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Abstract: Sign language (SL) plays a significant part in communication among people who are 

hearing and deaf. Silent people struggle to convey their message to others. Since most people have not 

received a formal language education, it is highly complex to transfer messages in an emergency. 

Hence, a solution to this problem is to convert SL into a human voice. Gesture-to-speech systems 

usually use either vision-based or non-vision-based technologies, such as cameras or wearable sensors. 

However, many existing solutions lack cost-effectiveness and flexibility; for example, some depend 

on specific hardware or only function in controlled environments. In this paper, the Advancing Sign 

Language Accessibility using Deep Learning-Based Hand Gesture Recognition (ASLA-DLHGR) 

technique for hearing and speech-impaired individuals is proposed. The goal of the ASLA-DLHGR 

technique is to recognize hand gestures for communication among disabled people. Initially, the data 

pre-processing process is performed using the bilateral filtering (BF) model. Furthermore, the ASLA-

DLHGR technique employs the SqueezeNet model to learn composite features from the pre-processed 

data. Moreover, the tunicate swarm algorithm (TSA) based hyperparameter process is performed to 

enhance the performance of the SqueezeNet method. For the gesture recognition process, a hybrid of 

a convolutional neural network and a bidirectional long short-term memory (CNN-BiLSTM) method 

is implemented. To demonstrate the managed gesture recognition proficiency of the ASLA-DLHGR 
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method, a comprehensive comparative study is carried out under the American SL dataset. The 

comparison study of the ASLA-DLHGR method portrayed a superior accuracy value of 99.98% over 

existing models. 

Keywords: hand gesture recognition; sign language; hearing and speech impaired; tunicate swarm 

algorithm; SqueezeNet 

Mathematics Subject Classification: 37M10 

 

1. Introduction 

Communication is an essential aspect of human life. People convey their thoughts and desires 

through speech, while others listen and respond accordingly [1]. However, some people are unable to 

talk and cannot even hear. It is a significant challenge for these societies to communicate. Sign 

language (SL) is used as a communication method between and among deaf and hearing people [2]. 

Since most people may not understand SL, they seek a qualified individual to help them understand it. 

Hand gestures are used as a way for people to express feelings and thoughts, thus helping to reinforce 

the information conveyed in daily conversations [3]. SL is a structured system of hand gestures, which 

integrates visual signs and motions, and is utilized as a means of communication. Instead of the speech-

impaired and deaf community, SL is a valuable tool for daily interactions. SL encompasses procedures 

for various body parts, including the arms, hands, body, facial expressions, fingers, and head, to convey 

information [4]. However, SL is rare among the hearing community, and someone who can understand 

it is even rarer. This poses an honest communication obstacle between the rest of society and the deaf 

community, a problem that remains unsolved to this day. SL and gesture detection encompasses the 

entire process of recognizing and tracking signals, altering and executing them into meaningful 

expressions and words [5]. 

SL recognition refers to the use of models and procedures that identify the resultant sequence of 

gestures and clarify their meaning in a language or manuscript [6]. This method encompasses various 

research fields, including pattern natural language processing (NLP), video acquisition, detection, 

computer vision (CV), human-computer interaction (HCI), and more [7]. It is a demanding topic with 

the highest complexity. At present, the usual SL recognition methods are mainly divided into two types: 

machine vision and sensor-based systems. The existing technologies are not adequately described, as 

they fail to address specific issues such as lighting issues, wearable sensor inconvenience, and poor 

real-time performance, which makes the research justification unclear [8]. Artificial intelligence (AI) 

methods are utilized for processes that enable computers to display human-like intelligent actions, such 

as decision-making, visual perception, natural language understanding, and speech detection [3]. 

Particular applications of AI include expert systems, machine vision, speech detection, and NLP. A 

method that can display SL is exposed by the adaptive interface between blind and deaf individuals 

using voice processing and hand gesture recognition, which allows people with normal hearing to 

interconnect with talk-impaired individuals or groups of people even better [9]. 

In this paper, the Advancing Sign Language Accessibility using Deep Learning-Based Hand 

Gesture Recognition (ASLA-DLHGR) technique for hearing and speech-impaired individuals is 

proposed. The goal of the ASLA-DLHGR technique is to recognize hand gestures for communication 

among disabled people. Initially, the data pre-processing process is performed using the bilateral 
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filtering (BF) model. Furthermore, the ASLA-DLHGR technique employs the SqueezeNet model to 

learn composite features from the pre-processed data. Moreover, the tunicate swarm algorithm (TSA) 

based hyperparameter process is performed to enhance the performance of the SqueezeNet method. 

For the gesture recognition process, a hybrid of a convolutional neural network and a bidirectional 

long short-term memory (CNN-BiLSTM) method is implemented. To demonstrate the managed 

gesture recognition proficiency of the ASLA-DLHGR method, a comprehensive comparative study is 

performed using the American SL dataset. The key contributions of the ASLA-DLHGR method is 

listed below. 

