obtain that

YC U {S @) 1 ze Cvo} = 5@Cyy)

[ SPL)=BV.  velbpr)
"1 S2L) =8V, v=p.

O
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We used the gliding hump method applied by Bennett [21] to prove the following results.
Theorem 3.7. Let E be a v-wedge FDK-space. Then E N (C0/BYV) # 0.

Proof. Let us assume that the topology of E is generated by the seminorms {p,,,} such that

|xmn| < pmn(-x) < pm+1,n(-x) < pm+1,n+1(x)
|-xmn| < pmn(x) < pm,n+1(x) < pm+l,n+l(x) (X € E» m,n = 1, 2, . ) (33)

Since C,, is not a v-wedge FDK-space, then the subspace C, N E is not a v-wedge FDK-space by
Theorem 2.14 in [19]. So the space C, N E is not closed in E. We know that C, and C, are
equidimensional so it follows from Theorem 2.14 in [19] that the space C,o N E is not closed in E.
Hence there exists x € C, N E such that p,,(x) < € and ||x]|s for £ > 0, 7 > 0 and positive integers
m, n.

To proof this argue, let us suppose that the contrary is true. That is, there exist € > 0, n > 0, and
m,n € 7" such that if [|x]| = 7, then p,,,(x) > & for x € Cpp N E. Then for 0 # x € C, N E, we have
D (”x“ ) > & so that ||x|le < (17/€)pmn(x) for all x € Cyo N E. It follows that Cpp N E is closed in E,
which is a contradiction.

Taking &€ = &y = 3, p =m1 = 1, m=m = 1,andn = n; = 1, we have x'V. Let k > 1,
[ > 1 and suppose that ml,mz, e Mgy, Ny, Mo, . .., ny—y and XD, x*LI=D have been chosen. With
&n = yrmws and gy = 4, choose me > My, and n; > n,_; so that

|x izm,jzn,1<s<k1<t<l)

(st)
| < D (k+1)(I+1)

and choose x*) € C,o N E so that
1
P (7)< £ and XVl = 5 - (3.4)
We obtain by (3.3) the double sequence (xi;) of elements of C o N E so that

1
kl kl kl

1
ki ki ki
pii(x*) < pp(™) << puc™) < SEDED

Let x = Y x*), and the series is clearly convergent in E. We need to show that x € Cp\8V. For
k=1

my; <i<mgand n, < j < nyq, we have

1

ORI <u,t<vy
|x<sz>| < i , S=ut=v u,v=12,...), (3.5)
1
@y s S >u,t>v
such that
09,00 00,00 u—1,v-1
x|l = Zx(kl) Z |x(sz)| Z 1 50 (o o)
= 2(u+1)(v+1) z : 2(v+1)(t+1)
ki=1 sit=1 s;t=1 s=u+l

t=v+1

AIMS Mathematics Volume 10, Issue 11, 25708-25728.
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$0 x € Cpo.
Now we show that x ¢ BV. For every positive integers u, v, there exist k, € (m,,m,) and
I, € (ny,ny41) so that [x{"| = L and so, by (3.5),

u—1,v—-1

1 1 - 1 I uw-DHv-1)+1
|Xku1v|2——zl——z,—:—— :
uy 2(u+ )(v+1) 1 2(3+1)(l+1) uv 2(u+1)(v+1)

s,r=1 S=u+
t=v+1

From (3.4) and (3.5),

—1,v-1 00,00
>” - 1 1 1 u-—DHy-1)+2
|x’"“”V| = Z D (u+1)(v+1) + 2 (u+1)(v+1) + Z As+D(+1) T 2 (u+D(v+1) ’

s,t=1 s=u+1

Let us define that

| Xmun, , wuandvodd,
Yuy Xy, » UOTVeven.

Then y is a subsequence of x and y ¢ BYV. So x ¢ BYV. i

Theorem 3.8. Let E be an FDK-space such that C, N E is not closed in E. Then M, N E is a non-
separable subspace of M,,.

