
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 25639–25666.
DOI: 10.3934/math.20251136
Received: 17 August 2025
Revised: 03 October 2025
Accepted: 17 October 2025
Published: 06 November 2025

Research article

An improvement in predictive modeling techniques with application to
pivotal quantity and least square method

M. H. Harpy1,*, O. M. Khaled2, Mahmoud El-Morshedy1 and K. S. Khalil3

1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2 Department of Mathematics, Faculty of Science, Port said University, Port Said, Egypt
3 Department of basic science, Faculty of computer and informatics, Suez Canal University, Ismailia

41522, Egypt

* Correspondence: Email: mahmoud haussieny@science.suez.edu.eg.

Abstract: In this research, we develop a new method for predicting order data. Our approach
involves selecting the best-fitting distribution through different tests, estimating its parameters, and
constructing prediction intervals that leverage observed and predicted data. In this method, we entered
the predicted data one by one, along with the observed data. At each step, we found a suitable
distribution and then estimated its parameters and applied the prediction method, such as pivotal
quantity and modified least square with cumulative hazard function. We implemented the new method
using the R programming language and conducted comparative analyses against several established
methods across datasets, encompassing health insurance coverage, glass fiber strength, and COVID-19
recovery rates. The results demonstrated this method’s superior performance, particularly in terms of
Mean square error (MSE) and coefficient of variation (CV), as well as its ability to predict more data
and outperform traditional methods in most scenarios. This method has the ability to obtain a large
number of predicted observations to reach about 150% to 200% of the real observations, as explained
through a simulation study and real data.
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1. Introduction

Prediction of future observations is an issue of major importance in many applications of reliability
theory. Point prediction is an essential tool for predicting future observations and is widely used in
reliability theory and lifetime problems. For many years within reliability theory, especially in life
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testing experiments, researchers have focused largely on point forecasting using a limited number of
methods such as the least square method, maximum likelihood predictor, unbiased optimal predictor,
conditional median predictor, and Bayesian predictor. A new method for establishing a point predictor
for the future order statistics in the case of the sample size as a random variable (RV) was proposed by
Barakat et al. [1].

In the field of reliability theory, the point and interval predictions for ordered RVs are used widely,
and industrial applications and survival studies for predicting the number of items may be defective
during the future production process. An example for this is that, the point predictor is very useful to
choose a suitable censoring scheme in the experiments of lifetime testing. In such experiments, we can
test all items (n items, say) and then we wait until getting a reasonable (with respect to their cost and
time) number of items that failed (r < n, say). After that, and based on the observed failure times, we
can predict the other failure times of the survivor items. Based on this information, we can choose the
suitable censoring scheme, (e.g., Type I or Type II censoring) and the time or the sth (say s > r) future
failed item, at which the test must be terminated. The reader can review several papers that entail the
problems of prediction involving order statistics, such as Barakat et al. [2] and Patel [3].

Morever, Aly et al. [4] proposed a novel least squares approach for estimation and prediction that
relies on cumulative hazard function.

The pivotal quantities when used in conjunction with order statistics gives a powerful statistical
technique to construct predictive intervals (PIs). Two pivotal statistics were developed by Barakat et
al. [2] to construct prediction intervals of future observations in the case of fixed sample size; and
if the sample size is a positive integer valued RV, independent of the observations, they also derived
explicit forms for the distribution functions (CDFs) of the used pivotal statistics. Moreover, Khaled et
al. [5] did the same work when the mixture of two gamma distributions was used, and in the case of
the mixture of two beta distributions.

In this paper, we introduce a new method for predicting future observations. Let X1, X2, ..., Xn

be n observations. First, we select the best-fitting distribution (some of fitting distributions will be
present in Section 3) through different tests for these observations. Then, we estimate its parameters
and construct prediction intervals, considering the new predicted value as Y1. This process is repeated
for each new prediction: To predict Y2, we re-fit the model to the extended dataset X1, X2, . . . , Xn,Y1,
updating the distribution and its parameters. Similarly, we use the dataset X1, X2, . . . , Xn,Y1,Y2 to
predict Y3, and so on. This method is more accurate and enables us to predict up to 100% of the
data. However, in this paper, we propose that the lower bound of the next interval should be the
estimated value of the last observation. Model selection was performed using the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) by fitting data using minimum AIC and
BIC for all distributions (see Arijit Chakrabarti [6]). In Section 3, we give comprehensive simulation
studies for the new method. Finally, in Section 4, five real data sets are analyzed for illustrative and
comparison purposes.

2. Auxiliary results

In this section, we employ two auxiliary methods to enhance the suggested methodology. First, we
apply the approach of Barakat et al. [2], which utilizes a pivotal quantity for constructing confidence
intervals. Second, we incorporate the technique described by Aly et al. [4], which employs the least

AIMS Mathematics Volume 10, Issue 11, 25639–25666.



25641

squares method to predict future observational data points. The theorems underpinning the proposed
method, along with the corresponding R code, are presented below.

2.1. Pivotal quantity

The proposed method relies on the results of Barakat et al. [2], which is re-coined in the
following lemmas:

Lemma 2.1. Let Xi, i = 1, 2, ..., n be a random sample (i.i.d) of size n have an absolutely continuous
distribution function F and let X1:n < X2:n < ... < Xn:n denote the corresponding order statistics.
Moreover, let X∗i = − log(1 − F(Xi)), i = 1, 2, ..., n, and X∗i:n = − log(1 − F(Xi:n)), i = 1, 2, ..., n. Then
the normalized spacing

Zi = (n − i + 1)(X∗i:n − X∗i−1:n), i = 1, 2, ..., n, (X0:n ≡ F−1(0+)) (2.1)

are i.i.d RVs, from the standard exponential distribution EXP(1).
Barakat et al. [2] (specially, Lemma 2.1, p. 2) suggested the pivotal quantity Ur,s;n =

X∗s:n−X∗r:n
X∗r:n

and

Vr,s;n =
X∗s:n−X∗r:n

Tr:n
, r < s, where X∗i:n = − log(1 − F(Xi:n)), i = 1, 2, ..., n. and Tr:n =

∑r
j=1 Z j represents the

total time in a life test and Z j, j = 1, 2, ..., r, are defined by (2.1) to construct the PI for Xs:n, as well
as Xs:N , where N is a positive integer-valued RV independent of the basic RVs Xi, i = 1, 2, ..., n. The
following lemma (Theorem 2.5 in Barakat et al. [2], p. 5) explains the previous result.

Lemma 2.2. For a positive integer-valued RV N, which is independent of Xi, i = 1, 2, , ..., n, the CDF
FVr,s;N of the pivotal quantity Vr,s;N is given by

FVr,s;N (v) = 1 −
1

(s − r − 1)! P(N ≥ s)

∞∑
n=s

s−r−1∑
i=0

(−1)i

(
s − r − 1

i

)
(n − r)!

(n − s)!ηi(n, s)

× [1 + vηi(n, s)]−rP(N = n), v ≥ 0,

(2.2)

where ηk(n, t) = n + k + 1 − t. Hence, the equation FVr,s;N (v) = 1 − α can be solved numerically to get
the quantile value v for any given α.

Additionally, [xr:N , F−1(1 − e−v tr:N F(xr:N))] is (1 − α)100% PI for Xs:N . Moreover, if N is a fixed
integer (i.e., P(N = n) = 1), n ≥ s, then

FVr,s;n(v) = 1 − Br,s(n)
s−r−1∑

i=0

(−1)i

(
s − r − 1

i

)
[ηi(n, s)(1 + vηi(n, s))]−1, V ≥ 0, (2.3)

where Br,s(n) = (n − 1)![(s − r − 1)!(n − s)!]−1.

