
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(10): 24712–24729.
DOI:10.3934/math.20251095
Received: 12 July 2025
Revised: 16 October 2025
Accepted: 21 October 2025
Published: 29 October 2025

Research article

Analysis and simulation of a normalized Caputo-Fabrizio fractional SEIR
epidemic model

Ramsha Shafqat1,*, Saeed M. Alamry2 and Ateq Alsaadi2

1 Department of Mathematics and Statistics, The University of Lahore, Sargodha 40100, Pakistan
2 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,

Taif 21944, Saudi Arabia

* Correspondence: Email: ramshawarriach@gmail.com.

Abstract: This paper introduces, analyzes, and numerically investigates a fractional-order SEIR
epidemic model employing the normalized Caputo-Fabrizio (NCF) derivative. The model captures
memory effects and the role of an exposed (latent) compartment, allowing for more realistic epidemic
dynamics. We establish existence, uniqueness, positivity, and population conservation, then propose a
robust numerical scheme. The impact of the memory parameter and kernel normalization is illustrated
via simulations, with a discussion on their significance for epidemic forecasting and potential real-
world applications.

Keywords: fractional differential equation; normalized Caputo-Fabrizio; SEIR model; numerical
outcomes
Mathematics Subject Classification: 34D20, 34K20, 34K60, 92C60, 92D45

1. Introduction

Mathematical modeling plays a vital role in understanding, forecasting, and controlling the spread
of infectious diseases [1, 2]. Among the available approaches, compartmental models, such as
the susceptible-exposed-infectious-recovered (SEIR) system, are widely regarded as essential for
describing the fundamental mechanisms driving epidemic dynamics. These models are beneficial for
illnesses characterized by a significant incubation (latent) phase, such as COVID-19, measles, and
influenza [3]. By incorporating an explicitly exposed compartment, the SEIR framework builds upon
the classic SIR model, offering a more detailed account of individuals who are infected but not yet
contagious. This additional realism improves our ability to simulate disease transmission and design
effective public health strategies.

Epidemics with a pronounced incubation stage (e.g., measles, influenza, COVID-19) are naturally
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described by an SEIR structure because the explicit exposed class captures infected but not yet
infectious individuals and improves realism over SIR when designing control strategies. At the
same time, real outbreaks exhibit memory and heredity variable incubation and infectious periods,
delayed immune responses, and lingering effects of past contacts, which classical integer-order models
cannot represent. Fractional operators address this by letting current dynamics depend on the full
history. Among them, the CF family uses a non-singular exponential kernel to model exponentially
fading memory and is numerically convenient, but its kernel is not normalized. Therefore, we adopt
the NCF derivative, whose kernel integrates to one, aligning the operator with a physical weighted
average of past states and improving scaling, interpretability, and often stability of simulations. In
the SEIR setting, this normalization matters: it changes the weighting of historical exposures, can
delay and flatten infectious peaks, and yields trajectories that more closely reflect gradual, memory-
driven epidemic waves. Furthermore, as α → 1, the model recovers the classical SEIR system. To
our knowledge, applying the NCF operator within SEIR and analyzing the existence, uniqueness,
positivity, conservation, and numerics in one framework fills a gap in the literature and clarifies when
normalized memory provides predictive advantages over classical and unnormalized fractional models.

Despite the success of classical integer-order SEIR models, they often fall short in representing the
memory and hereditary effects observed in real epidemics, such as variable incubation and infectious
periods, delayed immune responses, and the lingering impact of past exposures [4,5]. To address these
challenges, fractional-order differential equations have gained traction in epidemiological modeling [5,
6]. The use of fractional derivatives introduces a memory effect, enabling the system’s current state
to depend on its entire history. This feature frequently results in models that align more closely with
empirical data, capturing the complex temporal dynamics of real epidemics [4].