Proof. The result follows as a consequence of Theorem 3.7. From the construction given there, we can
choose a family of elements {x""} C C,oNE satisfying |[x"™|l, = 1/(mn) and p,,, ,(x™) < 2-m+D+h),
By slightly modifying the construction, we may normalize each element so that |[|x"™||, = 1, while
keeping their supports pairwise disjoint. That is, for distinct pairs (m,n) # (k, [), the supports of x"?
and x*” do not intersect.

Since the co-norm of each x"" equals 1 and their supports are disjoint, we have

”x(mn) — X(kl)”oo =1 for all (m, n) * (k9 l)

Therefore, the set {x"} forms a 1-separated family in M, N E. Since this family is uncountable,
M, N E cannot be separable in M,.

Remark. Condition ||x" — x*D||., > 1 does not follow from boundedness assumptions but from
the disjointness of supports and normalization ||x""||, = 1. Hence, the argument does not require the
sequence family to be bounded in any other sense. O

Corollary 3.9. Let E be a v-conull FDK-space, and then M, N E is not separable in M,,.

Proof. Since C, N E C C,, C, N E is not a v-conull FDK-space. So, the space C, N E is not closed in
E. Thus, by Theorem 3.8, M, N E is a not separable space in M,. ]

Theorem 3.10. Let E be an FDK-space. If L, N E is not closed in E, then there exists a double
sequence summable and not absolutely summable such that E contains it.

Proof. Consider the mapping S® : E — F. By hypothesis, S®(L, N E) = B8V N F is not closed
mF. IfC,NF =8VNF,then C, N F is not closed in F and Theorem 3.7 is contradicted. Hence
Fn (C p\B"V) is nonempty and then E N (CS,\ L,) is nonempty. This proves the theorem. O
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Having established the definitions and basic properties of v-conull and v-wedge FDK-spaces, we
next investigate distinguished subspaces within these spaces, highlighting their structural significance
and relation to classical bounded-variation spaces.

4. Distinguished subspaces of FDK-spaces

In this section, we have provided some examples of distinguished subspaces. We examined some
of the properties of these spaces and their relationships with each other and with v-conull FDK-spaces.
We begin with the smallest. The letter S stands for strong (convergence).

Definition 4.1. Let E D ® be an FDK-space. Then

Sg'/) — S(V)(E) — {x = (-xkl) X =vV - Z xklékl} .
k,l

If A is a matrix, S (A) = SY(Cya) [7].
Thus, E is an AK(v) space iff S(E") = E. Also, Sg) C E since E is complete.
Definition 4.2. Let E D ® be an FDK-space. Then
WY = W(E) = {x =) @ VfEE, f(x)=v- Z xsz(ékl)}-
[
If A is a matrix, W(A) = WY(C,4) [7, 22].
Theorem 4.1. If E is an FDK-space that contains ©, then ® C § g) C Wg') c .

Proof. 1t is sufficient to prove Wg’) c ®. Let f € E’ and f = 0 on ®. A glance at the definition of Wg)
just given shows that f = 0 on Wg). Thus, the Hahn-Banach theorem gives the result.

Note that the stronger inclusion W](Z.V) C @ holds only when the space E is minimal (that is, E = ®).
In the general case considered here, we have only Wg) c ®, which is consistent with the standard
FK-space framework. O

Definition 4.3. Let E be an FDK-space with E D ©, and then
Bi=B'(E)={x=(uw) : Vf€E, (wf@")eBS|.

Br = B N E. If A is a matrix, B(A) = B(Cya) [7,22]. Also, if E is an AB-space, then B(E) = E.

Theorem 4.2. Let E O ® be an FDK-space. Then for each z € By, and each continuous seminorm p
on E we have z,,, = O(p(6™)™ ).

Proof. For each z = (z,,) € B},
|Zmn|p(6mn) — p(Zmnémn) — p(z(mn) _ Z(m—l,n) _ Z(m,n—l) + Z(m—l,n—l)) < M,
since a continuous seminorm is bounded on bounded sets. m]
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Theorem 4.3. Let E O ® be an FDK space. Then By, = E7.
Proof. z € B* means z.u € BS for each u € E/. That is exactly the claim. O

This makes it easy to compute B* and B. The next result makes it even easier although there is a
little less here than meets the eye—namely B will be different for different Y, e.g., Y may be AB and E
is not, even if Y is closed in E.

