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1. Introduction

Hankel determinants originate from Hankel matrices, where the entries along each anti-diagonal are
identical. The g-th Hankel determinant corresponds to a (¢ + 1) X (¢ + 1) determinant constructed from
a sequence, and has applications in both combinatorics and the theory of analytic functions. In the
context of geometric function theory, bi-univalent functions that are analytic and injective in the unit
disk, with analytic and injective inverses, and are of particular interest. Estimating their coefficients
remains a central challenge, with tools such as the FeketeSzego functional being widely employed.
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Especially, the second and third Hankel determinants have received attention in several subclasses to
extract geometric insights [1-4].

Let A denote the class of functions analytic in the open unit disk U := {¢ € C : |¢| < 1}, normalized
by f(0) = 0 and f'(0) = 1, and expressed as

f(§)=§+zaz§’. (1.1)
=2

According to the Koebe one-quarter theorem (see [5]), any univalent function f € A maps U onto a
region containing a disk of radius }‘ centered at the origin. Consequently, such a function possesses an

inverse f~!, which is analytic in at least the disk |w| < ro(f) where ro(f) > %,’ and satisfies the identities
[ fen=¢ forgel,  f(fw)=w forwl <r(f).
The inverse f~! admits the expansion
f‘l(w) :w—azwz+(2a%—a3)w3 — e (1.2)

A function f € A is called bi-univalent if both f and f~! are univalent in . The family of such
functions is usually denoted by J. The study of class J gained considerable momentum following
the foundational work by Srivastava and collaborators [6]. Some classical examples of bi-univalent

functions include: . |
S +¢
T—¢ —log(1 - ¢), 3 log (:)

It is worth noting that the class of univalent functions is strictly larger than the class of bi-univalent
functions. Indeed, certain classical univalent functions, such as the Koebe function, ¢ — 2—2 and ﬁ
are not bi-univalent, since their inverses fail to preserve univalence within the unit disk U [6,7].

When studying bi-univalent functions, a major issue is the estimation of initial coefficients in their
Taylor expansions. An early result is due to Lewin [8], who established the bound |a,| < 1.51. This was
later improved by Brannan and Clunie [9] to |a,| < V2, and subsequently refined by Netanyahu [10] to
|las| < ‘3‘. In pursuit of sharper bounds, various subclasses of 3 have been introduced, particularly those
defined via starlikeness and convexity constraints [11, 12]. Among the key quantities examined is the
Fekete-Szego functional of the form |a; — na3|, which has received significant attention across different
subclasses [13].

Given two functions f, g € A, we say that f is subordinate to g, written f(¢) < g(s), if there exists
a function u(g) analytic in U, satisfying u(0) = 0 and |u(¢)| < 1, such that

f($) = gu(s)).
When g is univalent in U, this implies that:
f(0)=g(0), and f(U)<g(U) (see[7,14]).
A function f € S is said to be starlike if

cf(f;)< 1+§’ ce.

fle) 1-¢
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This is equivalent to requiring that

R sf'(s)
( f()

which geometrically ensures that (/) is starlike with respect to the origin. For a detailed discussion,
refer to [15, 16].

The g-th Hankel determinant was provided by Noonan and Thomas in 1976 [17]. This determinant
is constructed from the Taylor coeflicients of an analytic function by forming a ¢ X ¢ Hankel matrix
starting at the coefficient a;, and then taking its determinant. Formally, it is defined as

)>O, forall¢ € U,

a S N ¢ |
il App o Al1q
H,() = : : . : , LgeN, a =1. (1.3)
Airg-1 QAlvg " Ap2g-2

The Hankel determinant encodes relations among the coefficients and has been extensively studied,
particularly for large / in connection with boundary behavior of analytic functions [18, 19]. More
recently, attention has shifted to smaller indices such as H,(2), especially within subclasses of bi-
univalent functions [1, 20, 21].

For illustrative purposes, when ¢ = 2 and / = 1, the determinant simplifies to

a a
Hy(1) = al = a3 - d2, (1.4)
and for [ = 2,
_ |2 a3l _ 2
H2(2) = a das = aa,s — as. (15)

Such determinants arise frequently in function theory due to their ability to capture nonlinear
dependencies among the Taylor coefficients.

