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Abstract: Fractional-order differential equations have recently been utilized in phytoplankton-
zooplankton models to represent genetics influences. These influences are frequently seen in aquatic
ecosystems but cannot be completely explained by standard integer-order models. The focus of
this work was to analyze the dynamics of a fractional-order phytoplankton-zooplankton model that
incorporates a Holling type-II functional response. This model was discretized using the Caputo
fractional derivative. We carried out an extensive stability analysis to determine the equilibrium states
of the system and establish the requirements under which these points are stable or unstable. We
used the bifurcation theory to investigate the development of bifurcations when the parameters of the
considered model varied, which showed intricate dynamical features including chaos and oscillations.
We analyzed Neimark-Sacker and flip bifurcations using a discretization parameter ω. The chaos
control was presented. Computational simulations were executed in order to independently confirm
the theoretical results and point out the diverse dynamics that the model displays. Our findings provide
further clarification on the interactions between phytoplankton and zooplankton species, demonstrating
significant environmental implications for marine ecosystems.
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1. Introduction

Differential equations have a significant role in the formation and evaluation of biological
models because they offer a theoretical basis for clarifying the dynamic behavior of biological
phenomena throughout time [1]. Several biological phenomena, for instance growth in populations,
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the transmission of transmissible illnesses, tumor-immune interactions, enzyme kinetics, and neural
activity, can be expressed as systems of ordinary or partial differential equations. These systems
measure the rates of variation in vital variables (e.g., population numbers, concentrations, or cell
densities) in response to both internal and external influences. Predator-prey scenarios are one of
the greatest widely recognized applications of differential equations in biological mathematics as
they present an organized strategy to clarify the dynamic interactions between two organisms, one
as the predator and the other as the prey. In particular, the physiological communication between
the populations of predators and prey in the natural world is widely acknowledged to be a classical
and crucial topic of conversation. The phenomenon of predation can occur between animals, plants,
insects, and other organisms. In particular, predation occurs between phytoplankton and zooplankton
populations [2]. A variety of aquatic food chains are based on phytoplankton which are microscopic
algae that are typically observed on the water’s surface. The phytoplankton provide the species that
live in lakes, rivers, seas, estuaries, and oceans with essential food and oxygen. Plankton are very small
organisms that can move on water. They consist of very small animals (called zooplankton) and very
small plants (called phytoplankton). Zooplankton, which represent the predator, eat the phytoplankton,
which represent the prey. More specifically, zooplankton feed on phytoplankton to survive, while
phytoplankton feed on nutrients. A sophisticated mathematical mechanism for understanding the
dynamics of marine ecosystems, with a special emphasis on the interactions between phytoplankton
and zooplankton populations, is the fractional-order phytoplankton-zooplankton model. The memory
and reproductive components of ecological processes are taken into account by this model, which are
important for comprehending the stability and long-term behaviors of ecosystems. The fractional-
order approach, which includes derivatives of non-integer orders in contrast to traditional integer-order
mathematical models, gives a more detailed description of the intricate temporal and spatial dynamics
found in biological structures.

Recently published researches have demonstrated a great interest in fractional-order phytoplankton-
zooplankton models. For instance, fractional Routh–Hurwitz stability conditions were nicely
implemented in [3] to investigate the local stability of the phytoplankton–zooplankton system. The
dynamical behavior of this model is numerically analyzed in [3]. Priyadarsini et al. [4] discussed
the utilization of the Laplace transform technique, the Adomain decomposition approach, and the
differential transform procedure to deal with the numerical solutions of fractional differential equations
involving the phytoplankton-toxic phytoplankton-zooplankton equations. Banach fixed point theory
was employed in [5] to demonstrate the existence as well as the uniqueness of the solutions to
a recently discovered fractional-order delayed zooplankton–phytoplankton structure. Additionally,
Pleumpreedaporn et al. [6] investigated the dynamical consequences of various fractional operators in
nutrient-phytoplankton-zooplankton models with a variable-order fractional derivative in the Caputo
sense. In order to further clarify the dynamics of nutrient-phytoplankton-zooplankton phenomena,
Shi et al. [7] took into consideration a fractional-order mathematical model with time delay. They
investigated how time delay and fractional order affected the ecological system and obtained the local
stability of the equilibrium points. Moreover, in the context of the Caputo fractional derivative,
Premakumari et al. [8] provided a mathematical model that incorporates viral infection events
and examined the complicated relationships between nutrients, phytoplankton, and zooplankton
populations. A novel dynamical system with delay in time for the plankton population was established
by Xu et al. [9]. They extracted the requirements for the existence, uniqueness, and boundedness of
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the solutions to the recognized plankton population dynamical problem. Further, utilizing the Hopf
bifurcation and stability theory of delayed dynamic systems, Xu et al. [9] examined the formation of
Hopf bifurcation and stability characteristics in the well-established plankton population dynamical
model. The literature review as a whole indicates that fractional-order phytoplankton-zooplankton
models are becoming more and more popular, where the scientists investigate various methods of
computation, stability, and dynamical responses in these systems.

The use of fractional-order derivatives in biological phenomena plays a significant role in the
description of such events. This can be attributed to the fact that the fractional order acts like a closed
spectator, which offers us significantly exact and more reliable data about our system. Moreover, in
comparison to integer derivatives, fractional derivatives tend to be more general. The vital transitions
in the qualitative behavior of biological models as parameters change are commonly referred to as
the bifurcation of bio-mathematics models. Understanding sophisticated biological processes like
the evolution of populations, relationships between populations, epidemiology, and cellular control
requires an understanding of this phenomenon. In particular, bifurcation theory is a promising
technique for identifying the fundamental principles behind complex biological phenomena. This
theory examines how minor changes in parameters can result in major modifications in the behavior
of the system. This article discusses the dynamics of a fractional-order phytoplankton-zooplankton
model with Holling type-II response given by

cDγx(t) = Rx(t)(1 − x(t)) −
δx(t)y(t)
f + x(t)

− Mx(t)2,

cDγy(t) =
cx(t)y(t)
f + x(t)

−
dx(t)y(t)
f + x(t)

− sy(t),
(1.1)

where cDγ is the Caputo fractional derivative of order γ. The function δx(t)y(t)
f +x(t) is the rate at which the

phytoplankton population is consumed by the zooplankton population. Further, it causes a rise in the
development rate of zooplankton and this development rate is represented by the function cx(t)y(t)

f +x(t) . The
parametric values in model (1.1) are positive and defined in Table 1. The motivation of this work is to
improve our comprehension of phytoplankton-zooplankton communications using a more complicated
mathematical structure, eventually leading to more effective predictions in the environment. The
novelty of this work is to develop novel theoretical criteria for stability and bifurcation analysis in terms
of the fractional order and model parameters. Moreover, we verify these results using computational
analysis which is richer and more realistic.

