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Abstract: Sign language (SL) plays a significant part in communication among people who are
hearing and deaf. Silent people struggle to convey their message to others. Since most people have not
received a formal language education, it is highly complex to transfer messages in an emergency.
Hence, a solution to this problem is to convert SL into a human voice. Gesture-to-speech systems
usually use either vision-based or non-vision-based technologies, such as cameras or wearable sensors.
However, many existing solutions lack cost-effectiveness and flexibility; for example, some depend
on specific hardware or only function in controlled environments. In this paper, the Advancing Sign
Language Accessibility using Deep Learning-Based Hand Gesture Recognition (ASLA-DLHGR)
technique for hearing and speech-impaired individuals is proposed. The goal of the ASLA-DLHGR
technique is to recognize hand gestures for communication among disabled people. Initially, the data
pre-processing process is performed using the bilateral filtering (BF) model. Furthermore, the ASLA-
DLHGR technique employs the SqueezeNet model to learn composite features from the pre-processed
data. Moreover, the tunicate swarm algorithm (TSA) based hyperparameter process is performed to
enhance the performance of the SqueezeNet method. For the gesture recognition process, a hybrid of
a convolutional neural network and a bidirectional long short-term memory (CNN-BiLSTM) method
is implemented. To demonstrate the managed gesture recognition proficiency of the ASLA-DLHGR
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method, a comprehensive comparative study is carried out under the American SL dataset. The
comparison study of the ASLA-DLHGR method portrayed a superior accuracy value of 99.98% over
existing models.

Keywords: hand gesture recognition; sign language; hearing and speech impaired; tunicate swarm
algorithm; SqueezeNet
Mathematics Subject Classification: 37M10

1. Introduction

Communication is an essential aspect of human life. People convey their thoughts and desires
through speech, while others listen and respond accordingly [1]. However, some people are unable to
talk and cannot even hear. It is a significant challenge for these societies to communicate. Sign
language (SL) is used as a communication method between and among deaf and hearing people [2].
Since most people may not understand SL, they seek a qualified individual to help them understand it.
Hand gestures are used as a way for people to express feelings and thoughts, thus helping to reinforce
the information conveyed in daily conversations [3]. SL is a structured system of hand gestures, which
integrates visual signs and motions, and is utilized as a means of communication. Instead of the speech-
impaired and deaf community, SL is a valuable tool for daily interactions. SL encompasses procedures
for various body parts, including the arms, hands, body, facial expressions, fingers, and head, to convey
information [4]. However, SL is rare among the hearing community, and someone who can understand
it is even rarer. This poses an honest communication obstacle between the rest of society and the deaf
community, a problem that remains unsolved to this day. SL and gesture detection encompasses the
entire process of recognizing and tracking signals, altering and executing them into meaningful
expressions and words [5].

SL recognition refers to the use of models and procedures that identify the resultant sequence of
gestures and clarify their meaning in a language or manuscript [6]. This method encompasses various
research fields, including pattern natural language processing (NLP), video acquisition, detection,
computer vision (CV), human-computer interaction (HCI), and more [7]. It is a demanding topic with
the highest complexity. At present, the usual SL recognition methods are mainly divided into two types:
machine vision and sensor-based systems. The existing technologies are not adequately described, as
they fail to address specific issues such as lighting issues, wearable sensor inconvenience, and poor
real-time performance, which makes the research justification unclear [8]. Artificial intelligence (AI)
methods are utilized for processes that enable computers to display human-like intelligent actions, such
as decision-making, visual perception, natural language understanding, and speech detection [3].
Particular applications of Al include expert systems, machine vision, speech detection, and NLP. A
method that can display SL is exposed by the adaptive interface between blind and deaf individuals
using voice processing and hand gesture recognition, which allows people with normal hearing to
interconnect with talk-impaired individuals or groups of people even better [9].

In this paper, the Advancing Sign Language Accessibility using Deep Learning-Based Hand
Gesture Recognition (ASLA-DLHGR) technique for hearing and speech-impaired individuals is
proposed. The goal of the ASLA-DLHGR technique is to recognize hand gestures for communication
among disabled people. Initially, the data pre-processing process is performed using the bilateral
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filtering (BF) model. Furthermore, the ASLA-DLHGR technique employs the SqueezeNet model to
learn composite features from the pre-processed data. Moreover, the tunicate swarm algorithm (TSA)
based hyperparameter process is performed to enhance the performance of the SqueezeNet method.
For the gesture recognition process, a hybrid of a convolutional neural network and a bidirectional
long short-term memory (CNN-BiLSTM) method is implemented. To demonstrate the managed
gesture recognition proficiency of the ASLA-DLHGR method, a comprehensive comparative study is
performed using the American SL dataset. The key contributions of the ASLA-DLHGR method is
listed below.

