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Abstract: This paper focuses on the existence and analytical formulation of closed-form solutions
for a three-dimensional system of nonlinear difference equations. The proposed system possesses
a mathematical architecture that encapsulates complex nonlinear interactions among three mutually
dependent variables. Through the application of systematic analytical transformations, the original
system was reduced to a set of solvable recurrence relations, thereby allowing the derivation of
explicit closed-form expressions with a high degree of analytical precision. Furthermore, numerical
examples revealed that even minute perturbations in the system parameters or initial conditions can
induce significant variations in oscillatory patterns, highlighting the system’s structural sensitivity
and rich dynamical diversity. This paper, therefore, constitutes a natural and essential extension of
previously studied two-dimensional frameworks toward more sophisticated three-dimensional models,
which provide a more faithful representation of interdependent relationships within discrete nonlinear
systems.
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1. Introduction

Difference equations, as advanced mathematical tools, provide a robust framework for modeling
and analyzing dynamical systems that evolve over discrete time intervals. Their significance extends
beyond theoretical exploration to practical applications across various scientific domains, including
biology, economics, and engineering. The study of difference equations has gained considerable
attention due to their capacity to simplify and transform complex systems into solvable forms,
facilitating a deeper understanding of underlying dynamics. Building upon these foundational
ideas, several recent studies have examined discrete nonlinear systems from diverse perspectives,
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aiming to analyze their periodic, steady-state, and alternating behaviors. For instance, Abo-
Zeid (2019, [1]) and Abo- Zeid & Cinar (2013, [2]) investigated the general dynamics of third-
order rational difference equations, emphasizing the significant influence of quadratic terms on the
emergence of complex and unpredictable dynamical patterns. In a similar vein, Elsayed (2023, [3,4])
explored the periodic characteristics and explicit solutions of nonlinear rational systems, demonstrating
that nonlinear interdependencies among terms can generate long-term periodicities or parameter-
conditioned stabilities. Meanwhile, the works of Giimiis and collaborators ([5-9]) focused on the
stability and boundary behaviors of discrete systems with time delays, revealing that the inclusion of
delay effects or nonlinear structures produces a wide spectrum of dynamical behaviors, ranging from
stable recurrences to quasi-periodic oscillations. Furthermore, Giimiis and Abo-Zeid ([5-7]) identified
the existence of forbidden sets—regions of unsolvability that underscore the importance of defining
the conditions required to ensure theoretical consistency and mathematical integrity in discrete models.
Complementary studies by Kara (2023, [10]) and Ogul & Simsek (2023, [11]) investigated exponential
and rational forms of higher-order difference equations, showing that increasing the order of recurrence
or the degree of interaction introduces additional analytical complexity, including intricate rotation
patterns and modified stability characteristics. Likewise, the seminal contributions of Zhang et al.
(2006, [12]) and Zhang et al. (2012, [13]) provided closed-form solutions and established stability and
boundary conditions for third-order rational discrete systems with rational structures, which remain
a cornerstone in the field. Collectively, these works reveal that the prevailing body of research
predominantly centers on two-dimensional systems or those examined solely through numerical
simulations, whereas three-dimensional nonlinear discrete systems that are treated analytically and
yield closed-form solutions remain relatively underexplored and continue to represent a promising
direction for future mathematical investigation.

Applications of difference equations span from fundamental linear cases to intricate nonlinear
systems that exhibit rich dynamical behaviors. Many such systems can be described using well-known
numerical sequences, including Fibonacci numbers, (co)balancing numbers, Jacobsthal numbers, and
Mersenne numbers (see, e.g., [14—16]). These sequences often emerge in recursive models that capture
population dynamics, financial systems, and combinatorial structures, highlighting the versatility of
discrete-time models.

Previous studies, such as those conducted by Wisnowski and Schumacher [17], have demonstrated
the impact of competition within seed banks on biodiversity, showcasing how difference equations
serve as powerful tools for modeling ecological interactions. Their mathematical models illustrate
complex behaviors that arise in competitive environments, underscoring the growing scientific interest
in rational difference equations, which often exhibit richer and more intricate dynamics than their linear
counterparts. The widespread presence of difference equations in biological models further reinforces
their fundamental role in advancing research across disciplines.

A particularly intriguing example is the Riccati difference equation, which has been extensively
investigated due to its broad applications in control theory, mathematical finance, and population
dynamics. Similarly, Sharawi and Roma [18] explored the impact of various harvesting strategies on
a discrete Beverton-Holt model, demonstrating how deterministic environments influence ecological
sustainability. Their findings highlight the necessity of transitioning toward more complex and
generalized models to capture real-world phenomena with greater accuracy. It is noteworthy that a
number of recent investigations have explored the multiple factors influencing the dynamical behavior
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of discrete-time nonlinear systems, with particular emphasis on stability, constraints, and periodicity.
For instance, Almatrafi and Alzubaidi (2022, [19]) examined periodic solutions, equilibrium points,
and stability conditions of eighth-order rational difference equations using rigorous iterative numerical
schemes, thereby illustrating how such models can effectively capture complex real-world behaviors.
Similarly, Aljoufi et al. (2023, [20]) conducted a comprehensive dynamical analysis of generalized-
order discrete-time equations, focusing on periodicity, stability, and oscillatory phenomena, and
derived explicit solutions employing absolute value operators and mathematical iteration. Collectively,
these studies underscore that discrete nonlinear models constitute a powerful and versatile framework
for the analysis of dynamical systems across natural sciences and engineering applications. These
scholarly efforts align closely with the objective of the present study, which is to analyze a three-
dimensional nonlinear discrete system exhibiting interactive dependencies among its components.
By emphasizing the reciprocal relationships between variables, this research contributes to a deeper
mathematical understanding of discrete systems with complex coupling structures.