▪ The BF model is utilized in the pre-processing process to enhance the gesture data quality by 

mitigating noise while preserving significant edge details. This step ensures a cleaner input for the 

feature extraction stage. Additionally, it improves the model's capability to handle discrepancies in 

gesture input. As a result, it contributes to more robust and accurate gesture recognition. 

▪ The effective and compact SqueezeNet technique is employed to extract meaningful spatial 

features from gesture data while reducing computational load. This facilitates faster processing without 

compromising feature quality. Additionally, it assists deployment on resource-constrained devices. 

This improves the practicality of the model for real-time gesture recognition applications. 

▪ The hybrid deep learning (DL) methodology which utilizes the CNN technique is employed to 

extract spatial features, and BiLSTM is used to capture temporal dependencies in gesture sequences. 

This integration effectually models both spatial and sequential patterns. It also enhances the 

recognition accuracy for dynamic gestures and improves the ability of the model to interpret intrinsic 

gesture inputs in real time. 

▪ The incorporation of BF, lightweight SqueezeNet, and a CNN-BiLSTM hybrid presents an 

efficient end-to-end framework for gesture recognition. The spatial and temporal challenges of the 

model are efficiently addressed, while also maintaining low model complexity. This model plays a 

significant role in assisting real-time applications with limited computational resources. The novelty 

is in integrating these techniques to achieve high accuracy with minimal overhead. 

2. Literature review 

Abdul Ameer et al. [10] introduced a long short-term memory (LSTM) model in combination 

with MediaPipe to mitigate the hurdles and effectively communicate and connect deaf individuals. The 

methodology integrates an attention mechanism and an LSTM for processing the extracted key points 

from captured signs. The attention layer focuses on relevant sectors of the given order, while the LSTM 

manages temporal associations and encodes the sequential information. The authors [11] proposed a 

novel methodology of FFNN for automated detection. This system detects hand signals by extracting 

feature points using the FFNN technique. Hand gesture recognition (HGR) with voice processing by 

using a Hidden Markov model (HMM) is implemented to ease individuals with hearing issues. 

Valarmathi et al. [12] a technique that incorporated NLP methodologies to enhance the articulacy and 

coherence of the decoded text. Furthermore, expressive 3D gestures are employed to animate the SL, 

making the communication more engaging and relevant. These gestures are customizable to match the 

user's identity, further personalizing the communication. This system leverages NLP, DL, and 3D to 

address message barriers for individuals who have difficulties with speech and hearing. Jebali et al. [13] 

propose a manual and non-manual (MNM) technique. This technique employs a CNN, known as 

VGG16net, to utilize a methodology based on training on the video dataset, implementing the 
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Multimodal Spatial and Temporal Representation (MSR and MTR) of diverse models. This approach 

outlines temporal alterations from non- and reliant pathways to examine the cooperation of several 

models. A cooperative optimizer technique, abstracted by the utilization of a multi-scale perception 

module, is also employed. Miah et al. [14] introduced a dual-stream multi-phase graph convolution 

with attention and residual connection (GCAR) constructed for MSR-related data. The presented 

approach, integrating a channel attention component, improves attention levels, specifically for non-

related skeleton points at the time of particular events under MTR factors. Bhatt and Dash [15] 

proposed an advanced DL-based approach. This dataset is pre-processed to optimize its relevance for 

ensuing training of a customized CNN methodology. The trained CNN approach portrayed excellence 

in detecting and interpreting real-time SL signs. Specifically, real-time recognition of American SL 

(ASL) implemented Teachable Machine and MediaPipe, whereas the following technique demonstrated 

real-time hand gesture detection by employing a convexity-assisted method. Shin et al. [16] integrated 

joint skeleton-assisted handcrafted factors and pixel-assisted transfer learning (TL) technique, namely 

ResNet101. This approach is comprised of two discrete feature extraction cstreams: initially, 

significant handcrafted factors are extracted, underscoring the capture of hand orientation data within 

KSL signs. subsequently, a DL-based ResNet-101 is implemented for capturing hierarchical 

representations of the KSL alphabet sign. Finally, the integrated feature is sent to the DL-based 

classification module for the classification process. 

