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Abstract: In this paper, we considered a general class of double-phase problems of the form

−div(A(x,Du)) = −div(B(x, F)).

Here, the ellipticity, growth, and continuity assumptions on the main operator A were described using
an auxiliary vector field G. The proposed structural condition allowed us to treat, in a single setting,
different structural forms that have appeared in earlier studies. Under this generalized structure, we
derived Calderón-Zygmund estimates for the gradients of solutions.
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1. Introduction

In this paper, we study the structure conditions on the main operator A(x, z) that allow for the
Calderón-Zygmund estimates to be established for the elliptic equation

divA(x,Du) = divB(x, F) in Ω (1.1)

with a prototype of the form

div(p|Du|p−2Du + qa(x)|Du|q−2Du) = div(p|F|p−2F + qa(x)|F|q−2F) in Ω. (1.2)
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Here, Ω ⊂ Rn is a bounded domain and the modulating coefficient a(x) is a nonnegative α-Hölder
continuous function on Ω, while p and q are universal constants satisfying

1 < p < q and
q
p
≤ 1 +

α

n
.

The model equation (1.2) is the Euler-Lagrange equation associated with the functional

v 7→ F (v) −
∫

Ω

〈(
|F|p−2F + a(x)|F|q−2F

)
,Dv

〉
dx,

where
F (v) =

∫
Ω

(|Dv|p + a(x)|Dv|q)dx. (1.3)

The origin of the functional (1.3) can be traced back to Zhikov [30], where they were introduced
to model the homogenization of strongly anisotropic medium and to illustrate the Lavrentiev
phenomenon. The broader concept of integrals with nonstandard growth was previously explored
by Marcellini [22, 23], who introduced the terminology “nonstandard growth” or “(p, q) growth” to
describe such phenomena. However, the functional (1.3) in the precise form made its initial appearance
in the paper [15] by Esposito, Leonetti, and Mingione, where it was presented as one of several model
cases satisfying nonstandard growth conditions. Nonstandard growth problems have found relevance
in various physical contexts, including the modeling of electrorheological fluids, image processing,
and the description of composite materials with heterogeneous microstructures. For a comprehensive
overview and related applications of nonstandard growth problems, we refer to [24] and the references
therein.

The pioneering study on the regularity of the minimizers of double phase problems began with
Colombo and Mingione [10, 12] and was later extended in [3, 25, 29]. Such results have since
catalyzed a vibrant area of research into the regularity of related models, including, for example,
viscosity solutions to double phase problems [16, 18], multi-phase problems [20], partial regularity
for double phase problems [26], and broader nonuniformly elliptic problems [14,17]. In particular, the
Calderón-Zygmund type estimates for the double phase problems were also established by Colombo
and Mingione [11], namely, they proved that

H(x, F) ∈ Lγloc(Ω) ⇒ H(x,Du) ∈ Lγloc(Ω),

holds for all γ ∈ (1,∞). Following this seminal work, research on Calderón-Zygmund estimates for
the double phase problem has been actively pursued, with notable contributions in [2, 8, 13, 28], and
other related studies.

While many studies on Calderón-Zygmund estimates have been conducted for double-phase
problems, more extensive work exists for p-Laplace type equations (see [1,4,5,9]). A notable feature in
this latter field is that such estimates can be established even with discontinuous coefficients, allowing
for a certain degree of irregularity with respect to the x-variable. More recently, various studies have
attempted to incorporate this feature into the x-variable of the main operator A(x, z) for double-phase
problems (see [6, 7, 27]).

The primary challenge in this direction is how to properly introduce a discontinuity with respect
to the x-variable. This difficulty stems from the structural difference between the operators.
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The p-Laplace operator is autonomous with respect to the x-variable, which makes it relatively
straightforward to impose a discontinuity assumption with respect to the x-variable on the main
operator. In contrast, the principal part of the operator in a double-phase problem inherently has
a dependence on the x-variable due to the presence of the modulating function a(x), making it
significantly more difficult to impose an assumption regarding discontinuities with respect to the x-
variable.

Our core idea is to model the discontinuity in the x-variable by assuming that the main operator
A(x, z) can be decomposed into two variables: One that modulates the growth and another that allows
the discontinuity. To this end, we assume that there exists a function G : Ω ×Ω × Rn → Rn such that

G(x, x, z) = A(x, z), ∀(x, z) ∈ Ω × Rn (1.4)

with the following growth, ellipticity, and continuity assumptions:
|G(x, y, z)||z| + |∂zG(x, y, z)||z|2 ≤ LH(x, z),

ν
H(x, z)
|z|2

|ξ|2 ≤ 〈∂zG(x, y, z)ξ, ξ〉,

|G(x1, y, z) −G(x2, y, z)| ≤ L|a(x1) − a(x2)||z|q−1,

(1.5)

for any x, y, x1, x2 ∈ Ω, z ∈ Rn \ {0}, ξ ∈ Rn. Here, the constants ν and L satisfy 0 < ν ≤ L, and the
function

H(x, t) = tp + a(x)tq ∀(x, t) ∈ Ω × R+. (1.6)

To simplify notation, we use H(x, z) to mean H(x, |z|) for any (x, z) ∈ Ω × Rn.
While the existence of such a function G may appear to be an overly strong or unnatural assumption,

we demonstrate in Section 2 that G can be obtained from the main terms of models considered in earlier
studies on double phase problems with discontinuities, which justifies our assumption.