This paper is motivated by the intention to broaden the mathematical framework established for
two-dimensional difference systems, particularly the model proposed by Hassani et al. (2024, [21]),
which examined a two-dimensional nonlinear second-order system. In the present study, we
introduce a three-dimensional extension of that model by incorporating an additional variable, thereby
enabling the representation of interactive dynamics among three interdependent components rather
than two. This extension substantially enriches the system’s dynamical complexity and allows for
a more comprehensive exploration of multi-component interactions in discrete-time settings. Such
a generalization constitutes a natural and necessary step toward a deeper understanding of high-
dimensional discrete systems, which are known for their pronounced sensitivity to initial conditions
and parameter variations. These characteristics make them particularly suitable for modeling a wide
range of nonlinear and time-discrete phenomena observed in physical, biological, and economic
contexts. Moreover, by employing rational difference equations within this extended framework, the
study effectively captures inverse and conditional relationships among variables while preserving the
system’s nonlinear structure and maintaining its analytical tractability.

Motivated by these considerations, this research examines a novel system governed by the following
set of recursive equations:

V-1
Fmvl =P s, t+e, Ym>0,
-
Sm-1
Sme1 = O—Ipy + /l, (13)
rf” —
-1
tye1 =T 7 Tm+ 0,
Sy — A

where p, &, 0, 4,7, 0, and the initial values r_y, ry, s_1, So, t_1, fo are nonzero real numbers. It should be
noted that the system (1.a) is well-defined only under specific non-degeneracy conditions ensuring that
all denominators remain nonzero throughout the iteration process. In particular, the system is defined
by the following conditions:

tn 20, rm &, Sy A, VYm > 0. (1.b)

This constraint guarantees that each recursive relation in (1.a) is meaningful and that the division
operations are well-defined at every iteration step. This system represents a significant generalization
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of previous work, particularly extending the two-dimensional framework discussed in [21] while
maintaining analytical tractability through its recursive structure. It is worth emphasizing that the
study of nonlinear systems in discrete spaces has attracted growing attention in recent years, owing to
their wide-ranging applications across the natural sciences and economics. Recent contributions, such
as the work by Althagafi et al. (2025, [22]) on the stability analysis of biological rhythms using three-
dimensional difference systems, have revealed that quadratic systems possess strong potential to model
biological rhythms and to analyze the boundedness and persistence properties of biological models.
In addition, Althagafi, H. (2025, [23]) provided further insight into the role of discrete nonlinear
dynamics in modeling neural activity and synchronization phenomena. Similarly, Althagafi et al.
(2024, [24]) investigated three-dimensional nonlinear systems reducible to two-dimensional linear
forms, demonstrating the existence of closed-form solutions and periodic behaviors associated with
animal and social dynamics. Moreover, related approaches have been employed in financial time-series
analysis, particularly in stochastic models with periodic thresholds and Markov-switching ([25-27]),
to describe volatility dynamics and structural transitions in financial markets.

The novelty of this study resides in the formulation and analytical investigation of a three-
dimensional nonlinear discrete system that serves as a generalization of a previously examined two-
dimensional model. In contrast to earlier approaches, the proposed framework effectively captures the
multivariate coupling effects inherent in complex discrete dynamics, while simultaneously allowing
the derivation of explicit closed-form solutions through rigorous analytical procedures. The principal
contributions of this work can be summarized as follows: (i) Extending previously established solvable
two-dimensional models to a higher-dimensional setting, thereby enriching the analytical landscape of
nonlinear discrete systems; (i1) Deriving precise analytical conditions governing the solvability and
periodicity of the system, ensuring a deeper understanding of its structural behavior.

The remainder of this paper is structured as follows: Section 2 establishes the mathematical
framework and presents the analytical methodology adopted for the investigation of the proposed
system of recursive equations (1.a). Section 3 provides the detailed derivation of the closed-form
solutions and discusses the analytical conditions for stability and periodicity. Section 4 presents a
set of counterexamples and numerical illustrations designed to validate the theoretical results and to
highlight the impact of parameter variations on system dynamics. Section 5 introduces the Results and
Discussion, where the key analytical and numerical findings are interpreted and compared. Finally,
Section 6 concludes the paper by summarizing the main contributions and outlining potential directions
for future research.

2. Discussion of the methodology adopted

The methodology employed in this study is specifically formulated to capture the intrinsic
nonlinear interactions governing the proposed three-dimensional discrete system. Unlike conventional
linearization or reductionist techniques that often oversimplify the underlying dynamics by neglecting
higher-order dependencies, the present approach preserves the complete nonlinear structure of the
recursive relations. This methodological choice ensures that critical dynamical features, such as
sensitivity to initial conditions, nonlinear coupling effects, and parameter-induced transitions, are
faithfully represented throughout the analytical process.

The investigation commences with a direct examination of the system’s recursive formulation,
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where algebraic techniques are utilized to derive necessary and sufficient conditions guaranteeing
the well-defined nature of the sequences (r,), (s,), and (#,). Particular attention is given to
avoiding singular configurations in which denominators vanish, since such singularities correspond
to degenerate states that disrupt recurrence and may lead to indeterminate or divergent trajectories.
Consequently, their exclusion is a fundamental requirement for maintaining the theoretical consistency
and stability of the model.