Researchers have introduced numerous concepts of fractional derivatives over the years. The
Caputo derivative, with its power-law kernel, is widely adopted for its mathematical properties, but
the associated singular kernel can create analytical and numerical difficulties. To address these, the
Caputo-Fabrizio (CF) derivative was introduced, featuring a non-singular exponential kernel [7, 8].
This derivative has been applied in numerous fields including epidemiology due to its ability to model
processes with exponentially fading memory and its computational advantages [9–11]. Fractional
modeling has become a powerful way to capture memory and hereditary effects in dynamical
and epidemic systems, supported by advances in optimal control and higher-order solvers for
fractional ODEs [12–14]. In epidemiology, normalized non-singular kernels, especially the normalized
Caputo–Fabrizio operator, clarify how fractional-order shapes timing and peak size, and pair well with
data-driven methods across COVID-19 [15], SIQR [16], and other applications [17, 18]. Building on
this literature, we analyze how kernel normalization and finite memory influence SEIR dynamics and
the interpretation of interventions.

Nonetheless, the original CF kernel is not normalized, which may cause inconsistencies in the
interpretation of memory effects and in the scaling of solutions. To address these issues, the NCF
derivative was proposed, where the kernel is constructed to integrate to unity [19]. This normalization
not only aligns the operator with the physical concept of averaging but also potentially improves the
stability and accuracy of fractional models.

Although the NCF derivative offers theoretical and practical advantages, its application has not
yet been systematically studied in the context of SEIR epidemic models. The present study aims to
formulate, analyze, and numerically investigate the SEIR epidemic model using the NCF derivative.
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We establish a comprehensive theoretical analysis, addressing existence, uniqueness, positivity, and
boundedness of solutions, develop an efficient numerical scheme, and present simulations that compare
the NCF-SEIR model with classical and standard CF-SEIR models.

This study aims to develop a robust fractional SEIR model based on the NCF derivative, analyze its
mathematical characteristics, and illustrate its effectiveness in representing realistic epidemic patterns
through detailed numerical experiments.

Section 2 reviews the necessary preliminaries on fractional derivatives. Section 3 presents the model
formulation. Section 4 contains the theoretical analysis with step-by-step proofs. Section 5 introduces
the numerical method. Section 6 discusses simulation results and comparison with standard models.
Section 7 offers final comments and suggestions for future research.

2. Preliminaries

Before proceeding, we present the following definitions, which will be fundamental in the
development of our main results.

Definition 2.1. [7] For 0 < α < 1, the CF derivative of a function u(t) is

(CF Dα0u)(t) =
1

1 − α

∫ t

0
e−µα(t−s)u′(s)ds,

where µα = α
1−α .

Definition 2.2. [20] The NCF derivative is defined by

(NCF Dα0u)(t) =
1

(1 − α)Cα(t)

∫ t

0
e−µα(t−s)u′(s)ds,

where

Cα(t) =
1
α

(1 − e−µαt).

This normalization ensures the kernel integrates to 1 over [0, t].

3. Model formulation

We consider the normalized fractional SEIR model:

(NCF Dα0S )(t) = −βS (t)I(t),
(NCF Dα0 E)(t) = βS (t)I(t) − σE(t),
(NCF Dα0 I)(t) = σE(t) − γI(t), (3.1)
(NCF Dα0R)(t) = γI(t),

S (0) = S 0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0,

where, β denotes the transmission coefficient, σ indicates the transition rate from exposed to infectious,
and γ represents the rate of recovery. The total population is N0 = S 0 + E0 + I0 + R0.
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Within this modeling framework, S (t), E(t), I(t), and R(t) describe, respectively, the fractions of
the population that are susceptible, exposed (not yet infectious), currently infectious, and recovered at
any given time t. The notation NCF Dα0 refers to the normalized Caputo-Fabrizio fractional derivative
of order α with 0 < α < 1. This fractional derivative introduces memory effects into the system via
a normalized, non-singular kernel, thereby enabling the model to reflect how previous states influence
current epidemic dynamics.

The first equation models the rate at which susceptible individuals become exposed to the infection,
driven by contact with infectious individuals at a rate determined by β. The second equation describes
the progression of exposed individuals to the infectious class at a rate σ, as well as their depletion due
to becoming infectious. The third equation accounts for the increase in infectious individuals coming
from the exposed class and their removal through recovery at a rate γ. The fourth equation captures
the accumulation of recovered individuals. The initial conditions S 0, E0, I0, and R0 set the starting
distribution of the population among the four compartments, with all variables assumed nonnegative
and summing to the total population N0.