In what follows, for any function f depending on two spatial variables x, y ∈ Ω and the gradient
variable z ∈ Rn, we use the notation for the integral average of the function f on any set E with positive
measure

( f )E,y(x, z) :=
∫

E
f (x, y, z) dy =

1
|E|

∫
E

f (x, y, z) dy.

On the other hand, if f depends on one spatial variable x ∈ Ω and the gradient variable z ∈ Rn

( f )E(z) :=
∫

E
f (x, z) dx =

1
|E|

∫
E

f (x, z) dy.

Definition 1.1. Let R > 0 and δ ∈
(
0, 1

8

)
. We say G is (δ,R)-vanishing with respect to y-variable if for

any 0 < r ≤ R and Br(x0) ⊂ Ω, ∫
Br(x0)

Θ(G; Br(x0))(x) dx ≤ δ, (1.7)

where

Θ(G; Br(x0))(x) := sup
z∈Rn\{0}

[
|G(x, x, z) − (G)Br(x0),y(x, z)|

|z|p−1 + a(x)|z|q−1

]
.
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The (δ,R)-vanishing condition stems from the notion of a small BMO coefficient, which essentially
asserts that the oscillation of the coefficient is suitably small in the integral average sense. See [9] for
the definition of BMO space. Thus, Definition 1.1 effectively imposes a small BMO-type condition on
the auxiliary vector field G with respect to the y-variable.

It is worth mentioning that
0 ≤ Θ(G; Br(x0)) ≤ 2L (1.8)

holds whenever Br(x0) ⊂ Ω from (1.5)1.
We finally assume that for all x ∈ Ω and z ∈ Rn,

|B(x, z)| ≤ L
(
|z|p−1 + a(x)|z|q−1). (1.9)

In what follows, for simplicity of notation, we use the abbreviation

data = n, p, ν, L,Ω, ‖α‖Cα .

Let us now introduce our main theorem.

Theorem 1.2. Let u ∈ W1,H(·)(Ω) be a solution to (1.1) with (1.9). Assume that there is a function
G : Ω×Ω×Rn → Rn satisfying (1.4) and (1.5). Suppose that H(x, F) ∈ Lγloc(Ω) for any given γ ∈ (1,∞).
Then, there exist constants δ = δ(data, ‖H(x, F)‖L1(Ω), γ) and R = R(data, ‖H(x, F)‖L1(Ω), γ), such that
if G is (δ,R)-vanishing with respect to y-variable, then H(x,Du) ∈ Lγloc(Ω). Moreover, there exists a
constant c = c(data, ‖H(x, F)‖L1(Ω), γ) such that the estimate(∫

Br

H(x,Du)γ dx
)1/γ

≤ c
∫

Br

H(x,Du) dx + c
(∫

Br

H(x, F)γ dx
)1/γ

holds for all Br ⊂ Ω with 0 < r ≤ R.

As confirmed in the next section, Theorem 1.2 shows that specific forms of the structural
assumptions previously explored in [6, 7, 27] are covered by our generalized conditions. This not only
highlights the broad applicability of our proposed methodology but also confirms its unifying nature.
Furthermore, we anticipate that the structural conditions introduced here can be effectively extended to
establish the optimal C1 regularity for solutions to double phase problems involving Dini coefficients,
opening a clear path for future investigation.

2. Generality of the structure

This section is dedicated to examining how our generalized model equation extends specific existing
formulations. We demonstrate that the assumptions on the equations considered in [7] are captured by
our proposed structure. Furthermore, we analyze the extended model in [6]. Specifically, we show that
its reduction to double phase problems with constant exponents can be described by the conditions of
our generalized equation. This examination helps to understand the significance of our work in relation
to model extensions, thereby clarifying how our structure can unify diverse existing formulations.
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2.1. The structure conditions in [6] with constant exponents

It is worth mentioning that the original paper [6] considers double phase problems with variable
exponents and small BMO-coefficients. Our work introduces a generalized approach whose
assumptions unify the diverse forms of double phase problems found in prior research. To illustrate
this generality, we specifically examine the constant exponents case of the result in [6].

For the constant exponent case, the study in [6] considers Eq (1.1) with the vector field A defined
by

A(x, z) = A1(x, z) + a(x)A2(x, z). (2.1)

Here, each vector field Ai for i = 1, 2 is assumed to satisfy|Ai(x, z)| + |∂zAi(x, z)||z| ≤ L|z|pi−1,

ν|z|pi−2|ξ|2 ≤ 〈∂zAi(x, z)ξ, ξ〉,
pi =

p, i = 1,
q, i = 2,

(2.2)

for some constants 0 < ν ≤ L < ∞, and every x ∈ Ω, z, ξ ∈ Rn. Moreover, each Ai satisfies the
(δ,R)-vanishing condition:

sup
0<ρ≤R

sup
Br(x0)⊂Ω

∫
Br(x0)

θi(Ai; Br(x0))(x) dx ≤ δ, (2.3)

where
θi(Ai; Br(x0))(x) := sup

z∈Rn\{0}

|Ai(x, z) − (Ai)Br(x0)(z)|
|z|pi−1 .