Among these, the functional Hy(1) = a3 — a3, commonly referred to as the Fekete-Szegd functional,
plays a prominent role in bounding coefficient estimates. Recent investigations by Shakir et al. [20]
have extended the study of bounds for H,(2) in various subclasses (see also [22,23]).

In the present work, we extend the analysis to the third Hankel determinant H3(1), corresponding to
g =3 and [ = 1, defined by the determinant

a; dy das
H3(1) =|dy az dagf.
as a4 ds

Given the normalization a; = 1 for functions in (A, this determinant can be expanded as
H3(1) = az(axay4 — a%) —as(ay — @;az) + as(az — a%). (1.6)
Utilizing the triangle inequality yields the estimate

|H3(1)| < |as| - lasay — @3] + layl - las — azas| + las| - las — a3). (1.7)

AIMS Mathematics Volume 10, Issue 11, 25452-25468.
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Such an upper bound is particularly useful when examining subclasses of analytic functions where
control over coefficient magnitudes is essential.

This study primarily focuses on two objectives: first, to derive upper bounds for the second-order
Hankel determinant,

Hy(2) = aras — a3, (1.8)

and second, to establish estimates for the third-order determinant H3(1), relying on inequality (1.7).
Accomplishing these goals requires determining sharp bounds for the quantities

2
las — a5, lasl, laal, lasl.
2. Definitions, lemmas, and examples

Recently, several works have focused on analytic functions associated with the balloon-shaped
domain. Ahmad et al. [24] introduced and studied such functions, while Khan et al. [25] obtained
sharp coefficient bounds and upper estimates for the second Hankel determinant in this setting. In a
related direction, Shakir et al. [20] investigated the third Hankel determinant for bi-univalent functions
in the crescent-shaped domain. Motivated by these developments, the present paper considers a
new subclass of bi-univalent functions related to the balloon-shaped domain and establishes upper
bounds for the third Hankel determinant. In this work, we introduce and study a novel subclass of
bi-univalent functions, denoted by CS5(y), associated with the balloon-shaped domain characterized
by the analytic function ZI‘J{E. This class serves as a unified framework encompassing both starlike
and convex bi-univalent functions. Our principal objective is to establish sharp estimates for the initial
Taylor coefficients |a,| and |as|, analyze the Fekete Szegd functional, and derive bounds for the third
Hankel determinant H3(1), thereby gaining deeper insight into the geometric and analytic properties of
functions in this class.

Definition 2.1. Let f be a bi-univalent function defined on U. The function f belongs to the class
CS5(y) if it satisfies the conditions

sf'(€) +vsif"(s) J2V+e

, €U,
Y@+ -Pfle)  1+es’ °
and
’ 2 1
wg'(w) + ywg"”(w) <2\/1+w well

ywg'w)+ (1 —y)gw)  1+e™’

where 0 <y < 1 and g = f~! denotes the inverse of f.

Figure 1 illustrates the transformation of the domain to the codomain under the mapping f(g) =
2yl +¢

1+es )
shaped domain.

. The left panel shows the original unit disk, while the right panel depicts the resulting balloon-
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Figure 1. Grid representation of the domain and codomain under the mapping f(g) =
241l +¢

l+es’

Example 2.1. When setting y = 0, the class CSZ(0) reduces to the standard class of starlike bi-univalent
functions S*, characterized by the subordination relations

sf'(s) - 2Vl +¢

f(s) l+es’ seth
and
wg(w)<2\/1+w, well

glw) 1+ev

Example 2.2. In the case y = 1, the class CS5(1) coincides with the convex-type class Cz, and is
defined via the conditions

1+ sf(s) - 2Vl +g

, €U,
flo) " Tres ®
and
' 2‘,1
1+Wg (W)< +W, weUl.

g’ (w) 1+ev

For more on the balloon-shaped domain, see [24,25].
A more general approach to starlike functions was presented by Ma and Minda [26], who introduced
the family
sf'(s)
1)

where ¥ is an analytic with a positive real part in U, normalized by #(0) = 1 and ©¥'(0) > 0. Depending
on the form of J(¢g), several subclasses can be derived. For instance, taking ¥(¢) = % retrieves the
classical class §* of starlike functions.

Table 1 outlines a collection of notable subclasses derived by selecting specific functions for 9(s),
along with their associated references.