Theorem 4.4. Let E 5 ® be an FDK-space. Then B* is equal for all FDK-spaces between (®)g and
E;ie., if (@) CY CE, then B*(Y) = B*(E).

Proof. Since the distinguished subspaces are monotone, we have B*(®) c B*(Y) c B*(E). The first
and the last are equal by Theorem 4.3 and 7.2.4 of [23] O

Theorem 4.5. Let E > ® be an FDK-space. Then E has AB iff Ef C E” i.e., E/ = E”.

Proof. Necessity. Using Theorem 4.3, E C B*(E) = E/*. Hence E? > E/” > E/. Sufficiency.
B*(E)= E/" 5 E" S E, g

Corollary 4.6. Let E > ® be an FDK-space. If E has AB, then EP) is closed in E’.
Proof. The proof is clear by Theorem 4.5, since EA" is closed in E”. |

Definition 4.4. Let E be an FDK-space with E D ©, and then
FP' = FOE) ={x=(xa) : Vf€E, (xuf@E")eCS,}.

FY = FO* N E. IfA is a matrix, F¥(A) = FO(C,) [7, 22].

The letter Fg) stands for functional (convergence) since 7 € Fg'” if and only if {f(z")} is
convergent for all f € E’. It is customary to write z € F‘(EV)Jr as z has FAK, i.e., functional AK. If
F" = E, then the FDK-space E is called a FAK(v)-space.

Theorem 4.7. Let E O ® be an FDK-space. Then F g” = E/PO),
Proof. The desired result is obtained by replacing CS, with 88 in Theorem 4.3. O

Corollary 4.8. Let E be an FDK-space with E > ®. Then F W% s equal for all FDK-spaces between
(®)g and E, that is, if (®)g C Y C E, then F¥*(Y) = FY*(E).

Corollary 4.9. Let E > ® be an FDK-space. Then E has FAK iff E/ ¢ EPY; i.e., Ef = EFU,
Theorem 4.10. Let E be an FDK-space and ® has AK(v). Then F®* = (®)P0F0),
Proof. Since FO* = EFY) = (@)/F") = (@)P»E®  and the proof is complete. o

Example 4.1. i. If E = 8V, then S = WY = By = FY = F"* = BV, and B}, = BYV.

ii. Let E= L, ®e. Bylle"|| = mn, B} = Bp = L,

iii. IfE = Cp, thene € FY'\FY. So F'* = M, and F = Cpp.

Clearly, we can see that ® C Sg) C Wg’) C F?. If v =r, then Fg') C Bg. But if v = c, then there is
no inclusion between F g) and B, because BS and CS, do not contain each other.
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Definition 4.5. Let E be an FDK-space that includes ®. E is called a v-semiconservative space, if
Ef c CS,. Thatis, E > ® and forall f € E', v=Y, f(6") is convergent. Moreover; if a semiconservative
FDK-space includes the space BV, then the space is called a variational v-semiconservative space.

Theorem 4.11. Let E be an FDK-space, E D ®, z € Q, and let 7 be invertible. Then

i. z€ By iff 77'E > BV, In particular e € B}, iff E > BV,

ii. 7€ Bp iff 77 'E > BYV. In particular e € B iff E D BYV.

iii. 7 € Fém iff 77\E is v-semiconservative. In particular e € Fg)J' iff E is v-semiconservative.

iv. 7 € Fg) iff z7'E is variational v-semiconservative. In particular e € Fg) iff E is variational
v-semiconservative.

V. Z € W,(;) iff 77'E is v-conull. In particular e € Wg) iff E is v-conull.

Vi. 7 € Sg) iff 7' E is strong v-conull. In particular e € Sg) iff E is strong v-conull.

Proof. i) Let f € (z7'E)’. Then f(x) = ax+ g(zx), @ € ®, g € E’. In particular, if we take x = ", then
F(&™) = @ + 2ng(6™).
So, we get
7'ED> BV, & f(6™) € BS & (2,,8(6™)) € BS © z € Bi.
i1) Necessity.

z€Br = zeEandze B}
= eecz'Eandz7'E > BV,
= 7 'E>B8BYV.

