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Abstract: In this paper, we consider a subclass of bi-univalent functions, denoted by CS∗ℶ(γ), which
is defined via a balloon-shaped domain associated with the function 2

√
1+ς

1+e−ς . We prove that this class is
non-empty using illustrative mappings. We investigate upper bounds for the second- and third-order
Hankel determinants, focusing on the functional H3(1). In addition, we estimate the Taylor coefficients
up to order l = 5, which are essential in obtaining bounds for the determinants. The balloon shape
introduces new analytic features that enrich the behavior of the functions in this class. Several examples
and special cases are offered to illustrate the flexibility of the outcomes.
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1. Introduction

Hankel determinants originate from Hankel matrices, where the entries along each anti-diagonal are
identical. The q-th Hankel determinant corresponds to a (q+ 1)× (q+ 1) determinant constructed from
a sequence, and has applications in both combinatorics and the theory of analytic functions. In the
context of geometric function theory, bi-univalent functions that are analytic and injective in the unit
disk, with analytic and injective inverses, and are of particular interest. Estimating their coefficients
remains a central challenge, with tools such as the FeketeSzegö functional being widely employed.
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Especially, the second and third Hankel determinants have received attention in several subclasses to
extract geometric insights [1–4].

LetA denote the class of functions analytic in the open unit diskU := {ς ∈ C : |ς| < 1}, normalized
by f (0) = 0 and f ′(0) = 1, and expressed as

f (ς) = ς +
∞∑

l=2

alς
l. (1.1)

According to the Koebe one-quarter theorem (see [5]), any univalent function f ∈ AmapsU onto a
region containing a disk of radius 1

4 centered at the origin. Consequently, such a function possesses an
inverse f −1, which is analytic in at least the disk |w| < r0( f ) where r0( f ) ≥ 1

4 , and satisfies the identities

f −1( f (ς)) = ς for ς ∈ U, f ( f −1(w)) = w for |w| < r0( f ).

The inverse f −1 admits the expansion

f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − · · · . (1.2)

A function f ∈ A is called bi-univalent if both f and f −1 are univalent in U. The family of such
functions is usually denoted by ℶ. The study of class ℶ gained considerable momentum following
the foundational work by Srivastava and collaborators [6]. Some classical examples of bi-univalent
functions include:

ς

1 − ς
, − log(1 − ς),

1
2

log
(
1 + ς
1 − ς

)
.

It is worth noting that the class of univalent functions is strictly larger than the class of bi-univalent
functions. Indeed, certain classical univalent functions, such as the Koebe function, ς − ς2

2 , and ς
1−ς2 ,

are not bi-univalent, since their inverses fail to preserve univalence within the unit diskU [6, 7].
When studying bi-univalent functions, a major issue is the estimation of initial coefficients in their

Taylor expansions. An early result is due to Lewin [8], who established the bound |a2| ≤ 1.51. This was
later improved by Brannan and Clunie [9] to |a2| ≤

√
2, and subsequently refined by Netanyahu [10] to

|a2| ≤
4
3 . In pursuit of sharper bounds, various subclasses of ℶ have been introduced, particularly those

defined via starlikeness and convexity constraints [11, 12]. Among the key quantities examined is the
Fekete-Szegö functional of the form |a3 − ηa2

2|, which has received significant attention across different
subclasses [13].

Given two functions f , g ∈ A, we say that f is subordinate to g, written f (ς) ≺ g(ς), if there exists
a function u(ς) analytic inU, satisfying u(0) = 0 and |u(ς)| < 1, such that

f (ς) = g(u(ς)).

When g is univalent inU, this implies that:

f (0) = g(0), and f (U) ⊆ g(U) (see [7, 14]).

A function f ∈ S is said to be starlike if

ς f ′(ς)
f (ς)

≺
1 + ς
1 − ς

, ς ∈ U.
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This is equivalent to requiring that

ℜ

(
ς f ′(ς)

f (ς)

)
> 0, for all ς ∈ U,

which geometrically ensures that f (U) is starlike with respect to the origin. For a detailed discussion,
refer to [15, 16].

The q-th Hankel determinant was provided by Noonan and Thomas in 1976 [17]. This determinant
is constructed from the Taylor coefficients of an analytic function by forming a q × q Hankel matrix
starting at the coefficient al, and then taking its determinant. Formally, it is defined as

Hq(l) =

∣∣∣∣∣∣∣∣∣∣∣∣
al al+1 · · · al+q−1

al+1 al+2 · · · al+q
...

...
. . .