To discuss how (1.1) with (2.1)–(2.3) follows the conditions (1.4)–(1.7), we define the vector field
G : Ω ×Ω × Rn → Rn in (1.5) by

G(x, y, z) = A1(y, z) + a(x)A2(y, z). (2.4)

Under this definition, (1.4) holds, i.e.,

G(x, x, z) = A1(x, z) + a(x)A2(x, z) = A(x, z).

Moreover, (2.2) directly implies (1.5).
We now check that G in (2.4) satisfies (1.7). For any x ∈ Ω and Br(y0) ⊂ Ω with 0 < r ≤ R, we have

|G(x, x, z) − (G)Br(x0),y(x, z)|
|z|p−1 + a(x)|z|q−1 ≤

|A1(x, z) − (A1)Br(x0)(z)|
|z|p−1 + a(x)|z|q−1 +

a(x)|A2(x, z) − (A2)Br(x0)(z)|
|z|p−1 + a(x)|z|q−1

≤
|A1(x, z) − (A1)Br(x0)(z)|

|z|p−1 +
|A2(x, z) − (A2)Br(x0)(z)|

|z|q−1

≤ θ1(A1; Br(x0))(x) + θ2(A2; Br(x0))(x).

Then, by (2.3),∫
Br(x0)

Θ(G; Br(y0))(x) dx ≤
∫

Br(x0)
θ1(A1; Br(x0))(x) dx +

∫
Br(x0)

θ2(A2; Br(x0))(x) dx ≤ 2δ

holds, whenever Br(x0) ⊂ Ω and 0 < r ≤ R.
From the arbitrariness of the constant δ > 0, we conclude that (1.1) with the assumptions (1.4)–(1.7)

can be derived from the assumptions (2.1)–(2.3).
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Remark 2.1. The paper [27] establishes Calderón-Zygmund type result for double phase problems
with coefficients depending on both x and u variables under the assumption q

p < 1 + α
n . To deal with

such coefficients, it is assumed that the solution u is bounded and the coefficient function satisfies the
small BMO condition with respect to the variable x and uniform continuity with respect to the variable
u. It is worth noting that the case of [27], where the coefficient is independent of the variable u, is
a special case covered by [6]. Therefore, as discussed in this section, Theorem 1.2 also explains this
specific case from [27].

2.2. The structure conditions in [7]

The article [7] establishes Calderón-Zygmund type estimates for a class of equations generalizing
the double phase problem. Unlike [6], which distinguishes between small BMO coefficients for p and
q phases, the equations in [7] do not make such a distinction. To address these equations, the authors
in [7] imposed additional assumptions on the range of p and q, specifically in (2.7).

By comparing the equations presented in [7] with the conditions (1.4)–(1.7), we now summarize the
relevant assumptions from the article. Specifically, the Eq (1.1) is considered in [7] with the following
growth and ellipticity assumptions below:

|A(x, z)||z| + |∂zA(x, z)||z|2 ≤ LH(x, z),

ν
H(x, z)
|z|2

|ξ|2 ≤ 〈∂zA(x, z)ξ, ξ〉,
(2.5)

for some 0 < ν ≤ L < ∞, whenever x ∈ Ω, z, ξ ∈ Rn. In addition, the following (δ,R)-vanishing
condition is also assumed:

sup
0<ρ≤R

sup
Br(x0)⊂Ω

∫
Br(x0)

θ(A; Br(x0))(x) dx ≤ δ, (2.6)

where

θ(A; Br(x0))(x) := sup
z∈Rn\{0}

∣∣∣∣∣∣ A(x, z)
|z|p−1 + a(x)|z|q−1 −

(
A(·, z)

|z|p−1 + a(·)|z|q−1

)
Br(x0)

∣∣∣∣∣∣ .
The last assumption made in [7] is

q − p <
ν

L
, (2.7)

which naturally arises from the structure assumptions (2.5).
We now set

G(x, y, z) =
H(x, z)
H(y, z)

A(y, z) (2.8)

for any x, y ∈ Ω and z ∈ Rn. Then, (1.4) directly holds. To proceed further, we use the simple notation
H′(x, t) = ∂tH(x, t) in this section.

First, we show that the function G defined in (2.8) satisfies the growth condition (1.5)1. By basic
manipulations, there holds

|G(x, y, z)||z| =
H(x, z)
H(y, z)

|A(y, z)| ≤ LH(x, z).
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In addition, by

∂zG(x, y, z) =

(
H′(x, z)H(y, z) − H(x, z)H′(y, z)

H(y, z)2

)
A(y, z) ⊗

z
|z|

+
H(x, z)
H(y, z)

∂zA(y, z),

we have

|∂zG(x, y, z)||z|2 ≤
H′(x, z)
H(y, z)

|A(y, z)||z|2 +
H(x, z)H′(y, z)

H(y, z)2 |A(y, z)||z|2 +
H(x, z)
H(y, z)

|∂zA(y, z)||z|2.