Moreover, the adopted framework integrates analytical reasoning with numerical experimentation,
allowing a comprehensive understanding of how parameter variations influence system evolution.
The analytical component elucidates the internal structure of the system, whereas the numerical
analysis validates these findings, and illustrates the corresponding dynamical behaviors, and reveals
its sensitivity to initial perturbations. This combined analytical-numerical strategy has demonstrated
remarkable effectiveness in recent studies of nonlinear discrete systems (see, for instance, Althagafi
et al. [22-24]), making it particularly well-suited for multidimensional discrete models arising in
biological, physical, and economic contexts, where nonlinearity and parameter sensitivity play decisive
roles.

The insights derived from this methodological discussion naturally lead to the analysis presented in
the next section, where theoretical predictions are validated through numerical simulations.

3. Solution of system (1.a)

This section delves into the process of solving system (1.a) under specific initial conditions.
Consider a sequence (7,,, Sy, t,,) for m + 1 > 0 that represents a solution to system (1.a). It is crucial
to note that the system becomes undefined if any of the initial conditions, particularly when k € {0, 1},
is set to zero. Similarly, the system fails to be defined if any one of the conditions ry = A4, or sy = 0,
or to = £ holds. To ensure the existence of a well-defined solution (7,,, S, t,,) for m + 1 > 0 within
system (1.a), the following conditions must be met:

FinSmtm 0,70 # A, 5o #0, tg #Feform+1 > 0. (2.a)

From this point forward, we will assume that the condition r_;s_; ¢, # 0 for k € {0, 1} is satisfied,
ensuring that the solution meets the requirements outlined in (2.a). This assumption is critical for
maintaining the integrity of the solution, allowing us to explore its properties under well-defined
circumstances.
To facilitate the analysis of system (1.a), we introduce a change of variables. Define

— tp—E& . Syp—Ad ~ t,—0

, Sy = , Iy = for m > 0. (2.b)
Sm—1 L1 V-1

ry =

Under this transformation, system (1.a) is reformulated as follows:

— 1 | .
Fmil = P=» Sm+1 =0=, lpy1 =7=,Y¥m=0 (2.0)
m T'm Sm

enabling a more structured approach to finding solutions. Consequently, we define a new variable 7,
as follows: 7,, := 7,,Sutm ¥Ym > 0. With this substitution, system (2.c) evolves into: 7, = potr,
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Vm > 0. The solution to this recurrence relation can be expressed as:

T =25, Q20— 1)+ Tobu (2p) . Yim > 0

T

where the symbol d,, (n) represents the Kronecker delta, which is defined as follows:

1, ifm=n,

Sumy =3
0, ifm=+#n.
From (2.d), we find:
_— — o~ — poT .~
om = 10 = FomSomboms Vom+1 = — = Toms1S2me1tome1, Ym 2 0.
0
Specifically, in system (2.c), we arrive at
— 1 - 1 — 1
Pl = Z——, Spy1 = %,\—, i1 = E=——,Vm > 2
Fm—2 Sm-2 tn-2
Therefore, we can define the new sequence as follows:
To ifm=06k, k>0, S0 ifm=06k, k>0,
2 ifm=06k+1, 51 ifm=06k+1,
D) if m =6k + 2, ) if m =6k + 2,
1 . |
+ =] = ifm=06k+3, 5 =) = ifm=6k+3,
m = T 7o m — P S0
I . |
£ ifm=6k+4, Z— ifm=6k+4,
r Py
1 1
po 1 . oT 1 .
E— ifm=6k+5, Z—  if m=6k+5.
T 1) p 52
Further, from (2.e), we derive
—~  Tosoly — oT 1
Iom = A—O ,0\0 s w1 = f,\,\,\ —,VYm > 0.
"omS2om roSolo V2m+152m+1

From this, the sequence (fn) can be described as follows:

o ifm=6k k>0,
h ifm=6k+1,
5 if m =6k +2,

- Z—  ifm=6k+3,
1
Z_— if m=6k+4,

Z_— ifm=6k+5.

(2.d)

(2.e)

(2.1)
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Additionally, from (2.b), we establish

For = TonSme1 + € Sm = Sbm_1 + A, by = tyFm1 + 6 for m > 0.

By substituting m with 6m + k, 0 < k < 5, into (2.g), we derive

Fem = T0Sem-1 t+ &, Sem = Solem-1 t 4, fom = toTem—1 + 0,
Tem+1 = F1Sem T+ &, Sem+1 = Stlem + 4, tem+1 = lrem + 0,
Tem+2 = I Sem+1 + &, Sem+2 = Saleme1 + A, fom2 = DaFemt1 + 0,
1
—_ po _ _pT
Tomes = T =Sems2 + & Sems3 = T =Tlemi2 + A lomss = T=Teme2 + 0,
70 0 )
_ po _ _ pr
Fomid = —=S6m+3 t+ & Semra = S =lomsz + A, lomia = T =Tems3 + 0,
' 0 G 7t
_ po _ _ pr
Tomss = T=Semsa + & Semss = T =Tlomea + A, Tomss = T=Temss + 0.
r B
This implies
_ 2T
Tem =T =—_Vem-3 +_—6+7'0/l+8
[152 )
1 ot () 1 ro
= PO Tlem—g +|P0T= + 2= 0+ |poT=—+Tp| A+ |7 —+1
o s 1152 152
150
Tom+1 = %—l"(,m 2+ 7'1S05+ 7”1/1 + &
t
| I S0~ 7150
= PO Trems + |poT= +T150 |0 + [p*= + 71 |4 + Z——+1]e,
1) L) L)
Fem2 = M2 S1totem—1 + 12510 + A + &
= PO Trem_4 + (0'2;6 +723“\1)6 + (pffv\ft?) +772)/1 + (772?1?5 + 1)5
ptT/S\Ztl pT 1
Tem+3 = _Tr6m+ 5+——/1+8
T 1o "o )
S5 —— 1 5
= PO Trem_3 + aTtI+p—”: S+ 2% ot + = |1+ 2= +1]¢,
T ’,.O T rO T ’,.0
_ o b
Tom+s = O —Tom+1 T O :5"‘ 7—/1 + &
r1 8o r18o r . .
| 1( ,nn 2
= PO Trem-2 +0'2: (lzl"]So + 1)6+: 0_27 + 22+ 0'2: +1]e
180 r Sso T 180
1