...

al+q−1 al+q · · · al+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ , l, q ∈ N, a1 = 1. (1.3)

The Hankel determinant encodes relations among the coefficients and has been extensively studied,
particularly for large l in connection with boundary behavior of analytic functions [18, 19]. More
recently, attention has shifted to smaller indices such as H2(2), especially within subclasses of bi-
univalent functions [1, 20, 21].

For illustrative purposes, when q = 2 and l = 1, the determinant simplifies to

H2(1) =

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣ = a3 − a2
2, (1.4)

and for l = 2,

H2(2) =

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ = a2a4 − a2
3. (1.5)

Such determinants arise frequently in function theory due to their ability to capture nonlinear
dependencies among the Taylor coefficients.

Among these, the functional H2(1) = a3−a2
2, commonly referred to as the Fekete-Szegö functional,

plays a prominent role in bounding coefficient estimates. Recent investigations by Shakir et al. [20]
have extended the study of bounds for H2(2) in various subclasses (see also [22, 23]).

In the present work, we extend the analysis to the third Hankel determinant H3(1), corresponding to
q = 3 and l = 1, defined by the determinant

H3(1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣ .
Given the normalization a1 = 1 for functions inA, this determinant can be expanded as

H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2). (1.6)

Utilizing the triangle inequality yields the estimate

|H3(1)| ≤ |a3| · |a2a4 − a2
3| + |a4| · |a4 − a2a3| + |a5| · |a3 − a2

2|. (1.7)
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Such an upper bound is particularly useful when examining subclasses of analytic functions where
control over coefficient magnitudes is essential.

This study primarily focuses on two objectives: first, to derive upper bounds for the second-order
Hankel determinant,

H2(2) = a2a4 − a2
3, (1.8)

and second, to establish estimates for the third-order determinant H3(1), relying on inequality (1.7).
Accomplishing these goals requires determining sharp bounds for the quantities

|a3 − a2
2|, |a3|, |a4|, |a5|.

2. Definitions, lemmas, and examples

Recently, several works have focused on analytic functions associated with the balloon-shaped
domain. Ahmad et al. [24] introduced and studied such functions, while Khan et al. [25] obtained
sharp coefficient bounds and upper estimates for the second Hankel determinant in this setting. In a
related direction, Shakir et al. [20] investigated the third Hankel determinant for bi-univalent functions
in the crescent-shaped domain. Motivated by these developments, the present paper considers a
new subclass of bi-univalent functions related to the balloon-shaped domain and establishes upper
bounds for the third Hankel determinant. In this work, we introduce and study a novel subclass of
bi-univalent functions, denoted by CS∗ℶ(γ), associated with the balloon-shaped domain characterized
by the analytic function 2

√
1+ς

1+e−ς . This class serves as a unified framework encompassing both starlike
and convex bi-univalent functions. Our principal objective is to establish sharp estimates for the initial
Taylor coefficients |a2| and |a3|, analyze the Fekete Szegö functional, and derive bounds for the third
Hankel determinant H3(1), thereby gaining deeper insight into the geometric and analytic properties of
functions in this class.

Definition 2.1. Let f be a bi-univalent function defined on U. The function f belongs to the class
CS∗ℶ(γ) if it satisfies the conditions

ς f ′(ς) + γς2 f ′′(ς)
γς f ′(ς) + (1 − γ) f (ς)

≺
2
√

1 + ς
1 + e−ς

, ς ∈ U,

and
wg′(w) + γw2g′′(w)
γwg′(w) + (1 − γ)g(w)

≺
2
√

1 + w
1 + e−w , w ∈ U,

where 0 ≤ γ ≤ 1 and g = f −1 denotes the inverse of f .

Figure 1 illustrates the transformation of the domain to the codomain under the mapping f (ς) =
2
√

1 + ς
1 + e−ς

. The left panel shows the original unit disk, while the right panel depicts the resulting balloon-
shaped domain.
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Domain
Co-domain

Figure 1. Grid representation of the domain and codomain under the mapping f (ς) =
2
√

1 + ς
1 + e−ς

.

Example 2.1. When setting γ = 0, the classCS∗ℶ(0) reduces to the standard class of starlike bi-univalent
functions S∗, characterized by the subordination relations

ς f ′(ς)
f (ς)

≺
2
√

1 + ς
1 + e−ς

, ς ∈ U,

and
wg′(w)
g(w)

≺
2
√

1 + w
1 + e−w , w ∈ U.

Example 2.2. In the case γ = 1, the class CS∗ℶ(1) coincides with the convex-type class Cℶ, and is
defined via the conditions

1 +
ς f ′′(ς)

f ′(ς)
≺

2
√

1 + ς
1 + e−ς

, ς ∈ U,

and

1 +
wg′′(w)
g′(w)

≺
2
√

1 + w
1 + e−w , w ∈ U.