Jayasingh, Rani, and Swathi [17] developed a lightweight CNN based SL translator to recognize 

gestures. Additionally, the system also utilizes advanced filtering techniques and neural network 

classifiers, specifically Visual Geometry Group 19 (VGG19) and Residual Network 50 (ResNet50) 

models with MediaPipe. Aurangzeb et al. [18] introduced a novel hand vision-based CNN model 

(HVCNNM) methodology. Elgohr et al. [19] proposed a real-time ASL recognition system that utilizes 

the You Only Look Once version 11 (YOLOv11) model with improved architecture and training 

techniques. Rathnayake et al. [20] presented a real-time gesture detection system by utilizing a glove 

with flex sensors and ML methods, including support vector machine (SVM), k-nearest neighbors 

(kNN), and naïve bayes (NB) techniques. Malviya, Mahajan, and Sethi [21] developed an accurate and 

reliable Indian Sign Language (ISL) recognition system to interpret SL gestures and assisting assistive 

technologies for the deaf community. Miah et al. [22] developed GmTC, an end-to-end sign language 

recognition (SLR) system that utilizes a graph convolutional network (GCN) and an attention-based 

DL method to translate multi-cultural SL into text accurately. Singhal et al. [23] presented the Dumb 

Aid Phone system to recognize hand gestures and convert them into speech, enabling effective 

communication for deaf and non-speaking individuals. Rehman et al. [24] developed a deep CNN 

(DCNN) version 2 technique to assist hearing-impaired individuals. Soukaina, Mohammed, and 

Mohamed [25] developed a lightweight ML technique by utilizing novel geometrical features from 

hand landmarks. Kukreja, Singh, and Chauhan [26] proposed a gesture vision (GV) technique, a 

real-time static SLR system that utlize MediaPipe, OpenCV, and a random forest (RF) classifier to 

recognize diverse hand gestures. 

The limitations of the existing studies include a dependence on intrinsic DL models that demand 

high computational resources, making real-time deployment on low-power devices challenging. Many 

approaches concentrate on specific SLs or static gestures, restricting generalizability across multi-

cultural or dynamic SL. Several models lack robustness against discrepancies in backgrounds, lighting, 

and occlusions. Additionally, there is an insufficient exploration of efficient feature fusion methods 

that balance accuracy and model size. Furthermore, most systems depend on massive annotated 
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datasets, which are often scarce for less common sign languages. There is a need to develop lightweight, 

scalable, and adaptable models capable of real-time recognition across diverse SLs while maintaining 

high accuracy under varying environmental conditions and limited data availability. 

3. Proposed methodology 

In this article, the ASLA-DLHGR model is proposed for individuals with hearing and speech 

impairments. The goal of the ASLA-DLHGR technique is to recognize hand gestures to communicate 

among disabled individuals. To accomplish that, the ASLA-DLHGR technique is comprised four 

processes, pre-processing, feature extraction, parameter choice, and classification process. Figure 1 

portrays the workflow of the ASLA-DLHGR technique. 

 

Figure 1. Workflow of ASLA-DLHGR technique. 

3.1. Image pre-processing: BF model 

At the primary level, the ASLA-DLHGR technique utilizes BF to perform pre-processing [27]. 

The model shows excellence in smoothening images while also preserving crucial edge details that are 

considered significant for gesture boundary clarity. The BF technique also maintains spatial structure, 

improving feature extraction in later stages, unlike conventional filters, namely Gaussian or median 

filtering (MF), that often blur edges. This is highly appropriate for the recognition process, where fine 

edge details are crucial. This technique also effectually handles noise, enhancing the quality of input 
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data without distorting gesture shapes. Its balance between noise reduction and edge preservation 

makes it more appropriate than other filtering methods. Overall, BF strengthens the robustness and 

accuracy of the entire recognition process. 

BF is an excellent image pre-processing method that improves the qualities of hand gesture 

images utilized in SL detection for hearing and speech-impaired individuals. With smooth images, with 

protective edges, BF successfully decreases noise and increases the visibility of vital features like hand 

movements and shapes. This pre-processing stage is critical to enhance the accuracy of the following 

gesture recognition methods. It permits richer differences between intelligent hand gestures, enabling 

improved communication for users. Generally, BF plays an essential part in enhancing the efficiency 

of SL recognition methodologies. 

3.2. Feature extractor: SqueezeNet method 

ASLA-DLHGR technique applies the SqueezeNet model to learn composite features from the 

pre-processed data [28]. This model effectively learns composite features from the pre-processed data 

due to its capability in achieving high accuracy with significantly fewer parameters. The model is 

considered highly appropriate due to its lightweight architecture, particularly on devices with restricted 

computational resources. This methodology utilizes Fire modules to mitigate the model size without 

losing performance, thus facilitating faster inference and lower memory usage. This technique also 

allows efficient training and deployment in edge computing environments. The scalability of the model 

is ensured by its compact design, while also maintaining effective spatial feature extraction. Thus, this 

is considered more appropriate for resource-efficient DL model applications. 

The SqueezeNet CNN structure was introduced to reach higher accuracy with a very compact 

model size. Numerous developments allow SqueezeNet to reduce parameter counts. The model utilizes 

two Fire modules, the expand and squeeze convolution layers. The squeeze layer uses 1x1 filters, 

while the expand layer combines an amalgamation of 1x1 and 3x3 convolution filters to implement 

channel‐to-channel squeezing, which ensures nothing but a decrease in the filter counts in the squeeze 

layers. Although down-sampling operations may decrease accuracy, they can improve it based on their 

position in the network. In SqueezeNet, downsampling is purposefully suspended until the next phase, 

enabling convolutional layers to process larger activation maps. This approach allows for better 

accuracy with smaller filters and further facilitates efficient model compression methods, such as 

quantizing weights to 8-bit precision, which ultimately results in a significantly smaller model's overall 

disk footprint. 