S*(ﬂ):{feﬂ: < 9(s), g‘e(Ll},

AIMS Mathematics Volume 10, Issue 11, 25452-25468.
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Table 1. Representative subclasses of S*(1#) with defining analytic functions 9(g).

Class Reference 7(s)

YL Sokdletal. [15]  +V1+¢

y:. Rainaetal [27] ¢+ \/1+¢?
Yiw  Sharmaetal [28] 1+ %¢+ 367
Sgn Choetal. [29] 1 +sing

S; Kumaretal. [30] 1+sin!¢
S Wani et al. [16] 1+¢—1¢°

nep

Let P be the class of analytic functions in U such that p(0) = 1 and have a strictly positive real part
throughout U. In other words, a function p(¢) € P satisfies:

p(0)=1 and R(p() >0 forall¢geU.

Lemma 2.1. [31] Suppose that p(s) € P and has the power series representation
P(s) = 1+ pis+pac? + psg’ +--- .
Then, for every £ € N, the following coefficient bound holds:
lpel < 2. 2.1

Lemma 2.2. [32] Let p(s) € P be given by the expansion

P()=1+pis+prs”+pig +--.

Then, there exist complex numbers 7 and ¢, with || < 1 and |g| < 1, such that the coeflicients satisfy
the relations:

2p> = pi + 14 - pY), 2.2)
4py = pi +2(4 - pHpit — pi(4 = pHt +2(4 - pHA - |P)s. (2.3)

Remark 2.1. The function class CSZ(y) is nonempty. Notably, the following analytic functions are
members of this class:

file)=1+g,  falg) = f3(¢) = 4/1 + tanhg.

Proof. To confirm the inclusion of the functions fi, f>, and f; in the class CSZ(y), it suffices to show
that the images of U under these functions are entirely contained within the balloon-shaped domain
defined by the subordination condition associated with the class.

As can be observed from Figures 2—4, each of the given functions maps the unit disk ¢/ into a subset
of the balloon-shaped domain. This geometric containment implies that the associated subordination

condition
SI@)+ys’f(9) _2VT+¢
ysf' @)+ -yfle) 1+es
is satisfied. Therefore, each of the functions fi, f>, and f; belongs to the class CSZ(y), establishing that
the class is indeed nonempty. O

1+es’
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Figure 2. Image of Figure 3. Image of Figure 4. Image of

file) = 7. fe) = Vl+s. f3(¢) = V1 +tanhg.

As shown in Figures 24, each function maps the unit disk U entirely into the balloon-shaped
domain. Hence, the images confirm that the class CS5(y) is nonempty.

3. Upper bounds for coefficients in the function class CSZ(y)

Theorem 3.1. Let f(¢), given by the expansion (1.1), belong to the class CS5(y) for 0 <y < 1. Then

751 + ¥ (2253 + 16(69 — 25y)y)
(1 +y)*(1 +3y) '

Proof. Suppose f € CSZ(y). Then there exist Schwarz functions u(¢) and v(w), analytic in U, with
u(0) = v(0) = 0, such that

3.1

|a2a4 - a%| <

o)l <1, vw)| <1,
and the subordination conditions

@) +ys*f(€)  2NT+u(s)

- ; 3.2
Ysf' (@) +(1=yf(s) 1+eu® (3.2)
wg' (W) +yw?g"(w) _ 2VT+v(w) (3.3)

ywg' W) + (1 —y)gw)  1+e™ ’
hold, where g = .

Now, define . )
+ u(g
p(s) = =1+ piS+D6 +p3s +--,
1 —u(s)
and 1 W)
+
qw) := nw =l+cw+oew +c3w’ +---,
1 —v(w)
which are both analytic in U with positive real parts, i.e., p, g € P. Then,
p(s)—1 1 1 5\ 5,1 3 3
= == + - = +—(p;—4 +4 +---,
u(s) PEETIRE ) R Vet D (pl PiD2 p3)§
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and similarly,

_qgw) -1 1

viw) = qgw)+1 2

1 1
clw+(cz— ch)w2+ Z(c?—4c1c2+4c3)w3 +]

Substituting the above into (3.2) and (3.3), and expanding, yields:

1+ oo - TpPieT\5P2 T 3PS
17 5 7 1 3
192716 2 3.4
* (192p‘ Tialcnd 2P3)§ 3.4)
e1aal t AP~ 33l gt 5 psS :
and
21 +v(w) | N 1 7 2
T cw+ | =co — —c2|\w
1+ e 2 1 ) 2 0 1
17 7 1
’ (@ci e 563)W3 (3.5)
¥ T6144°! * 6aC12 7 32 T 14143 + SCa|w +oen