We apply [2, Theorem 2.5] to the suggested method for a sample from a family of distributions like
wiebull, exponential, and gamma. In this paper, we investigate the three issues for the usage of this
method through an extensive simulation study that is carried out using R-Package:

1. Find the quantile function for the distribution.
2. Create a confidence interval for the given observation using the quantile function and propose

a multi-point predictor for fixed sample sizes. The confidence interval will provide a range of
potential values for the observation, while the point predictor will offer a precise estimate of its
most probable value.

3. Generate parameter estimates for the distribution, considering each predictive data point.
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2.2. Modified least squares with cumulative Hazard function

In the field of estimation and prediction for generalized ordered statistics, Aly et al. [4] introduced
a novel application of the cumulative hazard function suitable for any continuous distribution. The
innovative method employed makes use of the Rényi representation and is adaptable for complete
data and type II right-censored data. Rigorous simulation experiments were conducted to validate
the efficiency of the proposed procedures. The methods were also compared against the maximum
likelihood and ordinary weighted least squares (WLS) methods, with evaluations based on the root
mean squared error (RMSE) and Pitman’s measure of closeness (PMC). The practicality of the
proposed methods was further substantiated through the analysis of two real data sets. Moreover,
we apply the suggested method to this real data and compare the results.

An approximate modified weighted least square estimate of Θ based on the first r observed GOSs
x̃r = (x1, x2, ..., xr) for r ≤ n can be obtain by minimizing the function

WL∗H,r(Θ|x̃r) =

r∑
i=1

w∗i (H(xi; Θ) − µ∗i:n)2 + (n − r)w∗r(H(xr; Θ) − µ∗r:n)2, (2.4)

with respect to Θ, where x̃r = (x1, x2, ..., xr) are observation values of the GOSs model. Approximate
modified weighted least square estimates of xs:n based on (x1, x2, ..., xr) are derived by minimaizing the
predictive weighted least square function

PWL∗H,r,s(Θ, xs|x̃r) =

r∑
i=1

w∗i (H(xi; Θ)−µ∗i:n)2+(s−r+1)w∗r(H(xr; Θ)−µ∗r:n)2+(n−s+1)w∗s(H(xs; Θ)−µ∗s:n)2.

(2.5)

2.3. Exploring distributions in simulation: Methods and applications

We present a concise review of Weibull and Modified Kies-Exponential and Gompertez
distributions, were used in Aly et al. [4] as an application of prediction observation using the modified
least square method with the hazard function.

2.3.1. Weibull distribution

The Weibull distribution is a continuous probability distribution that is widely used in statistics,
engineering, and scientific fields to model the distribution of lifetimes, failure times, or survival times
for processes, products, and systems. It is named after Wallodi Weibull, a Swedish engineer, who
introduced it in the mid-20th century.

The Weibull distribution is characterized by two parameters: The shape parameter (a) and the scale
parameter (σ). These parameters define the shape and scale of the distribution, making it a flexible
model for a wide range of real-world applications. Rahmouni and Ziedan [7] introduced the Weibull-
generalized shifted geometric (WGSG) distribution, including its properties, estimation methods, and
applications, showing improvements over classical lifetime models in handling challenging hazard
behaviors. This distribution was used by Magdy et al. [8] to fit data sets that consist of voltage levels at
which failures occur in a certain type of electrical cable, the test involved 20 specimens. The probability
density function (pdf) of the Weibull distribution is given by:
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f (x; a, σ) =

 a
σ

(
x
σ

)a−1
e−(x/σ)a

, x ≥ 0,

0, x < 0,

where, x is the RV representing the time to failure or survival time. Parameter a is the shape
parameter, which determines the shape of the distribution curve; if a > 1, the distribution is right-
skewed (increasing hazard rate); if a < 1, it is left-skewed (decreasing hazard rate) and when a = 1,
it reduces to the exponential distribution. Parameter σ is the scale parameter, which represents the
characteristic life of the distribution, the point at which about 63.2% of the units have failed (see also
Rinne [9] and Karolczuk and Palin-Luc [10]). The Weibull CDF is given by:

F(x; a, σ) =

1 − e−(x/σ)a
, x ≥ 0,

0, x < 0.

Figure 1(a) shows the Weibull pdf at different cases of the shape and scale parameters. Figure 1(b)
shows the Weibull CDF at the same values of these parameters.

(a) pdf of weibull (b) CDF of weibull

Figure 1. The plot of pdf and CDF of weibull distribution.

We apply the method of pivotal quantity for some data set from the weibull distribution to find a PI.
Moreover, due to Lemma 2.2, letVr,s+t−1,n be the upper bound of PI, such that

Vr,s+t−1,n = Q(1 − e−vtr:n F(Xr:n; a;σ)). (2.6)

Remark 2.1. In this paper, we suggest a new technique to choose a predicting point, such that: If
xi ≤ 1,∀ i = 1, 2, ..., r we choose the predicting point as the average of (median, harmonic mean,
geometric mean, third decile) for the PI.

Otherwise, if xi ≥ 1,∀ i = 1, 2, ..., r, we choose the predicting point as the third decile of the PI.
It is worth mentioning that the method we use for predicting the parameters is the

maximum likelihood.

AIMS Mathematics Volume 10, Issue 11, 25639–25666.



25644

2.3.2. The modified Kies-exponential (MKE) distribution

It is known that the exponential distribution has an important property, which is the lack
of memory, making it one of the important classical distributions, in addition to it is analytically
tractable distribution. However, it has some limited applications because of its fixed hazard rate and
unimoda pdf. For that, several extensions of the exponential distribution are considered to increase
its flexibility and applicability. One of these extensions is the modified Kies-exponential (MKE) (see,
Babtain et al. [11] and Aly et al. [4]). MKE distribution has many applications in various fields such as
reliability engineering: Modeling time-to-failure of components or systems with non-constant failure
rates, survival analysis: Analyzing time until an event of interest occurs, accounting for different hazard
functions, and queuing theory: Modeling interarrival times or service times in queuing systems with
complex arrival patterns.

The pdf and CDF of the MKE distribution are given by:

g(x; a, b) = a b e−(ebx−1)a
ebx (ebx − 1)a−1,

G(x; a, b) = 1 − e−(ebx−1)a
, x > 0,

where a is the shape parameter and b is the scale parameter.
Figure 2(a) shows the MKE pdf at different cases of the shape and scale parameters. Figure 2(b)

shows the MKE CDF at the same values of these parameters.

(a) pdf of MKE (b) CDF of MKE

Figure 2. The plot of pdf and CDF of MKE distribution.

2.3.3. Gompertz-Makeham distribution

Aly et al. [4] used the data reported by Hoel et al. [12] to apply their method, and the adequate
distribution for fitting these data was the Gompertz-Makeham distribution. For the applications
of this distribution, it can be used in actuarial science: Modeling human mortality rates for life
insurance and pension schemes, demography: Analyzing population dynamics and life expectancy
trends, and biostatistics: Studying survival analysis and disease progression. Another recent work
is the discrete Gompertz-Makeham distribution for multidisciplinary data analysis by Elshahhat et
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al. [13], which develops a discrete analogue of the Gompertz-Makeham distribution, studies its
quantiles, order statistics, skewness, kurtosis, and estimates its parameters using likelihood-based and
Bayesian methods under censored data, showing its usefulness compared to discrete lifetime models
encompassing Gompertz-Makeham distribution for multidisciplinary data analysis. The pdf and CDF
of this distribution are defined as:

f (x; a, b) = a b eb(1−eax) eax, x ≥ 0,

F(x; a, b) = 1 − eb(1−eax), x ≥ 0,

where a is the scale parameter and b is the shape parameter.
Figure 3(a) shows the Gompertz-Makeham pdf at different cases of the scale and shape parameters.

Figure 3(b) shows the Gompertz-Makeham CDF at the same values of these parameters.

(a) pdf of Gompertz-Makeham (b) CDF of Gompertz-Makeham

Figure 3. The plot of pdf and CDF of Gompertz-Makeham distribution.