3.3. Hyperparameter selection: TSA technique 

In addition, the TSA-based hyperparameter process is performed to improve the performance of 

the SqueezeNet method [29]. This model presents an improved convergence speed and solution quality 

in complex, multi-dimensional search spaces and is also robust in its global search capability and 

ability to escape local optima. It also dynamically balances exploration and exploitation, which results 

in more optimal hyperparameter settings, unlike conventional grid or random search models. This 

results in an enhanced model accuracy, stability, and generalization. The adaptive behaviour and 

efficiency of the TSA technique make it an ideal choice over conventional optimization techniques, 

specifically for DL methods such as SqueezeNet that require fine-tuned parameters for best 
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performance. 

TSA is a new bioinspired MHA that simulates the social searching behavior of bioluminescent 

tunicates that exist in the deep ocean. Every tunicate is cylinder-shaped and shows a gelatinous tunic 

that helps the tunicates to communicate with each other. These tunicates use social intelligence and 

water planes to determine the location of food. Over the atrium’s siphons, every tunicate might quickly 

eject the formerly inhaled seawater, which generates a kind of jet propulsion that moves forward 

abruptly. Still, tunicates show swarm intelligence by transferring search information about the food 

source. To express the computation formulation of the jet propulsion method, it’s essential for a 

tunicate to fulfil the following restrictions. 

On the other hand, the tunicate’s swarming behavior permits the searched individual to 

communicate location information amongst one another. This mechanism helps in upgrading the 

location of the tunicates depending on the optimal solutions. The mathematical expressions of these 

three methods are presented in the following subcategories: 

3.3.1 Preventing collisions among the search individuals 

To stop collisions among the search individuals, other tunicates, the following mechanisms are 

used to compute the updated location of the searched individual: 

𝐴 =
𝐺⃗

𝑀⃗⃗⃗
,                                      (1) 

𝐺⃗ = 𝑟2 + 𝑟3 − 𝐹⃗,                                 (2) 

𝐹⃗ = 2 ⋅ 𝑟1,                                   (3) 

whereas the vector 𝐴 was applied to define the novel location of every tunicate, the vectors 𝐹⃗ and 

𝐺⃗ specify the water flow rate and the gravitational force in the deep ocean, respectively, and 𝑟1, 𝑟2, 

and 𝑟3 are arbitrary numbers distributed ranging between (0-1). The vector 𝑀⃗⃗⃗ specifies the social 

powers among the search individuals. 

𝑀⃗⃗⃗ = ⌊𝑃min + 𝑟1 ⋅ (𝑃max − 𝑃min)⌋,                          (4) 

where, 𝑃 min and 𝑃 max are fixed to one and four, respectively, and designate the initial and secondary 

speediness of the search individuals to enable social interaction. 

3.3.2 Moving toward the direction of the best search individual 

After completing the previous step, all must continue near the path of the better search individual. 

The mathematical presentation to approach the best search individual is described as: 

𝑆𝐷⃗⃗⃗ = |𝐹𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 ⋅ 𝑥𝑖(𝑡)|,                           (5) 

where, the vector 𝑆𝐷⃗⃗⃗  denotes the spatial distance from the tunicate to the food source, 𝐹𝑏𝑒𝑠𝑡 
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represents the optimal food location, 𝑥𝑖(𝑡) symbolizes the location of the 𝑖𝑡ℎ tunicate at iteration 𝑡, 

and 𝑟𝑎𝑛𝑑 ∈ [0,1]. 

3.3.3 Converge to the region neighbouring the better search individual 

To guarantee the search individual’s behaviour sufficient local exploration in closer proximities 

to the location of the best search individual, their locations are assessed by Eq (6). 

𝑥𝑖(𝑡) = {
𝐹𝑏𝑒𝑠𝑡 + 𝐴 ⋅ 𝑆𝐷⃗⃗⃗, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5

𝐹𝑏𝑒𝑠𝑡 − 𝐴 ⋅ 𝑆𝐷⃗⃗⃗, 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5
.                         (6) 

Every tunicate searches the area enclosed by the 𝐹𝑏𝑒𝑠𝑡  at the 𝑡𝑡ℎ  iteration and allocates the 

discoveries to 𝑥(𝑡) for updating its position. 