The organization of this manuscript is given as follows. Section 2 provides the main concepts used
in this article while Section 3 gives the discretization of system (1.1). In Section 4, we introduce
the fixed points of system (3.2) and find stability of this system around these points. Sections 5 and 6
analyze the Neimark-Sacker bifurcation and flip bifurcation, respectively. Furthermore, Section 7 gives
an extensive study for the chaos control while Section 8 presents some numerical examples to confirm
the theoretical outcomes. Finally, Section 9 discusses the main results while Section 10 presents the
conclusion of this work.

AIMS Mathematics Volume 10, Issue 11, 25545–25567.



25548

Table 1. Biological description of parameters.

Parameter of model (1.1) Biological description
t Time
x(t) Population densities of phytoplankton at time t
y(t) Population densities of zooplankton at time t
R Intrinsic growth rates of the phytoplankton population
δ Maximal phytoplankton uptake rate of zooplankton
f The constant of fractional catching saturation
Mx(t)2 Represents the infection of the phytoplankton population by an

external toxic substance, where d2(Mx(t)2)
dt2 = 2 > 0

c The transformation rate of phytoplankton-zooplankton (c < δ)
d The rate of toxic substances produced by per unit biomass

of phytoplankton
s Death rate of the zooplankton population

2. Essential principles

In this section, we present the fundamental principles needed to carry out the investigation.

Definition 2.1. The Caputo definition of fractional derivative of order γ for the continuous function
F : (0,∞)→ R is represented by the following expression [10]:

cDγF(t) =
1

Γ(1 − γ)

∫ t

0
(t − τ)−γF(τ)dτ, 0 < γ ≤ 1, t > 0. (2.1)

Lemma 2.2. [11, 12] Assume that (u∗, v∗) is a fixed point for the planar system (3.2) with
multipliers (eigenvalues of the Jacobian matrix) κ1 and κ2. Then:

1. If |κ1| < 1 and |κ2| < 1, then the point (u∗, v∗) is a sink point and locally asymptotically stable.
2. If |κ1| > 1 and |κ2| > 1, then the point (u∗, v∗) is a source point and locally unstable.
3. If |κ1| < 1 and |κ2| > 1 (or |κ1| > 1 and |κ2| < 1), then the point (u∗, v∗) is a saddle point.
4. If |κ1| = 1 or |κ2| = 1, then the point (u∗, v∗) is non-hyperbolic.

Lemma 2.3. [11, 13] Let FJ (κ) = κ2 − Tr(J)κ + det(J), where FJ (1) > 0 and κ1 and κ2 are the two
roots of FJ (κ) = 0. Then,

1. |κ1| < 1 and |κ2| < 1 if and only if FJ (−1) > 0 and FJ (0) < 1.
2. |κ1| > 1 and |κ2| > 1 if and only if FJ (−1) > 0 and FJ (0) > 1.
3. |κ1| < 1 and |κ2| > 1 (or |κ1| > 1 and |κ2| < 1) if and only if FJ (−1) < 0.
4. κ1 = −1 and |κ2| , 1 if and only if FJ (−1) = 0 and Tr(J) , 0, 2.
5. κ1 and κ2 are complex numbers and |κ1| = |κ2| = 1 if and only if Tr(J)2 − 4 det(J) < 0 and

FJ (0) = 1.
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Lemma 2.4. [14] Assume that Xk+1 = Gs(Uk) is an n-dimensional discrete dynamical system where
s ∈ R is a bifurcation parameter. Let X∗ be a fixed point of Hs and suppose that the characteristic
equation of the Jacobian matrix MJ(U∗) = (βi j)n×n of n-dimensional map Gs(Xk) is expressed as

FJ (κ) = κn + β1κ
n−1 + · · · + βn−1κ + βn, (2.2)

where βi = βi(s, u), i = 1, 2, 3, · · · , n, and u is a control parameter. Suppose that ∆±0 (s, u) = 1,
and ∆±1 (s, u), · · · ,∆±n (s, u) is a sequence of the determinants given by

∆±i (s, u) = det(Υ1 ± Υ2), i = 1, 2, · · · , n, (2.3)

where

Υ1 =


1 β1 β2 · · · βi−1

0 1 β1 · · · βi−2

0 0 1 · · · βi−3

· · · · · · · · · · · · · · ·

0 0 0 · · · 1


, Υ2 =


βn−i+1 βn−i+2 · · · βn−1 βn

βn−i+2 βn−i+3 · · · βn 0
· · · · · · · · · · · · · · ·

βn−1 βn · · · 0 0
βn 0 0 · · · 0


. (2.4)

In addition, assume that the following propositions are true.

C1- Eigenvalue criterion: FJ (−1) = 0, ∆±n−1(ω, u) > 0, FJ (1) > 0, ∆±i (ω, u) > 0, i =

n− 2, n− 4, · · · , 1 (or 1), when n is even (or odd), respectively.

C2- Transversality criterion:
∑n

i=1(−1)n−ia′i∑n
i=1(−1)n−i(n − i + 1)βi−1

, 0, where β′i represents the derivative of a(s)

at s = ω. Then, a flip bifurcation exists at a critical value ω.

3. Discretization of model (1.1)

The present section employs the fractional derivative of Caputo to discretize the continuous-time
model (1.1). The objective of this part is to develop a discrete representation of the fractional-
order system using the piecewise constant argument technique, which is equivalent to the techniques
described in [11]. To accomplish this, we start with the following structures:

cDγx(t) = Rx
(⌊ t
ω

⌋
ω
)

(1 − x
(⌊ t
ω

⌋
ω
)
) −

δx
(⌊

t
ω

⌋
ω
)

y
(⌊

t
ω

⌋
ω
)

f + x
(⌊

t
ω

⌋
ω
) − Mx

(⌊ t
ω

⌋
ω
)2
,

cDγy(t) =
cx

(⌊
t
ω

⌋
ω
)

y
(⌊

t
ω

⌋
ω
)

f + x
(⌊

t
ω

⌋
ω
) −

dx
(⌊

t
ω

⌋
ω
)

y
(⌊

t
ω

⌋
ω
)

f + x
(⌊

t
ω

⌋
ω
) − sy

(⌊ t
ω

⌋
ω
)
.

Here, the discretization step size is represented by the parameter ω > 0.