3. Major results

In this section, we apply the new methodology to various families of distributions, including
Weibull, gamma, and exponential distributions. We conduct simulations on data derived from the
Weibull distribution with varying parameters, treating it as a special case. Moreover, we will apply
the new method using the same data used before by Magdy et al. [8], which applies a pivotal quantity,
enabling us to perform a comparative analysis demonstrating the efficacy of the proposed method.
Initially, we present a concise review of the Weibull distribution. Additionally, we present a concise
review of Modified Kies-Exponential and Gompertez distributions, which were used in Aly et al. [4]
as application of prediction observation using modified least square method with hazard function.
Furthermore, we employ the maximum likelihood estimation method for parameter estimation of each
observation, which is built into the R programming environment. The details of our algorithm and the
results are displayed below.
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3.1. Simulation study

In this section, we apply the suggested methodology to simulate data from a Weibull distribution.
The dataset consists of 24 observations, with a planned interruption after the 12th observation. Our
objective is to utilize the first 12 observations to make predictions for the remaining 12. We apply the
method 1000 times, each time with a different data from the same distribution as the previous ones.
Ultimately, we calculate the average of the 1000 observations. In the simulation study, the scale and
shape parameters of the Weibull distribution are randomly chosen across runs. This strategy is adopted
to generate a wide range of scenarios and to evaluate the robustness of the proposed prediction method
under varying parameter settings.

Algorithm I: Pivotal quantity for a fixed sample

1. Determine the PIs, by choosing the value of confidence interval α. By solving the equation
FVr,s;N (v) = 1 − α, we get the quantile value u for a given α, (see Eq (2.3)),

2. fit new data and select a new distribution with minimum BIC and AIC,
3. estimate parameter for the data from x1 to xr,

4. use Eq (2.6) to evaluate the upper bound of interval,
5. compute the point predictions, x̂s:n, s = r + 1,
6. rearrange data from x1 to x̂s to predict the next observation x̂s+1,
7. repeat steps 1–6, 1000 times,
8. compute the averages of xs:n, x̂s:n and PI over 1000,
9. compute the MSE and CV of the point predictor x̂s.

Algorithm II: Pivotal quantity for a random sample

1. Determine the PIs, by choosing the value of confidence interval α. By solving the equation
FVr,s;N (v) = 1 − α, we get the quantile value u for a given α, Eq (2.3),

2. generate a random integer from B(l, p) = Bin(40, 0.8), and Poisson P(λ) = (50) distributions
say nz,

3. generate an ordered random sample of size nz from F,
4. solve the nonlinear equations FVr,s:n(v) = 1 − α by using Eq (2.2) in Lemma 2.2 after replacing∞

by 40 at the Binomial case and 50 Poisson case,
5. estimate the parameter for simulation data from x1:n to xr:n,
6. use Eq (2.6) to evaluate the upper bound of the interval,
7. compute the point predictions, x̂s:n, s = r + 1,
8. replace xr:n by x̂s:n to predict the next observation,
9. obtain a new parameter estimate using fresh data ranging from x1:n to x̂s:n,

10. repeat steps 1–9, 1000 times,
11. compute the averages of xs:n, x̂s:n, and PI over 1000,
12. compute the MSE and CV of the point predictor x̂s:n.

Algorithm III: The least square method

1. Select a data set and fit based on minimum AIC and BIC,
2. estimate the parameter for a distribution using Eq (2.4),
3. use Eq (2.5) to compute the point predictions x̂s:n s = r + 1,
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4. replace xr:n by x̂s:n to predict the next observation,
5. refit the dataset by incorporating the prior predicted values,
6. obtain a new parameter estimate using fresh data ranging from x1:n to xr:n,
7. compute the MSE and CV of the point predictor x̂s:n.

The algorithm is employed in a simulation study conducted using the R programming
language (version 4.4.2 (2024-10-31)), and the outcomes of the simulation are presented in the
following tables.

Remark 3.1. The CV values reported in the tables are calculated based on the predicted values x̂s:n

presented in each table. They represent the variability of the predicted values and should not be
interpreted as direct indicators of the predictive performance of the proposed methods. Relatively high
CV values therefore reflect the dispersion of the predicted sequence, than the limitations of the methods.

3.2. Simulation pivotal quantity

In the following two tables, we apply the proposed method and achieve remarkable results. This
approach enables us to predict 100% of the obtained data, in contrast to previously used methods,
which predict at most 35% of the data. This is because the previous methods consider the minimum
prediction horizon as the last data point, which remains constant across all prediction intervals for
future data. Furthermore, we apply the method to predict more than 100% of the data we have in the
following tables, extending our predictions beyond our existing data-set.

In Tables 1 and 2, we observe the robustness of the employed methodology in prediction. In the
fourth column, representing the difference between the actual and predicted observations, we note an
exceptionally low error percentage. Additionally, an overall MSE is computed for the data in Table 1,
yielding a remarkably small value.

Table 1. Predict 12 future observation 100% prediction from weibull a = 4, σ = 3.

r xs:n x̂s:n biase PI
12 2.759 2.730 0.029 (2.679, 2.841)
13 2.842 2.773 0.069 (2.730, 2.865
14 2.926 2.819 0.107 (2.773, 2.918)
15 3.011 2.867 0.144 (2.819, 2.971)
16 3.096 2.917 0.179 (2.867, 3.026)
17 3.183 2.970 0.212 (2.917, 3.086)
18 3.274 3.027 0.247 (2.970, 3.151)
19 3.375 3.089 0.286 (3.027, 3.225)
20 3.485 3.158 0.327 (3.089, 3.311)
21 3.612 3.239 0.373 (3.158, 3.421)
22 3.771 3.342 0.429 (3.239, 3.579)
23 3.991 3.495 0.496 (3.342, 3.877)
MSE=0.0778, CV=0.0748
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Table 2. Predict 24 future observation 200% prediction from weibull a = 2, σ = 15.

r xs:n x̂s:n biase PI
12 9.734 9.534 0.200 (9.237, 10.225)
13 10.202 9.742 0.461 (9.534, 10.200)
14 10.677 9.959 0.718 (9.742, 10.440)
15 11.146 10.178 0.968 (9.959, 10.663)
16 11.609 10.398 1.210 (10.178, 10.884)
17 12.097 10.619 1.478 (10.398, 11.105)
18 12.591 10.841 1.751 (10.619, 11.330)
19 13.079 11.065 2.015 (10.841, 11.557)
20 13.603 11.291 2.312 (11.065, 11.789)
21 14.127 11.522 2.605 (11.291, 12.027)
22 14.652 11.757 2.895 (11.522, 12.272)
23 15.223 11.997 3.226 (11.757, 12.527)
24 15.788 12.245 3.543 (11.997, 12.788)
25 16.387 12.501 3.885 (12.245, 13.066)
26 17.027 12.769 4.258 (12.501, 13.360)
27 17.707 13.051 4.656 (12.769, 13.675)
28 18.431 13.350 5.081 (13.051, 14.016)
29 19.217 13.673 5.544 (13.350, 14.393)
30 20.117 14.025 6.091 (13.673, 14.819)
31 21.078 14.419 6.659 (14.025, 15.316)
32 22.199 14.872 7.326 (14.419, 15.920)
33 23.604 15.419 8.185 (14.872, 16.715)
34 25.409 16.133 9.276 (15.419, 17.909)
35 27.931 17.241 10.690 (16.133, 20.319)
MSE=23.74, CV=0.166

Random data is generated in Tables 1 and 2. In the first table, the data follow a Weibull distribution
with parameters a = 4 and σ = 3 and the method is applied to predict 100% of the available data. The
results showcase a highly accurate prediction.

In Table 2, random data is again generated, this time with parameters a = 2 and σ = 15 from the
same Weibull distribution. Attempting to predict 200% of the acquired data, the method is applied, and
the MSE is computed, providing insights into the predictive performance.