= The BF model is utilized in the pre-processing process to enhance the gesture data quality by
mitigating noise while preserving significant edge details. This step ensures a cleaner input for the
feature extraction stage. Additionally, it improves the model's capability to handle discrepancies in
gesture input. As a result, it contributes to more robust and accurate gesture recognition.

= The effective and compact SqueezeNet technique is employed to extract meaningful spatial
features from gesture data while reducing computational load. This facilitates faster processing without
compromising feature quality. Additionally, it assists deployment on resource-constrained devices.
This improves the practicality of the model for real-time gesture recognition applications.

= The hybrid deep learning (DL) methodology which utilizes the CNN technique is employed to
extract spatial features, and BiLSTM is used to capture temporal dependencies in gesture sequences.
This integration effectually models both spatial and sequential patterns. It also enhances the
recognition accuracy for dynamic gestures and improves the ability of the model to interpret intrinsic
gesture inputs in real time.

= The incorporation of BF, lightweight SqueezeNet, and a CNN-BILSTM hybrid presents an
efficient end-to-end framework for gesture recognition. The spatial and temporal challenges of the
model are efficiently addressed, while also maintaining low model complexity. This model plays a
significant role in assisting real-time applications with limited computational resources. The novelty
is in integrating these techniques to achieve high accuracy with minimal overhead.

2. Literature review

Abdul Ameer et al. [10] introduced a long short-term memory (LSTM) model in combination
with MediaPipe to mitigate the hurdles and effectively communicate and connect deaf individuals. The
methodology integrates an attention mechanism and an LSTM for processing the extracted key points
from captured signs. The attention layer focuses on relevant sectors of the given order, while the LSTM
manages temporal associations and encodes the sequential information. The authors [11] proposed a
novel methodology of FFNN for automated detection. This system detects hand signals by extracting
feature points using the FFNN technique. Hand gesture recognition (HGR) with voice processing by
using a Hidden Markov model (HMM) is implemented to ease individuals with hearing issues.
Valarmathi et al. [12] a technique that incorporated NLP methodologies to enhance the articulacy and
coherence of the decoded text. Furthermore, expressive 3D gestures are employed to animate the SL,
making the communication more engaging and relevant. These gestures are customizable to match the
user's identity, further personalizing the communication. This system leverages NLP, DL, and 3D to
address message barriers for individuals who have difficulties with speech and hearing. Jebali et al. [13]
propose a manual and non-manual (MNM) technique. This technique employs a CNN, known as
VGGlénet, to utilize a methodology based on training on the video dataset, implementing the
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Multimodal Spatial and Temporal Representation (MSR and MTR) of diverse models. This approach
outlines temporal alterations from non- and reliant pathways to examine the cooperation of several
models. A cooperative optimizer technique, abstracted by the utilization of a multi-scale perception
module, is also employed. Miah et al. [14] introduced a dual-stream multi-phase graph convolution
with attention and residual connection (GCAR) constructed for MSR-related data. The presented
approach, integrating a channel attention component, improves attention levels, specifically for non-
related skeleton points at the time of particular events under MTR factors. Bhatt and Dash [15]
proposed an advanced DL-based approach. This dataset is pre-processed to optimize its relevance for
ensuing training of a customized CNN methodology. The trained CNN approach portrayed excellence
in detecting and interpreting real-time SL signs. Specifically, real-time recognition of American SL
(ASL) implemented Teachable Machine and MediaPipe, whereas the following technique demonstrated
real-time hand gesture detection by employing a convexity-assisted method. Shin et al. [16] integrated
joint skeleton-assisted handcrafted factors and pixel-assisted transfer learning (TL) technique, namely
ResNet101. This approach is comprised of two discrete feature extraction cstreams: initially,
significant handcrafted factors are extracted, underscoring the capture of hand orientation data within
KSL signs. subsequently, a DL-based ResNet-101 is implemented for capturing hierarchical
representations of the KSL alphabet sign. Finally, the integrated feature is sent to the DL-based
classification module for the classification process.