1
Yem+s = POT—— r6m+2+0':5+——/1+8

r2s1t0 }"2S1 “r
1 I"2S1 1 7 1
= PO TFemi + 0> — (’: 2L i 1]6+ = [por—= + |1+ |por= +1)e
8 ty 1’2 S1lo rzslto
and .
S0 250
Sem —pzAgsém 3+ ——8+ S00 + A4
rit iy’ . .
1 50 1
= POTSem— + |p0T= + = |+ |poT—= + 750 6+p—+1/1
r 15) r1t2 rit

(2.2)
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Slfo
Som+1 — T = Som—2 t Slf08 + S15+ A
2 _ _
1 e ty ’S\lto
= pOTSem_s + |poT=+TS1to|e + |0 = + 51 |0 + | E— + 1] 4,
r r Tn

Som+2 = 3‘\2}?77056m—1 +Sate+5:0+ A
= POTSem_s4 + (7'270 +§}t1) e+ (%tffo +f€2) S+ (/s\ztfr\o + 1) A,

—_— —

[21’1 1) 1
Som+3 = ﬂ— Sem + £—8+ ﬂ:é +A4
P50 Pso P so
I5) 1 l‘2r1
= pOTSem3 + (T2 + &= 8+—t2r1+—6+ +1]4,
P80 S0 S0
7'2 1 1
Sem+d = 72 — Sem+1 T 72 —€ +ZE—6+A1
Sll() Slto p Sl
1 e~ l TS‘\lrz 7
:parsﬁm_2+72:(r2s1t0+1)8+: =+ |5+ |7 —+1 A,
S1lo §1 o Slto
1
Sem+s = POT———Sem+2 + P?—e+ZT—6+21
S2t1 1o Sgll $2
1 Sat 1 /S\
= poTSem-1 + T'—= |Z=—+1|e+ = poT— + Z |5+ [por—— + 1] 4,
Syt roy §2 hro p Szl‘]l”o
and . .
» Io
tom = 0" = l’6m3+——ﬂ+l08+6
5 12 . .
N 1 — ty
= PO Tlem—-6 + pO'T:-f-p—o-: A+|poT—+1)|e+ 0'2:4-1 0,
51 ' 2} 28]
tem+1 = — tﬁm 2+l‘17'0/1+l18+6
p o _
I — o —~ hro
= pOTtems + |poT= +tirp| A +|T°= + 11 |e + | Z— + 1|6,
52 52 )

toms2 = F1 Sotem—1 + LA + he + 6
= poTtey—4 + (pZTS‘\O + t{r]) A+ (%T/r\fs\o + tz)é‘ + (t{r\fs\o + 1) 0,

—

I’QS] 1
tomss = p——t(,m /1 + ’5—8 +6
fo fo 7 1
y— 1 8]
=pO'Tt6m_3+(p 51+ & )/l+p (r2s1+ )s+(0 + 16,
- fo 1o
s 1
tomes = PP——lome1 + P°=—A+Z=£+6
hro hro 151 .
) 1 e~ 1 2S2l1 T o) S
=p0'7t6m_2+p:(sztlr0/l+ 1>/l+: pr=+%|e+|p —+1 0,
o 1 o t1r0
1 1 -1
tomss = POT=———lems2 + P*=—A1 + ——8 +6
17180 Lry "1 .
1 t2r1 1 153
:pa‘rtem_1+p2:( +1 /1+—pO'T:+pT e+ |por—— + 1|6
thr P SO [5) riSo [21’15‘0
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Based on the comprehensive analysis and discussions provided above, we can deduce the following
significant result:

Theorem 3.1. Assume that the triplet (v, Sy, t,) represents a well-defined solution to system (1.a).
Then, we can derive the following explicit solution:

m - = (ro 3 8)
= (poD)" ro + Z (pot)* {(PO' . * T(to —0)s ) °

(So—/l)”— ro— & o (S0 =) (ro—&)r_
+(’) (lh—0) 1 ) (C’ (ty—0) 511 ”)8}’
S-1 (5o — A7
( ’”0—8+(t0—5)l—1)6

2 (so — ) r_15-y +1)s},

k

m—1
+ 8) + (poT)
k:O

Yem+1 = (PO'T) (

Q(SO /I)S 1
T(rp—&)tq l()—é

A+

i)

(ro—¢e)(to — )1y

m—1
-A _11 th—0 —A)s_
Tems2 = (o) (’;) %0 (O'S Py /l) +e|+ Z (o) {(0‘ 0 + §(s0 ) 1)
] ro— & = roq (ro— &)t
X0_5+,_;(0_2(f0—5)s L, S0~ )/l_'_(p_(so_/l)(to_é)s—] +1)8}
"\ (ro—8ery ] T (rno—e)rot

m—1
_ fh—0 1t
s = oo (5 (222 () ) )4 oot
ro— & =0

P r_q So —

t ty — 8) 5_ to— 0Vt .y S
<do?lt 1 _,_1(0 )S15+0_2(0 ) 1+p_cr S-1 2
so—A T(ro—&)r_; (so—ADroy Trg—e