This approach enables us to predict 100% of the obtained data, in contrast to previously used
methods, which predict at most 35% of the data. This is because the previous methods consider the
minimum forecast horizon as the last data point, which remains constant across all forecasting intervals
for future data. Furthermore, we apply the method to predict more than 100% of the data we have in
the following tables, extending our predictions beyond our existing data-set.

Notably, the relatively large MSE (close to 200%) obtained in this case is mainly due to the high
value of the scale parameter of the Weibull distribution (15), while the final biase yields a scale
around 10.6. To verify this effect, we re-generate data with a smaller scale parameter (5), and the
resulting MSE is considerably lower. This indicates that the scale parameter has a strong impact on the

AIMS Mathematics Volume 10, Issue 11, 25639–25666.



25649

performance of the method (see Table 3).

Table 3. Predict 24 future observation 200% prediction from weibull a = 2, σ = 5.

r xs:n x̂s:n biase PI
12 3.245 3.178 0.067 (3.079, 3.408)
13 3.401 3.247 0.154 (3.178, 3.400)
14 3.559 3.320 0.239 (3.247, 3.480)
15 3.715 3.393 0.323 (3.320, 3.554)
16 3.870 3.466 0.403 (3.393, 3.628)
17 4.032 3.540 0.493 (3.466, 3.702)
18 4.197 3.614 0.583 (3.540, 3.777)
19 4.360 3.688 0.672 (3.614, 3.852)
20 4.534 3.764 0.771 (3.688, 3.930)
11 4.709 3.841 0.868 (3.764, 4.009)
22 4.884 3.919 0.965 (3.841, 4.091)
23 5.074 3.999 1.075 (3.919, 4.176)
24 5.263 4.082 1.181 (3.999, 4.263)
25 5.462 4.167 1.295 (4.082, 4.355)
26 5.676 4.256 1.419 (4.167, 4.453)
27 5.902 4.350 1.552 (4.256, 4.558)
28 6.144 4.450 1.694 (4.350, 4.672)
29 6.406 4.558 1.848 (4.450, 4.798)
30 6.706 4.675 2.030 (4.558, 4.940)
31 7.026 4.806 2.220 (4.675, 5.105)
32 7.400 4.957 2.442 (4.806, 5.307)
33 7.868 5.140 2.728 (4.957, 5.572)
34 8.470 5.378 3.092 (5.140, 5.970)
35 9.310 5.747 3.563 (5.378, 6.773)
MSE=2.638

In Table 4, the suggested method is applied under the scenario where the sample size is an RV
following either a two-sided binomial or a Poisson distribution with parameter B(l, p) = (40, 0.8) and
P(λ) = (50) simultaneously. Random data is generated from a Weibull distribution with parameters
a = 4, σ = 7. The method is employed, and results are obtained by predicting a single point, taking
into consideration that the sample size varies randomly.
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Table 4. r = 12 and predict 100% of data weibull a = 4, σ = 7.

binomial distribution B(l, p) = (40, 0.8) Poisson P(λ) = (50) distribution
r xs:N x̂s:N biase PI
12 5.841 5.697 0.144 (5.688, 5.706)
13 5.992 5.702 0.290 (5.697, 5.707)
14 6.141 5.707 0.434 (5.702, 5.712)
15 6.281 5.712 0.570 (5.707, 5.716)
16 6.424 5.716 0.708 (5.712, 5.721)
17 6.572 5.721 0.851 (5.716, 5.725)
18 6.715 5.725 0.990 (5.721, 5.729)
19 6.858 5.729 1.129 (5.725, 5.733)
20 6.999 5.733 1.266 (5.729, 5.737)
21 7.149 5.737 1.412 (5.733, 5.741)
22 7.304 5.741 1.563 (5.737, 5.745)
23 7.471 5.745 1.726 (5.741, 5.749)
MSE= 1.093 ,CV= 0.002

r xs:N x̂s:N biase PI
12 5.132 5.010 0.122 (5.007, 5.014)
13 5.247 5.013 0.234 (5.010, 5.016)
14 5.365 5.016 0.349 (5.013, 5.019)
15 5.472 5.019 0.453 (5.016, 5.021)
16 5.570 5.021 0.549 (5.019, 5.023)
17 5.674 5.023 0.651 (5.021, 5.025)
18 5.778 5.025 0.753 (5.023, 5.027)
19 5.877 5.026 0.851 (5.025, 5.028)
20 5.983 5.028 0.954 (5.026, 5.030)
21 6.077 5.029 1.047 (5.028, 5.030)
22 6.167 5.030 1.136 (5.029, 5.031)
23 6.258 5.031 1.226 (5.030, 5.033)
MSE= 0.601 , CV=0.001

When predicting future observations for the data, given the fluctuating sample size, it becomes
uncertain whether the sample size includes these observations or not. This introduces an additional
layer of complexity in interpreting and understanding the predictive outcomes.

3.3. Simulation modifies least square with cumulative hazard function

In the following table (Table 5), random data is generated using the Weibull distribution with
specified parameters a = 3 and σ = 5. We apply our technique using the modified least squares
method that we mention algorithm III.
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Table 5. Predict 60 future observation 150% prediction from weibull a = 3, σ = 5.

r xs:n x̂s:n biase
40 4.0224 3.9826 0.0398
41 4.1152 4.0236 0.0916
42 4.1653 4.0643 0.1010
43 4.2060 4.1048 0.1012
44 4.2374 4.1451 0.0923
45 4.3054 4.1852 0.1202
46 4.3760 4.2252 0.1508
47 4.5196 4.2651 0.2545
48 4.5302 4.3050 0.2252
49 4.5667 4.3448 0.2219
50 4.5702 4.3845 0.1857
51 4.6103 4.4243 0.1860
52 4.6244 4.4641 0.1603
53 4.6451 4.5040 0.1411
54 4.6723 4.5439 0.1284
55 4.6825 4.5840 0.0985
56 4.7039 4.6242 0.0797
57 4.7789 4.6646 0.1143
58 4.7925 4.7052 0.0873
59 4.7961 4.7460 0.0501
60 4.8169 4.7870 0.0299
61 4.9276 4.8283 0.0993
62 4.9462 4.8699 0.0763
63 4.9703 4.9119 0.0583
64 4.9956 4.9543 0.0414
65 5.0734 4.9970 0.0764
66 5.1117 5.0402 0.0715
67 5.1847 5.0839 0.1008
68 5.2206 5.1282 0.0924
69 5.2311 5.1730 0.0581

70 5.3728 5.2184 0.1544
71 5.3807 5.2645 0.1162
72 5.4475 5.3114 0.1360
73 5.4908 5.3591 0.1317
74 5.5962 5.4077 0.1885
75 5.6096 5.4572 0.1523
76 5.6678 5.5078 0.1599
77 5.6756 5.5596 0.1160
78 5.7408 5.6126 0.1282
79 5.7622 5.6670 0.0952
80 5.8203 5.7230 0.0973
81 5.9356 5.7806 0.1550
82 6.0169 5.8402 0.1767
83 6.1720 5.9018 0.2702
84 6.2107 5.9659 0.2449
85 6.2427 6.0326 0.2102
86 6.2729 6.1023 0.1706
87 6.3360 6.1755 0.1605
88 6.3614 6.2528 0.1085
89 6.4075 6.3349 0.0727
90 6.5000 6.4225 0.0775
91 6.5748 6.5170 0.0578
92 6.5754 6.6199 0.0445
93 6.6528 6.7334 0.0807
94 6.6652 6.8609 0.1957
95 7.2770 7.0074 0.2696
96 7.2817 7.1817 0.1000
97 7.3439 7.4009 0.0569
98 7.7365 7.7055 0.0310
99 9.7339 8.2472 1.4867
MSE= 0.0554 , CV= 0.1855

4. Application

In our research endeavor, we embark on a novel approach by utilizing a distinct dataset to
enrich the new methodological framework. Recognizing the significance of diverse data sources in
refining analytical techniques, we deliberately select an alternative dataset to broaden the scope of
our investigation. This strategic decision enables us to explore unique perspectives and uncover latent
patterns that might have remained unnoticed with conventional datasets.