• For t ∈ [0, ω), we have t
ω
∈ [0, 1). Therefore, the system becomes

cDγx(t) = Rx0(1 − x0) −
δx0y0

f + x0
− Mx2

0,

cDγy(t) =
cx0y0

f + x0
−

dx0y0

f + x0
− sy0.

(3.1)
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Next, system (3.1) can be written as
x1(t) = x0 +

ωγ

Γ(γ + 1)

(
Rx0 (1 − x0) −

δx0y0

f + x0
− Mx2

0

)
,

y1(t) = y0 +
ωγ

Γ(γ + 1)

(
cx0y0

f + x0
−

dx0y0

f + x0
− sy0

)
.

• For t ∈ [ω, 2ω), we have t
ω
∈ [1, 2). Thus, the system turns as

cDγx(t) = Rx1(1 − x1) −
δx1y1

f + x1
− Mx2

1,

cDγy(t) =
cx1y1

f + x1
−

dx1y1

f + x1
− sy1.

The solution to this system can be expressed as
x2(t) = x1(ω) +

ωγ

Γ(γ + 1)

(
Rx1(ω) (1 − x1(ω)) −

δx1(ω)y1(ω)
f + x1(ω)

− Mx1(ω)2
)
,

y2(t) = y1(ω) +
ωγ

Γ(γ + 1)

(
cx1(ω)y1(ω)

f + x1(ω)
−

dx1(ω)y1(ω)
f + x1(ω)

− sy1(ω)
)
.

• For t ∈ [2ω, 3ω), it follows that t
ω
∈ [2, 3). Therefore, the system can be written as

cDγx(t) = Rx2(1 − x2) −
δx2y2

f + x2
− Mx2

2,

cDγy(t) =
cx2y2

f + x2
−

dx2y2

f + x2
− sy2.

Hence, the solution of the system takes the form of
x3(t) = x2(2ω) +

ωγ

Γ(γ + 1)

(
Rx2(2ω) (1 − x2(2ω)) −

δx2(2ω)y2(2ω)
f + x2(2ω)

− Mx2(2ω)2
)
,

y3(t) = y2(2ω) +
ωγ

Γ(γ + 1)

(
cx2(2ω)y2(2ω)

f + x2(2ω)
−

dx2(2ω)y2(2ω)
f + x2(2ω)

− sy2(2ω)
)
.

• Implementing n iterations, the system turns to
xn+1(t) = xn(nω) +

ωγ

Γ(γ + 1)

(
Rxn(nω) (1 − xn(nω)) −

δxn(nω)yn(nω)
f + xn(nω)

− Mxn(nω)2
)
,

yn+1(t) = yn(nω) +
ωγ

Γ(γ + 1)

(
cxn(nω)yn(nω)

f + xn(nω)
−

dxn(nω)yn(nω)
f + xn(nω)

− syn(nω)
)
.

• As t approaches (n + 1)ω, the discretized version of system (1.1) becomes
xn+1 = xn +

ωγ

Γ(γ + 1)

(
Rxn (1 − xn) −

δxnyn

f + xn
− Mx2

n

)
,

yn+1 = yn +
ωγ

Γ(γ + 1)

(
cxnyn

f + xn
−

dxnyn

f + xn
− syn

)
.

(3.2)

System (3.2) represents the discrete version of the continuous-time model (1.1).
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4. Existence and local stability of the fixed points

In this part, we develop the stability of the fixed points of model (3.2). It is worth noting that the
equilibria of system (3.2) are obtained by finding the solutions of the algebraic nonlinear system

(
Rx (1 − x) −

δxy
f + x

− Mx2
)

= 0,(
cxy
f + x

−
dxy
f + x

− sy
)

= 0.

Since the parameters R, δ, f ,M, c, d, and s are positive, model (3.2) has two fixed points O = (0, 0)

and E =

( R
R + M

, 0
)
. If c > d + s and R(c − d − s) > s f (R + M), system (3.2) has a unique positive

fixed point which is

P =

(
s f

c − d − s
,

f (c − d)(R(c − d − s) − s f (R + M))
δ(c − d − s)2

)
. (4.1)

The Jacobian matrix of system (3.2) at any fixed pointM = (x, y) is expressed by

JM =


1 +

ωγ

Γ(γ + 1)

(
R − 2x(R + M) −

δ f y
( f + x)2

)
−

(
δxωγ

( f + x)Γ(γ + 1)

)
ωγ

Γ(γ + 1)

(
f y(c − d)
( f + x)2

)
1 +

ωγ

Γ(γ + 1)

(
x(c − d)

f + x
− s

)
 , (4.2)

whose characteristic equation is

FJ (κ) = κ2 − Tr(J)κ + det(J) = 0,

where

Tr(J) = 2 +
ωγ

Γ(γ + 1)

(
R − s − 2x(R + M) −

δ f y
( f + x)2 +

x(c − d)
f + x

)
,

det(J) =

(
1 +

ωγ

Γ(γ + 1)

(
R − 2x(R + M) −

δ f y
( f + x)2

)) (
1 +

ωγ

Γ(γ + 1)

(
x(c − d)

f + x
− s

))
+

ω2γ

(Γ(γ + 1))2

(
δ f xy(c − d)

( f + x)3

)
.

The stability of the fixed points is then tested through Lemmas 2.2 and 2.3.

Theorem 4.1. The trivial fixed point O = (0, 0) is a saddle point if 0 < ω <
(

2Γ(γ+1)
s

) 1
γ , a source

if ω >
(

2Γ(γ+1)
s

) 1
γ
, and non-hyperbolic if ω =

(
2Γ(γ+1)

s

) 1
γ .

Proof. The Jacobian matrix of system (3.2) at the trivial fixed point O = (0, 0) is

JO =


(
1 +

Rωγ

Γ(γ + 1)

)
0

0
(
1 −

sωγ

Γ(γ + 1)

)
 ,
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with
κ1 = 1 +

Rωγ

Γ(γ + 1)
> 1, κ2 = 1 −

sωγ

Γ(γ + 1)
.

Based on Lemma 2.2, we can determine that the fixed point O = (0, 0) is a saddle if 0 < ω <
(

2Γ(γ+1)
s

) 1
γ ,

a source if ω >
(

2Γ(γ+1)
s

) 1
γ
, and non-hyperbolic if ω =

(
2Γ(γ+1)

s

) 1
γ .

�

Theorem 4.2. For the semi-trivial fixed point E =

( R
R + M

, 0
)
, we have the following results:

• When R(c − d − s) < s f (R + M), we have

1. E is locally asymptotically stable (sink) if 0 < ω < min
{(

2Γ(γ+1)
R

)1/γ
,
(

2Γ(γ+1)
q2

)1/γ
}
.