3.3.4 Tunicate’s swarming behaviour 

During this swarm intellect mechanism, the locations of tunicates are upgraded depending on the 

locations of the primary dual finest tunicates. These behaviours are demonstrated as shown: 

𝑥𝑖(𝑡 + 1) = {

𝑥?(𝑡)+𝑥?−1(𝑡+1)

2+𝑟1
, 𝑖𝑓 𝑖 > 1

𝑥𝑖(𝑡), 𝑖𝑓 𝑖 = 1
.                        (7) 

Here 𝑖 = 1,2, … 𝑛,  𝑛  denotes size of population of the tunicates, 𝑥𝑖(𝑡 + 1)  refers to upgraded 

location of recent search individual in the following iteration, 𝑥𝑖−1(𝑡 + 1)  represents location of 

previous search individual of the following iteration, and 𝑥𝑖(𝑡) is defined by Eq (6). Furthermore, the 

visual representation of upgrading the location of every tunicate in relation to the location 𝑥𝑖(𝑡) is 

described. 

The TSA develops a fitness function (FF) to identify an optimal classifier solution. It decides a 

positive value to emulate the best efficiency of candidate outcomes. In such research, the reduction in 

the classification error ratio is perceived as FF. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
× 100.                (8) 

3.4. Classification process: hybrid CNN-BiLSTM 

For the gesture recognition process, the hybrid CNN-BiLSTM method is applied [30]. This 

method is chosen for its capability to effectively capture both spatial and temporal features in gesture 

sequences. The CNN model excels at extracting local spatial features from image frames, whereas 

BiLSTM effectively handles long-range dependencies and temporal dynamics across the sequence. 

The CNN and RNN models exhibit limitations by losing temporal context and difficulty in long-term 

dependencies, which this hybrid model addresses. The BiLSTM technique processes data in both 

forward and backward directions, enhancing context understanding. Thus, higher recognition accuracy 

and robustness are ensured in dynamic gesture interpretation compared to single-network approaches. 



25162 

AIMS Mathematics  Volume 10, Issue 11, 25154–25174. 

Figure 2 represents the architecture of CNN-BiLSTM techniques. 

 

Figure 2. Architecture of CNN-BiLSTM. 

A CNN is a generally applied DL algorithm in machine vision and is commonly employed in AI. 

CNNs are comprised of 1-, 2-, and 3-dimensional CNNs that are used to handle sequential images, 

videos, and signals, respectively. In the architecture, the input network existed as an image sequence 

after feature removal, and the programming data needed to be similar to the present framework, which 

improved the association between the complete structure and real productions. The CNN strategy was 

stimulated by the human visual method, particularly the visual cortex performance. This method 

executes mechanisms like weight sharing, localized perceptual domains, and so on. The fundamental 

architecture of a CNN comprises activation, pooling, convolutional, and fully connected (FC) layers. 

CNNs can efficiently remove local features from the sequence of input images and associate them 

with data, but they suffer from the difficulty of losing information after handling sequential data. To 

resolve this difficulty, RNNN (LSTM, GRU, and RNN) is presented specially for removing time series 

features from sequential data. RNNs obtain input and make output at every time step by introducing a 

recurrent architecture; however, they maintain a hidden layer (HL) in which data from preceding time 

steps is saved and passed. It enables RNNs to model sequential and contextual relations in sequential 

data efficiently. Nevertheless, if the sequence of input is longer, the RNN updating is understood by 

following matrix multiplications. Hence, the operation of matrix multiplication in BP might result in 

the difficulty of gradient explosion or gradient vanishing. The LSTM network successfully resolves 

the challenges present in RNNs by presenting a gating process. The LSTM network absorbs longer 

and short-term time series characteristics of sequential data by guiding the weighting of input, output, 

and forgetting gates. It is appropriate for the classification and prediction of longer sequence data. The 

memory cell parameters are upgraded at every 𝑡𝑡ℎ moment. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖xt + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖),                     (9) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓),                   (10) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐),                  (11) 

o𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏o),                    (12) 

ℎ𝑡 = 𝑜𝑡tanh(𝑐𝑡),                              (13) 

whereas 𝑏𝑓  and 𝑤𝑓  represent biases and weights of the forgetting gate, 𝑥𝑖  denotes present time 

input, 𝜎 refers to a function of sigmoid, and ℎ𝑡 signifies HL. 
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The Bi-LSTM network is an expansion of the LSTM network that presents a bi-directional 

architecture based on LSTM. 

ℎ𝑡 = 𝜎(𝑤1𝑥𝑡 + 𝑤2ℎ𝑡−1) × tanh(𝐶𝑡),                      (14) 

ℎ𝑡
′ = 𝜎(𝑤3𝑥𝑡 + 𝑤4ℎ𝑡−1

′ ) × tanh(𝐶𝑡
′),                       (15) 

𝑜𝑔𝑡 = 𝑤5ℎ𝑡 + 𝑤6ℎ𝑡
′ .                              (16) 

4. Performance validation 

In this section, the performance outcomes of the ASLA-DLHGR methodology are examined and 

tested using the ASL dataset [31]. The technique is simulated using Python 3.6.5 on a PC with an i5-

8600k, 250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameters include a 

learning rate of 0.01, ReLU activation, 50 epochs, 0.5 dropout, and a batch size of 5. Figure 3 

represents the sample images. 