By extending the classical SEIR model with the NCF derivative, this formulation allows for memory
effects that are often present in real-world epidemics, such as latency periods, temporary immunity, and
behavioral adaptation over time. As α → 1, the NCF-SEIR model recovers the classical SEIR model
with integer-order derivatives. The use of the normalized kernel ensures that the overall memory
contribution remains well-scaled and avoids the mathematical singularities of classical fractional
operators, thereby improving the model’s ability to capture and predict realistic epidemic processes.

4. Theoretical analysis

We establish the existence and uniqueness of solutions to the NCF-SEIR system, providing a
foundation for the model’s mathematical validity. The demonstration relies on fixed-point theory and
essential characteristics of the NCF fractional operator.

4.1. Existence and uniqueness of solutions

Before analyzing the dynamics, we establish that the NCF-SEIR model admits a unique global
solution. This guarantees the mathematical consistency and reliability of the system.

Theorem 1. There exists a unique global solution (S , E, I,R) to the NCF-SEIR system on [0,T ].

Proof. We rewrite the NCF-SEIR model using properties of the NCF operator (see [8]):

S (t) = S 0 + (1 − α)Cα(t)
[
−βS (t)I(t)

]
+ α

∫ t

0
Cα(τ)

[
−βS (τ)I(τ)

]
dτ,

E(t) = E0 + (1 − α)Cα(t)
[
βS (t)I(t) − σE(t)

]
+ α

∫ t

0
Cα(τ)

[
βS (τ)I(τ) − σE(τ)

]
dτ,

I(t) = I0 + (1 − α)Cα(t)
[
σE(t) − γI(t)

]
+ α

∫ t

0
Cα(τ)

[
σE(τ) − γI(τ)

]
dτ,

R(t) = R0 + (1 − α)Cα(t)
[
γI(t)

]
+ α

∫ t

0
Cα(τ)

[
γI(τ)

]
dτ,

where Cα(t) is the normalization function of the kernel.
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Let X = [C([0,T ])]4, the Banach space of continuous vector-valued functions on [0,T ] with norm

∥U∥ = max{∥S ∥∞, ∥E∥∞, ∥I∥∞, ∥R∥∞}.

Define f1 = −βS I, f2 = βS I − σE, f3 = σE − γI, and f4 = γI.
Define the operator T on X by:

T


S
E
I
R

 (t) =


S 0 + (1 − α)Cα(t) f1(S (t), E(t), I(t),R(t)) + α

∫ t

0
Cα(τ) f1(S (τ), E(τ), I(τ),R(τ)) dτ

E0 + (1 − α)Cα(t) f2(S (t), E(t), I(t),R(t)) + α
∫ t

0
Cα(τ) f2(S (τ), E(τ), I(τ),R(τ)) dτ

I0 + (1 − α)Cα(t) f3(S (t), E(t), I(t),R(t)) + α
∫ t

0
Cα(τ) f3(S (τ), E(τ), I(τ),R(τ)) dτ

R0 + (1 − α)Cα(t) f4(S (t), E(t), I(t),R(t)) + α
∫ t

0
Cα(τ) f4(S (τ), E(τ), I(τ),R(τ)) dτ


We will show T is a contraction on a suitable subset of X by proving each f j is Lipschitz continuous

on bounded sets. Let DM = {(S , E, I,R) ∈ X : ∥S ∥, ∥E∥, ∥I∥, ∥R∥ ≤ M} for some M > 0 for all
(S 1, E1, I1,R1), (S 2, E2, I2,R2) in DM:

| f1(S 1, E1, I1,R1) − f1(S 2, E2, I2,R2)| = |− βS 1I1 + βS 2I2|

= β|S 2I2 − S 1I1|

= β|S 2(I2 − I1) + (S 2 − S 1)I1|

≤ β(|S 2||I2 − I1| + |I1||S 2 − S 1|)
≤ 2βM∥(S 1, E1, I1,R1) − (S 2, E2, I2,R2)∥

| f2(S 1, E1, I1,R1) − f2(S 2, E2, I2,R2)| = |βS 1I1 − σE1 − [βS 2I2 − σE2]|
= |β(S 1I1 − S 2I2) − σ(E1 − E2)|
≤ β(|S 1||I1 − I2| + |I2||S 1 − S 2|) + σ|E1 − E2|

≤ (2βM + σ)∥(S 1, E1, I1,R1) − (S 2, E2, I2,R2)∥

| f3(S 1, E1, I1,R1) − f3(S 2, E2, I2,R2)| = |σE1 − γI1 − [σE2 − γI2]|
= |σ(E1 − E2) − γ(I1 − I2)|
≤ σ|E1 − E2| + γ|I1 − I2|

≤ (σ + γ)∥(S 1, E1, I1,R1) − (S 2, E2, I2,R2)∥

| f4(S 1, E1, I1,R1) − f4(S 2, E2, I2,R2)| = |γI1 − γI2| = γ|I1 − I2|

≤ γ∥(S 1, E1, I1,R1) − (S 2, E2, I2,R2)∥.