Using the inequality tH′(x, t)/H(x, t) ≤ q for any t > 0, we estimate each term on the right-hand side
by 

H′(x, z)
H(y, z)

|A(y, z)||z|2 ≤ L|z||H′(x, z)| ≤ LqH(x, z),

H(x, z)H′(y, z)
H(y, z)2 |A(y, z)||z|2 ≤ L

H(x, z)H′(y, z)|z|
H(y, z)

≤ LqH(x, z),

H(x, z)
H(y, z)

|∂zA(y, z)||z|2 ≤ LH(x, z).

Combining the above estimates, we obtain

|∂zG(x, y, z)||z|2 ≤ L(2q + 1)H(x, z).

We now investigate if G defined in (2.8) fulfills the condition (1.5)2. By definition of H(·),

H′(x, t)H(y, t) − H(x, t)H′(y, t) = (q − p)(a(x) − a(y))tp+q−1. (2.9)

To proceed further, we need to check that

(q − p)|a(x) − a(y)|tp+q−1

H(y, t)2 ≤ (q − p)
H(x, t)
tH(y, t)

(2.10)

holds for each t > 0, by considering two cases 0 ≤ 2a(y) ≤ a(x) and 0 ≤ a(x) ≤ 2a(y). When 0 ≤
2a(y) ≤ a(x) holds, we find

0 ≤
(q − p)(a(x) − a(y))tp+q−1

H(y, t)2 ≤ (q − p)
a(x)tp+q−1

H(y, t)2 ≤ (q − p)
H(x, t)
tH(y, t)

.

On the other hand, if 0 ≤ a(x) ≤ 2a(y), equivalently the inequality |a(x) − a(y)| ≤ a(y), holds, then

(q − p)|a(x) − a(y)|tp+q−1

H(y, t)2 ≤
(q − p)a(y)tp+q−1

a(y)tqH(y, t)
≤ (q − p)

H(x, t)
tH(y, t)

.

Combining the above inequalities, we have (2.10).
Then, (2.5)2, (2.9), and (2.10) yield

〈∂zG(x, y, z)ξ, ξ〉 ≥
H(x, z)
H(y, z)

〈∂zA(y, z)ξ, ξ〉 −
|H′(x, z)H(y, z) − H(x, z)H′(y, z)|

H(y, z)2 |A(y, z)||ξ|2

≥ ν
H(x, z)
|z|2

|ξ|2 − L(q − p)
H(x, z)
|z|2

|ξ|2
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≥ (ν − L(q − p))
H(x, z)
|z|2

|ξ|2.

Recalling (2.7), we have (1.5) with new ellipticity and growth constants.
Now, we check the (δ,R)-vanishing condition (1.7). For any Br(x0) ⊂ Ω with 0 < r ≤ R, we have

|G(x, x, z) − (G)Br(x0),y(x, z)|
|x|p−1 + a(x)|z|q−1 =

∣∣∣∣∣∣ A(x, z)
|z|p−1 + a(x)|z|q−1 −

(
A(·, z)

|z|p−1 + a(·)|z|q−1

)
Br(x0)

∣∣∣∣∣∣ ≤ θ(A; Br(x0))(x).

Therefore, (2.6) implies (1.7) with the same δ > 0.

3. Preliminaries

Throughout this paper, we write
M = ‖H(x, F)‖L1(Ω).

Moreover, we denote by c ≥ 1, generic constants depending only on data, which may vary from line
to line. If the constant depends on other parameters, we will explicitly denote the dependence by using
parentheses. We use the notation p′ = p/(p − 1) for the Hölder conjugate exponent of p for any p > 1.
For any x ∈ Ω and r > 0, let Br(x) be the open ball centered at x with radius r. We may simply write
Br when the center is clear from the context.

We introduce the auxiliary vector field Vs : Rn → Rn for any s > 1 by

Vs(z) = |z|(s−2)/2z, z ∈ Rn.

This vector field is commonly employed to handle the monotonicity property of the structure vector
A(·). For any z1, z2 ∈ R

n, the following inequalities hold:

|z1 − z2|
s ≤

cε(s−2)/s|Vs(z1) − Vs(z2)|2 + ε(|z1| + |z2|)s if s ∈ (1, 2),
c|Vs(z1) − Vs(z2)|2 if s ≥ 2.

(3.1)

Here, the first inequality holds for any ε ∈ (0, 1). By a standard manipulation, under the ellipticity and
growth assumptions in (1.5), there exists a constant c = c(n, p, ν, L) such that

|Vp(z1) − Vp(z2)|2 + a(x)|Vq(z1) − Vq(z2)|2 ≤ c〈G(x, y, z1) −G(x, y, z2), z1 − z2〉. (3.2)

Combining (3.1) and (3.2), for any ε ∈ (0, 1),

H(x, |z1 − z2|) ≤ ε−q′〈G(x, y, z1) −G(x, y, z2), z1 − z2〉 + εH(x, |z1| + |z2|). (3.3)

We now turn our attention to the function spaces required for our analysis. We begin by defining
the Musielak-Orlicz space LH(·)(Ω) to introduce the Musielak-Orlicz-Sobolev space W1,H(·)(Ω) for the
function H : Ω × R+ → R+ given in (1.6). The space LH(·)(Ω) consists of all measurable functions
v : Ω→ R such that ∫

Ω

H(x, v) dx < ∞,

AIMS Mathematics Volume 10, Issue 11, 25434–25451.
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where the (Luxemburg) norm is given by

‖v‖LH(·)(Ω) := inf
{

t > 0

∣∣∣∣∣∣
∫

Ω

H
(
x,
|v|
t

)
dx ≤ 1

}
.