Jayasingh, Rani, and Swathi [17] developed a lightweight CNN based SL translator to recognize
gestures. Additionally, the system also utilizes advanced filtering techniques and neural network
classifiers, specifically Visual Geometry Group 19 (VGG19) and Residual Network 50 (ResNet50)
models with MediaPipe. Aurangzeb et al. [18] introduced a novel hand vision-based CNN model
(HVCNNM) methodology. Elgohr et al. [19] proposed a real-time ASL recognition system that utilizes
the You Only Look Once version 11 (YOLOvI1) model with improved architecture and training
techniques. Rathnayake et al. [20] presented a real-time gesture detection system by utilizing a glove
with flex sensors and ML methods, including support vector machine (SVM), k-nearest neighbors
(kNN), and naive bayes (NB) techniques. Malviya, Mahajan, and Sethi [21] developed an accurate and
reliable Indian Sign Language (ISL) recognition system to interpret SL gestures and assisting assistive
technologies for the deaf community. Miah et al. [22] developed GmTC, an end-to-end sign language
recognition (SLR) system that utilizes a graph convolutional network (GCN) and an attention-based
DL method to translate multi-cultural SL into text accurately. Singhal et al. [23] presented the Dumb
Aid Phone system to recognize hand gestures and convert them into speech, enabling effective
communication for deaf and non-speaking individuals. Rehman et al. [24] developed a deep CNN
(DCNN) version 2 technique to assist hearing-impaired individuals. Soukaina, Mohammed, and
Mohamed [25] developed a lightweight ML technique by utilizing novel geometrical features from
hand landmarks. Kukreja, Singh, and Chauhan [26] proposed a gesture vision (GV) technique, a
real-time static SLR system that utlize MediaPipe, OpenCYV, and a random forest (RF) classifier to
recognize diverse hand gestures.

The limitations of the existing studies include a dependence on intrinsic DL models that demand
high computational resources, making real-time deployment on low-power devices challenging. Many
approaches concentrate on specific SLs or static gestures, restricting generalizability across multi-
cultural or dynamic SL. Several models lack robustness against discrepancies in backgrounds, lighting,
and occlusions. Additionally, there is an insufficient exploration of efficient feature fusion methods
that balance accuracy and model size. Furthermore, most systems depend on massive annotated
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datasets, which are often scarce for less common sign languages. There is a need to develop lightweight,
scalable, and adaptable models capable of real-time recognition across diverse SLs while maintaining
high accuracy under varying environmental conditions and limited data availability.

3. Proposed methodology

In this article, the ASLA-DLHGR model is proposed for individuals with hearing and speech
impairments. The goal of the ASLA-DLHGR technique is to recognize hand gestures to communicate
among disabled individuals. To accomplish that, the ASLA-DLHGR technique is comprised four
processes, pre-processing, feature extraction, parameter choice, and classification process. Figure 1
portrays the workflow of the ASLA-DLHGR technique.

Input: Training Images

Image Pre-Processing
Bilateral Filtering (BF)

:

Parameter Tuning Process
Tunicate Swarm Algorithm (TSA)

Y

Feature Extraction Process
SqueezeNet Model

Y

Gesture Recognition Process

Firc§. Fire9 Conv10. Softma (Output)

SguieczeNet Mol Hybrid of CNN and Bi-directional
Long Short Term Memory Model
Performance Measures

Figure 1. Workflow of ASLA-DLHGR technique.
3.1. Image pre-processing: BF model

At the primary level, the ASLA-DLHGR technique utilizes BF to perform pre-processing [27].
The model shows excellence in smoothening images while also preserving crucial edge details that are
considered significant for gesture boundary clarity. The BF technique also maintains spatial structure,
improving feature extraction in later stages, unlike conventional filters, namely Gaussian or median
filtering (MF), that often blur edges. This is highly appropriate for the recognition process, where fine
edge details are crucial. This technique also effectually handles noise, enhancing the quality of input
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data without distorting gesture shapes. Its balance between noise reduction and edge preservation
makes it more appropriate than other filtering methods. Overall, BF strengthens the robustness and
accuracy of the entire recognition process.

BF is an excellent image pre-processing method that improves the qualities of hand gesture
images utilized in SL detection for hearing and speech-impaired individuals. With smooth images, with
protective edges, BF successfully decreases noise and increases the visibility of vital features like hand
movements and shapes. This pre-processing stage is critical to enhance the accuracy of the following
gesture recognition methods. It permits richer differences between intelligent hand gestures, enabling
improved communication for users. Generally, BF plays an essential part in enhancing the efficiency
of SL recognition methodologies.