2. E is a source if ω > max
{(

2Γ(γ+1)
R

)1/γ
,
(

2Γ(γ+1)
q2

)1/γ
}
.

3. E is a saddle if
(

2Γ(γ+1)
R

)1/γ
< ω <

(
2Γ(γ+1)

q2

)1/γ
with eigenvalues |κ1| > 1 and |κ2| < 1, or(

2Γ(γ+1)
q2

)1/γ
< ω <

(
2Γ(γ+1)

R

)1/γ
with eigenvalues |κ1| < 1 and |κ2| > 1.

4. E is non-hyperbolic if

ω =

(
2Γ(γ + 1)

R

)1/γ

, or ω =

(
2Γ(γ + 1)

q2

)1/γ

.

• When R(c − d − s) > s f (R + M), we have

1. E is a source if 0 < ω
(

2Γ(γ+1)
R

)1/γ
.

2. E is a saddle if ω >
(

2Γ(γ+1)
R

)1/γ
.

3. E is non-hyperbolic if

ω =

(
2Γ(γ + 1)

R

)1/γ

.

Proof. The Jacobian matrix JE of system (3.2) is shown as

JE =



(
1 −

Rωγ

Γ(γ + 1)

)
−q1ω

γ

Γ(γ + 1)

0
(
1 −

q2ω
γ

Γ(γ + 1)

)
 , (4.3)

where

q1 =
δR

f (R + M) + R
, q2 =

(
s f (R + M) − R(c − d − s)

f (R + M) + R

)
.

Consequently, the eigenvalues are provided as follows:

κ1 =

(
1 −

Rωγ

Γ(γ + 1)

)
, κ2 =

(
1 −

q2ω
γ

Γ(γ + 1)

)
.

Based on Lemma 2.2, we confirm the results of Theorem 4.2. �
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Theorem 4.3. For the unique positive fixed point P of system (3.2), the following statements are true.

1. If any one of the following conditions holds, then P is locally asymptotically stable.

i- ∆ < 0 and 0 < ω ≤ ω0 =

(
H(c − d) Γ(γ + 1)

s
(
R(c − d − s) − s f (R + M)

))1/γ ,
ii- ∆ ≥ 0 and 0 < ω ≤ ω1 =

H(c − d) Γ(γ + 1) − Γ(γ + 1)
√

∆

s
(
R(c − d − s) − s f (R + M)

)  1
γ

.

2. If any one of the following conditions holds, then P is unstable.

i- ∆ < 0 and ω > ω0 =

(
H(c − d) Γ(γ + 1)

s
(
R(c − d − s) − s f (R + M)

))1/γ ,
ii- ∆ ≥ 0 and ω > ω2 =

H(c − d) Γ(γ + 1) + Γ(γ + 1)
√

∆

s
(
R(c − d − s) − s f (R + M)

) 1/γ .
3. The fixed point P is unstable if

∆ ≥ 0 and ω1 < ω ≤ ω2.

4. The fixed point P1 is non-hyperbolic if one of the following conditions holds.

i- ∆ < 0 and ω = ω0 =

(
H(c − d) Γ(γ + 1)

s
(
R(c − d − s) − s f (R + M)

))1/γ ,
ii- ∆ ≥ 0 and ω = ω1,2 =

H(c − d) Γ(γ + 1) ∓ Γ(γ + 1)
√

∆

s
(
R(c − d − s) − s f (R + M)

) 1/γ and ω ,
(
2Γ(γ + 1)

H

)1/γ

.

Proof. We begin with the Jacobian matrix of system (3.2) at the coexistence fixed point P which is
given by

JP =


1 −

Hωγ

Γ(γ + 1)
−sδωγ

(c − d)Γ(γ + 1)
(R(c − d − s) − s f (R + M))ωγ

δΓ(γ + 1)
1

 ,
where

H =

(
2s f (R + M)

c − d − s
−

s(R + f (R + M))
c − d

)
.

Now, the auxiliary equation associated to JP is

FJ (κ) = κ2 − Tr(J)κ + Det(J). (4.4)

Here,

Tr(J) = 2 −
Hωγ

Γ(γ + 1)
,

det(J) = 1 −
H ωγ

Γ(γ + 1)
+

s (R(c − d − s) − s f (R + M))ω2γ

(c − d)Γ(γ + 1)2 .
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Utilizing the auxiliary equation, we have

FJ (1) =
s (R(c − d − s) − s f (R + M))ω2γ

(c − d)Γ(γ + 1)2 > 0, FJ (0) = det(J),

FJ (−1) = 4 −
2H ωγ

Γ(γ + 1)
+

s (R(c − d − s) − s f (R + M))ω2γ

(c − d)Γ(γ + 1)2 .

The discriminant of equation FJ (κ) = 0 is expressed as

∆ = H2(c − d)2 − 4s(c − d)
(
R(c − d − s) − s f (R + M)

)
.

From Lemma 2.3, it can be guaranteed that the coexistence fixed point satisfies the results of
Theorem 4.3. �

5. Neimark-Sacker bifurcation analysis

We here examine the Neimark-Sacker bifurcation by considering ω as the key control parameter.
The relevant parameter space is specified as

BNS =

(R, δ, f , c, d, s, γ, ω) ∈ R8 | ∆ < 0 and ω = ω0 =

(
H(c − d) Γ(γ + 1)

s
(
R(c − d − s) − s f (R + M)

))1/γ .
In order to further analyze the bifurcation behavior, we propose a small perturbation ω∗ to the
bifurcation parameter ω. This perturbation converts the system stated in model (3.2) into the
following structure:

xn+1 = xn +
(ω + ω∗)γ

Γ(γ + 1)

(
Rxn (1 − xn) −

δxnyn

f + xn
− Mx2

n

)
= G1(xn, yn),

yn+1 = yn +
(ω + ω∗)γ

Γ(γ + 1)

(
cxnyn

f + xn
−

dxnyn

f + xn
− syn

)
= G2(xn, yn).

(5.1)

We next consider Zn = xn − x∗ and Kn = yn − y∗ as the deviations from the fixed point P. To modify
the perturbed system in model (5.1), we relocate the origin to (0, 0) and perform a third-order Taylor
series expansion to the nonlinear functions G1 and G2.

Zn+1 = β11Zn + β12Kn + β13Z2
n + β14ZnKn + β15K2

n + β16Z3
n + β17Z2

n Kn

+ β18ZnK2
n + β19K3

n + R(‖(Zn,Kn)‖4),

Kn+1 = β21Zn + β22Kn + β23Z2
n + β24ZnKn + β25K2

n + β26Z3
n + β27Z2

n Kn

+ β28ZnK2
n + β29K3

n + R(‖(Zn,Kn)‖4).