Then, the Musielak-Orlicz-Sobolev space W1,H(·)(Ω) is defined as

W1,H(·)(Ω) :=
{
v ∈ W1,1(Ω) | v ∈ LH(·)(Ω) and H(·,Dv) ∈ L1(Ω)

}
.

Under the assumption (2.7), W1,H(·)(Ω) is a Banach space with the norm given by ‖v‖W1,H(·)(Ω) :=
‖v‖LH(·)(Ω) + ‖Dv‖LH(·)(Ω). Moreover, we can define W1,H(·)

0 (Ω) as the closure of C∞c (Ω) with respect to
the norm ‖ · ‖W1,H(·)(Ω). For more details on the space W1,H(·)(Ω), especially focusing on the density of
W1,∞(Ω) in W1,H(·)(Ω), we refer to [15, 19, 31].

With the above preliminaries at hand, we are now ready to prove the main result.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 largely follows the strategy outlined in [11, Section 4]. We will therefore
focus on the steps that require careful handling of the structure condition (1.5) involving the function
G. For the remaining details, we refer the reader to [11], as the completion of the proof follows the
same reasoning developed therein.

Let us consider any ball Br ⊂⊂ Ω with radius r ≤ R, where R ≤ 1 will be chosen small enough later
in this section. Let E s

λ be the super-level set given by

E s
λ := {x ∈ Bs : H(x,Du(x)) > λ}, r/2 ≤ s ≤ r, λ > 0, (4.1)

where Bs is the ball with radius s > 0 and the same center as Br. Then, for almost every x0 ∈ E s
λ and

any s ∈ [r/2, r],

lim
ρ→0

∫
Bρ(x0)

[
H(x,Du) +

1
δ

H(x, F)
]

dx > λ,

where δ ∈ (0, 1) will be chosen later.
In order to carry out the subsequent calculations, we introduce two radii r1, r2 satisfying r/2 ≤ r1 <

r2 ≤ r. Let us denote

λ0 :=
20nrn

2

(r2 − r1)n

∫
Br2

[
H(x,Du) +

1
δ

H(x, F)
]

dx.

Then, for any ρ ∈ [(r2 − r1)/20, r2 − r1], there holds∫
Bρ(x0)

[
H(x,Du) +

1
δ

H(x, F)
]

dx ≤ λ0.

Note that the radii r1 and r2 are needed to apply [11, Lemma 4.1] later in this section.
From now on, for λ > λ0 we will find estimate on the set Er1

λ . Then, for almost every x0 ∈ Er1
λ , there

is ρx0 such that ∫
Bρx0

(x0)

[
H(x,Du) +

1
δ

H(x, F)
]

dx = λ (4.2)

and
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∫
Bρx0

(x0)

[
H(x,Du) +

1
δ

H(x, F)
]

dx < λ for every ρ ∈ (ρx0 , r2 − r1]. (4.3)

Hence, we can apply Vitaili’s covering lemma to find a measure zero set N and a family of disjoint
balls {Bρxi

(xi)} such that

Er1
λ \ N ⊂

⋃
i

B5ρxi
(xi).

Moreover, for each i, (4.2) and (4.3) hold when replacing x0 and ρx0 with xi and ρxi . For simplicity, we
denote ρi = 5ρxi and Bi = Bρi(xi). Observe that ρi ≤ (r2− r1)/4 ≤ r/8 by (4.3) and the choice of λ > λ0.

4.1. Comparison maps

To proceed further, we consider a sequence of weak solutions for each i. The first comparison map
vh,i ∈ u + W1,H(·)

0 (4Bi) is the weak solution to the homogeneous equation

divA(x,Dvh,i) = 0 in 4Bi. (4.4)

We now define

Ā(x, z) := (G)3Bi,y(x, z) =

∫
3Bi

G(x, y, z) dy.

Then, the second comparison map, v f ,i ∈ vh,i + W1,H(·)
0 (3Bi), is the weak solution to

divĀ(x,Dv f ,i) = 0 in 3Bi. (4.5)

Finally, we introduce our last comparison map, wi ∈ v f ,i + W1,p
0 (2Bi), as the weak solution to the frozen

equation
divĀ(xm,i,Dwi) = 0 in 2Bi, (4.6)

where xm,i is the point satisfying a(xm,i) = sup
x∈2Bi

a(x).

Let us point out that to guarantee the existence of the solution wi with Dirichlet boundary data v f ,i,
it is not enough to have v f ,i ∈ W1,H(·)(3Bi). The conditional reverse Hölder type result [13, Theorem 5]
allows us to address this issue. Indeed, by recalling (1.4) and (1.5), we see that Ā satisfies the
assumptions [13, (1.6), (1.8)]. This allows us to apply [13, Theorem 5] to v f ,i, which ensures that
v f ,i ∈ W1,q

loc (3Bi). We now state this result without its proof.