, (to—=0)s_q1
" (‘T (ro—2) (50—~ D7y

fh—0 Iy ro—&( r-i1s_;
mid = "< = z +e|l+0|+A|+
s = r0r (2 (2 (5 o) o)+ )
m—1
ro—&  (to—0)1
+ + - 0
;(p(rr) { ( s.p P(so—A)ro
+0_(T(”0—8)l1 lfo—5)/14_(&(?0—8)(1?0—5)?—1+1)8}’
(so—=Asy T roy P (so—AD)roysoy
_ _ 1
Temss = (oot)" (O-S()— (p Sls(%tol’_l(s(es()( :01_;+/1)+8)+5)+/l)+8)
r—i l(rQ_E)t_l
+ (pO'T)k{O'T( + — )5
) :

0—0 p(so—A)s

j (ro —&)r_ I , (ro—&)ri
+(pT(t0 —0) 5 +O-So—/l)/l+ (T (so — A) (fo — 6) 5_1 * 1)8}’

+1]&yp,

and

m—1
= (po1)" s + Z (por) {(O’Tto —9 +ps_1 (50 — /1))5

=0 r-1 (ro—&)ty
N 02(l0—5)s—1+so—/1 5+ Q(to—(s)(so—/l)s—l_i_1 1
(ro—&)r_ I T (-8t ’
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m—1
m k I (fo—é)s 1
Sone1 = (pT) ( )+kZ:(pO-T) {O-(T so— A4 (”O—S)T— )8

((to—d)t_ EO) ( (fo — 6) 5111 +1)/1
v P(so—ADroy ro—e (so =D (rg—e)r_; ’

-0 t th—0)1t_
Semss = (oo )" (%for_l ( soli/ll + 6) + /1) kZ; (o)t {( s_lg + %((Sz — /1))2_11)

, (=&t N to—5)6+(ﬂ(to—5)(”0—8)1—1 +1)/1}’

(50 —A) sy roi P (50— A) s_iry

m—1
milor I-1 cro—&( S-1r
Sem+3 = (OT) (?so—/l((_’ 5 (pt0_5 +8)+6)+/l)+kz_(;(po'r)k
x 472 (p r_ +l(r0_8)t—1 - 7_2(7”0—8)”—1 4ot I s
to—0 P(sog—A)s_q (tp — ) 5_1 Pso—A

( , (ro—e&)tyr N 1)/1}’

XT8+E(T
o

T
(so =) (g —06) 5
- _ -A 1t
Semed = (pO'T)m(IrO g(p—T e (BSO (O'S el +/l)+g)+6)+/l)
Posy Tto—0\" 1t rop— &
el So— A 1(7‘0-8)”1
+ o)k {72 (’3 + < - )8
Z(p T -1 U(IO—(S)S_]

=
(50— A7 L1~ )6+(,£(So—/1)(’”0—8)r—1+1)/1}’
(to —0) 14 T S-1 7 (to—0)s_11-y

r_ 1 fo—0( t1r
= m ol+ A 0
Sem+s = (POT) (lo— (U - ro—s(P - (TSO_/1+ )+ )+8)+ )
S_1 1 (S() - /l) r—q
+ )+ + —
) Z(p(ﬂ-) {pT( ro—& 0'(fo—5)f—1)8
(so— A) sy I , (so—A)s1ro
+ + 0+ + 1|4,
(pg(f’o—é‘)f—l Tlo—é) (p (to —0)(ro — &)ty

m—1
= (po)" 1o + Z(p(TT)k {(Tpro —f Lo (o = 9) )/1
=0 S-1

+

~
—_
.O O

and

- (so =) r-y
+(T2 (ro—&)ty N fy—0 8+(E(7’0—8)(f0—5)f—1 N 1)5}’
P (so— D) royso

(so —A) s_1 r_g
1

r-i (”0—8)f 1

tom+1 = (PO T)" ( —+ 5) + ) (oot {T (pzt 5 (so —A)s_y

p_f(ro—b‘)”—1 -1 , (n—etr
T(” (to — 0) s i So—/l)8+(T (to — 6) (59— A) 54 i 1) }
toms2 = (poT)" (}T ros—le (p::j_él + s) + 6) + Z (pot)k {(p Sot_l 4. }Tg;) :;)) :_11)
_ = _ _
,(So — ) r Lo —8)8+ (p_f(’”o —&)(so—ADr N 1)6}
(to — 0) 1, 51 T (to—0) 185 ’

A

><p/1+§(p
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Remark 3.1. The closed-form analytical expressions obtained in this study clearly demonstrate that
the stability behavior of the system is governed by the multiplicative factor (pot)", which appears in
the three interacting sequences (¥, Sm, tm). Consequently, the stability characteristics can be directly
inferred from the explicit solutions without any need for linearization or numerical approximation.
Specifically: The system is asymptotically stable if |pot| < 1, unstable if |pot| > 1, the system
exhibits bounded periodic (marginally stable) behavior when |pot| = 1. These analytical criteria
provide a precise and transparent characterization of the system’s dynamical nature, illustrating how
the explicit solution structure itself encapsulates the conditions for stability. This result highlights
the mathematical rigor and methodological efficiency of the proposed analytical framework, as it
establishes stability properties intrinsically, rather than relying on external numerical or perturbative
techniques.