3.2. Feature extractor: SqueezeNet method

ASLA-DLHGR technique applies the SqueezeNet model to learn composite features from the
pre-processed data [28]. This model effectively learns composite features from the pre-processed data
due to its capability in achieving high accuracy with significantly fewer parameters. The model is
considered highly appropriate due to its lightweight architecture, particularly on devices with restricted
computational resources. This methodology utilizes Fire modules to mitigate the model size without
losing performance, thus facilitating faster inference and lower memory usage. This technique also
allows efficient training and deployment in edge computing environments. The scalability of the model
is ensured by its compact design, while also maintaining effective spatial feature extraction. Thus, this
is considered more appropriate for resource-efficient DL model applications.

The SqueezeNet CNN structure was introduced to reach higher accuracy with a very compact
model size. Numerous developments allow SqueezeNet to reduce parameter counts. The model utilizes
two Fire modules, the expand and squeeze convolution layers. The squeeze layer uses 1x1 filters,
while the expand layer combines an amalgamation of 1x1 and 3x3 convolution filters to implement
channel-to-channel squeezing, which ensures nothing but a decrease in the filter counts in the squeeze
layers. Although down-sampling operations may decrease accuracy, they can improve it based on their
position in the network. In SqueezeNet, downsampling is purposefully suspended until the next phase,
enabling convolutional layers to process larger activation maps. This approach allows for better
accuracy with smaller filters and further facilitates efficient model compression methods, such as
quantizing weights to 8-bit precision, which ultimately results in a significantly smaller model's overall
disk footprint.

3.3. Hyperparameter selection: TSA technique

In addition, the TSA-based hyperparameter process is performed to improve the performance of
the SqueezeNet method [29]. This model presents an improved convergence speed and solution quality
in complex, multi-dimensional search spaces and is also robust in its global search capability and
ability to escape local optima. It also dynamically balances exploration and exploitation, which results
in more optimal hyperparameter settings, unlike conventional grid or random search models. This
results in an enhanced model accuracy, stability, and generalization. The adaptive behaviour and
efficiency of the TSA technique make it an ideal choice over conventional optimization techniques,
specifically for DL methods such as SqueezeNet that require fine-tuned parameters for best
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performance.

TSA is a new bioinspired MHA that simulates the social searching behavior of bioluminescent
tunicates that exist in the deep ocean. Every tunicate is cylinder-shaped and shows a gelatinous tunic
that helps the tunicates to communicate with each other. These tunicates use social intelligence and
water planes to determine the location of food. Over the atrium’s siphons, every tunicate might quickly
eject the formerly inhaled seawater, which generates a kind of jet propulsion that moves forward
abruptly. Still, tunicates show swarm intelligence by transferring search information about the food
source. To express the computation formulation of the jet propulsion method, it’s essential for a
tunicate to fulfil the following restrictions.

On the other hand, the tunicate’s swarming behavior permits the searched individual to
communicate location information amongst one another. This mechanism helps in upgrading the
location of the tunicates depending on the optimal solutions. The mathematical expressions of these
three methods are presented in the following subcategories:

3.3.1 Preventing collisions among the search individuals

To stop collisions among the search individuals, other tunicates, the following mechanisms are
used to compute the updated location of the searched individual:

s G
G=ry+1;—F, (2)
F=2-r, (3)

whereas the vector A was applied to define the novel location of every tunicate, the vectors F and
G specify the water flow rate and the gravitational force in the deep ocean, respectively, and 7,7,
and r3 are arbitrary numbers distributed ranging between (0-1). The vector M specifies the social
powers among the search individuals.

M= lein +71- (Pmax - Pmin)Ja (4)

where, Pinand P, are fixed to one and four, respectively, and designate the initial and secondary
speediness of the search individuals to enable social interaction.

3.3.2 Moving toward the direction of the best search individual

After completing the previous step, all must continue near the path of the better search individual.
The mathematical presentation to approach the best search individual is described as:

SD = |Fpest — rand - xi(t)la (5)
where, the vector SD denotes the spatial distance from the tunicate to the food source, Fj.q;
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represents the optimal food location, x;(t) symbolizes the location of the i*" tunicate at iteration t,
and rand € [0,1].

3.3.3 Converge to the region neighbouring the better search individual

To guarantee the search individual’s behaviour sufficient local exploration in closer proximities
to the location of the best search individual, their locations are assessed by Eq (6).

Fpesc + 4 - SD, if rand > 0.5

R . (6)
Fyest —A-SD,if rand < 0.5

x;(t) = {

Every tunicate searches the area enclosed by the Fj.g at the tth iteration and allocates the
discoveries to x(t) for updating its position.