Lemma 4.1. Let v f ,i ∈ W1,p(3Bi) be a weak solution to (4.5). Assume

sup
x∈3Bi

a(x) ≤ K[a]Cαραi ,

for some K ≥ 1. Then, for every q̄ < np/(n − 2α) (= ∞ when α = 1 and n = 2), there is a constant
c = c(data, ‖Dv f ,i‖Lp(3Bi),K, q̄) > 0 which is a nondecreasing function of ‖Dv f ,i‖Lp(3Bi), and satisfying(∫

2Bi

|Dv f ,i|
q̄ dx

)1/q̄

≤ c
(∫

3Bi

H(x,Dv f ,i) dx
)1/p

. (4.7)
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4.2. Comparison estimates

The first comparison lemma we present is about u and vh,i.

Lemma 4.2. Let u ∈ W1,H(·)(Ω) be the weak solution to (1.1) and vh,i ∈ u + W1,H(·)
0 (4Bi) the weak

solution to (4.4). Then, for any ε ∈ (0, 1), we have∫
4Bi

H(x,Du − Dvh,i) dx ≤ ε
∫

4Bi

H(x, |Du| + |Dvh,i|) dx + cε−q′
∫

4Bi

H(x, F) dx, (4.8)

where c depends only on data.

Proof. By testing the difference u − vh,i ∈ W1,H(·)
0 (4Bi) to (1.1) and (4.4), and utilizing (3.3), (1.4),

and (1.9), we obtain∫
4Bi

H(x,Du − Dvh,i) dx

≤ cεq′
∫

4Bi

〈A(x,Du) − A(x,Dvh,i),D(u − vh,i)〉 dx +
ε

2

∫
4Bi

H(x, |Du| + |Dvh,i|) dx

= cεq′
∫

4Bi

〈B(x, F),D(u − vh,i)〉 dx +
ε

2

∫
4Bi

H(x, |Du| + |Dvh,i|) dx

≤ cεq′
∫

4Bi

H(x, F) dx + ε

∫
4Bi

H(x, |Du| + |Dvh,i|) dx,

for any ε ∈ (0, 1). This completes the proof. �

As a next step, we establish a higher integrability result for the weak solution vh,i to (4.4), which
will be used in the subsequent comparison estimate.

Lemma 4.3. Let vh,i ∈ u + W1,H(·)
0 (Ω) be the weak solution to (4.4). Then, there exist constants τ =

τ(data) ∈ (0, 1) and c = c(data,M) such that∫
3Bi

H(x,Dvh,i)1+τ dx ≤ c
(∫

4Bi

H(x,Dvh,i) dx
)1+τ

,

where c is nondecreasing with respect toM.

Proof. This lemma can be proved by slightly modifying the proof of [6, Lemma 4.1]. However, for
the interested readers, we outline the proof. For any B2ρ(x0) ⊂ 4Bi, we choose a cutoff function
η ∈ C∞c (B2ρ(x0)) such that η ≡ 1 on Bρ(x0) and |Dη| ≤ 4/ρ. By testing vh,iη

q to (4.4), a standard
manipulation gives the Caccioppoli type estimate∫

Bρ(x0)
H(x,Dvh,i) dx ≤ c

∫
B2ρ(x0)

(∣∣∣∣∣∣vh,i − (vh,i)B2ρ(x0)

ρ

∣∣∣∣∣∣p + a(x)

∣∣∣∣∣∣vh,i − (vh,i)B2ρ(x0)

ρ

∣∣∣∣∣∣q
)

dx.

We distinguish two cases to apply Poincaré’s inequality. When inf
B2ρ(x0)

a(x) > (4ρ)α[a]Cα , then

sup
B2ρ(x0)

a(x) ≤ 2 inf
B2ρ(x0)

a(x). Hence, the Sobolev-Poincaré inequality gives

∫
Bρ(x0)

H(x,Dvh,i) dx ≤ c
(∫

B2ρ(x0)
|Dvh,i|

p∗ dx
)p/p∗

+ c inf
B2ρ(x0)

a(x)
(∫

B2ρ(x0)
|Dvh,i|

q∗ dx
)q/q∗
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≤ c
[∫

B2ρ(x0)
(|Dvh,i|

p + a(x)|Dvh,i|
q)q∗/q dx

]q/q∗

,

where p∗ = np/(n + p) and q∗ = nq/(n + q).
The second case is when inf

B2ρ(x0)
a(x) ≤ (4ρ)α[a]Cα . Then,

∫
Bρ(x0)

H(x,Dvh,i) dx ≤ c
(∫

B2ρ(x0)
|Dvh,i|

p∗ dx
)p/p∗

+ cρα
(∫

B2ρ(x0)
|Dvh,i|

q∗ dx
)q/q∗

≤ c
1 + ρα−n(q−p)/p

(∫
B2ρ(x0)

|Dvh,i|
p dx

)(q−p)/p (∫
B2ρ(x0)

|Dvh,i|
q∗ dx

)p/q∗

≤ c(M)
(∫

B2ρ(x0)
H(x,Dvh,i)q∗/p dx

)p/q∗

.

Combining the estimates in both cases and using the fact that q∗/q < q∗/p < 1, we apply Gehring’s
lemma to conclude the desired conclusion. �

We now present a second comparison lemma between vh,i and v f ,i.