For more on the balloon-shaped domain, see [24, 25].
A more general approach to starlike functions was presented by Ma and Minda [26], who introduced

the family

S∗(ϑ) =
{

f ∈ A :
ς f ′(ς)

f (ς)
≺ ϑ(ς), ς ∈ U

}
,

where ϑ is an analytic with a positive real part inU, normalized by ϑ(0) = 1 and ϑ′(0) > 0. Depending
on the form of ϑ(ς), several subclasses can be derived. For instance, taking ϑ(ς) = 1+ς

1−ς retrieves the
classical class S∗ of starlike functions.

Table 1 outlines a collection of notable subclasses derived by selecting specific functions for ϑ(ς),
along with their associated references.

AIMS Mathematics Volume 10, Issue 11, 25452–25468.
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Table 1. Representative subclasses of S∗(ϑ) with defining analytic functions ϑ(ς).

Class Reference ϑ(ς)

γ∗L Soköl et al. [15]
√

1 + ς

γ∗cre Raina et al. [27] ς +
√

1 + ς2

γ∗car Sharma et al. [28] 1 + 4
3ς +

2
3ς

2

S∗sin Cho et al. [29] 1 + sin ς

S∗ϑ Kumar et al. [30] 1 + sin−1 ς

S∗nep Wani et al. [16] 1 + ς − 1
3ς

3

Let P be the class of analytic functions inU such that p(0) = 1 and have a strictly positive real part
throughoutU. In other words, a function p(ς) ∈ P satisfies:

p(0) = 1 and ℜ (p(ς)) > 0 for all ς ∈ U.

Lemma 2.1. [31] Suppose that p(ς) ∈ P and has the power series representation

p(ς) = 1 + p1ς + p2ς
2 + p3ς

3 + · · · .

Then, for every ℓ ∈ N, the following coefficient bound holds:

|pℓ| ≤ 2. (2.1)

Lemma 2.2. [32] Let p(ς) ∈ P be given by the expansion

p(ς) = 1 + p1ς + p2ς
2 + p3ς

3 + · · · .

Then, there exist complex numbers τ and ς, with |τ| ≤ 1 and |ς| ≤ 1, such that the coefficients satisfy
the relations:

2p2 = p2
1 + τ(4 − p2

1), (2.2)

4p3 = p3
1 + 2(4 − p2

1)p1τ − p1(4 − p2
1)τ2 + 2(4 − p2

1)(1 − |τ|2)ς. (2.3)

Remark 2.1. The function class CS∗ℶ(γ) is nonempty. Notably, the following analytic functions are
members of this class:

f1(ς) =
√

1 + ς, f2(ς) =
2

1 + e−ς
, f3(ς) =

√
1 + tanh ς.

Proof. To confirm the inclusion of the functions f1, f2, and f3 in the class CS∗ℶ(γ), it suffices to show
that the images of U under these functions are entirely contained within the balloon-shaped domain
defined by the subordination condition associated with the class.

As can be observed from Figures 2–4, each of the given functions maps the unit diskU into a subset
of the balloon-shaped domain. This geometric containment implies that the associated subordination
condition

ς f ′(ς) + γς2 f ′′(ς)
γς f ′(ς) + (1 − γ) f (ς)

≺
2
√

1 + ς
1 + e−ς

is satisfied. Therefore, each of the functions f1, f2, and f3 belongs to the class CS∗ℶ(γ), establishing that
the class is indeed nonempty. □
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Figure 2. Image of
f1(ς) = 2

1+e−ς .
Figure 3. Image of
f2(ς) =

√
1 + ς.

Figure 4. Image of
f3(ς) =

√
1 + tanh ς.

As shown in Figures 2–4, each function maps the unit disk U entirely into the balloon-shaped
domain. Hence, the images confirm that the class CS∗ℶ(γ) is nonempty.