On the other hand, using the series expansion for f and its inverse g, we compute:

sf' () +yZ f(s)

= 2 2 2
T (o A nas+ [2a3(1 +2y) - 31 + )] s

+ [3as(1 + 3y) + 31 +9)° = 3axas(1 +y)(1 +2y)|6
+ [4a§a3(1 + )2 (1 +2y) —a5(1 + y)* — dazas(1 +y)(1 + 3y)
—2a5(1 + 2y)” + das(1 + 4y)|¢* + - -

(3.6)

and

wg' (W) + yw?g” (w)
ywg'(w) + (1 —y)g(w)

=1 - (1 +y)aw + [—2(13(1 +2y) + a3 + 6y — )/2)] w?

+ [ —3as(1 + 3y) + 6a2a3(2 + 6y — ¥*) — a3(10 + 30y — 9y* + y3)]w3
+ [ —das(1 + 4y) + dayas(5 + 20y — 3y%) + 2a35(5 + 20y — 4y%)
— dazas(15 + 60y — 18y* + 2y7)

+ a3(35 + 140y — 58y% + 12y° — 74)]w4 + -
(3.7
By matching the coefficients of ¢ in (3.4) and (3.6), we obtain the system:

1
(I +vy)a = SPr (3.8)

AIMS Mathematics Volume 10, Issue 11, 25452-25468.
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1 7
2a3(1 +2y) —a3(1 +y)* = 3P = ﬁp%,

17 7 1
3as(1+3y) + a3(1 +9)* = 3azas(1 + y)(1 +2y) = ——p| — —pap1 + = ps,

192777 16 2

and

dazas(1 + ) (1 +2y) — a5 (1 +y)* = dazas(1 +y)(1 + 3y) — 2a3(1 + 2y)* + das(1 + 4y)

203 , 17 7 7 1

2 2
- —pl+ = - — — —p5+ =Da.
61441 T gqP1P2 T 1gP3P1 T 3 P2 T P4

Similarly, equating the coefficients of (3.5) and (3.7) leads to:

1
-1 +vya; = 56‘1,
—2a3(1 +2y) —a5(-3 - 6y + %) = - Lo
3 2 2 2 32 1°
—3as(1 + 3y) — 6aza3(—-2 — 6y + %) — ag(IO +30y — 9" +9%)
17 , 7 Ll
=——C; — —CC —C3,
19277 16 1T 27

and
—das(1 + 4y) — dayas(=5 — 20y + 3y*) — 2a5(=5 — 20y + 4y?)

—4asa3(15 + 60y — 18y + 2y°) — a3(=35 — 140y + 58y* — 12y° + %)

203 4+172 7 72+1
614417 6412 T 160N T 32 T
Comparing Egs (3.8) and (3.12) yields
P1 —C]

“T 2y 20+

which implies
p1=—C1.
Subtracting (3.13) from (3.9) and applying (3.16), we find

_ P% + P2 —C2
401 +y)?  8(1+2y)

as

Similarly, subtracting (3.14) from (3.10) and using (3.16) and (3.18), we obtain

. 1 ( 72p3 36(p} +5pi(p2 —¢2))  360p1(ps — ¢2)
4

ETEAGERE (1+7) T T 02y
N 94p? — 84pi(cy + p2) +96(p; — C3))
(1+3y) ’

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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By substituting (3.16), (3.18), and (3.19), the expression for ayay — a% takes the form:

s (= )L+ +4pi( +2y)(pa — e2)(1 +y)* + 4pl(1 + 2y)?

e = o 64(1 +7)*(1 + 2772
2p3 36 2+ 5(py —
+ P ( Pi - Pl(P1 (p2 —2)) (3.20)
20+ 9\ +7y) (I+7v)
N 360p(p2 — c2) N 94p? —84pi(p2 + c2) + 96(p3 — c3))
(1+2y) (1+3y) '
According to Lemma 2.2 and the relation p; = —c;, we have
4 - p? 4 - p?
Prmcr= o= (x=)), prte=pi+—o—(x+y), (3.21)
and 5 ) )
4 — 4 —
procy= B EEP ) ETPIP a yy
4_ 2 (3.22)
-P
+ (1 =z = (1 = Pwl,