4. Counterexamples and numerical illustrations

To further clarify and validate the analytical results obtained in the previous section, this section
provides a set of counterexamples and numerical illustrations. These examples are designed to
demonstrate the accuracy and applicability of the theoretical framework developed for the three-
dimensional nonlinear difference system. In particular, they highlight how variations in parameter
values and initial conditions can influence the qualitative behavior of the sequences.

Example 4.1. In this example, we explore a dynamic system characterized by three sequences: (r,,),
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(8,), and (t,,) , as described in the followinng system:

-1
n =p————=5, — 1.35,Ym > 0,
Tl =P - 045" "
m—1
- =0o————t, + 1.35,
T 13 2.0y
[ = Tsminﬁrm +0.45,

with p = o = 7 = 1.35. The initial values are specified as ro = —0.7, r-y = 1.2, so = —0.5, s_; = 0.3,
to = 0.9, and t_, = —1.5. To illustrate the system’s behavior over time, we generate plots of {r,,}, {Sm},
and {t,,} over multiple iterations. This graphical analysis is presented in Figure 1.

In Figure 1, the plots reveal extreme instability in the sequences 1., S, and t,, characterized by
rapid and large-magnitude oscillations that worsen over time. The initial values and parameters used
in this simulation result in an explosive system where the sequences diverge rapidly. The behavior
observed here is indicative of a system that is highly unstable and sensitive to even minor changes in
initial conditions.

Sequence r m Sequence s m Sequence t m

x10* x10*

10 4
—_—s tm

8 ® Initial values 2 @ Initial values

6
3 g 4 gom
2 2 2
© [ [J

>

Z 0 2 22

0

-4
-2
4 6
0 10 20 30 40 50 60 0 10 20 30 40 50 60

4 Fomai? § = 05 4 4 tomy? 1= 05
P x 10’ +] 10 *x 10’ 4 *x 10’ 1
- 8
0 2
5 6
@a @ B () f— = —
g — g 4 g —— L
s 4 r s s !
> omet > o > ome1
< . » 22 )
6 6ms2 omi2
— o — e {
6mi3 . mid
8 T Tomaa 2 = lomis
"me5 tomis
10 -4 -6
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
m m m

Figure 1. Extreme instability in r,,, s,,, and 7,, due to severe parameterization.

Example 4.2. In this illustrative example, we consider the system (2.h) with parameter values p =
0.5, 0 = 09, and T = 3.0. To examine the system’s temporal evolution, we compute and plot the
sequences {r,}, {s,}, and {t,,} over a series of discrete iterations. The resulting trajectories, depicted in
Figure 2, provide a clear visualization of the system’s dynamic response and highlight the oscillatory
and interactive behavior among the three components under the given parameter configuration.
Figure 2 depicts the temporal evolution of the three sequences {r,,}, {s,}, and {t,,} under relatively
high parameter values (p = 0.5, 0 = 0.9, and T = 3.0). The trajectories exhibit a rapid and irregular
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increase in amplitude, leading to a numerical explosion in all three variables. The oscillations
alternate sharply between positive and negative values, indicating extreme instability resulting from
the unbalanced nonlinear coupling among the variables. This behavior suggests that the chosen
parameters amplify rather than dampen the recursive dynamics, producing a chaotic-like regime
characterized by high sensitivity to initial conditions and long-term unpredictability.

Sequence o Sequence s m Sequence t
1000 8000 2000
—_—s tm
0 6000 ® Initial values ©® Initial values
4000 1000
-1000
8 8 2000 8
S -2000 = s 0
> r > 0 >
- m L -—
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-2000 1000
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-5000 -6000 -2000
0 0 10 20 30 40 50 60 0 10 20 30 40 50 60
m m m
Fomag? 1= 0 Somapr 120505 tongr 12 0B
1000 8000 2000
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-1000 —
) 0 6ms+1 »
o P @ 2000 s o
= 6m = 6m+2 3
= 2000 ] = 0
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- @ -
-3000 Tome2 T Semed
T Tomea 2000 Semes -1000
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m m m

Figure 2. Extreme instability in r,,, s,,, and 7,, due to severe parameterization.

Example 4.3. In this example, we investigate a three-dimensional nonlinear discrete system defined
by the sequences (ry,), (s,), and (t,), which evolve according to the following recursive relations:

Ve
Tl = —tms_ 8.2sm +0.2,Ym > 0,
m—1
m = ———, +0.2, i
Sm+1 rmt— 0.2 (21)
m—1
t = —r, +0.2.
TS 02"

The initial values are specified as ro = —0,10, r_; = 0,10, so = -0,12, s_; = 0,08, 1, = -0, 11, and
t_1 = 0,09. To illustrate the system’s behavior over time, we generate plots of {r,,}, {s..}, and {t,,} over
multiple iterations. This graphical analysis is presented in Figure 3,

Figure 3 illustrates the bounded and periodic behavior of system (2.i), where the three sequences
{rm}, {sn}, and {t,} evolve in a regular and repetitive manner over time. The initial plots show that
all values remain confined within a narrow range around zero, indicating bounded stability without
divergence or numerical explosion. Moreover, the subsequences {r6m+ j}, {s6m+ j}, and {t6m+ j} reveal an
approximate six-period cycle, in which the oscillation patterns repeat consistently and symmetrically.
This behavior signifies that the system attains a state of stable periodic oscillation, reflecting a
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delicate balance between the opposing nonlinear forces within the system. The reciprocal interactions
among the variables maintain the trajectories within stable bounds, preventing chaotic divergence and
ensuring sustained periodic stability.
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Figure 3. Periodic and bounded dynamics of system (2.1).