3. Upper bounds for coefficients in the function class CS∗ℶ(γ)

Theorem 3.1. Let f (ς), given by the expansion (1.1), belong to the class CS∗ℶ(γ) for 0 ≤ γ ≤ 1. Then∣∣∣a2a4 − a2
3

∣∣∣ ≤ 751 + γ (2253 + 16(69 − 25γ)γ)
(1 + γ)4(1 + 3γ)

. (3.1)

Proof. Suppose f ∈ CS∗ℶ(γ). Then there exist Schwarz functions u(ς) and v(w), analytic in U, with
u(0) = v(0) = 0, such that

|u(ς)| < 1, |v(w)| < 1,

and the subordination conditions

ς f ′(ς) + γς2 f ′′(ς)
γς f ′(ς) + (1 − γ) f (ς)

=
2
√

1 + u(ς)
1 + e−u(ς) , (3.2)

wg′(w) + γw2g′′(w)
γwg′(w) + (1 − γ)g(w)

=
2
√

1 + v(w)
1 + e−v(w) , (3.3)

hold, where g = f −1.
Now, define

p(ς) :=
1 + u(ς)
1 − u(ς)

= 1 + p1ς + p2ς
2 + p3ς

3 + · · · ,

and
q(w) :=

1 + v(w)
1 − v(w)

= 1 + c1w + c2w2 + c3w3 + · · · ,

which are both analytic inU with positive real parts, i.e., p, q ∈ P. Then,

u(ς) =
p(ς) − 1
p(ς) + 1

=
1
2

[
p1ς +

(
p2 −

1
2

p2
1

)
ς2 +

1
4

(
p3

1 − 4p1 p2 + 4p3

)
ς3 + · · ·

]
,
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and similarly,

v(w) =
q(w) − 1
q(w) + 1

=
1
2

[
c1w +

(
c2 −

1
2

c2
1

)
w2 +

1
4

(
c3

1 − 4c1c2 + 4c3

)
w3 + · · ·

]
.

Substituting the above into (3.2) and (3.3), and expanding, yields:

2
√

1 + u(ς)
1 + e−u(ς) = 1 +

1
2

p1ς +

(
1
2

p2 −
7
32

p2
1

)
ς2

+

(
17

192
p3

1 −
7

16
p1 p2 +

1
2

p3

)
ς3

+

(
−

203
6144

p4
1 +

17
64

p2
1 p2 −

7
32

p2
2 −

7
16

p1 p3 +
1
2

p4

)
ς4 + · · · ,

(3.4)

and
2
√

1 + v(w)
1 + e−v(w) = 1 +

1
2

c1w +
(
1
2

c2 −
7
32

c2
1

)
w2

+

(
17

192
c3

1 −
7

16
c1c2 +

1
2

c3

)
w3

+

(
−

203
6144

c4
1 +

17
64

c2
1c2 −

7
32

c2
2 −

7
16

c1c3 +
1
2

c4

)
w4 + · · · .

(3.5)

On the other hand, using the series expansion for f and its inverse g, we compute:

ς f ′(ς) + γz2 f ′′(ς)
γς f ′(ς) + (1 − γ) f (ς)

=1 + (1 + γ)a2ς +
[
2a3(1 + 2γ) − a2

2(1 + γ)2
]
ς2

+
[
3a4(1 + 3γ) + a3

2(1 + γ)3 − 3a2a3(1 + γ)(1 + 2γ)
]
ς3

+
[
4a2

2a3(1 + γ)2(1 + 2γ) − a4
2(1 + γ)4 − 4a2a4(1 + γ)(1 + 3γ)

− 2a3(1 + 2γ)2 + 4a5(1 + 4γ)
]
ς4 + · · ·

(3.6)

and

wg′(w) + γw2g′′(w)
γwg′(w) + (1 − γ)g(w)

=1 − (1 + γ)a2w +
[
−2a3(1 + 2γ) + a2

2(3 + 6γ − γ2)
]

w2

+
[
− 3a4(1 + 3γ) + 6a2a3(2 + 6γ − γ2) − a3

2(10 + 30γ − 9γ2 + γ3)
]
w3

+
[
− 4a5(1 + 4γ) + 4a2a4(5 + 20γ − 3γ2) + 2a2

3(5 + 20γ − 4γ2)

− 4a2
2a3(15 + 60γ − 18γ2 + 2γ3)

+ a4
2(35 + 140γ − 58γ2 + 12γ3 − γ4)

]
w4 + · · ·

(3.7)
By matching the coefficients of ς in (3.4) and (3.6), we obtain the system:

(1 + γ)a2 =
1
2

p1, (3.8)
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2a3(1 + 2γ) − a2
2(1 + γ)2 =

1
2

p2 −
7

32
p2

1, (3.9)

3a4(1 + 3γ) + a3
2(1 + γ)3 − 3a2a3(1 + γ)(1 + 2γ) =

17
192

p3
1 −

7
16

p2 p1 +
1
2

p3, (3.10)

and

4a2
2a3(1 + γ)2(1 + 2γ) − a4

2(1 + γ)4 − 4a2a4(1 + γ)(1 + 3γ) − 2a3(1 + 2γ)2 + 4a5(1 + 4γ)