Furthermore, our study extends beyond mere methodological innovation; it encompasses a
comprehensive comparative analysis. To elucidate the efficacy and robustness of the proposed method,
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we juxtapose its performance against an established benchmark on the same dataset. This comparative
examination serves as a litmus test, offering insights into the strengths and limitations of various
methodologies under similar conditions.

In summary, our research endeavor not only introduces a novel methodological approach but also
contributes to the broader discourse by juxtaposing it with existing methodologies on a shared dataset.
Through this multifaceted exploration, we strive to advance the frontiers of knowledge in our field and
pave the way for more informed decision-making and robust analytical practices.

4.1. Comparison with alternative prediction methods

In this subsection, extend our analysis to compare the proposed pivotal approach with the method
of Valiollahi et al. [14] (e.g., maximum likelihood predictor (MLP), best unbiased predictor (BUP),
conditional median predictor (CMP), and Bayesian predictor (BP)). Table 6 presents a side by side
comparison of the exact observed values, the predictions obtained from the pivotal method, and those
obtained from the alternative method under the Type-II HCS scheme with r = 20. The results show
that the pivotal method produces prediction points and intervals that are consistent with the actual data
and comparable to the alternative approach. Importantly, the width of the prediction intervals obtained
by the suggested method remains competitive, reflecting efficiency and robustness. This comparison
highlights that the improvement in pivotal method provides an accurate prediction of future order
statistics while retaining computational simplicity. Therefore, by incorporating both methods, the
reader can see the accuracy and reliability of the proposed pivotal technique. The real data set analyzed
are available in Valiollahi et al. [14], and was originally reported by Lawless [15].

Table 6. Comparison of point predictions, biases, and 95% PIs under Type-II HCS r = 20.
Exact MLP BUP CMP BP Proposed Method (Pivotal results)

r value Pred Bias Pred Bias Pred Bias Pred Bias x̂s:n Bias
r = 13 6.479 6.369 0.110 6.464 0.015 6.436 0.043 6.521 0.042 6.4364 0.043
r = 15 6.515 6.557 0.042 6.653 0.138 6.626 0.111 6.852 0.337 6.5671 0.052
r = 17 6.538 6.745 0.207 6.843 0.305 6.819 0.281 7.162 0.624 6.6939 0.156
r = 20 6.725 7.030 0.305 7.156 0.431 7.112 0.387 7.802 1.077 6.8770 0.152
MSE 0.0374 0.0745 0.0607 0.4162 0.0130

4.2. Voltage stress data in a laboratory experiment

We use real data from Magdy et al. [8] to improve the proposed method the data were given by
Lawless [15, p. 189]. Non-parametric plots for voltage stress data in a laboratory experiment are
displayed in Figure 4. It consists of voltage levels at which failures occur in a certain type of electrical
cable insulation (Type 1 insulation) when specimens are subjected to an increasing voltage stress in
a laboratory experiment. The test involves 20 specimens, and the failure voltages in kilo-volts per
millimeter are shown in Table 7.

Table 7. Voltage stress data in a laboratory experiment.

32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4
46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3
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Figure 4. Non-parametric visualization plots for voltage stress data in a laboratory
experiment.

In Table 8, we apply the suggested method with choosing x̂ in pivotal quantity to be the first third
interval, and the mean square error is lower than the mean square error if it is evaluated as in [8]. Further
more, Table 7 shows that by applying the methods of pivotal quantity and modified least squares, the
method of pivotal quantity is the best because it has the lowest MSE.

Table 8. Specimens and the failure voltages initial weibull:a = 9.1973, σ = 47.7383.

Pivotal quantity Modified least square method
r xs:n x̂s:n biase PI
9 46.40 46.82 0.42 (46.20, 48.15)
10 46.50 47.41 0.91 (46.82, 48.65)
11 46.80 47.97 1.17 (47.41, 49.16)
12 47.29 48.52 1.23 (47.97, 49.67)
13 47.31 49.06 1.75 (48.52, 50.21)
14 47.60 49.62 2.02 (49.06, 50.78)
15 49.20 50.20 1.00 (49.62, 51.41)
16 50.40 50.82 0.42 (50.20, 52.14)
17 50.90 51.53 0.63 (50.82, 53.03)
18 52.40 52.40 0.00 (51.53, 54.29)
19 56.30 53.69 2.61 (52.40, 56.58)
MSE=1.7672, CV=0.0411

r xs:n x̂s:n biase
9 46.40 47.50 1.10
10 46.50 48.71 2.21
11 46.80 49.86 3.06
12 47.30 51.00 3.70
13 47.30 52.14 4.84
14 47.60 53.32 5.72
15 49.20 54.57 5.37
16 50.40 55.94 5.54
17 50.90 57.53 6.63
18 52.40 52.53 0.13
19 56.30 62.07 5.77
MSE=20.2249, CV=0.075
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4.3. Strength of glass fibers

Smith et al. [16] discuss the application of Bayesian methods to the Weibull distribution and
highlight that the challenges faced are related to the interpretation of results rather than computational
issues. The authors introduce a paper structured as a case study, focusing on two sets of experimental
data representing the strength of glass fibers with lengths of 1.5 cm (63 observation, see Table 9) and
15 cm (46 observation, see Table 10). Non-parametric plots for the strength of glass fibers with lengths
of 1.5 cm and 15 cm are displayed in Figures 5 and 6. The data comes from the National Physical
Laboratory in England. Wu et al. [17] use a 63 data set with length 1.5 cm. In this paper, we apply
the proposed method to predict the future observation of real data with two lengths, 1.5 cm and 15 cm.
The results are displayed in Tables 11 and 12.

Table 9. Strength of glass fibers with lengths of 1.5 cm.

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00 0.74
1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01 0.77 1.11
1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24 0.81 1.13 1.29
1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84 1.24 1.30 1.48 1.51
1.55 1.61 1.63 1.67 1.70 1.78 1.89
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Figure 5. Non-parametric visualization plots for the strength of glass fibers with a lengths of
1.5 cm.
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Table 10. Strength of glass fibers with lengths of 15 cm.

0.37 0.40 0.70 0.75 0.80 0.81 0.83 0.86 0.92 0.92
0.94 0.95 0.98 1.03 1.06 1.06 1.08 1.09 1.10 1.10
1.13 1.14 1.15 1.17 1.20 1.20 1.21 1.22 1.25 1.28
1.28 1.29 1.29 1.30 1.35 1.35 1.37 1.37 1.38 1.40
1.40 1.42 1.43 1.51 1.53 1.61
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Figure 6. Non-parametric visualization plots for Strength of glass fibers with lengths of
15 cm data.

AIMS Mathematics Volume 10, Issue 11, 25639–25666.