Sufficiency. Let z7'E D BYV. Since BV, z7'E D> BV, by (i), z € By, is satisfied. Also, ¢ € BYV =
e€z'E=z€E, soz€ BjNE = Bg is obtained.

iii) Let f € (z"'EY. Then f(x) = ax + g(zx), @ € b, g € E'. For x = 6™, f(6™) = @y + 2ymg(6"™)
holds. Thus, if 77! E is v-semiconservative, then (z‘lE)f CCS, & f(6™) € CS, © (7mg(d™)) € CS,,
andsoz€ F g” is obtained.

v)

zng) o zng)JrandzeE
& (z‘lE)f cCS,andec 7 'E

& 77 'E is variational v — semiconservative.

v) Sufficiency is clear.

Necessity. To prove the necessary, we assume that z € Wg). Then Vg € (z7'E), g (z - Z(’"")) — 0,
(m,n — o). Furthermore, each f € (z"'E)’ has the representation f(x) = ax + g(zx),a € ®, g € E'.
So we obtain

fle—e™) = a(e—e"™)+ g(zle — ™)) 4.1)
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3
8
8
8

= ay + ay + gz —72"™).

k=m+1
1 [

Il >

A
I3

~

Because of @ € ©, the sum of the series on the right side of the above equation is 0. Taking the limit
for m,n — oo on the two sides of the above equation, we get f(e — ™) — 0, Vf’ € (z"'E). This
proves necessary.

vi) Necessary. Let z € S, There is a seminorm ¢ on E such that g(z — ™) — 0 (m,n — o).
Furthermore, for the seminorms ry; and h(x) = g(zx),

rute —e™) =0 ((k,]) < (m,n))
and
he = &™) = glz(e = ™)) = gz = 2") = 0

are obtained. So, z7'E is strong v-conull.
Sufficiency. Let z 'E be strong v-conull. Then ry(e — e"™) — 0 and h(e — ¢"™) — 0. Since
h(x) = g(zx), h(e — e"™) = g(z — ™) — 0 is obtained. This means z € Sg'). m|

Theorem 4.12. The distinguished subspaces are monotone, that is, if E; C E,, then Y(E;) C Y(E,)

where ¥ = Sg), Wg), Fg), Fg”, Bg, B}.. This also holds for ¥ = D, ie., (5)51 C (E)Ez.

Proof. Since the map i : E; — E, is continuous, x™ — x in E; implies the same in E,. This claim is
for S g). If we consider W(EV) , it follows that i is weakly continuous at the same time.

Nowz e F g”, By if and only if (z,,,f(6™)) € CS,, BS, respectively, for all f € E7, and hence for
all g € EJ since g|g, € E'. The result follows for Fg”, By and so for Fg), Bg. O

Theorem 4.13. Let O ® be an FDK-space. The following assertions are equivalent:
i) E has FAK(v),
i) EC (S g’))ﬂ(V)ﬁ(V);
iii) E C (W),
iv) E C( Fg))ﬁ(V)ﬁ(V)’.
V) EBO) — (Sg))ﬂ(");
vi) EPY) = (FYY0)

Proof. (ii = iii) and (iii = iv) are clear since S ¢ WY’ c F. If (iv) is true, then EF® > (F)P®) =
E/BVBO) 5 ET 5o (i) is true by Corollary 4.9. If (i) is true, Theorem 4.10 implies that S = @ and that
(ii) is true. The equivalence of (v), (vi) with the others is clear. O

5. Matrix domains
The original ground space of summability is C(VQ. In this section, we discuss Egv). Its properties
depend on the choice of E, v, and A; our procedure will be to fix £ and discuss how the properties of

EE“') depend on those of v and A. This discussion will depend on which E is chosen.
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Remark 5.1. In this section, z € Q, E is an FDK-spce, and A is a four-dimensional matrix such that
EE\V) D @, i.e., the columns of A belong to E. The subspaces S g), W‘(EV), F g), B are calculated in the
FDK-space E\.