= −
203

6144
p4

1 +
17
64

p2
1 p2 −

7
16

p3 p1 −
7

32
p2

2 +
1
2

p4.
(3.11)

Similarly, equating the coefficients of (3.5) and (3.7) leads to:

−(1 + γ)a2 =
1
2

c1, (3.12)

−2a3(1 + 2γ) − a2
2(−3 − 6γ + γ2) =

1
2

c2 −
7

32
c2

1, (3.13)

− 3a4(1 + 3γ) − 6a2a3(−2 − 6γ + γ2) − a3
2(10 + 30γ − 9γ2 + γ3)

=
17

192
c3

1 −
7

16
c2c1 +

1
2

c3,
(3.14)

and
− 4a5(1 + 4γ) − 4a2a4(−5 − 20γ + 3γ2) − 2a2

3(−5 − 20γ + 4γ2)
− 4a2

2a3(15 + 60γ − 18γ2 + 2γ3) − a4
2(−35 − 140γ + 58γ2 − 12γ3 + γ4)

= −
203

6144
c4

1 +
17
64

c2
1c2 −

7
16

c3c1 −
7

32
c2

2 +
1
2

c4.

(3.15)

Comparing Eqs (3.8) and (3.12) yields

a2 =
p1

2(1 + γ)
=
−c1

2(1 + γ)
, (3.16)

which implies
p1 = −c1. (3.17)

Subtracting (3.13) from (3.9) and applying (3.16), we find

a3 =
p2

1

4(1 + γ)2 +
p2 − c2

8(1 + 2γ)
. (3.18)

Similarly, subtracting (3.14) from (3.10) and using (3.16) and (3.18), we obtain

a4 =
1

1152

( 72p3
1

(1 + γ)2 −
36

(
p3

1 + 5p1(p2 − c2)
)

(1 + γ)
+

360p1(p2 − c2)
(1 + 2γ)

+
94p3

1 − 84p1(c2 + p2) + 96(p3 − c3)
(1 + 3γ)

)
.

(3.19)
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By substituting (3.16), (3.18), and (3.19), the expression for a2a4 − a2
3 takes the form:

a2a4 − a2
3 = −

(p2 − c2)2(1 + γ)4 + 4p2
1(1 + 2γ)(p2 − c2)(1 + γ)2 + 4p4

1(1 + 2γ)2

64(1 + γ)4(1 + 2γ)2

+
p1

2(1 + γ)

( 72p3
1

(1 + γ)2 −
36p1(p2

1 + 5(p2 − c2))
(1 + γ)

+
360p1(p2 − c2)

(1 + 2γ)
+

94p3
1 − 84p1(p2 + c2) + 96(p3 − c3)

(1 + 3γ)

)
.

(3.20)

According to Lemma 2.2 and the relation p1 = −c1, we have

p2 − c2 =
4 − p2

1

2
(x − y), p2 + c2 = p2

1 +
4 − p2

1

2
(x + y), (3.21)

and

p3 − c3 =
p3

1

2
+

(4 − p2
1)p1

2
(x + y) −

(4 − p2
1)p1

4
(x2 + y2)

+
4 − p2

1

2
[
(1 − |x|2)z − (1 − |y|2)w

]
,

(3.22)

where |x|, |y|, |ς|, |w| ≤ 1.
Since p ∈ P, it follows that |p1| ≤ 2. Denoting p1 = p, we may restrict p to the interval [0, 2].

Substituting relations (3.21) and (3.22) into the expression for a2a4 − a2
3, and setting δ = |x| ≤ 1 and

ς = |y| ≤ 1, we deduce the inequality

|a2a4 − a2
3| ≤ T1 + T2(δ + ς) + T3(δ2 + ς2) + T4(δ + ς)2 = T(δ, ς),

where

T1 = T1(p) =
(751 + γ (2253 + 16(69 − 25γ)γ)) p4

16(1 + γ)4(1 + 3γ)
≥ 0, (3.23)

T2 = T2(δ, ς) =
p2 (1535 + 3γ(1535 + 64γ)) (4 − p2)

32(1 + γ)2 (1 + γ(5 + 6γ))
≥ 0, (3.24)

T3 = T3(δ2, ς2) =
p

1 + γ

(96 − 48p − 24p2 + 12p3

1 + 3γ

)
≤ 0, (3.25)

and

T4 = T4(δ, ς)2 =
8p2 − p4 − 16
256(1 + 2γ)2 ≥ 0. (3.26)

We aim to maximize T(δ, ς) over [0, 1] × [0, 1] for p ∈ [0, 2]. Given the conditions T3 ≤ 0 and
T3 + 2T2 ≥ 0, it follows that p ∈ (0, 2) and T(δ, δ)T(ς, ς) − (T(δ, ς))2 < 0, which implies that T does
not admit a local maximum in the interior of the domain.