 

Figure 3. Sample images. 

In Table 1 and Figure 4, the overall SL recognition outcome of the ASLA-DLHGR model is 

described in terms of definite aspects. The outcomes emphasized that the ASLA-DLHGR model 

effectively identify several kinds of signs. Furthermore, it is seen that the ASLA-DLHGR approach 

gains average 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝑎𝑐𝑐𝑢𝑦 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.97%, 99.97%, 99.96%, and 99.98%, 

respectively. 
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Table 1. Overall SL detection of the ASLA-DLHGR approach under distinct measures. 

Sign 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 Sign 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 

0 99.92 99.98 99.98 99.99 I 100.00 99.99 99.90 100.00 

1 100.00 100.00 99.99 99.98 J 100.00 99.99 100.00 99.99 

2 100.00 99.91 100.00 99.98 K 100.00 99.99 99.99 99.99 

3 99.94 99.91 99.91 99.98 L 99.97 99.99 99.97 99.98 

4 100.00 99.90 99.97 99.98 M 99.98 99.96 99.98 99.99 

5 99.94 99.99 100.00 99.98 N 100.00 100.00 99.98 99.99 

6 100.00 99.91 99.94 99.99 O 100.00 99.99 100.00 99.99 

7 99.99 100.00 100.00 99.99 P 99.94 99.98 99.91 99.99 

8 100.00 99.99 99.95 99.98 Q 100.00 100.00 100.00 99.98 

9 99.99 99.99 99.97 99.99 R 100.00 99.99 99.99 99.98 

A 100.00 99.90 99.94 99.99 S 99.95 99.94 100.00 99.98 

B 99.91 99.99 99.90 99.99 T 100.00 100.00 99.99 99.99 

C 99.93 99.99 100.00 99.99 U 100.00 99.99 100.00 99.99 

D 99.91 99.98 99.98 99.99 V 100.00 99.99 99.99 99.99 

E 99.93 99.98 100.00 99.99 W 99.99 100.00 99.98 99.99 

F 100.00 99.98 99.98 99.99 X 100.00 99.99 99.98 99.99 

G 99.93 99.98 99.99 99.98 Y 99.98 99.96 100.00 100.00 

H 99.91 99.98 100.00 99.98 Z 99.99 99.99 99.94 99.99 

     Average 99.98 99.98 99.98 99.99 

 

Figure 4. Average results of the ASLA-DLHGR approach under distinct measures. 
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In Figure 5, the TRA 𝑎𝑐𝑐𝑢𝑦 (TRAAY) and validation 𝑎𝑐𝑐𝑢𝑦 (VLAAY) curves of the ASLA-

DLHGR approach are exhibited. The 𝑎𝑐𝑐𝑢𝑦 values are computed over a range of 0-25 epochs. The 

outcome highlights that the TRAAY and VLAAY analysis displays a rising tendency, which informed 

the capacity of the ASLA-DLHGR approach with superior performance over many iterations. Besides, 

the TRAAY and VLAAY remain closer over the epochs that specify lesser overfitting and show higher 

performance of the ASLA-DLHGR model, guaranteeing consistent prediction on hidden instances. 

 

Figure 5. 𝐴𝑐𝑐𝑢𝑦 curve of the ASLA-DLHGR method. 

In Figure 6, the TRA loss (TRALO) and VLA loss (VLALO) curve of the ASLA-DLHGR 

technique is demonstrated. The loss outcomes are computed over the range of 0-25 epochs. It is 

indicated that the TRALO and VLALO values exemplify a reducing tendency, which highlights the 

capacity of the ASLA-DLHGR methodology in balancing a trade-off between data fitting and 

generalization. Additionally, the constant decrease in loss outcomes ensures the maximal effectiveness 

of the ASLA-DLHGR methodology and tunes the prediction solution with time. 
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Figure 6. Loss graph of the ASLA-DLHGR method. 

To demonstrate the proficiency of the ASLA-DLHGR technique, a comprehensive comparison of 

outcomes is presented in Table 2 [32]. 

In Figure 7, the relative 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝑟𝑒𝑐𝑎𝑙𝑙  outcomes of the ASLA-DLHGR model are 

presented. The outcomes indicate that the Adam optimizer method displays worse values with 𝑝𝑟𝑒𝑐𝑛 

and 𝑟𝑒𝑐𝑎𝑙  of 99.86% and 99.81%. In the meantime, the SGD optimizer and RMSProp optimizer 

approach achieve slightly enhanced 𝑝𝑟𝑒𝑐𝑛  and 𝑟𝑒𝑐𝑎𝑙 . Concurrently, the ODTL-SLRC and SLR-

ICOADL methodologies establish closer values of 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙. However, the ASLA-DLHGR 

approach provides superior performance with 𝑝𝑟𝑒𝑐𝑛 and 𝑟𝑒𝑐𝑎𝑙 of 99.98% and 99.98%, respectively. 