Lemma 4.4. Let vh,i ∈ W1,H(·)(4Bi) and v f ,i ∈ vh,i + W1,H(·)
0 (3Bi) be the weak solutions to (4.4) and (4.5),

respectively. Then, for any ε > 0, there exists δ1 = δ1(data,M, ε) ∈ (0, 1) such that if (1.7) holds with
δ ≤ δ1, then ∫

3Bi

H(x,Dvh,i − Dv f ,i) dx ≤ ε
∫

4Bi

H(x,Dvh,i) dx.

Proof. We test vh,i − v f ,i against (4.4) and (4.5). Then, for any κ ∈ (0, 1), we use (3.3) to find∫
3Bi

H(x,Dvh,i − Dv f ,i) dx

≤ cκ−q′
∫

3Bi

〈Ā(x,Dvh,i) − Ā(x,Dv f ,i),D(vh,i − v f ,i)〉 dx + κ

∫
3Bi

H(x, |Dvh,i| + |Dv f ,i|) dx

= cκ−q′
∫

3Bi

〈Ā(x,Dvh,i) − A(x,Dvh,i),D(vh,i − v f ,i)〉 dx + κ

∫
3Bi

H(x, |Dvh,i| + |Dv f ,i|) dx

=: cκ−q′ I + cκ
∫

3Bi

H(x,Dvh,i) dx + c0κ

∫
3Bi

H(x,Dvh,i − Dv f ,i) dx.

Here, c0 depends only on data.
Now, we estimate I as follows:

|I|
(1.4)
≤

∫
3Bi

|G(x, x,Dvh,i) − (G)3Bi(x,Dvh,i)|
|Dvh,i|

p−1 + a(x)|Dvh,i|
q−1 (|Dvh,i|

p−1 + a(x)|Dvh,i|
q−1)|Dvh,i − Dv f ,i| dx

(1.7)
≤

∫
3Bi

Θ(G; 3Bi)(x)(|Dvh,i|
p−1 + a(x)|Dvh,i|

q−1)|Dvh,i − Dv f ,i| dx

≤ c(κ)
(∫

3Bi

[Θ(G; 3Bi)(x)]p′ |Dvh,i|
p dx +

∫
3Bi

[Θ(G; 3Bi)(x)]q′a(x)|Dvh,i|
q dx

)
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+ κq′+1
∫

3Bi

H(x,Dvh,i − Dv f ,i) dx

(1.8)
≤ c(κ)

(∫
3Bi

Θ(G; 3Bi)(x)(|Dvh,i|
p + a(x)|Dvh,i|

q) dx
)

+ κq′+1
∫

3Bi

H(x,Dvh,i − Dv f ,i) dx

≤ c(κ)
(∫

3Bi

[Θ(G; 3Bi)(x)]
1+τ
τ dx

) τ
1+τ

(∫
3Bi

H(x,Dvh,i)1+τ dx
) 1

1+τ

+ κq′+1
∫

3Bi

H(x,Dvh,i − Dv f ,i) dx

(1.7)
≤ c(κ,M)δ

τ
1+τ

(∫
4Bi

H(x,Dvh,i) dx
)

+ κq′+1
∫

3Bi

H(x,Dvh,i − Dv f ,i) dx.

In the last inequality, we also used Lemma 4.3.
Therefore, we obtain∫

3Bi

H(x,Dvh,i − Dv f ,i) dx ≤ c(κ,M)δ
τ

1+τ

∫
4Bi

H(x,Dvh,i) dx

+ cκ
∫

3Bi

H(x,Dvh,i) dx + cκ
∫

3Bi

H(x,Dvh,i − Dv f ,i) dx,

where the first constant on the right-hand side, c(κ,M), is decreasing with respect to κ, and it diverges
to∞ as κ → 0. Since the constant c0 depends only on data, we choose κ small enough to absorb the last
integral on the right-hand side into the left-hand side. Finally, we choose δ1 = δ(data,M, ε) ∈ (0, 1)
small enough to complete the proof. �

At this stage, we observe that the vector field Ā satisfies all the assumptions in [13, (1.8)]. As the
arguments from Steps 1–7 in [13, Section 6] remain valid for our case, we can directly apply their
comparison estimate between (4.5) and (4.6). We summarize this result in the following lemma.

Lemma 4.5. Let wi ∈ v f ,i + W1,H(·)
0 (2Bi) be the weak solution to (4.6). Then, for any K ≥ 4, there exist

constants c̃ = c̃(data) and c∗ = c∗(data,M,K) ≥ 1 such that∫
2Bi

H(x,Dwi − Dv f ,i) dx ≤
[ c̃
K

+ c∗ρσi
] ∫

3Bi

H(x,Dv f ,i) dx, (4.9)

where

σ = α −
n(q − p)
p(1 + τ)

> α − n
(

q
p
− 1

)
≥ 0

with the small constant τ ∈ (0, 1) appearing in Lemma 4.3.

To replace the integral involving Dv f ,i with an integral involving Du, we utilize the quasi-minimality
property of the weak solutions. Based on the growth and ellipticity assumptions (1.5)1,2, the weak
solution vh,i is a quasi-minimizer for the functional

v 7→
∫

4Bi

H(x,Dv) dx, for any v ∈ u + W1,p
0 (4Bi),
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and similarly, the weak solution v f ,i is a quasi-minimizer of the functional

v 7→
∫

3Bi

H(x,Dv) dx, for any v ∈ vh,i + W1,p
0 (3Bi).