(5.2)
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The coefficients are provided by

β11 = 1 −
ωγ

Γ(γ + 1)

(
2s f (R + M)

c − d − s
−

s(R + f (R + M))
c − d

)
, β12 =

−sδωγ

(c − d)Γ(γ + 1)
, β22 = 1,

β21 =
(R(c − d − s) − s f (R + M))ωγ

δΓ(γ + 1)
, β13 =

ωγ

Γ(γ + 1)

(
−2R +

2δy∗ f
( f + x∗)3 − 2M

)
, β15 = 0,

β14 =
ωγ

Γ(γ + 1)

(
−

δx∗

f + x∗

)
, β16 =

ωγ

Γ(γ + 1)

(
−

6δy∗ f
( f + x∗)4

)
, β17 =

ωγ

Γ(γ + 1)

(
2δ f

( f + x∗)3

)
,

β23 =
ωγ

Γ(γ + 1)

(
−

2(c − d)y∗ f
( f + x∗)3

)
, β24 =

ωγ

Γ(γ + 1)

(
(c − d) f
( f + x∗)2

)
, β26 =

ωγ

Γ(γ + 1)

(
6(c − d)y∗ f

( f + x∗)4

)
,

β27 =
ωγ

Γ(γ + 1)

(
−

2(c − d) f
( f + x∗)3

)
, β19 = β25 = β28 = β29 = 0.

The characteristic equation for system (5.2) computed at the origin can be expressed as

FJ (κ) = κ2 − Tr(J)ω∗κ + Det(J)ω∗ , (5.3)

with
Tr(J)ω∗ = 2 −

H(ω + ω∗)γ

Γ(γ + 1)
,

det(J)ω∗ = 1 −
H (ω + ω∗)γ

Γ(γ + 1)
+

s (R(c − d − s) − s f (R + M)) (ω + ω∗)2γ

(c − d)Γ(γ + 1)2 .

In Eq (5.3), a pair of complex conjugate eigenvalues are shown as

κ1,2(ω∗) =
Tr(J)ω∗ ∓ i

√
4 det(J)ω∗ − Tr(J)2

ω∗

2
.

Because the parameters are (R, δ, f , c, d, s, γ, ω0) ∈ BNS , it follows that |κ1,2(0)| = 1, and

d|κ1,2(ω)|
dω

∣∣∣∣∣
ω=0

=
γH

Γ(γ + 1)

(
H(c − d) Γ(γ + 1)

s
(
R(c − d − s) − s f (R + M)

))(γ−1)/γ

, 0.

The Neimark-Sacker bifurcation occurs when κ j
1,2 , 1 for j = 1, 2, 3, 4 and ω = 0. This condition can

be correspondingly formulated as:
Tr(J)0 , −2, 0, 1, 2.

Using the coordinate transformation,Zn

Kn

 =

 β12 0

R − β11 −I

 x̄n

ȳn

 ,
where the real part is R =

Tr(J)0

2
and the imaginary part is I =

√
4 det(J)0 − Tr(J)2

0

2
. System (5.2)

is shifted into the equations x̄n+1 = Rx̄n − Iȳn + G̃1(x̄n, ȳn),

ȳn+1 = Ix̄n + Rȳn + G̃2(x̄n, ȳn).
(5.4)
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Here,

G̃1(x̄n, ȳn) =
β13

β12
Z2 +

β14

β12
ZK +

β15

β12
K2 +

β16

β12
Z3 +

β17

β12
Z2K +

β18

β12
ZK2 +

β19

β12
K3 + Ō(‖(Zn,Kn)‖4),

G̃2(x̄n, ȳn) =

(
β13(R − β11)
Iβ12

−
β23

I

)
Z2 +

(
β14(R − β11)
Iβ12

−
β24

I

)
ZK +

(
β15(R − β11)
Iβ12

−
β25

I

)
K2

+

(
β16(R − β11)
Iβ12

−
β26

I

)
Z3 +

(
β17(R − β11)
Iβ12

−
β27

I

)
Z2K +

(
β18(R − β11)
Iβ12

−
β28

I

)
ZK2

+

(
β19(R − β11)
Iβ12

−
β29

I

)
K3 + Ō(‖(Zn,Kn)‖4).

Notice that the variables Zn and Kn are presented as

Z = β12 x̄n, K = (R − β11)x̄n − Iȳn.

A Neimark-Sacker bifurcation in system (5.4) requires a nonzero discriminatory quantity which is

L =

(
Re(κ2e21) − Re

(
(1 − 2κ1)(κ2)2

1 − κ1
e20e11

)
−

1
2
|e11|

2 − |e02|
2
)
ω∗=0

. (5.5)

If L < 0, then the fixed point P undergoes a bifurcation resulting in an attracting invariant closed curve
for ω∗ > 0. Conversely, if L > 0, a repelling invariant closed curve bifurcates from the fixed point
for ω∗ < 0, where

e20 =
1
8

[
∂2G̃1

∂x̄2 −
∂2G̃1

∂ȳ2 + 2
∂2G̃2

∂x̄∂ȳ
+ i

(
∂2G̃2

∂x̄2 −
∂2G̃2

∂ȳ2 − 2
∂2G̃1

∂x̄∂ȳ

)]∣∣∣∣∣∣
ω∗=0

,

e11 =
1
4

[
∂2G̃1

∂x̄2 +
∂2G̃1

∂ȳ2 + i
(
∂2G̃2

∂x̄2 +
∂2G̃2

∂ȳ2

)]∣∣∣∣∣∣
ω∗=0

,

e02 =
1
8

[
∂2G̃1

∂x̄2 −
∂2G̃1

∂ȳ2 − 2
∂2G̃2

∂x̄∂ȳ
+ i

(
∂2G̃2

∂x̄2 −
∂2G̃2

∂ȳ2 + 2
∂2G̃1

∂x̄∂ȳ

)]∣∣∣∣∣∣
ω∗=0

,

e21 =
1
16

[
∂3G̃1

∂x̄3 +
∂3G̃1

∂x̄∂ȳ2 +
∂3G̃2

∂x̄2∂ȳ
+
∂3G̃2

∂ȳ3 + i
(
∂3G̃2

∂x̄3 +
∂3G̃2

∂x̄∂ȳ2 −
∂3G̃1

∂x̄2∂ȳ
−
∂3G̃1

∂ȳ3

)]∣∣∣∣∣∣
ω∗=0

.