Let LM be the largest of the coefficients above. For any U1,U2 ∈ DM,

∥T (U1) − T (U2)∥ ≤ KLM∥U1 − U2∥,

where K depends on T , α, and the kernel normalization. By choosing T sufficiently small so that
KLM < 1, T is a contraction on DM.

By Banach’s fixed-point theorem, there is a unique fixed point (solution) in DM on [0,T0] for some
T0 > 0.

Since the solutions remain nonnegative and bounded by the total population, the local solution can
be extended step-by-step to the whole interval [0,T ].

□

AIMS Mathematics Volume 10, Issue 10, 24712–24729.



24717

4.2. Positivity of solutions

Before proceeding, it is essential to verify that the solutions of the NCF-SEIR model remain
nonnegative for all time, as required by the biological interpretation of the compartments.

Theorem 2. If S 0, E0, I0,R0 ≥ 0, then S (t), E(t), I(t),R(t) ≥ 0 for all t ≥ 0.

Proof. Assume, for the sake of contradiction, that there is an initial time t∗ > 0 at which one of the
state variables S (t∗), E(t∗), I(t∗), or R(t∗) reaches zero, having remained nonnegative for all earlier
times t < t∗.

Examine each equation at t∗:

• The equation for S (t) has right-hand side −βS (t)I(t) ≤ 0, so S (t) cannot decrease below zero.

• The equation for E(t) is βS (t)I(t) − σE(t). When E(t∗) = 0, this reduces to βS (t∗)I(t∗) ≥ 0.

• The equation for I(t) is σE(t) − γI(t). When I(t∗) = 0, this reduces to σE(t∗) ≥ 0.

• The equation for R(t) is γI(t) ≥ 0.

In each case, the right-hand sides are nonnegative (or zero) at the boundary S = 0, E = 0, I = 0, or
R = 0. Thus, the NCF derivative cannot make the solution decrease below zero at this first hitting time,
and so a contradiction is reached.

Therefore, solutions must remain nonnegative for all t ≥ 0. □

4.3. Boundedness

It is essential to ensure that the total population remains bounded and conserved over time. We
establish that the sum of all compartments in the NCF–SEIR model does not exceed the initial
population.

Lemma 4.1. Let 0 < α < 1 and suppose u is absolutely continuous on [0,T ]. Define

(NCFDα0u)(t) =
1

(1 − α) Cα(t)

∫ t

0
e−µα(t−s) u′(s) ds, Cα(t) =

1 − e−µαt

α
, µα =

α

1 − α
.

If (NCFDα0u)(t) = 0 for all t ∈ (0,T ], then u is constant on [0,T ]. In particular, if u(0) = c, then u(t) ≡ c
on [0,T ].

Proof. Let v(t) :=
∫ t

0
e−µα(t−s) u′(s) ds. For t > 0, we have (1 − α)Cα(t) > 0, hence (NCFDα0u)(t) = 0

implies v(t) ≡ 0 on (0,T ]. Since u′ ∈ L1(0,T ), v is absolutely continuous and differentiation under the
integral yields, for a.e. t ∈ (0,T ],

v′(t) = u′(t) − µα

∫ t

0
e−µα(t−s) u′(s) ds = u′(t) − µαv(t) = u′(t).

Thus, 0 = v′(t) = u′(t) a.e. on (0,T ], so u is constant on [0,T ]. □

Theorem 3. Let N(t) = S (t) + E(t) + I(t) + R(t). Then, N(t) ≡ N0 for all t ≥ 0. Consequently, if the
dynamics preserve nonnegativity of the compartments, 0 ≤ S (t), E(t), I(t),R(t) ≤ N0 for all t ≥ 0.
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Proof. Summing the four equations of the NCF–SEIR system gives

(NCFDα0S )(t) + (NCFDα0 E)(t) + (NCFDα0 I)(t) + (NCFDα0R)(t) = 0.