3.3.4 Tunicate’s swarming behaviour

During this swarm intellect mechanism, the locations of tunicates are upgraded depending on the
locations of the primary dual finest tunicates. These behaviours are demonstrated as shown:
x7(t)+x7-1 (t+1) o
x(t+1) = 241y > 1. (7)
X; (t), lfl =1
Here i = 1,2,..n, n denotes size of population of the tunicates, x;(t + 1) refers to upgraded
location of recent search individual in the following iteration, x;_;(t + 1) represents location of
previous search individual of the following iteration, and x;(t) is defined by Eq (6). Furthermore, the
visual representation of upgrading the location of every tunicate in relation to the location x;(t) is
described.
The TSA develops a fitness function (FF) to identify an optimal classifier solution. It decides a
positive value to emulate the best efficiency of candidate outcomes. In such research, the reduction in
the classification error ratio is perceived as FF.

fitness(x;) = ClassifierErrorRate(x;)

__ No.of misclassified instances

X 100. (8)

Total no.of instances

3.4. Classification process: hybrid CNN-BiLSTM

For the gesture recognition process, the hybrid CNN-BiLSTM method is applied [30]. This
method is chosen for its capability to effectively capture both spatial and temporal features in gesture
sequences. The CNN model excels at extracting local spatial features from image frames, whereas
BiLSTM effectively handles long-range dependencies and temporal dynamics across the sequence.
The CNN and RNN models exhibit limitations by losing temporal context and difficulty in long-term
dependencies, which this hybrid model addresses. The BiLSTM technique processes data in both
forward and backward directions, enhancing context understanding. Thus, higher recognition accuracy
and robustness are ensured in dynamic gesture interpretation compared to single-network approaches.
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Figure 2 represents the architecture of CNN-BiLSTM techniques.
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Figure 2. Architecture of CNN-BiLSTM.

A CNN is a generally applied DL algorithm in machine vision and is commonly employed in Al.
CNNs are comprised of 1-, 2-, and 3-dimensional CNNs that are used to handle sequential images,
videos, and signals, respectively. In the architecture, the input network existed as an image sequence
after feature removal, and the programming data needed to be similar to the present framework, which
improved the association between the complete structure and real productions. The CNN strategy was
stimulated by the human visual method, particularly the visual cortex performance. This method
executes mechanisms like weight sharing, localized perceptual domains, and so on. The fundamental
architecture of a CNN comprises activation, pooling, convolutional, and fully connected (FC) layers.

CNNss can efficiently remove local features from the sequence of input images and associate them
with data, but they suffer from the difficulty of losing information after handling sequential data. To
resolve this difficulty, RNNN (LSTM, GRU, and RNN) is presented specially for removing time series
features from sequential data. RNNs obtain input and make output at every time step by introducing a
recurrent architecture; however, they maintain a hidden layer (HL) in which data from preceding time
steps is saved and passed. It enables RNNs to model sequential and contextual relations in sequential
data efficiently. Nevertheless, if the sequence of input is longer, the RNN updating is understood by
following matrix multiplications. Hence, the operation of matrix multiplication in BP might result in
the difficulty of gradient explosion or gradient vanishing. The LSTM network successfully resolves
the challenges present in RNNs by presenting a gating process. The LSTM network absorbs longer
and short-term time series characteristics of sequential data by guiding the weighting of input, output,
and forgetting gates. It is appropriate for the classification and prediction of longer sequence data. The
memory cell parameters are upgraded at every tth moment.

ip = o(Wyixe + Wyihey + Weic—y + by), )
fe = O'(foxt + Wyfhe1 + Wefeeq + bf), (10)
Ct = frCr—q + irtanh(Wyexy + Wiche_q + be), (11)
0r = 0(Wyoxy + Whoheqy + Weocr + by), (12)
h; = o;tanh(c,), (13)

whereas by and wy represent biases and weights of the forgetting gate, x; denotes present time
input, o refers to a function of sigmoid, and h; signifies HL.
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The Bi-LSTM network is an expansion of the LSTM network that presents a bi-directional
architecture based on LSTM.

hy = o(wyx; + wyh,_;) X tanh(Cy), (14)
ht = o(wsx; + wyhi_;) X tanh(C)), (15)
0g; = wsh; + wghy. (16)

4. Performance validation

In this section, the performance outcomes of the ASLA-DLHGR methodology are examined and
tested using the ASL dataset [31]. The technique is simulated using Python 3.6.5 on a PC with an i5-
8600k, 250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameters include a
learning rate of 0.01, ReLU activation, 50 epochs, 0.5 dropout, and a batch size of 5. Figure 3
represents the sample images.