Based on these findings, the following theorem is established.

Theorem 5.1. If condition L , 0 is satisfied, then system (3.2) exhibits a Neimark-Sacker bifurcation
at the positive fixed point P as the bifurcation parameter ω crosses the critical value BNS . The sign
of L determines the type of bifurcation.

• For L < 0, the system undergoes a subcritical Neimark-Sacker bifurcation, producing a stable
invariant closed curve encircling P.
• For L > 0, a supercritical Neimark-Sacker bifurcation arises, producing an unstable invariant

closed curve in the vicinity of the fixed point.
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6. Flip bifurcation analysis

We now use Lemma (2.4) to explore the flip bifurcation of system (3.2) for parameter perturbations
constrained to the neighborhood of B1,2

F , where

B1,2
F =


(R, δ, f , c, d, s, γ, ω) ∈ R8 | ∆ < 0, ω = ω1,2 =

H(c − d) Γ(γ + 1) ∓ Γ(γ + 1)
√

∆

s
(
R(c − d − s) − s f (R + M)

) 1/γ ,
∆ = H2(c − d)2 − 4s(c − d)

(
R(c − d − s) − s f (R + M)

)
and ω ,

(
2Γ(γ + 1)

H

)1/γ


.

Theorem 6.1. System (3.2) exhibits a flip bifurcation at the unique positive fixed point P provided that
the following conditions are satisfied:

1 + det(J) > 0,
1 + Tr(J) + det(J) = 0, (6.1)
1 − Tr(J) + det(J) > 0.

Consequently, a flip bifurcation forms at q when the parameters (α, β, q, κ) vary in a neighborhood of
the set B1,2

F .

Proof. Using Lemmas 2.4 and 4.3 in combination, and evaluating the characteristic Eq (4.4) of
system (3.2) at the equilibrium P, we arrive at the following conditions:

∆∓0 (q) = 1 > 0,
∆+

1 (q) = 1 + det(J) > 0,
(−1)2FJ (−1) = 1 + Tr(J) + det(J) = 0,
FJ (1) = 1 − Tr(J) + det(J) > 0,

which are satisfied precisely when

ω = ω1,2 =

H(c − d) Γ(γ + 1) ∓ Γ(γ + 1)
√

H2(c − d)2 − 4s(c − d)
(
R(c − d − s) − s f (R + M)

)
s
(
R(c − d − s) − s f (R + M)

) 1/γ ,
where

H =

(
2s f (R + M)

c − d − s
−

s(R + f (R + M))
c − d

)
.

In addition, the transversality requirement takes the form

Tr(J)′ + det(J)′

Tr(J) + 2
, 0,

where
Tr(J)′ =

dTr(J)
dω

∣∣∣∣∣
ω=ω1,2

, det(J)′ =
d det(J)

dq

∣∣∣∣∣
q=q1,2

.

Hence, system (3.2) encounters a flip bifurcation at the two critical values ω = ω1 and ω = ω2. �
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7. Controlling the chaos

Chaos is an essential feature of nonlinear dynamical systems. It occurs in discrete-time models,
such as difference equations and iterative maps, when tiny changes in initial conditions cause
unexpected long-term behavior. Although chaotic dynamics are potentially beneficial in fields such
as cryptography and optimization, they frequently provide difficulties in areas such as ecology,
engineering, medicine, and economics, where predictable and consistent behavior is needed. Various
strategies have been suggested for this objective, among them the Ott–Grebogi–Yorke (OGY)
approach [15], feedback control [16], and others [17]. We here adopt a hybrid control approach [18]
to control chaos in system (3.2). To carry this out, the controlled system is initially expressed in
the manner 

xn+1 = ξ

(
xn +

ωγ

Γ(γ + 1)

(
Rxn (1 − xn) −

δxnyn

f + xn
− Mx2

n

))
+ (1 − ξ) xn,

yn+1 = ξ

(
yn +

ωγ

Γ(γ + 1)

(
cxnyn

f + xn
−

dxnyn

f + xn
− syn

))
+ (1 − ξ) yn.

(7.1)

Note that the parameter 0 < ξ < 1 is considered as a control variable in the hybrid control scheme. The
Jacobian matrix of model (7.1) is then shown by

Jc
P =


1 −

H ξ ωγ

Γ(γ + 1)
−sδ ξ ωγ

(c − d)Γ(γ + 1)
(R(c − d − s) − s f (R + M)) ξ ωγ

δΓ(γ + 1)
1

 ,
where

H =

(
2s f (R + M)

c − d − s
−

s(R + f (R + M))
c − d

)
.

This gives us
κ2 − Tr(Jc)κ + Det(Jc) = 0, (7.2)

where
Tr(J) = 2 −

H ξ ωγ

Γ(γ + 1)
,

Det(J) = 1 −
H ξ ωγ

Γ(γ + 1)
+

s (R(c − d − s) − s f (R + M)) ξ2 ω2γ

(c − d)Γ(γ + 1)2 .

Lemma 7.1. Suppose that c > d + s and R(c−d− s) > s f (R+ M). Then, the unique positive fixed point

P =

(
s f

c − d − s
,

f (c − d)(R(c − d − s) − s f (R + M))
δ(c − d − s)2

)
of model (7.1) is locally asymptotically stable provided that the condition∣∣∣∣∣ 2 − H ξ ωγ

Γ(γ + 1)

∣∣∣∣∣ < 2 −
H ξ ωγ

Γ(γ + 1)
+

s (R(c − d − s) − s f (R + M)) ξ2 ω2γ

(c − d)Γ(γ + 1)2 < 2 (7.3)

holds.
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(a) Unstable solution for xn in system (3.2) when
ω = 0.092.
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(b) Stable solution for xn in controlling system (3.2)
when ω = 0.092 and ξ = 0.9.
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(c) Unstable solution for yn in system (3.2) when
ω = 0.092.
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(d) Stable solution for yn in controlling system (3.2)
when ω = 0.092 and ξ = 0.9.

(e) Phase portrait for ω = 0.092.
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(f) Phase portrait for ω = 0.0247 and ξ = 0.9.

Figure 1. The phase portraits and time series of systems (3.2) and (7.1) for different values of
ω are presented as follows: (a, c, e) ω = 0.092; (b, d, f) ω = 0.092; and ξ = 0.9, respectively,
with parameter values R = 5.23, δ = 5.895, f = 0.798, M = 1.05, c = 6.798, d = 3.13,
s = 0.675, and γ = 0.75.

AIMS Mathematics Volume 10, Issue 11, 25545–25567.