By the linearity of the NCF derivative,

(NCFDα0 N)(t) = 0.

By the lemma 4.1 and the initial condition N(0) = N0, we conclude N(t) ≡ N0 for all t ≥ 0. If,
in addition, the vector field leaves the nonnegative invariant, then S , E, I,R ≥ 0, and hence each is
bounded above by N0. □

Remark 4.2. If N1 and N2 satisfy (NCFDα0 Ni)(t) = 0 with N1(0) = N2(0), then (NCFDα0 (N1 − N2))(t) = 0
and (N1 − N2)(0) = 0, so by the lemma 4.1 N1 ≡ N2.

Population conservation holds as stated when the sum of the right-hand sides of the compartmental
equations is identically zero. If demographic terms are included, e.g., (NCFDα0 N)(t) = Λ(t) − µ(t)N(t),
then N is generally not constant, though analogous bounds can be derived by comparison.

4.4. Equilibria and disease-free invariance

Setting all derivatives to zero, the system yields I∗ = 0 and E∗ = 0, with S ∗ + R∗ = N0; thus, the
only equilibrium is the disease-free state. If I0 = 0 and E0 = 0, all solutions remain disease-free for all
time.

4.5. Stability of the disease-free equilibrium

Next, we examine the stability of the disease-free equilibrium (DFE) to determine the conditions
under which the infection dies out in the NCF-SEIR model.

Theorem 4. Consider the NCF-SEIR model. The equilibrium point (S ∗, E∗, I∗,R∗) = (N0, 0, 0, 0),
corresponding to the absence of infection, is locally asymptotically stable whenever the basic
reproduction number R0 =

βN0
γ

satisfies R0 < 1. If instead R0 > 1, this equilibrium becomes unstable.

Proof. Recall the NCF-SEIR system:

(NCF Dα0S )(t) = −βS (t)I(t),
(NCF Dα0 E)(t) = βS (t)I(t) − σE(t),
(NCF Dα0 I)(t) = σE(t) − γI(t),
(NCF Dα0R)(t) = γI(t).

The DFE is (S ∗, E∗, I∗,R∗) = (N0, 0, 0, 0).
Consider small perturbations near the DFE:

S (t) = N0 + s(t), E(υ) = N0 + e(t), I(t) = N0 + i(t), R(t) = N0 + r(t)

where |s(t)|, |e(t)|, |i(t)| and |r(t)| are small.
Linearizing around the DFE and neglecting higher-order terms, we have:

(NCF Dα0 s)(t) = −βN0i(t),
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(NCF Dα0e)(t) = βN0i(t) − σe(t),
(NCF Dα0 i)(t) = σe(t) − γi(t),
(NCF Dα0r)(t) = γi(t).

We focus on the subsystem involving e(t) and i(t). Let us write it as a vector system:(
(NCF Dα0e)(t)
(NCF Dα0 i)(t)

)
=

(
−σ βN0

σ −γ

) (
e(t)
i(t)

)
The stability is determined by the eigenvalues λ of the matrix:

A =
(
−σ βN0

σ −γ

)
The characteristic equation is:

det (A − λI) = 0 =⇒

∣∣∣∣∣∣ −σ − λ βN0

σ −γ − λ

∣∣∣∣∣∣ = 0

By expanding, we have
(−σ − λ)(−γ − λ) − βN0σ = 0

(λ + σ)(λ + γ) − βN0σ = 0

λ2 + (σ + γ)λ + σγ − βN0σ = 0

λ2 + (σ + γ)λ + σγ(1 − R0) = 0, where R0 =
βN0

γ

For stability, all roots of this quadratic must have negative genuine parts, which holds if and only if
R0 < 1 by the Routh-Hurwitz criterion.

Thus:

• If R0 < 1, all solutions decay to zero, and the DFE is locally asymptotically stable.

• If R0 > 1, at least one eigenvalue has a positive real part, and the DFE is unstable.