25656

Table 11. Strength of glass fibers with lengths of 15 cm.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
23 1.17 1.16 0.01 (1.15, 1.19)
24 1.20 1.17 0.03 (1.16, 1.20)
25 1.20 1.18 0.02 (1.17, 1.21)
26 1.21 1.20 0.01 (1.18, 1.22)
27 1.22 1.21 0.01 (1.20, 1.23)
28 1.25 1.22 0.03 (1.21, 1.24)
29 1.28 1.23 0.05 (1.22, 1.25)
30 1.28 1.24 0.04 (1.23, 1.26)
31 1.29 1.25 0.04 (1.24, 1.27)
32 1.29 1.26 0.03 (1.25, 1.29)
33 1.30 1.27 0.03 (1.26, 1.30)
34 1.35 1.29 0.06 (1.27, 1.31)
35 1.35 1.30 0.05 (1.29, 1.33)
36 1.37 1.31 0.06 (1.30, 1.34)
37 1.37 1.33 0.04 (1.31, 1.35)
38 1.38 1.34 0.04 (1.33, 1.37)
39 1.40 1.36 0.04 (1.34, 1.39)
40 1.40 1.37 0.03 (1.36, 1.41)
41 1.42 1.39 0.03 (1.37, 1.43)
42 1.43 1.41 0.02 (1.39, 1.46)
43 1.51 1.44 0.07 (1.41, 1.50)
44 1.53 1.48 0.05 (1.44, 1.56)
45 1.61 1.53 0.08 (1.48, 1.67)
MSE=0.0017, CV=0.076

r xs:n x̂s:n biase
23 1.17 1.13 0.04
24 1.20 1.14 0.06
25 1.20 1.15 0.05
26 1.21 1.13 0.08
27 1.22 1.14 0.08
28 1.25 1.15 0.10
29 1.28 1.13 0.15
30 1.28 1.14 0.14
31 1.29 1.15 0.14
32 1.29 1.13 0.16
33 1.30 1.14 0.16
34 1.35 1.15 0.20
35 1.35 1.13 0.22
36 1.37 1.14 0.23
37 1.37 1.15 0.22
38 1.38 1.13 0.25
39 1.40 1.14 0.26
40 1.40 1.15 0.25
41 1.42 1.13 0.29
42 1.43 1.14 0.29
43 1.51 1.15 0.36
44 1.53 1.13 0.40
45 1.61 1.14 0.47
MSE=0.0523, CV=0.0070
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Table 12. Strength of glass fibers with lengths of 1.5 cm.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
30 1.58 1.56 0.02 (1.55, 1.59)
31 1.59 1.57 0.02 (1.56, 1.60)
32 1.60 1.59 0.01 (1.57, 1.61)
33 1.61 1.60 0.01 (1.59, 1.62)
34 1.61 1.61 0.00 (1.60, 1.63)
35 1.61 1.62 0.01 (1.61, 1.64)
36 1.61 1.63 0.02 (1.62, 1.65)
37 1.62 1.64 0.02 (1.63, 1.66)
38 1.62 1.65 0.03 (1.64, 1.67)
39 1.63 1.66 0.03 (1.65, 1.68)
40 1.64 1.67 0.03 (1.66, 1.70)
41 1.66 1.68 0.02 (1.67, 1.71)
42 1.66 1.70 0.04 (1.68, 1.72)
43 1.66 1.71 0.05 (1.70, 1.73)
44 1.67 1.72 0.05 (1.71, 1.74)
45 1.68 1.73 0.05 (1.72, 1.75)
46 1.68 1.74 0.06 (1.73, 1.76)
47 1.69 1.75 0.06 (1.74, 1.78)
48 1.70 1.76 0.06 (1.75, 1.79)
49 1.70 1.78 0.08 (1.76, 1.80)
50 1.73 1.79 0.06 (1.78, 1.81)
51 1.76 1.80 0.04 (1.79, 1.83)
52 1.76 1.82 0.06 (1.80, 1.84)
53 1.77 1.83 0.06 (1.82, 1.86)
54 1.78 1.85 0.07 (1.83, 1.88)
55 1.81 1.86 0.05 (1.85, 1.90)
56 1.82 1.88 0.06 (1.86, 1.92)
57 1.84 1.90 0.06 (1.88, 1.94)
58 1.84 1.92 0.08 (1.90, 1.97)
59 1.89 1.95 0.06 (1.92, 2.01)
60 2.00 1.98 0.02 (1.95, 2.05)
61 2.01 2.02 0.01 (1.98, 2.12)
62 2.24 2.09 0.15 (2.02, 2.25)
MSE=0.0027, CV=0.0769

r xs:n x̂s:n biase
30 1.58 1.54 0.04
31 1.59 1.55 0.04
32 1.60 1.55 0.05
33 1.61 1.54 0.07
34 1.61 1.55 0.06
35 1.61 1.55 0.06
36 1.61 1.54 0.07
37 1.62 1.55 0.07
38 1.62 1.55 0.07
39 1.63 1.54 0.09
40 1.64 1.55 0.09
41 1.66 1.55 0.11
42 1.66 1.54 0.12
43 1.66 1.55 0.11
44 1.67 1.55 0.12
45 1.68 1.54 0.14
46 1.68 1.55 0.13
47 1.69 1.55 0.14
48 1.70 1.54 0.16
49 1.70 1.55 0.15
50 1.73 1.55 0.18
51 1.76 1.54 0.22
52 1.76 1.55 0.21
53 1.77 1.55 0.22
54 1.78 1.54 0.24
55 1.81 1.55 0.26
56 1.82 1.55 0.27
57 1.84 1.54 0.30
58 1.84 1.55 0.29
59 1.89 1.55 0.34
60 2.00 1.54 0.46
61 2.01 1.55 0.46
62 2.24 1.55 0.69
MSE=0.053, CV=0.003

Tables 11 and 12 show that by applying the methods of pivotal quantity and modified least squares,
the method of pivotal quantity is the best because it has the lowest MSE.
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4.4. Recovery rate of Covid-19

The study uses two data sets: 38 observations from France (Table 13) and 25 from
Turkey (Table 14). These data consist of the daily ratio of total recoveries to cumulative confirmed
cases, as well as cumulative death counts. Ahmad et al. [18] and Khaled et al. [5] used these data to
predict a future observation; we will use the same data to apply our new method and try to predict 100%
from existing data. Non-parametric plots for the recovery rate of Covid-19 in France and Turkey are
shown in Figures 7 and 8.

Table 13. Recovery rate of Covid-19 in France.

0.195 0.2338 0.2368 0.1073 0.1592 0.2784 0.0689 0.1791
0.1121 0.1865 0.2631 0.0716 0.1411 0.1477 0.1874 0.0853
0.0922 0.1711 0.1962 0.2146 0.1041 0.1524 0.1811 0.0643
0.2698 0.1245 0.176 0.2363 0.0712 0.1361 0.1386 0.3316
0.077 0.1367 0.1549 0.2178 0.0951 0.1346
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Figure 7. Non-parametric visualization plots for the recovery rate of Covid-19 in France.

Table 14. Recovery rate of Covid-19 in Turkey.

0.0074 0.0095 0.0113 0.015 0.018 0.0212 0.0229 0.0231 0.0328
0.0385 0.0439 0.0464 0.0483 0.0507 0.0515 0.0568 0.0605 0.0648
0.0737 0.0818 0.0955 0.1099 0.127 0.1388 0.1476
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Figure 8. Non-parametric visualization plots for the recovery rate of Covid-19 in Turkey.

Table 15 shows that the pivotal quantity is better than the modified least square method. In Table 16,
x̂s is obtained by taking the average of the four ways mentioned above. From MSE, we see that the
modified least square method is better than pivotal quantity, as it has a minimum value: MSE=0.00020.