 

 

 

 



25167 

AIMS Mathematics  Volume 10, Issue 11, 25154–25174. 

Table 2. Comparative examination of ASLA-DLHGR methodology with existing models. 

Methods 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 

ASLA-DLHGR 99.98 99.98 99.98 99.99 

SLR-ICOADL 99.96 99.96 99.95 99.96 

ODTL-SLRC 99.90 99.90 99.91 99.92 

SGD  99.87 99.87 99.87 99.82 

RMSProp  99.89 99.86 99.72 99.84 

Adam  99.86 99.81 99.22 99.87 

 

Figure 7. 𝑃𝑟𝑒𝑐𝑛 and 𝑅𝑒𝑐𝑎𝑙 results of ASLA-DLHGR methodology with existing models. 

In Figure 8, a comparative 𝑎𝑐𝑐𝑢𝑦  and 𝐹𝑠𝑐𝑜𝑟𝑒  result of the ASLA-DLHGR methodology is 

provided. The outcomes indicate that the Adam optimizer system provides worse values, with 𝑎𝑐𝑐𝑢𝑦 

and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.22% and 99.87%. At the same time, the SGD optimizer and RMSProp optimizer 

methods have slightly better 𝑎𝑐𝑐𝑢𝑦  and 𝐹𝑠𝑐𝑜𝑟𝑒 . Meanwhile, the ODTL-SLRC and SLR-ICOADL 

methodologies depict closer values of 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒. Nevertheless, the ASLA-DLHGR model 

results in enhanced performance with 𝑎𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.98% and 99.99%. 

The recognition rate (RR), computation time (CT), and results of the ASLA-DLHGR model are 

related to other existing methodologies in Table 3. Figure 9 exhibits the comparative RR outcome of 

the ASLA-DLHGR technique. The results signify that the ASLA-DLHGR technique gains a maximum 

RR of 99.97%. On the other hand, the KNN, SVM, ANN, CNN, ODTL-SLRC, and SLR-ICOADL 

methods attain minimal RR values of 96.23%, 98.07%, 98.08%, 99.86%, 99.90%, and 99.92%, 

respectively. 
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Figure 8. 𝐴𝑐𝑐𝑢𝑦 and 𝐹𝑠𝑐𝑜𝑟𝑒 outcomes of ASLA-DLHGR methodology with existing models. 

Table 3. RR and CT outcomes of the ASLA-DLHGR model with existing approaches. 

Methods RR (%) CT (min) 

KNN  96.23 16.56 

SVM Classifier 98.07 14.37 

ANN Method 98.08 15.44 

CNN Technique 99.86 11.23 

ODTL-SLRC 99.90 6.46 

SLR-ICOADL 99.92 3.93 

ASLA-DLHGR 99.97 1.34 

 

Figure 9. RR outcome of the ASLA-DLHGR model with existing approaches. 

Figure 10 illustrates the comparative CT analysis of the ASLA-DLHGR approach. The outcomes 
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represented that the ASLA-DLHGR approach reaches a lesser CT of 1.34min. Ultimately, the KNN, 

SVM, ANN, CNN, ODTL-SLRC, and SLR-ICOADL methodologies yield better CT values of 

16.56min, 14.37min, 15.44min, 11.23min, 6.46min, and 3.93min, respectively. 

 

Figure 10. CT outcome of the ASLA-DLHGR model with existing approaches. 

Table 4 and Figure 11 depict the error analyses of the ASLA-DLHGR method with existing 

models. The ASLA-DLHGR method exhibits poor performance with an 𝑎𝑐𝑐𝑢𝑦 of 2%, 𝑝𝑟𝑒𝑐𝑛 of 2%, 

𝑟𝑒𝑐𝑎𝑙 of 2%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 1%. The SLR-ICOADL technique illustrates a slight improvement with 

an 𝑎𝑐𝑐𝑢𝑦 of 5%, 𝑝𝑟𝑒𝑐𝑛 of 4%, 𝑟𝑒𝑐𝑎𝑙 of 4%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 4%, though still ineffective. ODTL-

SLRC performs better with an 𝑎𝑐𝑐𝑢𝑦 of 9%, 𝑝𝑟𝑒𝑐𝑛 of 10%, 𝑟𝑒𝑐𝑎𝑙 of 10%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 8%, yet 

remains limited in overall reliability. SGD achieves a balanced performance with an 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 

and 𝑟𝑒𝑐𝑎𝑙 at 13%, and the highest 𝐹𝑠𝑐𝑜𝑟𝑒 of 18% among conventional methods. RMSProp provides 

an improved 𝑎𝑐𝑐𝑢𝑦  of 28%, with 𝑝𝑟𝑒𝑐𝑛  of 11%, 𝑟𝑒𝑐𝑎𝑙  of 14%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 16%, depicting 

moderate learning ability. Adam optimizer demonstrates the best 𝑎𝑐𝑐𝑢𝑦 at 78%, along with 𝑝𝑟𝑒𝑐𝑛 

of 14%, 𝑟𝑒𝑐𝑎𝑙 of 19%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 13%, which suggests that effectively captures the classification 

patterns despite slightly lower 𝑝𝑟𝑒𝑐𝑛 and 𝐹𝑠𝑐𝑜𝑟𝑒, emphasizing class imbalance or overfitting. 