N @)
Lemma 5.1. With the notation of Remark 5.1, Az0) = Y 7,0,
kI=(L1)

@)

.o kl
A= 5} = (S0
mn

k,I=(1,1)

Theorem 5.1. With z, E, A as in Remark 5.1, these are equivalent:
i)z€B",
ii) {AZ9} is bounded in E,
iii) E) > BV,
iv) {zkl.g({/akl))} € BS for each g € E'.
Also, these are equivalent: z € B and Ei‘vi D> BYV, (ii)and z € EE“'), and (iv) and z € Ei‘v) .

Proof. By Theorem 4.11, z € B* & 77.E{ > 8V, & EZV)Z > BV,. So we get i = iii. Since the
(k, Dth column of A.z is zy\"", iii = ii is obtained by the last part of 8.6.4 of [23]. Also, (ii) is true iff
g(Az") is bounded for each g € E’. This gives ii = iv. The second set of equivalences is clear since
z€EV o ecE). O

Theorem 5.2. Let E be an FDK-space, A be a four-dimensional matrix, and v € {r,c}. Then Eﬁ\” is

v-semiconservative iff {X‘D € E and g({X‘l)) € CS, foreach g € E'.

Proof. Necessity. It is clear that d\kl) € E by being v-semiconservative. Given g, let f(x) = g(Ax) for

X € Ei‘v), so f € (EE“'))’ by Theorem 2.2. Then f(6¥) = g(As¥) = g({f(‘kl)), and the result follows.

Sufficiency. First, 55""") € CS, by the hypothesis and we can take g = P,,, where P,,,(X) = X,,,; this
yields {g(Z%")} = {@u). Hence Q) > BYV.
Now, let f € (E{’Y. Then by Theorem 2.2, f(x) = h(x) + g(Ax) with g € E, h € (Q}’). Also,

h(x) = v — Y4 txg with x € QY u € QYY) ¢ BV = CS,, by Theorem 2.1. Thus

f@ = h(&Y) + g(As*)
h(6*) + g({™).

By the hypothesis and the fact that u € CS, we have {f(6*)} € CS,. Hence EEI) 18 v-semiconservative.
O

Theorem 5.3. With z, E, A as in Remark 5.1, these are equivalent:
i)z € FO,
ii) {AZ)} is weakly Cauchy in E, i.e., {g[AZ"]} € C, for each g € E’,
iii) E, is v-semiconservative,
iv) {zkl.g(fl(fl))} € CS, foreach g € E'.

Proof. i = iii is obtained by Theorem 4.11; iii = iv follows from 9.4.1 of [23]; ii = iv follows from
Lemma 5.1. O
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Theorem 5.4. Let E be an FDK-space, v € {r,c}, and A is a four-dimensional matrix such that ES’) is
variational v—semiconservative. Then EX') is v-conull iff 3, g({i‘k”) = g(Ae) for each g € E'.

Proof. Necessity. Let f(x) = g(Ax) so f € (E’) by Theorem 2.2. Then

g(Ae) = f(e) =lim f(e"™) = lim g(Ae"™™) = lim g (Z amnkl]
N mn mn faest

=8 [lr}ll};l Z amnkl] =8 (Z amnkl] = g((lgkl))-

ki=1 ki=1

Sufficiency. Let f € (Eﬁlv))’. By Theorem 2.2 there are two cases to consider. First, f(x) = h(x), x €
QX), u e (Qﬁ?)ﬁ(”. On the other hand, E;V) D BV by the definition of a variational v-semiconservative
space. So

fle—e™) =y Z Uy +v— Z uy — 0.
k=m+1 k=1
=1 I=n+1
Second, f(x) = g(Ax) for which the calculation given in the first part shows f(e — ") — 0. |

Theorem 5.5. With z, E, A as in Remark 5.1, these are equivalent:
i)z€ W,
ii) AZ#) — Az weakly in E,
iii) E 4, is v-conull,
iv) ¥ 2ug(¢y") = 8(A2) for each g € E.

Proof. i = iii follows from Theorem 4.11; ii = iii follows from Theorem 9.4.9 of [23]; ii = iv follows
from Lemma 5.1. a

Theorem 5.6. With z, E, A as in Remark 5.1, these are equivalent:
i)zeSY,
i) Az") — Az in E,
iii) E 4, is strongly v-conull,
iv) 2, zklff(‘kl) = Az convergence in E.