Table 15. Predcting 100% of the recovery rate of Covid-19 in Turkey.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
12 0.0483 0.0518 0.0035 (0.0464, 0.0585)
13 0.0507 0.0576 0.0069 (0.0518, 0.0648)
14 0.0515 0.0620 0.0105 (0.0576, 0.0672)
15 0.0568 0.0668 0.0100 (0.0620, 0.0725)
16 0.0605 0.0722 0.0117 (0.0668, 0.0784)
17 0.0648 0.0780 0.0132 (0.0722, 0.0849)
18 0.0737 0.0846 0.0109 (0.0780, 0.0924)
19 0.0818 0.0921 0.0103 (0.0846, 0.1011)
20 0.0955 0.1010 0.0055 (0.0921, 0.1116)
21 0.1099 0.1117 0.0018 (0.1010, 0.1250)
22 0.1270 0.1255 0.0015 (0.1117, 0.1433)
23 0.1388 0.1452 0.0064 (0.1255, 0.1722)
24 0.1476 0.1797 0.0321 (0.1452, 0.2358)
MSE= 0.00014 , CV=0.382

r xs:n x̂s:n biase
12 0.0483 0.0507 0.0024
13 0.0507 0.0553 0.0046
14 0.0515 0.0602 0.0087
15 0.0568 0.0656 0.0088
16 0.0605 0.0715 0.0110
17 0.0648 0.0780 0.0132
18 0.0737 0.0853 0.0116
19 0.0818 0.0937 0.0119
20 0.0955 0.1286 0.0331
21 0.1099 0.1325 0.0226
22 0.1270 0.1450 0.0180
23 0.1388 0.1687 0.0299
24 0.1476 0.2168 0.0692
MSE= 0.00064, CV=0.4681
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Table 16. Predcting 100% of the recovery rate of Covid-19 in France.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
19 0.1549 0.1561 0.0012 (0.1524, 0.1600)
20 0.1592 0.1598 0.0006 (0.1561, 0.1637)
21 0.1711 0.1636 0.0075 (0.1598, 0.1676)
22 0.1760 0.1675 0.0085 (0.1636, 0.1715)
23 0.1791 0.1714 0.0077 (0.1675, 0.1756)
24 0.1811 0.1755 0.0056 (0.1714, 0.1797)
25 0.1865 0.1797 0.0068 (0.1755, 0.1841)
26 0.1874 0.1840 0.0034 (0.1797, 0.1886)
27 0.1950 0.1886 0.0064 (0.1840, 0.1934)
28 0.1962 0.1934 0.0028 (0.1886, 0.1985)
29 0.2146 0.1985 0.0161 (0.1934, 0.2039)
30 0.2178 0.2040 0.0138 (0.1985, 0.2099)
31 0.2338 0.2101 0.0237 (0.2040, 0.2165)
32 0.2363 0.2168 0.0195 (0.2101, 0.2239)
33 0.2368 0.2244 0.0124 (0.2168, 0.2326)
34 0.2631 0.2334 0.0297 (0.2244, 0.2431)
35 0.2698 0.2446 0.0252 (0.2334, 0.2569)
36 0.2784 0.2598 0.0186 (0.2446, 0.2771)
37 0.3316 0.2853 0.0463 (0.2598, 0.3164)
MSE=0.0003. CV=0.173

r xs:n x̂s:n biase
19 0.1549 0.1564 0.0015
20 0.1592 0.1605 0.0013
21 0.1711 0.1646 0.0065
22 0.1760 0.1688 0.0072
23 0.1791 0.1731 0.0060
24 0.1811 0.1775 0.0036
25 0.1865 0.1820 0.0045
26 0.1874 0.1867 0.0007
27 0.1950 0.1916 0.0034
28 0.1962 0.1968 0.0006
29 0.2146 0.2022 0.0124
30 0.2178 0.2081 0.0097
31 0.2338 0.2144 0.0194
32 0.2363 0.2214 0.0149
33 0.2368 0.2293 0.0075
34 0.2631 0.2385 0.0246
35 0.2698 0.2498 0.0200
36 0.2784 0.2653 0.0131
37 0.3316 0.2922 0.0394
MSE= 0.00020 , CV=0.1794

4.5. Employer-sponsored health insurance (ESI)

This dataset contains data on employer-sponsored health insurance (ESI) coverage among
private-sector workers in the USA from 1979 to 2019. It includes demographic breakdowns
such as race, gender, education level, and recent graduation status. The data is available at:
https://www.kaggle.com/datasets/asaniczka/health-insurance-coverage-in-the-usa-1979-2019/data.

We predict 21 future observations (percentage of female workers with ESI coverage).
Table 17 shows that by applying the methods of pivotal quantity and modified least squares, the

method of pivotal quantity is the best because it has the lowest MSE.
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Table 17. Percentage of female workers with ESI coverage: 41 observations used to
predict 21 future observations.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
20 53.00 53.23 0.23 (53.00, 53.46)
21 53.20 53.46 0.26 (53.23, 53.70)
22 53.30 53.70 0.40 (53.46, 53.94)
23 53.40 53.94 0.54 (53.70, 54.19)
24 53.40 54.19 0.79 (53.94, 54.44)
25 53.50 54.45 0.95 (54.19, 54.71)
26 53.60 54.71 1.11 (54.45, 54.98)
27 53.70 54.99 1.29 (54.71, 55.27)
28 54.00 55.28 1.28 (54.99, 55.57)
29 54.30 55.58 1.28 (55.28, 55.89)
30 54.80 55.90 1.10 (55.58, 56.23)
31 54.90 56.24 1.34 (55.90, 56.59)
32 55.30 56.61 1.31 (56.24, 56.98)
33 59.00 57.01 1.99 (56.61, 57.41)
34 59.40 57.45 1.95 (57.01, 57.89)
35 59.80 57.94 1.86 (57.45, 58.44)
36 60.10 58.51 1.59 (57.94, 59.09)
37 60.80 59.18 1.62 (58.51, 59.87)
38 60.90 60.03 0.87 (59.18, 60.91)
39 61.10 61.21 0.11 (60.03, 62.45)
40 61.30 63.29 1.99 (61.21, 65.51)
MSE=1.62561. CV=0.0468

r xs:n x̂s:n biase
20 53.00 53.15 0.15
21 53.20 53.32 0.12
22 53.30 53.48 0.18
23 53.40 53.66 0.26
24 53.40 53.85 0.45
25 53.50 54.04 0.54
26 53.60 54.04 0.44
27 53.70 54.04 0.34
28 54.00 54.04 0.04
29 54.30 54.04 0.26
30 54.80 54.04 0.76
31 54.90 54.04 0.86
32 55.30 54.04 1.26
33 59.00 54.04 4.96
34 59.40 54.04 5.36
35 59.80 54.94 4.86
36 60.10 55.26 4.84
37 60.80 55.26 5.54
38 60.90 55.26 5.64
39 61.10 56.04 5.06
40 61.30 56.04 5.26
MSE=10.48 , CV=0.0147

4.6. Reticulum cell sarcoma and windscreen failures

We utilize the data on windscreen failures, which include 84 observed failure times for a specific
model windscreen. Following Aly et al. [4], we use Eq (2.4) to estimate the parameter and Eq (2.5)
to predict the point for every next predictive point. As such, we consider the last predictive point and
re-estimate parameters. To do this, we apply the proposed method to predict 150% of the data and
compare it with the work of Aly et al. [4]. The results are shown in Table 19. The second dataset
reported and analyzed by Hoel. [12] and Azm et al. [19], involves male mice receiving a radiation
dose of 300 roentgen at an age of 5–6 weeks. Each mouse’s cause of death was identified through
autopsy, classified as thymic lymphoma, reticulum cell sarcoma, or other causes. For the purpose of
our analysis, reticulum cell sarcoma is designated as cause 1, while the other two causes are merged
to form cause 2. We focus on the observations attributed to cause 1 (reticulum cell sarcoma), which
includes 38 data points (Table 18).
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Table 18. Reticulum cell sarcoma.

317 318 399 495 525 536 549 552 554 557 558 571 586
594 596 605 612 621 628 631 636 643 647 648 649 661
663 666 670 695 697 700 705 712 713 738 748 753

Non-parametric plots for the reticulum cell sarcoma are shown in Figure 9.
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Figure 9. Non-parametric visualization plots for reticulum cell sarcoma data.

Aly et al. [4] studied this data, and we applay the methodology for the same data results shown
in Table 20 demonstrates that the Makeham-Gompertz distribution is adequate for fitting reticulum
cell sarcomas.