Figure 3. Sample images.

In Table 1 and Figure 4, the overall SL recognition outcome of the ASLA-DLHGR model is
described in terms of definite aspects. The outcomes emphasized that the ASLA-DLHGR model
effectively identify several kinds of signs. Furthermore, it is seen that the ASLA-DLHGR approach
gains average prec,, reca;, accuy, and Fyore 0Of 99.97%, 99.97%, 99.96%, and 99.98%,
respectively.
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Table 1. Overall SL detection of the ASLA-DLHGR approach under distinct measures.

Sign Prec, Reca,; Accu,, Fscore Sign Prec, Reca,; Accu,, Fscore
0 99.92 99.98 99.98 99.99 I 100.00 99.99 99.90 100.00
1 100.00 100.00  99.99 99.98 J 100.00 99.99 100.00 99.99
2 100.00 99.91 100.00 99.98 K 100.00 99.99 99.99 99.99
3 99.94 99.91 99.91 99.98 L 99.97 99.99 99.97 99.98
4 100.00 99.90 99.97 99.98 M 99.98 99.96 99.98 99.99
5 99.94 99.99 100.00 99.98 N 100.00 100.00  99.98 99.99
6 100.00 99.91 99.94 99.99 o 100.00 99.99 100.00 99.99
7 99.99 100.00  100.00 99.99 P 99.94 99.98 99.91 99.99
8 100.00 99.99 99.95 99.98 Q 100.00 100.00  100.00 99.98
9 99.99 99.99 99.97 99.99 R 100.00 99.99 99.99 99.98
A 100.00 99.90 99.94 99.99 S 99.95 99.94 100.00 99.98
B 99.91 99.99 99.90 99.99 T 100.00 100.00  99.99 99.99
C 99.93 99.99 100.00 99.99 U 100.00 99.99 100.00 99.99
D 99.91 99.98 99.98 99.99 A" 100.00 99.99 99.99 99.99
E 99.93 99.98 100.00 99.99 W 99.99 100.00  99.98 99.99
F 100.00 99.98 99.98 99.99 X 100.00 99.99 99.98 99.99
G 99.93 99.98 99.99 99.98 Y 99.98 99.96 100.00 100.00
H 99.91 99.98 100.00 99.98 Z 99.99 99.99 99.94 99.99
Average  99.98 99.98 99.98 99.99
1 Precision [ Accuracy
B Recall == F-Score
.B.Q. 100.0 -
n
Q
2 99.8 -
s - 2 2
& &
]
o 99.6
1
S
< 99.4-
99.2 -
99.0 . T
1 2 3 a

Figure 4. Average results of the ASLA-DLHGR approach under distinct measures.
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In Figure 5, the TRA accu, (TRAAY) and validation accu, (VLAAY) curves of the ASLA-
DLHGR approach are exhibited. The accu,, values are computed over a range of 0-25 epochs. The
outcome highlights that the TRAAY and VLAAY analysis displays a rising tendency, which informed
the capacity of the ASLA-DLHGR approach with superior performance over many iterations. Besides,
the TRAAY and VLAAY remain closer over the epochs that specify lesser overfitting and show higher
performance of the ASLA-DLHGR model, guaranteeing consistent prediction on hidden instances.

Training and Validation Accuracy - Adam optimizer

| — Training —~
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T T
5 18 15 20 25
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(a)
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T u
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(c)
Training and Validation Accuracy - SLR-ICOADL
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/_/\/

4 Y
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T
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Training and Validation Accuracy - ASLA-DLHGR
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Figure 5. Accu, curve of the ASLA-DLHGR method.

In Figure 6, the TRA loss (TRALO) and VLA loss (VLALO) curve of the ASLA-DLHGR
technique is demonstrated. The loss outcomes are computed over the range of 0-25 epochs. It is
indicated that the TRALO and VLALO values exemplify a reducing tendency, which highlights the
capacity of the ASLA-DLHGR methodology in balancing a trade-off between data fitting and
generalization. Additionally, the constant decrease in loss outcomes ensures the maximal effectiveness
of the ASLA-DLHGR methodology and tunes the prediction solution with time.
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Figure 6. Loss graph of the ASLA-DLHGR method.

To demonstrate the proficiency of the ASLA-DLHGR technique, a comprehensive comparison of
outcomes is presented in Table 2 [32].