2
where |x], |yl, [s], W] < 1.
Since p € P, it follows that |p;| < 2. Denoting p; = p, we may restrict p to the interval [0, 2].
Substituting relations (3.21) and (3.22) into the expression for aa, — a%, and setting 6 = |x| < 1 and
¢ = |yl £ 1, we deduce the inequality

lazay — a3 < Ty + Ta(0 + §) + T3(6” + 6%) + Ty(S + ¢)* = T(S, ),

where
(751 + (2253 + 16(69 — 25y)y)) p*
T, =T = >0, 3.23
1 =Ti) 16(1 + y)*(1 + 3y) = (3:23)
2 2
p~ (1535 + 3y(1535 + 64y)) (4 — p?)
T, =Ty, ¢) = >0 3.24
2= 100 RA+yPA+1G+6y) G20
—48p — 24P + 123
Ty = Ta (6% ¢%) = —2 (96 8p - 240" + 12p )s 0, (3.25)
1+vy 1+3y
and - ‘16
Ty = Ty(6,6)* = oL — (3.26)

RS S——
256(1 + 2y)* —
We aim to maximize T(o,¢) over [0, 1] x [0,1] for p € [0,2]. Given the conditions T; < 0 and
T3 + 2T, > 0, it follows that p € (0,2) and T(6, 0)T(s, ) — (T(5, $))? < 0, which implies that T does
not admit a local maximum in the interior of the domain.

Thus, the maximum must be on the boundary of the square. Considering the boundary segment

0 = 0 with ¢ € [0, 1], we define
T(0,¢) = ¥(s) = Ty + Tag + (T3 + Ta)s™.

AIMS Mathematics Volume 10, Issue 11, 25452-25468.
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We now distinguish two cases:
Case 1: If T5 + T4 > 0, then for all ¢ € [0, 1] and fixed p € [0, 2), then ¥Y'(g) = T, + 2(T5 + T4)g¢ > 0,
showing that ¥ is increasing on the interval. Consequently, the maximum of ¥ over [0, 1] is attained
at ¢ = 1, yielding
5r<1§a<x1 Y()=P1) =T, + T, + T3 + T4.

Case 2: Suppose T3 + T4 < 0. Since 2(T; + T4) + T, >0 for 0 < p <2 and 0 < ¢ < 1, it follows that
2T+ Ty) + Ty < 2(T5 + Ty)g + Tp < Ts.
Hence, ¥(s) > 0, implying the maximum of ¥ on [0, 1] is attained at ¢ = 1, yielding
T(1,6) = G(s) = (T3 + Ta)s” + (T + 2T4)s + Ty + T + T3 + Ta.
From the two cases regarding T3 + Ty, it follows that
max G(¢) = G(1) = T} + 2T, + 2T; + 4T,.

Since ¥(1) < G(1), we conclude
max T(3,¢)=T(,1).
(6:5)€l0,1]2
Define the real-valued function H on (0, 2) by
H(p) = maxT(6,¢) =T(1,1) =T, + 2T, + 2T + 4T,.

Substituting expressions for Ty, Ty, T3, T4 into H, we have

-16 + 8p* — p* N 2p(96 — 48p — 24p* + 12p°)
64(1 + 2y)? 1+ +3y)
p?(4 — p*)(1535 + 3y(1535 + 64y))
16(1 + )*(1 + y(5 + 6y))
p*(751 + y(2253 + 16(69 — 25y)y))
16(1 + y)*(1 + 3y) ’

T(1, 1) =

(3.27)

Elementary analysis shows H(p) is monotonically increasing on [0, 2]. Hence, the maximum is attained
at p = 2, yielding
751 + y (2253 + 16(69 — 25y)y)

H(p)=HQ2) = 3.28

max H(p) = H(2) Ct (3.28)

O
Theorem 3.2. Let f(¢) € CS5(y), with 0 <y < 1. Then, the following sharp inequality holds:

48(1 + )2(19 + 93y + 9292) — 8(169 + 1061y + 213372 + 17593 + 662y%) .