Table 4. Error analysis of the ASLA-DLHGR method with existing models. 

Methods 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 

ASLA-DLHGR 0.02 0.02 0.02 0.01 

SLR-ICOADL 0.04 0.04 0.05 0.04 

ODTL-SLRC 0.10 0.10 0.09 0.08 

SGD 0.13 0.13 0.13 0.18 

RMSProp  0.11 0.14 0.28 0.16 

Adam  0.14 0.19 0.78 0.13 
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Figure 11. Error analysis of the ASLA-DLHGR method with existing models. 

Table 5 demonstrates the ablation study analysis of the ASLA-DLHGR technique with existing 

methods. The ASLA-DLHGR technique demonstrates the highest performance with an 𝑎𝑐𝑐𝑢𝑦  of 

99.98%, 𝑝𝑟𝑒𝑐𝑛  of 99.98%, 𝑟𝑒𝑐𝑎𝑙  of 99.98%, and 𝐹𝑠𝑐𝑜𝑟𝑒  of 99.99%. CNN-BiLSTM+TSA with 

parameter tuning but without feature extraction achieves an 𝑎𝑐𝑐𝑢𝑦 of 99.22%, 𝑝𝑟𝑒𝑐𝑛 of 99.27%, 

𝑟𝑒𝑐𝑎𝑙 of 99.36%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.22%, highlighting robust performance but slightly lower than the 

fully optimized method. CNN-BiLSTM+SqueezeNet with feature extraction but without parameter 

tuning provides an 𝑎𝑐𝑐𝑢𝑦 of 98.68%, 𝑝𝑟𝑒𝑐𝑛 of 98.72%, 𝑟𝑒𝑐𝑎𝑙 of 98.74%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.43%, 

which suggests that tuning significantly enhances performance even when features are well extracted. 

The base CNN-BiLSTM model without feature extraction or tuning results in an 𝑎𝑐𝑐𝑢𝑦 of 98.07%, 

𝑝𝑟𝑒𝑐𝑛 of 98.02%, 𝑟𝑒𝑐𝑎𝑙 of 98.09%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.79%, highlighting the benefit each component 

contributes in the overall process. 

Table 5. Comparative performance evaluation of the ASLA-DLHGR technique through 

ablation study against existing methods. 

Techniques 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 

ASLA-DLHGR (with feature extraction and parameter 

tuning) 
99.98 99.98 99.98 99.99 

CNN-BiLSTM+TSA (without feature extraction with 

parameter tuning) 
99.27 99.36 99.22 99.22 

CNN-BiLSTM+SqueezeNet (with feature extraction 

without parameter tuning) 
98.72 98.74 98.68 98.43 

CNN-BiLSTM 98.02 98.09 98.07 97.79 

5. Conclusions 

In this article, the ASLA-DLHGR technique is proposed for the hearing and speech-impaired. 
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The goal of the ASLA-DLHGR technique is to recognize hand gestures to communicate among 

disabled people. To accomplish that, the ASLA-DLHGR approach comprises four processes, pre-

processing, feature extraction, parameter choice, and classification process. Initially, the ASLA-

DLHGR approach performs data pre-processing using BF. Furthermore, the ASLA-DLHGR technique 

implements the SqueezeNet model to learn composite features from the pre-processed data. To develop 

the performance of the SqueezeNet technique, the TSA-based hyperparameter process is performed. 

For the gesture recognition process, the hybrid of the CNN-BiLSTM method is employed. The 

experimental validation of the ASLA-DLHGR method demonstrated a superior accuracy value of 

99.98% over existing models under the ASL dataset. The limitations include a dependence on 

controlled datasets that may not fully capture the variability of real-world conditions, such as diverse 

backgrounds, lighting, and occlusions. Moreover, the efficiency of the model across diverse cultural 

SLs and individual discrepancies requires sufficient testing. The deployment on low-power or portable 

devices may be restricted by the computational requirements of the model. It is recommended to 

supplement the study with more data and case studies regarding the number of hearing and visually 

impaired individuals globally or in specific regions, as well as the current status of the use of 

communication aids. Future work may concentrate on expanding data diversity, improving system 

adaptability to diverse environments, and exploring user-centric evaluations to enhance practical 

applicability. 
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