Example 4.4. In this example, we explore a dynamic system characterized by three sequences: (r,,),
(8,), and (t,,), as described in the following system:

|
0 =070—2"L 5 +0.04, Ym > 0,
P £y = 0.05 s "
m—1 .
Smel = 075mtm +0.04, (2_])
tol  =0.80—21 , 10.05.
+ s, —004 "

The initial values are specified as ro = —0.10, r_; = 0.10, 50 = —-0.12, s_; = 0.08, 1, = —-0.11, and
t_1 = 0.09. To illustrate the system’s behavior over time, we generate plots of {r,,}, {s,}, and {t,} over
multiple iterations. This graphical analysis is presented in Figure 4.

Figure 4 illustrates the system response of (2.j) under moderately damped parameter values
(o = 070, o0 = 0.75, and T = 0.80). The sequences {r,}, {sn}, and {t,} initially exhibit small
oscillations around zero, which gradually diminish over time and converge to a constant steady value.
This behavior represents asymptotic stability, where oscillations decay progressively with increasing
iterations, confirming that the damping effect dominates the system’s internal dynamics. Furthermore,
the detailed trajectories of the subsequences \rep.+ |, {s6m+ j}, and {t6m+ j} reveal that all paths converge
toward the same terminal value, indicating insensitivity to initial conditions and the presence of a fixed
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attractor corresponding to a stable equilibrium point. Such a response highlights the system’s inherent
capacity to absorb initial perturbations and settle into a dynamically balanced steady state.

0.04 0.04 0.04

10 15 20 25 30

0.04 0.04 0.04

-0.02 -0.02 -0.02

-0.04 -0.04 -0.04

-0.06 -0.06 -0.06

Figure 4. Asymptotically stable behavior of system (2.)).

Remark 4.1. The figures and numerical results presented in this section embody the physical and
dynamical interpretation of the studied system. The three sequences {r,}, {s.}, and {t,} represent
interdependent variables that capture the evolution of three interacting quantities within a nonlinear
discrete framework exhibiting either periodic or steady-state characteristics. In scenarios where
unbounded oscillations or numerical explosions occur (as shown in Figures 1 and 2), these phenomena
can be interpreted as manifestations of a system driven far from equilibrium or exhibiting strong
sensitivity to initial conditions, analogous to physical or biological systems that surpass their stability
thresholds due to cumulative nonlinear interactions. Conversely, under stable or quasi-periodic
regimes (as illustrated in Figures 3 and 4), the results correspond to the response of a dynamically
balanced system, in which the mutual interactions among the variables effectively dissipate initial
disturbances, leading to either equilibrium or regular oscillatory motion. Hence, the numerical
experiments presented here not only demonstrate abstract mathematical behaviors but also provide
a qualitative understanding of the physical essence of discrete nonlinear systems, illustrating how
variations in parameters and initial stimuli govern the transition between stability and chaotic
dynamics.

Remark 4.2. The case where t,, = 0, 1, = & or s, = A for some m leads to a singularity in
system (1.a), since one or more denominators vanish, resulting in undefined or divergent terms.
Mathematically, this situation corresponds to the system reaching a degenerate manifold where the
recursive relations collapse. From a dynamical perspective, such a state may be interpreted as a
critical transition point, indicating the loss of regularity or the onset of instability. In future work, we
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aim to investigate regularization or perturbation-based approaches to handle these singular cases, for
instance by introducing small perturbations 6 — 6 +n,, € = € +n,, and 1 — A + n,, where 1n,,1,,1;
are infinitesimal parameters. This approach may enable the characterization of limiting behaviors and
bifurcation patterns near these singular states.

Remark 4.3. In comparison with the studies reviewed in the introduction, the present paper
distinguishes itself through both its mathematical formulation and analytical methodology. Unlike
most previous research, which primarily focused on one- or two-dimensional models, this study
develops a novel three-dimensional nonlinear discrete system that effectively captures the mutual
interactions among three interdependent variables. The analytical framework employed here is based
on a series of systematic transformations, enabling the derivation of explicit closed-form solutions
while preserving the intrinsic nonlinear structure of the system. Moreover, the obtained results reveal
that even slight variations in the system’s initial conditions or parameter values can induce abrupt
transitions in its periodic behavior, emphasizing the model’s structural sensitivity and dynamical
richness. Consequently, this research represents a natural and rigorous extension of previously
investigated two-dimensional frameworks (e.g., [21]) into a three-dimensional setting that is not only
more mathematically intricate but also more representative of realistic nonlinear phenomena.

Remark 4.4. It is important to note that the proposed analytical framework provides a distinct
computational advantage. Once the explicit closed-form expressions for the sequences (r.,), (Sm),
and (t,,) are obtained, each subsequent term can be computed directly without the need for iterative
or recursive numerical procedures. Consequently, the computation of each time step is achieved in
constant time, O(1), in contrast to conventional numerical schemes whose computational cost typically
increases linearly or super-linearly with the simulation length. This feature makes the proposed method
both mathematically transparent and computationally efficient, thereby enhancing its suitability for
long-term dynamical analysis of discrete nonlinear systems and for applications where high precision
and low computational complexity are simultaneously required.