In Figure 7, the relative precis,n, and reca; outcomes of the ASLA-DLHGR model are
presented. The outcomes indicate that the Adam optimizer method displays worse values with prec,
and reca; of 99.86% and 99.81%. In the meantime, the SGD optimizer and RMSProp optimizer
approach achieve slightly enhanced prec, and reca;. Concurrently, the ODTL-SLRC and SLR-
ICOADL methodologies establish closer values of prec, and reca;. However, the ASLA-DLHGR
approach provides superior performance with prec, and reca; of 99.98% and 99.98%, respectively.
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Table 2. Comparative examination of ASLA-DLHGR methodology with existing models.

Methods Prec, Reca; Accu,, Fscore
ASLA-DLHGR 99.98 99.98 99.98 99.99
SLR-ICOADL 99.96 99.96 99.95 99.96
ODTL-SLRC 99.90 99.90 99.91 99.92
SGD 99.87 99.87 99.87 99.82
RMSProp 99.89 99.86 99.72 99.84
Adam 99.86 99.81 99.22 99.87
I ASLA-DLHGR @@ SGD optimizer
== SLR-ICOADL — RMSProp optimizer
[ ODTL-SLRC I Adam optimizer
T 99.8 ] e
w
g 99.6 |
s
99.4
99.2
99.0 -
98.8 -

T
Precision

T
Recall

Figure 7. Prec, and Reca; results of ASLA-DLHGR methodology with existing models.

In Figure 8, a comparative accu, and Fore result of the ASLA-DLHGR methodology is
provided. The outcomes indicate that the Adam optimizer system provides worse values, with accu,,
and F;.pre 0f 99.22% and 99.87%. At the same time, the SGD optimizer and RMSProp optimizer
methods have slightly better accu, and F,... Meanwhile, the ODTL-SLRC and SLR-ICOADL
methodologies depict closer values of accu, and F.,p. Nevertheless, the ASLA-DLHGR model
results in enhanced performance with accu, and Fcore 0f99.98% and 99.99%.

The recognition rate (RR), computation time (CT), and results of the ASLA-DLHGR model are
related to other existing methodologies in Table 3. Figure 9 exhibits the comparative RR outcome of
the ASLA-DLHGR technique. The results signify that the ASLA-DLHGR technique gains a maximum
RR of 99.97%. On the other hand, the KNN, SVM, ANN, CNN, ODTL-SLRC, and SLR-ICOADL
methods attain minimal RR values of 96.23%, 98.07%, 98.08%, 99.86%, 99.90%, and 99.92%,

respectively.
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Figure 8. Accu, and Fycore outcomes of ASLA-DLHGR methodology with existing models.

Table 3. RR and CT outcomes of the ASLA-DLHGR model with existing approaches.

Methods RR (%) CT (min)
KNN 96.23 16.56
SVM Classifier 98.07 14.37
ANN Method 98.08 15.44
CNN Technique 99.86 11.23
ODTL-SLRC 99.90 6.46
SLR-ICOADL 99.92 3.93
ASLA-DLHGR 99.97 1.34

Recognition rate (%)

100

98
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96

95

mm KNN Algorithm
m SVM Classifier
Em ANN Method

I CNN Technique

.07
98.08
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Figure 9. RR outcome of the ASLA-DLHGR model with existing approaches.

Figure 10 illustrates the comparative CT analysis of the ASLA-DLHGR approach. The outcomes
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represented that the ASLA-DLHGR approach reaches a lesser CT of 1.34min. Ultimately, the KNN,
SVM, ANN, CNN, ODTL-SLRC, and SLR-ICOADL methodologies yield better CT values of
16.56min, 14.37min, 15.44min, 11.23min, 6.46min, and 3.93min, respectively.

22.5
] = KNN Algorithm = ODTL-SLRC
20.0 ] I SVM Classifier == SLR-ICOADL
] = ANN Method I ASLA-DLHGR
= 17.5; s B CNN Technique
é 1 15.44
pt 15.0; 14.37
£ ]
s 12.5
= ] 11.23
= 10.0
[ 1
5 1
g_ 7.5; -
S 5.0]
v U 3.93
2.5 H
] 134
0.0 L
1 2 3 4 5 6 7

Methods

Figure 10. CT outcome of the ASLA-DLHGR model with existing approaches.