576(1 + 1) (1 + 5y + 6,2) , ifm<p=2,

aras — a4| < 142 (329)
Y if0<p<m,

3(1 +5y +6y2)°

AIMS Mathematics Volume 10, Issue 11, 25452-25468.
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where

—ds = \Jd3 — 12k(dy — )

m= 3 —dy) , (3.30)

and the constants dy, d», d; are given explicitly by:

55+ 165y +21y* + 55 19493y + 92y gl
576(1 +y)3(1 + 3y) 27 96(1 + 6y + 1192 + 6y3)’ T 12+ 36y

1 =

Proof. From the expressions derived in Eqgs (3.16), (3.18), and (3.19), we arrive at the following
representation:

1 ( 72p} 36p; 18p1(=3cy + pr +3p2)

— — - +
arasz — dy 576 (1+7)3 (1 +7)2 1+7 330
108p](C2 - Pz) 4 486‘3 + 42C2p1 - 47p? + 42p1p2 - 48])3 ’
1+2y 1+ 3y ’

where the auxiliary coefficients c, c3, ps, p3 satisfy the bounds from Lemma 2.2. Keeping the
generality, we set p; = p € [0,2] and denote o = |x| < 1, & = |y| < 1. This allows us to estimate:

laras — as| < K + Koo + &) + Ka(0® + €) = W(0, &), (3.32)

where the coefficients K;, K,, K5 are defined as follows:
Zeroth-order term:

p* (25 + 75y - 69y +25¢%)
K, = >0, 3.33
! 576(1 + y)3(1 + 3y) = (3.33)

First-order term:

1 (9(-4+p*)  18(-4+p>) 16+ p?
L= (2R B ) J0r ), (3.34)
192 1+y 1+2y 1+ 3y
Second-order term: ) 3
—96 +48p + 24p* — 12

576(1 + 3vy) B

Proceeding analogously to the approach employed in Theorem 3.2, we observe that the extremal
value of the expression W (o, &) is attained at the boundary point (o, &) = (1, 1) within the square region
[0, 1] X [0, 1]. Hence, we define

U(p) :=maxW(o, &) = K, +2(K; + K3), (3.36)

where substituting the expressions for K, K,, and K3, we arrive at

Y(p) = dip’ + dyp(4 — p*) — d3(4 = p?), (3.37)
with constants:
p 554165y +21y* + 55y 19493y + 92y gl
LT 576(1 49 +3y) T 96(1+6y+ 112+ 6y3) O 12+ 36y
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To locate the maximum of ¢(p), we compute the first and second derivatives:

W (p) = 3(d, — do)p* + 2dsp + 4dy, Y (p) = 6(d) — dy)p + 2d;.

In the case where d; > d,, the derivative ¥’(p) remains positive throughout the interval [0, 2],
implying that (p) is increasing. Consequently, the maximal value is done at the right endpoint p = 2,
yielding

48(1 +9)%(19 + 93y + 9292) — 8(169 + 1061y + 213392 + 175993 + 6629%)

— < 2 =
laxas = sl < Y(2) 576(1 +7)(1 + 5y + 6)2)

Alternatively, if d; — d, < 0, then we locate the stationary point by solving ¢/ (p) = 0, giving:

—ds + \Jd — 12da(d — o)

p=m= = : (3.38)

Depending on the sign and location of m, the monotonicity of ¥(p) is determined. If m < p < 2,
then ¥'(p) > 0 and ¥(p) is increasing on [0, 2], again implying a maximum at p = 2. Conversely, if
Y(p) is decreasing on the interval, then the extremum occurs at p = 0, and we deduce the bound

1+2y
3(1+5y+6y2)

laas — as] < Y(0) =

4. Estimation of the third Hankel determinant for the class CS5(y)

In this section, we continue the coefficient estimates for functions belonging to the class CSZ(y).
We first derive upper bounds for the expressions |a; — a%l and |as|, and later extend our analysis to
estimate |ay|, |as|, and compute the third Hankel determinant H5(1).

Theorem 4.1. Let f(¢) € CS5(y), where 0 < y < 1. Then the following bounds hold:

1
2
las — az' <

< Z(TZ)/)’ 4.1)

1 1
d+772 20+2y)

las| < 4.2)
Proof. Let n € C, and consider the Fekete-Szego functional associated with the function f € CS5(y),
given by:
(1-mpl  pr—c
2 1
- = + .
G YTy T 81 +2y)

Invoking Lemma 2.1, we estimate the modulus as:

< [1—nl 1
< + .
(1+79)?  2(1+2y)

2
las — Uazl

AIMS Mathematics Volume 10, Issue 11, 25452-25468.