Proof. i = iii is obtained by Theorem 4.11; ii = iv follows from Lemma 5.1.
(i = i) z = Y, zu0" and the map A : E4 — E is continuous, so Az = ¥, zyA&" = 3 713",
(ii = i) Q4 has AK(v) by 4.3.8 of [23], therefore u(z — z'?) — 0 for any z € Q4. Thus z € S® if
glA(z — 7”)] — 0 where ¢ is a typical seminorm of Y. But this is simply Az"> — Azin E. O

6. Applications of v-conull FDK-spaces to summability domains

In the last section, we examined the applications of some of the results we obtained in the main
section on summability domains.

Theorem 6.1. Let C, and E be FDK-spaces, v € {r,c}, and A = (auu) is a four-dimensional matrix.
Then the following statements are equivalent:
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i) EX') is a strongly v-conull FDK-space;
ii) BV(p) C EX') and A : BV(p) — E is compact;
i) (" € E (k,1=1,2,...) and A(e = Y, ") — 0 in E.

Proof. (i = ii) By Theorem 3.3, BV(¢) c EY, and the map I : BV(¢) — E\’ is compact. So
IoA:8BV(p) — E is compact, since the mapping A : E( ") — E is continuous.

(ii = iii) By (ii) and 6" € BV(p) (Vk, 1), we obtain g“‘” A" € E, Vk [ > 1. Furthermore,
since QY is an AK(v) space and e € BV(p) c E{ Q("), we have e — o — 0 (i,j = ).

Also, since the mapping A QY

kl 1
— Q is continuous, we obtain A(e - Y 16"1) - 0@, j > o).

Then the set { DN Ay P 1} is bounded in BV(yp). Because A : BV(p) — E is compact,

{A (e— K= 15"1): i,j > 1} is relatively compact in E. Hence the coordinat-wise convergence

topology and the topology of E are coincident. So, {A ( kl | 6"’)} in E also converges to zero.
(@i => ) If {(kl) € E, then E<”) D @. Because the sequence {A( k = 6"’)} converges to zero, E(V)
is a strongly v-conull FDK-space. m|

Theorem 6.2. Let C, and E be FDK-spaces, v € {r,c}, and A = (auu) is a four-dimensional matrix.
The following statements are equivalent:

i) E;V) is a v-conull FDK-space;

ii) BV(p) C EX') and A : BV(p) — E is weakly compact;

i) (" € E (k,1=1,2,...) and A(e — 3, 6") — 0 (weakly) in E.

Proof. (i = ii) By Theorem 3.5, 8V(p) C EX’) and the map I : BV(¢) — EX’) is weakly compact. So
loA:8BV(p) — E is weakly compact, since the mapping A : E;V) — E is continuous.

(ii = iii) By hypothesis, 6" € B8V(¢), Vk,I > 1, and {(kl) A0 e E, Vk,I > 1. Furthermore,
since QX') is an AK(v) space and e € BV(p) C EX’) c Q("), we have e — Z;{’l 0> 03, ] - o).
Also, since the mapping A : QY — Qis continuous, we obtain A (e — Y 5”) — 0 (i, j = o). Then
the set {e - k I 1(5"’ A 1} is bounded in BV(¢). Because A : BV(¢p) — E is weakly compact,
{A (e - k . 5"1) A 1} is weakly relatively compact in E Hence, the coordinat-wise convergence

topology and the topology of E are coincident. So {A( kl | 6"1)} in E also converges to zero. 0O

Theorem 6.3. Let A be a four-dimensional matrix, and E be an FDK-space. It is equivalent for the
space E;V) to be a v-conull FDK-space and a strongly v-conull FDK-space whenever weak convergence
and strong convergence coincide.

Proof. Let Eiv) be a strongly v-conull FDK-space. Then the columns of A are in E and
{A (e - (5"’)} — 0. By hypothesis, the columns of A are weakly convergent in E. That is, E}’ is
a v-conull FDK-space. O

For example, if we choose E = L,, BV, we obtain the following results by Theorem 6.3, since
weak convergence and strong convergence coincide in these spaces.