25560

Example 7.2. This example explains how a hybrid control strategy can stabilize the system
under discussion. We use the parameters R = 5.23, δ = 5.895, f = 0.798, M = 1.05, c = 6.798,
d = 3.13, s = 0.675, γ = 0.75, and the initial condition (0.19, 0.64). Figure 1 depicts that the
positive fixed point P is unstable (Figures 1(a),(c)), and the trajectories evolve toward a closed
invariant curve (Figure 1(e)). When we apply the hybrid control technique, P turns out to be
stable (Figures 1(b),(d)), while the closed invariant curve disappears (Figure 1(f)). This definitely
illustrates how hybrid control efficiently stabilizes the system and removes chaotic behavior.

8. Numerical simulations

Numerical simulations are implemented in this part to demonstrate the dynamics of the proposed
model under various parameter values. These simulations, which are executed in MATLAB, are
employed to confirm the mathematical findings gained in earlier sections.

Example 8.1. We address the behavior of system (3.2) when it encounters a Neimark-Sacker
bifurcation. Most notably, we explore system (3.2) for the values of parameters R = 5.23, δ = 5.895,
f = 0.798, M = 1.05, c = 6.798, d = 3.13, s = 0.675, γ = 0.5, and ω ∈ [0, 0.1849], and
initial conditions I′0 = (0.12, 0.72). Considering ω as the bifurcation parameter, we observed that
at ω0 = 0.0217, the positive fixed pointP becomes unstable, resulting in a Neimark-Sacker bifurcation.
The Jacobian matrix for P is presented by

J(E) =

 0.9375 −0.1805

0.34641.0000

 ,
where the associated characteristic polynomial is given by

FJ (κ) = κ2 − 1.9375 κ + 1. (8.1)

Here, the eigenvalues are κ1 = 0.9687 − 0.2481 i and κ2 = 0.9687 + 0.2481 i, satisfying |κ1,2| = 1.
The discriminatory quantity in the present situation is L = −0.23421, fulfilling the requirements
outlined in Theorem 5.1. The bifurcation diagrams of xn and yn, along with their associated maximum
Lyapunov exponents (MLE), are illustrated in Figure 2 for the assigned parameter set. Moreover,
Figures 2(a),(b) exhibit the stability of the positive fixed point P for 0 < ω < 0.0217. Note that the
fixed point loses stability at ω0 = 0.0217, and the point E becomes unstable at 0.0217 < ω < 0.1849.
Hence, the Neimark-Sacker bifurcation generates a closed invariant curve around the fixed point P.
It is worth noting that Figure 2(c) demonstrates that when ω increases, so does the size of this
invariant curve, which is accompanied by positive maximum Lyapunov exponents. In Figures 3
and 4, we depict the phase portraits and related time series of xn for system (3.2) with bifurcation
parameters ω = 0.0129, 0.0217, 0.0247, 0.178, and 0.1849. When 0 < h < 0.1443, all trajectories
converge to the fixed point P, which stays stable as illustrated in Figures 3(a),(d). However, the
fixed point P loses stability for 0.0217 ≤ h < 0.1849. This leads to an attracting closed invariant
curve encircling P, toward which all trajectories converge (see Figures 3(c)–(f)). Finally, considering
h = 0.189, the system undergoes a transition to chaos and chaotic attractors appear, as depicted in
Figure 4.
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From an environmental standpoint, this type of bifurcation represents a loss of stability of a fixed
point and the appearance of long-term oscillations along a closed invariant curve, which frequently
take the form of quasi-periodic cycles that have the potential to eventually result in chaotic dynamics
or frequency locking. In phytoplankton-zooplankton systems, such a bifurcation typically indicates a
shift from steady co-existence to ongoing, and sometimes complex, population cycles, with significant
implications for bloom formation, grazing regulation, and the predictability of ecosystem dynamics.

(a) Bifurcation diagram for xn. (b) Bifurcation diagram for yn.
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Figure 2. (a),(b) Neimark-Sacker bifurcation diagram of system (3.2). (c) Corresponding
maximum Lyapunov exponents for the parameter values: R = 5.23, δ = 5.895, f = 0.798,
M = 1.05, c = 6.798, d = 3.13, s = 0.675, γ = 0.5, and ω ∈ [0, 0.1849].
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(a) Phase portrait for ω = 0.0129.
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(b) Phase portrait for ω = 0.0217. (c) Phase portrait for ω = 0.0247.
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(d) Time evolution for 0.0129.
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(e) Time evolution for 0.0217.
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(f) Time evolution for 0.0247.

Figure 3. Phase portraits and time evolutions for different values of ω are shown: (a, d)
ω = 0.0129; (b, e) ω = ω0 = 0.0217; (c, f) ω = 0.0247; using the parameter values R = 5.23,
δ = 5.895, f = 0.798, M = 1.05, c = 6.798, d = 3.13, s = 0.675, γ = 0.5.
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(a) Phase portrait for ω = 0.178.
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(b) Time series for ω = 0.178.

(c) Strange attractors.
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(d) Time series for ω = 0.1849.

Figure 4. These graphs illustrate the strange attractors and time series of system (3.2) for the
parameter values R = 5.23, δ = 5.895, f = 0.798, M = 1.05, c = 6.798, d = 3.13, s = 0.675,
γ = 0.5, with ω = 0.178 (a, b) and ω = 0.1849 (c, d).

Example 8.2. The flip bifurcation is explained in this example under the values I0 = (0.71, 0.3), and
the parameters R = 2.97, δ = 4.10, f = 01.95, M = 0.571, c = 3.89, d = 1.7, s = 0.63, γ = 0.5, and
ω ∈ [0, 0.8]. System (3.2) experiences a flip bifurcation with these parameters when the bifurcation
parameter ω reaches ω1 = 0.4290. This bifurcation can be validated by constructing the Jacobian
matrix at the appropriate point as

JP =

−1.0222 −0.8717

0.0510 1.0000

 ,
whose characteristic equation is

FJ (κ) = κ2 + 0.0222 κ − 0.9778.
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Hence, κ1 = −1 and κ2 = 0.9778, with |κ2| , 1. Further, we obtain

∆∓0 (q) = 1 > 0,
∆+

1 (q) = 1 + det(J) = 0.0222 > 0,
(−1)2FJ (−1) = 1 + Tr(J) + det(J) = −3.9968 × 10−15 ≈ 0,
FJ (1) = 1 − Tr(J) + det(J) = 0.0445 > 0.