Therefore, we have∫
3Bi

H(x,Dv f ,i) dx ≤ c
∫

3Bi

H(x,Dvh,i) dx ≤ c
∫

4Bi

H(x,Dvh,i) dx ≤ c
∫

4Bi

H(x,Du) dx, (4.10)

where c depends only on L/ν, p, q, n.
The following lemma presents another useful result concerning the Lipschitz regularity of the weak

solution to (4.6).

Lemma 4.6. Let wi ∈ v f ,i + W1,H(·)
0 (2Bi) be the weak solution to (4.6). Then, Dwi ∈ L∞(2Bi) with the

estimate

sup
x∈2Bi

H(x,Dwi) ≤ c
∫

4Bi

H(x,Du) dx,

where c depends only on data.

Proof. In light of [21, Lemma 5.1], we have

sup
x∈2Bi

H(x,Dwi) ≤ sup
x∈2Bi

H(xm,i,Dwi) ≤ c
∫

2Bi

H(xm,i,Dwi) dx ≤ c
∫

2Bi

H(xm,i,Dv f ,i) dx.

If inf
x∈2Bi

a(x) > 10rα[a]Cα , it follows that

sup
x∈2Bi

H(x,Dwi) ≤ c
∫

2Bi

H(xm,i,Dv f ,i) dx

≤ c
∫

2Bi

[
H(x,Dv f ,i) + rα[a]Cα |Dv f ,i|

q
]

dx ≤ c
∫

3Bi

H(x,Dv f ,i) dx. (4.11)

On the other hand, if inf
x∈2Bi

a(x) ≤ 10rα[a]Cα , then by Lemma 4.1, we obtain

sup
x∈2Bi

H(x,Dwi) ≤ c
∫

2Bi

H(xm,i,Dv f ,i) dx

≤ c
∫

2Bi

(
|Dv f ,i|

p + rα[a]Cα |Dv f ,i|
q
)

dx

≤ c
∫

3Bi

|Dv f ,i|
p dx + crα−n(q−p)/p

(∫
3Bi

|Dv f ,i|
p dx

)(q−p)/p ∫
3Bi

|Dv f ,i|
p dx

≤ c
∫

3Bi

H(x,Dv f ,i) dx. (4.12)

In the last line, we have used the quasi-minimizing property of v f ,i given in (4.10).
Combining (4.11) and (4.12), and using (4.10) again, the desired estimate is obtained. �
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Finally, combining Lemmas 4.2, 4.4, 4.5, and 4.6, and the estimate (4.10), we obtain the following.

Lemma 4.7. For any constant λ ≥ 1 and any ε ∈ (0, 1), there exists a positive constant δ1 =

δ1(data,M, ε) ∈ (0, 1) such that if∫
4Bi

[
H(x,Du) +

1
δ

H(x, F)
]

dx ≤ λ

and A satisfies (1.4)–(1.7) for some R ∈ (0, 1) and δ ∈ (0, δ1], then for any K ≥ 4, we have∫
Bi

H(x,Du − Dwi) dx ≤ c1

[
ε + ε−q′δ +

1
K

+ c∗Rσ

]
λ,

for some c1 > 0 depending only on data, where c∗ = c∗(data,M,K) is the one given in Lemma 4.5.
Moreover, there exists cl = cl(data) such that

sup
x∈2Bi

H(x,Dwi) ≤ clλ.

We now use the notation

S (ε,R, δ,K) := c1

[
ε + ε−q′δ +

1
K

+ c∗Rσ

]
,

where c1 and c∗ are the constants introduced in Lemma 4.5. Then, by Lemma 4.7 with (4.3) and the
fact ρi ≤ R/8, for any ε > 0 chosen later, there is δ1 = δ1(data,M, ε) such that for any δ ∈ (0, δ1) and
Bi, there holds ∫

2Bi

H(x,Du − Dwi) dx ≤ S (ε,R, δ,K)λ. (4.13)

Moreover, there is cl = cl(data) such that

sup
x∈Bi

H(x,Dwi) ≤ clλ. (4.14)

Note that the estimates (4.13) and (4.14) are essentially the same as in [11, (4.47) and (4.51)].
The parameter M in their paper corresponds to 1/δ in ours. Then, the remaining part of the proof
of Theorem 1.2 is a standard procedure for deriving Calderón-Zgymund type estimates, which is a
repetition of Steps 10–11 in [11, Section 4]. In these steps, with the same choice of the constants
ε,R, δ,K as in [11, Section 4], one concludes the desired result.

5. Conclusions

In this paper, we successfully established the Calderón-Zygmund estimate for the double phase
problem defined by Eq (1.1), under the assumptions (1.4), (1.5), (1.9), and the (δ,R)-vanishing
condition for small δ > 0. The principal strength of this result lies in the introduction of a generalized
structural condition, which effectively unifies various structural assumptions presented in existing
literature into a single framework. This unified approach provides a strong foundation for future
analysis and is expected to be extended to establish C1 regularity results under the Dini mean oscillation
condition for the leading coefficients.
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