5. Results and discussion

This section highlights the key analytical and numerical findings obtained throughout the study. It
aims to demonstrate how the mathematical structure of the proposed system governs and interacts
with the dynamic behaviors observed in the numerical simulations. By integrating rigorous
analytical derivations with computational experiments, a coherent and comprehensive understanding
of the system’s evolution was achieved, capturing the transitions between unstable, periodic, and
asymptotically stable states within the proposed three-dimensional framework. From an analytical
standpoint, the system, defined through the interdependent relationships among the three variables
Tm>» Sm, and t,, exhibits a closed sixth-order periodic structure arising from the cyclic coupling of
these variables. The obtained closed-form expressions reveal that the system’s dynamic behavior is
fundamentally governed by the absolute value of the composite product (po7), which serves as the
principal determinant of the system’s stability properties. When the condition |po7| < 1 is satisfied, the
system converges toward an asymptotically stable state, in which oscillations progressively diminish
and the sequences r,,, s,,, and t,, approach a fixed equilibrium point. For |po7| = 1, the system exhibits
stable periodic behavior, characterized by a regular recurrence of states over successive iterations,
indicating a balance between the internal nonlinear forces and damping effects. Conversely, when
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loor| > 1, the system becomes highly unstable, with amplitudes that grow rapidly and extreme
sensitivity to initial conditions. This regime leads to chaotic-like dynamics, where small perturbations
result in significant divergence in the system’s trajectories, reflecting a breakdown of equilibrium and
loss of predictability.

Numerically, the obtained results were in full agreement with the theoretical predictions. Figures 1
and 2 illustrate that when the system parameters take relatively large values, the sequences experience
a clear numerical explosion, reflecting a complete loss of equilibrium and the onset of divergent,
unstable dynamics. In contrast, Figure 3 demonstrates a regime of bounded stability accompanied
by regular periodic oscillations of approximately sixth order. This pattern confirms the presence of a
recurring dynamic balance resulting from the mutual compensations among the interacting variables.
Finally, Figure 4 depicts the most evident case of asymptotic stability, where the amplitudes of the
three sequences gradually decrease and converge toward a steady numerical equilibrium around zero.
This numerical behavior aligns precisely with the analytical stability condition |po7| < 1, validating
the theoretical framework developed in this study.

These results demonstrate that the nonlinear structure of the system does not merely generate
random or chaotic-like behavior but is governed by well-defined stability relationships that can be
precisely controlled through parameter adjustment. Each of the three variables exerts an indirect
influence on the others, producing reciprocal responses that range from amplification to attenuation
depending on the chosen parameter values. Consequently, the proposed model exhibits a clear dynamic
transition, from numerical explosion, through finite periodicity, to asymptotic stability, reflecting the
structural richness of the system and its capacity to represent diverse patterns observed in natural,
biological, and socio-economic phenomena. Furthermore, the findings emphasize the computational
efficiency and analytical clarity of the proposed framework. The availability of closed-form solutions
enables the direct computation of future states without resorting to iterative numerical schemes. This
reduces the computational cost to O(1) per iteration, making the approach particularly well-suited for
long-term simulations or large-scale discrete system analyses.

Based on the above, the main conclusions can be summarized as follows:

e The compound product (po7) serves as the principal control parameter governing the system’s
dynamic behavior and determines the transition between stability, periodicity, and chaos.

e A balanced interaction among the system’s variables gives rise to bounded periodicity with an
approximate six-period cycle, indicating the presence of structural stability.

e When the parameters are moderately damped, the system exhibits asymptotic stability, converging
toward a fixed equilibrium point and demonstrating its ability to absorb initial perturbations.

e The proposed analytical approach not only captures the qualitative dynamics of the system but
also facilitates the derivation of accurate numerical solutions with minimal computational effort,
thus bridging theoretical rigor and practical applicability.

6. Conclusions

In this paper, we investigated the solvability and periodicity of a three-dimensional system of
difference equations, deriving explicit solutions under different parameter conditions. The significance
of the results obtained in this paper lies in the elucidation of the precise analytical structure

underlying three-dimensional nonlinear discrete systems, representing a natural and rigorous extension
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of previously investigated two-dimensional models. Through a systematic analytical approach, the
original system was transformed into a set of solvable recurrence relations, allowing the derivation
of explicit closed-form expressions that clearly demonstrate how mutual nonlinear interactions among
variables give rise to periodic and oscillatory dynamics. The numerical experiments further reveal that
even slight perturbations in system parameters or initial conditions can induce substantial transitions
in oscillatory patterns, thereby confirming the system’s structural sensitivity and dynamical richness.
Collectively, these findings establish a robust analytical framework that advances the theoretical
understanding of discrete nonlinear dynamics and provides a solid foundation for practical applications
in biological, physical, and economic modeling, domains in which recursive relationships play a central
role in describing complex phenomena.

Future research may focus on a comprehensive investigation of the stability properties and
bifurcation structures of the proposed system by introducing small parametric perturbations and
examining their influence on the long-term dynamical behavior. Extending the present analytical
framework to four- or higher-dimensional nonlinear systems also constitutes a promising direction,
as the inclusion of additional coupling mechanisms could give rise to richer and more intricate
oscillatory patterns. Moreover, comparative analyses with alternative nonlinear formulations, such
as fuzzy difference systems, would provide valuable insights into the robustness and persistence of the
obtained periodic solutions. Finally, it is recommended to design and implement specialized numerical
algorithms tailored to the proposed system, particularly those employing adaptive time-stepping or
invariant-preserving schemes, to further enhance the computational accuracy of the theoretical results
and to broaden their applicability to real-world problems in discrete dynamical modeling.
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