Thus, the maximum must be on the boundary of the square. Considering the boundary segment
δ = 0 with ς ∈ [0, 1], we define

T(0, ς) = Ψ(ς) = T1 + T2ς + (T3 + T4)ς2.
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We now distinguish two cases:
Case 1: If T3 + T4 ≥ 0, then for all ς ∈ [0, 1] and fixed p ∈ [0, 2), then Ψ′(ς) = T2 + 2(T3 + T4)ς > 0,
showing that Ψ is increasing on the interval. Consequently, the maximum of Ψ over [0, 1] is attained
at ς = 1, yielding

max
0≤ς≤1

Ψ(ς) = Ψ(1) = T1 + T2 + T3 + T4.

Case 2: Suppose T3 + T4 < 0. Since 2(T3 + T4) + T2 ≥ 0 for 0 < p < 2 and 0 < ς < 1, it follows that

2(T3 + T4) + T2 < 2(T3 + T4)ς + T2 < T2.

Hence, Ψ(ς) > 0, implying the maximum of Ψ on [0, 1] is attained at ς = 1, yielding

T(1, ς) = G(ς) = (T3 + T4)ς2 + (T2 + 2T4)ς + T1 + T2 + T3 + T4.

From the two cases regarding T3 + T4, it follows that

maxG(ς) = G(1) = T1 + 2T2 + 2T3 + 4T4.

Since Ψ(1) ≤ G(1), we conclude
max

(δ,ς)∈[0,1]2
T(δ, ς) = T(1, 1).

Define the real-valued function H on (0, 2) by

H(p) = maxT(δ, ς) = T(1, 1) = T1 + 2T2 + 2T3 + 4T4.

Substituting expressions for T1,T2,T3,T4 into H, we have

T(1, 1) =
−16 + 8p2 − p4

64(1 + 2γ)2 +
2p(96 − 48p − 24p2 + 12p3)

(1 + γ)(1 + 3γ)

+
p2(4 − p2)(1535 + 3γ(1535 + 64γ))

16(1 + γ)2(1 + γ(5 + 6γ))

+
p4(751 + γ(2253 + 16(69 − 25γ)γ))

16(1 + γ)4(1 + 3γ)
.

(3.27)

Elementary analysis shows H(p) is monotonically increasing on [0, 2]. Hence, the maximum is attained
at p = 2, yielding

max H(p) = H(2) =
751 + γ (2253 + 16(69 − 25γ)γ)

(1 + γ)4(1 + 3γ)
. (3.28)

□

Theorem 3.2. Let f (ς) ∈ CS∗ℶ(γ), with 0 ≤ γ ≤ 1. Then, the following sharp inequality holds:

|a2a3 − a4| ≤


48(1 + γ)2(19 + 93γ + 92γ2) − 8

(
169 + 1061γ + 2133γ2 + 1759γ3 + 662γ4)

576(1 + γ)3(1 + 5γ + 6γ2)
, if m ≤ p ≤ 2,

1 + 2γ
3
(
1 + 5γ + 6γ2) , if 0 ≤ p ≤ m,

(3.29)
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where

m =
−d3 ±

√
d2

3 − 12k2(d1 − d2)

3(d1 − d2)
, (3.30)

and the constants d1, d2, d3 are given explicitly by:

d1 = −
55 + 165γ + 21γ2 + 55γ3

576(1 + γ)3(1 + 3γ)
, d2 =

19 + 93γ + 92γ2

96(1 + 6γ + 11γ2 + 6γ3)
, d3 =

−1
12 + 36γ

.

Proof. From the expressions derived in Eqs (3.16), (3.18), and (3.19), we arrive at the following
representation:

a2a3 − a4 =
1

576

(
72p3

1

(1 + γ)3 −
36p3

1

(1 + γ)2 +
18p1(−3c2 + p2

1 + 3p2)
1 + γ

+
108p1(c2 − p2)

1 + 2γ
+

48c3 + 42c2 p1 − 47p3
1 + 42p1 p2 − 48p3

1 + 3γ

)
,

(3.31)

where the auxiliary coefficients c2, c3, p2, p3 satisfy the bounds from Lemma 2.2. Keeping the
generality, we set p1 = p ∈ [0, 2] and denote ϱ = |x| ≤ 1, ξ = |y| ≤ 1. This allows us to estimate:

|a2a3 − a4| ≤ K1 + K2(ϱ + ξ) + K3(ϱ2 + ξ2) =:W(ϱ, ξ), (3.32)

where the coefficients K1,K2,K3 are defined as follows:
Zeroth-order term:

K1 =
p3

(
25 + 75γ − 69γ2 + 25γ3

)
576(1 + γ)3(1 + 3γ)

≥ 0, (3.33)

First-order term:

K2 =
1

192
p
(
9(−4 + p2)

1 + γ
+

18(−4 + p2)
1 + 2γ

+
16 + p2

1 + 3γ

)
≥ 0, (3.34)

Second-order term:
K3 =

−96 + 48p + 24p2 − 12p3

576(1 + 3γ)
≤ 0. (3.35)

Proceeding analogously to the approach employed in Theorem 3.2, we observe that the extremal
value of the expressionW(ϱ, ξ) is attained at the boundary point (ϱ, ξ) = (1, 1) within the square region
[0, 1] × [0, 1]. Hence, we define

ψ(p) := maxW(ϱ, ξ) = K1 + 2(K2 + K3), (3.36)

where substituting the expressions for K1,K2, and K3, we arrive at

ψ(p) = d1 p3 + d2 p(4 − p2) − d3(4 − p2), (3.37)

with constants:

d1 = −
55 + 165γ + 21γ2 + 55γ3

576(1 + γ)3(1 + 3γ)
, d2 =

19 + 93γ + 92γ2

96(1 + 6γ + 11γ2 + 6γ3)
, d3 =

−1
12 + 36γ

.
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To locate the maximum of ψ(p), we compute the first and second derivatives:

ψ′(p) = 3(d1 − d2)p2 + 2d3 p + 4d2, ψ′′(p) = 6(d1 − d2)p + 2d3.

In the case where d1 > d2, the derivative ψ′(p) remains positive throughout the interval [0, 2],
implying that ψ(p) is increasing. Consequently, the maximal value is done at the right endpoint p = 2,
yielding

|a2a3 − a4| ≤ ψ(2) =
48(1 + γ)2(19 + 93γ + 92γ2) − 8

(
169 + 1061γ + 2133γ2 + 1759γ3 + 662γ4)

576(1 + γ)3(1 + 5γ + 6γ2)
.

Alternatively, if d1 − d2 < 0, then we locate the stationary point by solving ψ′(p) = 0, giving:

p = m =
−d3 ±

√
d2

3 − 12d2(d1 − d2)

3(d1 − d2)
. (3.38)

Depending on the sign and location of m, the monotonicity of ψ(p) is determined. If m < p ≤ 2,
then ψ′(p) > 0 and ψ(p) is increasing on [0, 2], again implying a maximum at p = 2. Conversely, if
ψ(p) is decreasing on the interval, then the extremum occurs at p = 0, and we deduce the bound

|a2a3 − a4| ≤ ψ(0) =
1 + 2γ

3
(
1 + 5γ + 6γ2) .

□

4. Estimation of the third Hankel determinant for the class CS∗ℶ(γ)

In this section, we continue the coefficient estimates for functions belonging to the class CS∗ℶ(γ).
We first derive upper bounds for the expressions |a3 − a2

2| and |a3|, and later extend our analysis to
estimate |a4|, |a5|, and compute the third Hankel determinant H3(1).

Theorem 4.1. Let f (ς) ∈ CS∗ℶ(γ), where 0 ≤ γ ≤ 1. Then the following bounds hold:

|a3 − a2
2| ≤

1
2(1 + 2γ)

, (4.1)

|a3| ≤
1

(1 + γ)2 +
1

2(1 + 2γ)
. (4.2)

Proof. Let η ∈ C, and consider the Fekete-Szegö functional associated with the function f ∈ CS∗ℶ(γ),
given by:

a3 − ηa2
2 =

(1 − η)p2
1

4(1 + γ)2 +
p2 − c2

8(1 + 2γ)
.

Invoking Lemma 2.1, we estimate the modulus as:

|a3 − ηa2
2| ≤

|1 − η|
(1 + γ)2 +

1
2(1 + 2γ)

.
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Choosing η = 1 yields inequality (4.1), thus concluding that |a3 − a2
2| ≤

1
2(1+2γ) .

To obtain (4.2), we combine relation (3.18) with the estimate from Lemma 2.1:

|a3| ≤

∣∣∣∣∣∣ p2
1

4(1 + γ)2

∣∣∣∣∣∣ +
∣∣∣∣∣ p2 − c2

8(1 + 2γ)

∣∣∣∣∣ ≤ 1
(1 + γ)2 +

1
2(1 + 2γ)

.