Theorem 6.4. Let A be a four-dimensional matrix.
i. (L,)a is a (strongly) v-conull FDK-space iff

00,/ 00,00
l}gzn E Amnij T E Amnij| = 0.
T oma li=k,j=1 i=1,j=1
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ii. BV, is a (strongly) v-conull FDK-space iff

§ (amnij — Am+lnij — Amn+l,ij T am+1,n+l,i,j)
ij=1

lim
K

mn

k.l

- § (@mnij = Amstnij — Qmpsiyj + Ametnrlij)
ij=1

=0.

Proof. (i) Let EZV) = (L) in Theorem 6.1. Then (L), is a (strongly) v-conull FDK-space if and only
if A(e — 3 6*') converges to zero in £,,, which means

LM:O(:)li]ng

m,n

00,/

00,00
E amnij + E amnij

i=k, j=1 i=1,j=1

=0.

lim |(Ace = " 8

(11) Let EX') = BV, in Theorem 6.1. Then BV, is a (strongly) v-conull FDK-space if and only if
A(e — Y, 6*') converges to zero in 8V, which means

00 k.l
. ki _ . —
lim||AGe = 36D, = 0 & im 1> iy = D | =0
i,j=1 i,j=1 BV
00,00

ot 1}3}’1 Z(amnij - am+1,n,i,j - am,n+1,i,j + am+1,n+l,i,j)

Tomn |i,j=1

k|l

- E (amnij — Qu+lpi,j — Amn+lij + am+1,n+1,i,j) =0.

i,j=1

7. Conclusions

In this paper, we have introduced and studied several new structural properties of FDK-spaces
related to v-conullity and v-wedge constructions. We established the equivalence between strongly v-
conull FDK-spaces and v-wedge FDK-spaces, and between v-conull and weak v-wedge spaces. These
results clarify how the transformation operator S ® preserves or modifies the topological character of
a given space.

In the later sections, we examined the distinguished subspaces associated with an FDK-space
E, including § 2’) and WI(EV), and discussed their inclusion relations. This analysis highlights that
the structure of E, rather than its dual, determines the behavior of these distinguished components.
Furthermore, we proved that if £ is a v-wedge FDK-space, then the intersection E N (C,o/BYV) is
nonempty, revealing a nontrivial relation between v-wedge properties and spaces of bounded variation.

Overall, the results provide a unified framework connecting the notions of v-conullity, wedge-type
constructions, and distinguished subspaces in the setting of double sequence spaces. They also extend
classical results from FK-space theory to the broader context of FDK-spaces.

Recent Various kinds of methods have been resolved successfully by building various approaches
for convergence in recent times [24]. Future work can consider the preservation of some important
physical properties and physical structures with particular conditions and refer to recent work [25].

AIMS Mathematics Volume 10, Issue 11, 25708-25728.



25727

Author contributions

Seyda Sezgek: Conceptualization, methodology, validation, formal analysis, writing-original draft,
writing-review and editing; IThan Dagadur: Supervision, methodology, simulation, writing-review and
editing. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-Al tools declaration
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. A. Wilansky, An application of Banach linear functionals to summability, Trans. Amer. Math. Soc.,
67 (1949), 59-68. https://doi.org/10.2307/1990418

2. E. L. Yurimyae, Einige Fragen iiber verallgemeinerte Matrixverfahren, co-regular und co-null
verfahren, Eesti NSV Tead. Akad. Toim. Tehn. Fiiiis Mat., 8 (1959), 115-121.

3. A. K. Snyder, On a definition for conull and coregular FK spaces, Notices Amer. Math. Soc., 10
(1963), 183.

4. G. Bennett, A new class of sequence spaces with applications in summability theory, J. Reine
Angew. Math., 1974 (1974), 49-75. https://doi.org/10.1515/crll.1974.266.49

5. H G. Ince, Cesaro conull FK-spaces, Demonstr. Math., 33 (2000), 109-122.
https://doi.org/10.1515/dema-2000-0114

6. 1 Dagadur, C,-conull  FK-spaces, Demonstr.  Math., 35  (2002), 835-848.
https://doi.org/10.1515/dema-2002-0414

7. M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods, Tartu:
Tartu University Press, 2001.

8. F. Moricz, B. E. Rhoades, Almost convergence of double sequences and strong regularity
of summability matrices, Math. Proc. Cambridge Philos. Soc., 104 (1988), 283-294.
https://doi.org/10.1017/S0305004 100065464