Note that the flip bifurcation takes place at ω1 = 0.4290. The bifurcation
diagrams of xn (Figures 5(a),(b)) show that the positive fixed point P of system (3.2) remains
stable for 0 < ω < 0.4290. Upon approaching or exceeding 0.4290, ω forces this fixed point to lose
stability through a flip bifurcation. Furthermore, the system faces several instances of flip bifurcations
that result in periodic orbits with lengths of 2, 4, and 8 (see Figure 5(a)) and ultimately cause
chaotic dynamics for specific values of ω. Figure 5(b) displays the corresponding maximal Lyapunov
exponents, demonstrating that chaotic behavior and periodic orbits coexist in the parameter space.
Additionally, Figure 5(b) indicates that some maximal Lyapunov exponents are negative, while others
are positive, indicating the existence of periodic orbits or stable equilibria coexisting with chaos. In
Figure 6, we present the phase portraits and time series for this scenario, highlighting a cascade
of period-doubling bifurcations. The model displays periodic oscillations with periods 2, 4, and 8,
as illustrated in Figures 6(c)–(f). This sequence ultimately evolves into chaotic dynamics, clearly
observed in Figures 6(g),(h).

Flip bifurcations in phytoplankton-zooplankton systems signify a change from regular, stable
population cycles to more complicated, alternating dynamics. From the viewpoint of ecology, this
shift implies heightened susceptibility and diminished predictability, potentially resulting in significant
population swings that affect the aquatic environment as a whole.

(a) Bifurcation diagram for xn.
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Figure 5. (a) Flip bifurcation diagram of system (3.2). (b) Corresponding maximum
Lyapunov exponents for the parameter values: R = 2.97, δ = 4.10, f = 01.95, M = 0.571,
c = 3.89, d = 1.7, s = 0.63, γ = 0.5, and ω ∈ [0, 0.8].
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(b) Time evolution for q = 0.45.
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0 100 200 300 400 500 600 700 800 900

Time

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x
n

(d) Time evolution for q = 0.45.
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(f) Time evolution for q = 0.543.

(g) Chaotic region.
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Figure 6. Phase portraits and time evolutions of system (3.2) for different values of R = 2.97,
δ = 4.10, f = 01.95, M = 0.571, c = 3.89, d = 1.7, s = 0.63, γ = 0.5, and ω ∈ [0, 0.8].
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9. Results and discussion

Here, we discuss the principal findings generated from the computational simulations and analytical
examination of the fractional-order phytoplankton-zooplankton (PZ) model controlled by the Caputo
fractional derivative. We utilized the piecewise constant argument approach to convert system (1.1)
into system (3.2). The nonlinear steady-state system (3.2) was solved in order to establish the system’s
equilibrium points which are a trivial point and a phytoplankton-only equilibrium point. The trivial
point O = (0, 0) is a saddle or source as shown in Theorem 4.1 while the semi-trivial fixed point E
becomes a sink, source, and saddle point under some conditions given in Theorem 4.2. However,
if c > d + s and R(c−d− s) > s f (R + M), system (3.2) has a unique positive fixed point P as illustrated
in Eq (4.1). This point is called a co-existence equilibrium point where both populations persist. The
conditions under which this point is stable or unstable are given in Theorem 4.3.

System (3.2) encounters certain types of bifurcation. In particular, a subcritical Neimark-Sacker
bifurcation occurs in the system for L < 0, leading to a stable invariant closed curve that encircles P.
Moreover, a supercritical Neimark-Sacker bifurcation happens when L > 0, producing an unstable
invariant closed curve near the fixed point P. As shown in Example 8.1 and Figures 2–4, for the
parameters R = 5.23, δ = 5.895, f = 0.798, M = 1.05, c = 6.798, d = 3.13, s = 0.675, γ = 0.5,
and ω ∈ [0, 0.1849], as well as the initial conditions I′0 = (0.12, 0.72), we investigate system (3.2).
Usingω as the bifurcation parameter, we find that a Neimark-Sacker bifurcation occurs atω0 = 0.0217,
where the positive fixed point P becomes unstable. From an environmental point of view, it is the loss
of stability of a fixed point and the development of long-term oscillations along a closed invariant curve,
commonly in the form of quasi-periodic cycles, which may eventually result in frequency locking or
chaotic dynamics. Regarding the flip bifurcation, system (3.2) experiences a flip bifurcation under the
values I = (0.71, 0.3), and the parameters R = 2.97, δ = 4.10, f = 01.95, M = 0.571, c = 3.89,
d = 1.7, s = 0.63, γ = 0.5, and ω ∈ [0, 0.8] when the bifurcation parameter ω reaches ω1 = 0.4290.
In phytoplankton-zooplankton systems, flip bifurcations indicate a transition from typical, steady
population cycles to more intricate, alternating dynamics. Ecologically speaking, this change suggests
increased vulnerability and less predictability, which could lead to large population fluctuations that
impact the entire aquatic ecosystem.

In order to more accurately assess the advantages of the fractional formulation, we compare the
integer-order model γ = 1 [19] with the fractional-order model 0 < γ < 1. The fractional version
showed improved stability, reduced oscillation amplitude, and delayed bifurcation. These features
align with the ecological memory and delayed responses commonly seen in plankton environments.
Consequently, the fractional strategy presents a more biologically accurate representation of predator-
prey interactions in addition to generalizing the integer-order model.

10. Conclusions

In this work, we analyzed the equilibrium states, stability conditions, and bifurcation mechanisms
of a fractional-order phytoplankton–zooplankton model which is governed by the Caputo fractional
derivative. We were able to more accurately understand the qualitative dynamics of the original model
by converting it into a discrete-time system utilizing the piecewise constant argument methodology.
Three categories of equilibrium points were distinguished: The coexistence equilibrium P, the
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phytoplankton-only equilibrium E, and the trivial equilibrium O. In addition, we found that the
system experiences considerable nonlinear dynamics such as flip and Neimark-Sacker bifurcations. A
supercritical Neimark–Sacker bifurcation produces unstable invariant curves that could cause quasi-
periodic oscillations and even chaotic dynamics, whereas a subcritical bifurcation provides stable
invariant closed curves around the coexistence point within particular parameter domains. The
occurrence of flip bifurcations additionally represents a transition from periodic, stable solutions to
complicated, alternating population cycles. In particular, based on the research results, fractional
dynamics are essential for capturing long-term dependence in aquatic environments from the biological
point of view. Flip bifurcations in phytoplankton-zooplankton ecosystems represent the transition
from normal, stable population cycles to more complicated, alternating dynamics. From an ecological
perspective, this modification indicates more susceptibility and reduces predictability, which might
result in significant population oscillations. These oscillations affect the aquatic environment as
a whole.
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