25465

Choosing 1 = 1 yields inequality (4.1), thus concluding that |a; — a3| < 1

= 2(1+2y) "
To obtain (4.2), we combine relation (3.18) with the estimate from Lemma 2.1:
2
- | 1
sl < |+ [ 22 < + |
4(1 + y)? 81 +2y) ~ (1+v)? 2(1+2y)

O

Theorem 4.2. Let f(¢) € CSi(y), where 0 < y < 1. Then the following coefficient bounds are

satisfied:
437 + 2180y + 322992 + 1414+

72(1 + 5y + 6y2) (1 +y)?
5331 + 65185y + 32093092 + 827914y + 1218635 y* + 1041913 + 4923445 + 9978077 + 864 y8
288 (1 +3y)(1+4y)(1+2y)2(1 +y)* '
Proof. To derive the estimate for |as|, we refer to Eqs (3.11) and (3.15), subtract them, and then
incorporate the relations given by (3.16), (3.18), and (3.19). This leads to the identity:

las| <

4.3)

las| <

4.4)

128as + (¢; — p2)(14c; — 17p% + 14p,) + 128[ — 16asy + dayy(1 +y) + 12a>(ay + 4aqy)
+a3(5 — 4(=5 +y)y) + 2a5(9 + y(36 + y(—13 + 4y))) — 2a3a3(16 + y(64 + y(~13 + 47)))] (4.5)
=4(128as + 8¢y + Tpi(cs + p3) — 8ps)-

Solving the equation and simplifying yields an explicit expression for as:

1 ( 4968 pt 3312pt 24 p3(36 + 9cy + 77p — 9Ipa)
as =————|648(—c1 + p2) — + -
41472 A+y)* A+7y)3 (1 +vy)?
2 p1(1296¢5 — 1205p? + 18p (64 + 127¢, — pa) — 1296 p3)
’ (T+7)
972(cy — p»)? _ 3240p%(c2 - p2) N 162 p(—48c; — 42¢c,p1 + 47p? —42ppr + 48p3) 4.6)
(1 +2y)? (1+2y) (1+3y)
—972¢3 + 512pt +9¢2(72 + 313pT — 36p,) — 2817 pip, + 1296p;
- (1 +4y)
2268p1ps3 + 36 (7T2¢c4 + (63¢c3 — 32p1)p1 — 18(pa2 + 4p4))
) (1 +4y) )
Applying Lemma 2.1 yields the bound in (4.4). On the other hand, Eq (3.19), when combined with
Lemma 2.1, leads directly to the upper bound in (4.3). O

Theorem 4.3. Let f(¢) € CS5(y), with 0 < y < 1. Then the third Hankel determinant satisfies the
inequality:

48(1+)2(19+93y+92y% ) -8(169+106 1y+2133y>+1759y3 +662* ) )
KK, + I, 6T+ P AT57167) + KKy, ifm<c<2,
|H3(D)| <
1+2y .
—Y <c<
7(7(1 + 3(1+5y+6yz)7(2 + 7(3(](4, f0<c<m,

where the constants K, K, K5, K3, Ky, and m are as defined in (4.2), (3.1), (4.3), (4.4), (4.1),
and (3.30), respectively.
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Proof. From the general expression for the third Hankel determinant, we write
2 2
|H3(D)| = las| - lazas — a3] + lag| - las — azas| + las| - las — a;.

Invoking the triangle inequality together with the previously derived estimates for the involved
coeflicients yields the desired bound in (1.7). O

5. Conclusions

In this paper, we introduced and studied the subclass CS5(y) of bi-univalent functions associated
with a balloon-shaped domain. We confirmed that the class is non-empty and examined several key
analytic properties. We derived sharp coefficient bounds, including inequalities for |a; — a3, las|, and
extended estimates up to |as|. Moreover, we established upper bounds for the second and third Hankel
determinants, which serve as important measures of the function’s complexity. The results reveal
how the parameter y influences the coeflicient estimates and determinant bounds, showing that this
class bridges well-known starlike and convex subclasses. Future work could explore other subclasses
defined by alternative geometric constraints or investigate deeper operator-theoretic aspects to further
characterize these bi-univalent functions.
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