Table 19 shows that pivotal quantity is the best because it has the lowest MSE, and Table 20 shows
that modified least squares is the best.
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Table 19. At r = 34, there are 150% prediction windscreen failures

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
34 2.154 2.169 0.015 (2.135, 2.204)
35 2.190 2.203 0.013 (2.169, 2.238)
36 2.194 2.237 0.043 (2.203, 2.272)
37 2.223 2.270 0.047 (2.237, 2.303)
38 2.224 2.302 0.078 (2.270, 2.336)
39 2.229 2.335 0.106 (2.302, 2.368)
40 2.300 2.367 0.067 (2.335, 2.400)
41 2.324 2.399 0.075 (2.367, 2.433)
42 2.385 2.432 0.047 (2.399, 2.465)
43 2.481 2.464 0.017 (2.432, 2.497)
44 2.610 2.496 0.114 (2.464, 2.529)
45 2.625 2.528 0.097 (2.496, 2.561)
46 2.632 2.560 0.072 (2.528, 2.593)
47 2.646 2.592 0.054 (2.560, 2.625)
48 2.661 2.624 0.037 (2.592, 2.657)
49 2.688 2.657 0.031 (2.624, 2.691)
50 2.823 2.690 0.133 (2.657, 2.724)
51 2.890 2.723 0.167 (2.690, 2.757)
52 2.902 2.756 0.146 (2.723, 2.790)
53 2.934 2.789 0.145 (2.756, 2.823)
54 2.962 2.823 0.139 (2.789, 2.858)
55 2.964 2.857 0.107 (2.823, 2.893)
56 3.000 2.893 0.107 (2.857, 2.929)
57 3.103 2.929 0.174 (2.893, 2.965)
58 3.114 2.964 0.150 (2.929, 3.001)
59 3.117 3.001 0.116 (2.964, 3.038)
60 3.166 3.038 0.128 (3.001, 3.076)
61 3.344 3.076 0.268 (3.038, 3.115)
62 3.376 3.115 0.261 (3.076, 3.155)
63 3.443 3.155 0.288 (3.115, 3.195)
64 3.467 3.196 0.271 (3.155, 3.239)
65 3.478 3.239 0.239 (3.196, 3.283)
66 3.578 3.282 0.296 (3.239, 3.327)
67 3.595 3.328 0.267 (3.282, 3.374)
68 3.699 3.375 0.324 (3.328, 3.423)
69 3.779 3.424 0.355 (3.375, 3.474)
70 3.924 3.475 0.449 (3.424, 3.528)
71 4.035 3.529 0.506 (3.475, 3.585)
72 4.121 3.586 0.535 (3.529, 3.645)
73 4.167 3.647 0.520 (3.586, 3.710)
74 4.240 3.712 0.528 (3.647, 3.779)
75 4.255 3.781 0.474 (3.712, 3.853)
76 4.278 3.857 0.421 (3.781, 3.937)
77 4.305 3.941 0.364 (3.857, 4.029)
78 4.376 4.035 0.341 (3.941, 4.134)
79 4.449 4.144 0.305 (4.035, 4.258)
80 4.485 4.272 0.213 (4.144, 4.408)
81 4.570 4.431 0.139 (4.272, 4.603)
82 4.602 4.648 0.046 (4.431, 4.886)
83 4.663 5.006 0.343 (4.648, 5.424)
MSE=0.064 ,CV=0.218

r xs:n x̂s:n biase
34 2.154 2.167 0.013
35 2.190 2.199 0.009
36 2.194 2.230 0.036
37 2.223 2.260 0.037
38 2.224 2.289 0.065
39 2.229 2.318 0.089
40 2.300 2.347 0.047
41 2.324 2.375 0.051
42 2.385 2.403 0.018
43 2.481 2.431 0.050
44 2.610 2.459 0.151
45 2.625 2.487 0.138
46 2.632 2.514 0.118
47 2.646 2.542 0.104
48 2.661 2.569 0.092
49 2.688 2.597 0.091
50 2.823 2.624 0.199
51 2.890 2.652 0.238
52 2.902 2.680 0.222
53 2.934 2.708 0.226
54 2.962 2.737 0.225
55 2.964 2.765 0.199
56 3.000 2.794 0.206
57 3.103 2.823 0.280
58 3.114 2.852 0.262
59 3.117 2.882 0.235
60 3.166 2.913 0.253
61 3.344 2.944 0.400
62 3.376 2.975 0.401
63 3.443 3.007 0.436
64 3.467 3.040 0.427
65 3.478 3.073 0.405
66 3.578 3.107 0.471
67 3.595 3.143 0.452
68 3.699 3.179 0.520
69 3.779 4.179 0.400
70 3.924 3.984 0.060
71 4.035 3.851 0.184
72 4.121 3.787 0.334
73 4.167 3.782 0.385
74 4.240 4.863 0.623
75 4.255 4.527 0.272
76 4.278 4.350 0.072
77 4.305 4.325 0.020
78 4.376 4.390 0.014
79 4.449 4.497 0.048
80 4.485 4.631 0.146
81 4.570 4.799 0.229
82 4.602 5.029 0.427
83 4.663 5.425 0.762
MSE=0.0803,CV= 0.276
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Table 20. At r = 15, there are 150% prediction of reticulum cell sarcoma.

Pivotal quantity method Modified least square method
r xs:n x̂s:n biase PI
15 605 600 5 (596, 610)
16 612 605 7 (600, 613)
17 621 609 12 (605, 617)
18 628 613 15 (609, 621)
19 631 616 15 (613, 624)
20 636 620 16 (616, 628)
21 643 624 19 (620, 631)
22 647 627 20 (624, 635)
23 648 631 17 (627, 638)
24 649 634 15 (631, 642)
25 661 638 23 (634, 645)
26 663 642 21 (638, 649)
27 666 645 21 (642, 653)
28 670 649 21 (645, 657)
29 695 653 42 (649, 661)
30 697 657 40 (653, 665)
31 700 661 39 (657, 670)
32 705 666 39 (661, 675)
33 712 671 41 (666, 681)
34 713 676 37 (671, 688)
35 738 683 55 (676, 697)
36 748 692 56 (683, 709)
37 753 704 49 (692, 732)
MSE=960.7, CV=0.043

r xs:n x̂s:n biase
15 605 603 2
16 612 611 1
17 621 617 4
18 628 624 4
19 631 630 1
20 636 636 0
21 643 642 1
22 647 647 0
23 648 653 5
24 649 658 9
25 661 664 3
26 663 669 6
27 666 674 8
28 670 680 10
29 695 686 9
30 697 692 5
31 700 698 2
32 705 705 0
33 712 712 0
34 713 721 8
35 738 731 7
36 748 744 4
37 753 764 11
MSE=31.198 , CV=0.063

5. Conclusions

We have developed a prediction of future observations for the dataset using new techniques. This
requires proper data testing to determine the optimal distribution based on statistical tests. Considering
historical data predictions alongside predictive future observations, we emphasize the importance of
not relying solely on a specific limit from distributions. Instead, we incorporate statistical parameters
to determine the best-fitting distribution for the expected dataset. This comprehensive method,
implemented using the R language, entails developing code that executes these procedures. The code
is readily available through the updated Prediction R package. These statistical packages help non-
specialists predict future data in scientific fields. The method is effective under fixed and random
sample sizes (Algorithms I & II). Simulation studies (Tables 1–4) confirmed that the technique remains
accurate even when predicting far beyond the original dataset, with error (bias) increasing gradually
and predictably. In Table 6, when compared to other methods (MLP, BUP, CMP, and BP), we found that
the proposed method provides the lowest bias, particularly beyond 30% of the original data. Indeed,
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it yielded the lowest MSE. Finally, as future work, we recommend applying the proposed method to
bivariate data, as well as developing new programming in R to facilitate the implementation of this
method by any user.
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