Table 4 and Figure 11 depict the error analyses of the ASLA-DLHGR method with existing
models. The ASLA-DLHGR method exhibits poor performance with an accu,, of2%, prec, of2%,

reca; of 2%, and F,,. of 1%. The SLR-ICOADL technique illustrates a slight improvement with
an accu,, of 5%, prec, of 4%, reca; of 4%, and Fy.4re Of 4%, though still ineffective. ODTL-
SLRC performs better with an accu,, of 9%, prec, of 10%, reca; of 10%, and F.,r. of 8%, yet
remains limited in overall reliability. SGD achieves a balanced performance with an accu,, precy,
and reca; at 13%, and the highest F;.,.. of 18% among conventional methods. RMSProp provides
an improved accu, of 28%, with prec, of 11%, reca; of 14%, and F,. of 16%, depicting
moderate learning ability. Adam optimizer demonstrates the best accu,, at 78%, along with prec,
of 14%, reca; of 19%, and F.,,. of 13%, which suggests that effectively captures the classification
patterns despite slightly lower prec, and F;,.., emphasizing class imbalance or overfitting.

Table 4. Error analysis of the ASLA-DLHGR method with existing models.

Methods Prec, Reca,; Accu,, Fscore
ASLA-DLHGR 0.02 0.02 0.02 0.01
SLR-ICOADL 0.04 0.04 0.05 0.04
ODTL-SLRC 0.10 0.10 0.09 0.08
SGD 0.13 0.13 0.13 0.18
RMSProp 0.11 0.14 0.28 0.16
Adam 0.14 0.19 0.78 0.13
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Figure 11. Error analysis of the ASLA-DLHGR method with existing models.

Table 5 demonstrates the ablation study analysis of the ASLA-DLHGR technique with existing
methods. The ASLA-DLHGR technique demonstrates the highest performance with an accu,, of

99.98%, prec, of 99.98%, reca; of 99.98%, and F,-. of 99.99%. CNN-BiLSTM+TSA with
parameter tuning but without feature extraction achieves an accu,, of 99.22%, prec, of 99.27%,
reca; of 99.36%, and Fi.ore Of 99.22%, highlighting robust performance but slightly lower than the
fully optimized method. CNN-BiLSTM+SqueezeNet with feature extraction but without parameter
tuning provides an accu, of 98.68%, prec, of 98.72%, reca; of 98.74%, and Fy,p. 0f 98.43%,
which suggests that tuning significantly enhances performance even when features are well extracted.
The base CNN-BIiLSTM model without feature extraction or tuning results in an accu,, of 98.07%,

prec, of98.02%, reca; 0f98.09%, and F; ... of 97.79%, highlighting the benefit each component
contributes in the overall process.

Table 5. Comparative performance evaluation of the ASLA-DLHGR technique through
ablation study against existing methods.

Techniques Prec, Reca,; Accu,, Fscore
ASLA-DLHGR (with feature extraction and parameter

. 99.98 99.98 99.98 99.99
tuning)
CNN-BILSTM+TSA (without feature extraction with

. 99.27 99.36 99.22 99.22

parameter tuning)
CNN-BIiLSTM+SqueezeNet (with feature extraction

. . 98.72 98.74 98.68 98.43
without parameter tuning)
CNN-BiLSTM 98.02 98.09 98.07 97.79

5. Conclusions

In this article, the ASLA-DLHGR technique is proposed for the hearing and speech-impaired.
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The goal of the ASLA-DLHGR technique is to recognize hand gestures to communicate among
disabled people. To accomplish that, the ASLA-DLHGR approach comprises four processes, pre-
processing, feature extraction, parameter choice, and classification process. Initially, the ASLA-
DLHGR approach performs data pre-processing using BF. Furthermore, the ASLA-DLHGR technique
implements the SqueezeNet model to learn composite features from the pre-processed data. To develop
the performance of the SqueezeNet technique, the TSA-based hyperparameter process is performed.
For the gesture recognition process, the hybrid of the CNN-BiLSTM method is employed. The
experimental validation of the ASLA-DLHGR method demonstrated a superior accuracy value of
99.98% over existing models under the ASL dataset. The limitations include a dependence on
controlled datasets that may not fully capture the variability of real-world conditions, such as diverse
backgrounds, lighting, and occlusions. Moreover, the efficiency of the model across diverse cultural
SLs and individual discrepancies requires sufficient testing. The deployment on low-power or portable
devices may be restricted by the computational requirements of the model. It is recommended to
supplement the study with more data and case studies regarding the number of hearing and visually
impaired individuals globally or in specific regions, as well as the current status of the use of
communication aids. Future work may concentrate on expanding data diversity, improving system
adaptability to diverse environments, and exploring user-centric evaluations to enhance practical
applicability.
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