9. A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289—
321. https://doi.org/10.1007/BF01448977

10. B. Altay, F. Basar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), 70-90.
https://doi.org/10.1016/j.jmaa.2004.12.020

11. F. Basar, M. Y. Savasci, Double sequence spaces and four-dimensional matrices, New York:
Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003285786

12. F. Basar, H. Capan, On the paranormed spaces of regularly convergent double sequences, Results
Math., 72 (2017), 893-906. https://doi.org/10.1007/s00025-017-0693-5

AIMS Mathematics Volume 10, Issue 11, 25708-25728.


https://dx.doi.org/https://doi.org/10.2307/1990418
https://dx.doi.org/https://doi.org/10.1515/crll.1974.266.49
https://dx.doi.org/https://doi.org/10.1515/dema-2000-0114
https://dx.doi.org/https://doi.org/10.1515/dema-2002-0414
https://dx.doi.org/https://doi.org/10.1017/S0305004100065464
https://dx.doi.org/https://doi.org/10.1007/BF01448977
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2004.12.020
https://dx.doi.org/https://doi.org/10.1201/9781003285786
https://dx.doi.org/https://doi.org/10.1007/s00025-017-0693-5

25728

13

14.

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

@ AIMS Press

. J. Boos, T. Leiger, K. Zeller, Consistency theory for SM-methods, Acta Math. Hungar., 76 (1997),
109-142. https://doi.org/10.1007/bf02907056

H. Capan, Some paranormed double sequence spaces and backward difference matrix, PhD Thesis,
Istanbul University, 2018.

M. Bagarir, O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21 (1999),
193-200.

O. Tug, V. Rakocevi¢, E. Malkowsky, On the spaces BV, of double sequences of bounded
variation, Asian Eur. J. Math., 15 (2022), 2250204. https://doi.org/10.1142/S1793557122502047

M. Zeltser, The solid topology in double sequence spaces, In: Seminarberichte des facbereichs
mathematik der fernuniversitdiit hagen, 1998, 53—67. https://doi.org/10.18445/20180823-144022-0

M. Yesilkayagil, F. Basar, AK(v)-property of double series spaces, Bull. Malays. Math. Sci. Soc.,
44 (2021), 881-889. https://doi.org/10.1007/s40840-020-00982-z

S. Sezgek, I. Dagadur, v-wedge FDK-Spaces, Math. Morav., 29 (2025), 67—382.
P. K. Kamthan, M. Gupta, Sequence spaces and series, New York: Marcel Dekker, 1981.

G. Bennett, The gliding hump technique for FK-spaces, Trans. Amer. Math. Soc., 166 (1972), 285—
292. https://doi.org/10.1090/S0002-9947-1972-0296564-9

M. Zeltser, On conservative matrix methods for double sequence spaces, Acta Math. Hungar., 95
(2002), 221-242. https://doi.org/10.1023/A:1015636905885

A. Wilansky, Summability through functional analysis, North-Holland, 1984.

Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference
method for supergeneralized viscous Burgers’ equation, Comp. Appl. Math., 44 (2025), 257.
https://doi.org/10.1007/s40314-025-03222-x

X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-
dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80.
https://doi.org/10.1007/s10915-024-02511-7

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 25708-25728.


https://dx.doi.org/https://doi.org/10.1007/bf02907056
https://dx.doi.org/https://doi.org/10.1142/S1793557122502047
https://dx.doi.org/https://doi.org/10.18445/20180823-144022-0
https://dx.doi.org/https://doi.org/10.1007/s40840-020-00982-z
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-1972-0296564-9
https://dx.doi.org/https://doi.org/10.1023/A:1015636905885
https://dx.doi.org/https://doi.org/10.1007/s40314-025-03222-x
https://dx.doi.org/https://doi.org/10.1007/s10915-024-02511-7
https://creativecommons.org/licenses/by/4.0

	Introduction
	Notations and preliminaries
	Main results
	Distinguished subspaces of FDK-spaces
	Matrix domains
	Applications of -conull FDK-spaces to summability domains
	Conclusions