□

Theorem 4.2. Let f (ς) ∈ CS∗ℶ(γ), where 0 ≤ γ ≤ 1. Then the following coefficient bounds are
satisfied:

|a4| ≤
437 + 2180 γ + 3229 γ2 + 1414 γ3

72 (1 + 5γ + 6γ2) (1 + γ)2 , (4.3)

|a5| ≤
5331 + 65185 γ + 320930 γ2 + 827914 γ3 + 1218635 γ4 + 1041913 γ5 + 492344 γ6 + 99780 γ7 + 864 γ8

288 (1 + 3γ) (1 + 4γ) (1 + 2γ)2 (1 + γ)4 . (4.4)

Proof. To derive the estimate for |a5|, we refer to Eqs (3.11) and (3.15), subtract them, and then
incorporate the relations given by (3.16), (3.18), and (3.19). This leads to the identity:

128a3 + (c2 − p2)
(
14c2 − 17p2

1 + 14p2
)
+ 128

[
− 16a5γ + 4a3γ(1 + γ) + 12a2(a4 + 4a4γ)

+ a2
3
(
5 − 4(−5 + γ)γ

)
+ 2a4

2
(
9 + γ(36 + γ(−13 + 4γ))

)
− 2a2

2a3
(
16 + γ(64 + γ(−13 + 4γ))

)]
=4

(
128a5 + 8c4 + 7p1(c3 + p3) − 8p4

)
.

(4.5)

Solving the equation and simplifying yields an explicit expression for a5:

a5 =
1

41472

(
648(−c2 + p2) −

4968 p4
1

(1 + γ)4 +
3312 p4

1

(1 + γ)3 −
24 p2

1(36 + 9c2 + 77p2
1 − 9p2)

(1 + γ)2

+
2 p1(1296c3 − 1205p3

1 + 18p1(64 + 127c2 − p2) − 1296p3)
(1 + γ)

+
972(c2 − p2)2

(1 + 2γ)2 −
3240 p2

1(c2 − p2)
(1 + 2γ)

+
162 p1(−48c3 − 42c2 p1 + 47p3

1 − 42p1 p2 + 48p3)
(1 + 3γ)

−
−972c2

2 + 512p4
1 + 9c2(72 + 313p2

1 − 36p2) − 2817p2
1 p2 + 1296p2

2

(1 + 4γ)

−
2268p1 p3 + 36 (72c4 + (63c3 − 32p1)p1 − 18(p2 + 4p4))

(1 + 4γ)

)
.

(4.6)

Applying Lemma 2.1 yields the bound in (4.4). On the other hand, Eq (3.19), when combined with
Lemma 2.1, leads directly to the upper bound in (4.3). □

Theorem 4.3. Let f (ς) ∈ CS∗ℶ(γ), with 0 ≤ γ ≤ 1. Then the third Hankel determinant satisfies the
inequality:

|H3(1)| ≤


KK1 +K2

[
48(1+γ)2

(
19+93γ+92γ2

)
−8
(

169+1061γ+2133γ2+1759γ3+662γ4
)

576(1+γ)3(1+5γ+6γ2)

]
+K3K4, if m ≤ c ≤ 2,

KK1 +
1+2γ

3(1+5γ+6γ2)K2 +K3K4, if 0 ≤ c ≤ m,

where the constants K ,K1,K2,K3,K4, and m are as defined in (4.2), (3.1), (4.3), (4.4), (4.1),
and (3.30), respectively.
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Proof. From the general expression for the third Hankel determinant, we write

|H3(1)| = |a3| · |a2a4 − a2
3| + |a4| · |a4 − a2a3| + |a5| · |a3 − a2

2|.

Invoking the triangle inequality together with the previously derived estimates for the involved
coefficients yields the desired bound in (1.7). □

5. Conclusions

In this paper, we introduced and studied the subclass CS∗ℶ(γ) of bi-univalent functions associated
with a balloon-shaped domain. We confirmed that the class is non-empty and examined several key
analytic properties. We derived sharp coefficient bounds, including inequalities for |a3 − a2

2|, |a3|, and
extended estimates up to |a5|. Moreover, we established upper bounds for the second and third Hankel
determinants, which serve as important measures of the function’s complexity. The results reveal
how the parameter γ influences the coefficient estimates and determinant bounds, showing that this
class bridges well-known starlike and convex subclasses. Future work could explore other subclasses
defined by alternative geometric constraints or investigate deeper operator-theoretic aspects to further
characterize these bi-univalent functions.
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