□

5. Numerical method

Let T > 0 be the final simulation time and N ∈ N the total number of time steps. Define the uniform
grid with step size h = T/N and tn = nh, n = 0, 1, . . . ,N. Throughout, set

Cα(t) =
1 − e−µαt

α
, µα =

α

1 − α
, α ∈ (0, 1).

AIMS Mathematics Volume 10, Issue 10, 24712–24729.
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5.1. Discretization of the NCF derivative

For any scalar sequence {un} define the exponentially weighted running difference

W (u)
n = e−µαh W (u)

n−1 +
(
un − un−1

)
, W (u)

0 := 0. (5.1)

We approximate the NCF derivative at tn by

(NCFDα0u
)
(tn) ≈

W (u)
n

(1 − α) Cα(tn)
. (5.2)

The recurrence (5.1)–(5.2) yields O(N) time and O(1) memory. It is algebraically equivalent to the
rectangle-rule history sum (shown for reference only):

(NCFDα0u
)
(tn) ≈

1
(1 − α) Cα(tn)

n−1∑
k=0

e−µα(tn−tk) [uk+1 − uk], (5.3)

but (5.1) is better conditioned when α→ 1.
As α→ 1, the NCF operator converges to the classical first derivative. Numerically, using the O(N)

recurrence (5.1)–(5.2) avoids cancellation when (1 − α) is small; in this limit, the update approaches
explicit Euler.

5.2. Explicit scheme for the NCF–SEIR system

Let U = (S , E, I,R)⊤ and

F(U) =
[
−βS I, βS I − σE, σE − γI, γI

]⊤
.

We discretize the right-hand side with explicit Euler to form the per-step increments

S n − S n−1 = −h βS n−1In−1,

En − En−1 = h [βS n−1In−1 − σEn−1],
In − In−1 = h [σEn−1 − γIn−1],

Rn − Rn−1 = h γIn−1.

(5.4)

These increments are inserted into (5.1) componentwise to update W (S )
n ,W

(E)
n ,W

(I)
n and W (R)

n , and the
NCF derivatives are then read off via (5.2):

(NCFDα0u
)
(tn) ≈

W (u)
n

(1 − α) Cα(tn)
with u ∈ {S , E, I,R} and W (u)

n from (5.1) using (5.4). (5.5)

To mitigate step-size restrictions at small α, we use a semi-implicit update that preserves mass and
positivity. With step h and states S n, En, In and Rn:

S n =
S n−1

1 + h β In−1 , En =
En−1 + h β S nIn−1

1 + hσ
, In =

In−1 + hσ En

1 + h γ
, Rn = Rn−1 + h γ In.

The NCF derivative is evaluated with the same exponentially weighted history accumulator as in the
main text. This scheme is mass-conserving (S n+En+In+Rn = N0) and positivity-preserving for any
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h > 0. On our test problems, it remains stable and non-oscillatory for α < 0.5 with step sizes several
times larger than those admissible for the explicit update. It produces trajectories consistent with the
explicit scheme under refinement.
Algorithm:

i) Evaluate F(Un−1) and set Un = Un−1 + h F(Un−1) (explicit Euler; produces (5.4)).

ii) Update W (u)
n by (5.1) with the just-computed un − un−1.

iii) (Optional, for diagnostics) Compute
(NCFDα0u

)
(tn) via (5.2).

The continuous model preserves S , E, I,R ≥ 0 and S + E + I + R = N0. Explicit Euler requires a
step-size restriction to retain S n, En, In,Rn ≥ 0. A sufficient bound is

h ≤
θ

βN0 + σ + γ
, θ ∈ (0, 1], (5.6)

which ensures that each increment in (5.4) is a nonnegative combination of current states and keeps all
compartments nonnegative.

5.3. Convergence analysis

Assume the NCF–SEIR solution exists on [0,T ] and remains in the positively invariant set

D = {U ∈ R4
≥0 : ∥U∥1 = N0},

and F is globally Lipschitz on D with constant L. Consider the scheme (5.4)+(5.1)+(5.5) under the
step-size condition (5.6).

Theorem 5. There exist h0 > 0 and CT > 0, depending on T, α, β, σ, γ and N0 but not on h, such that
for all 0 < h ≤ h0,

max
0≤n≤N

∥U(tn) − Un∥ ≤ CT h.

Hence, the method is first-order accurate in time.

Proof. Write the exact NCF operator as

(NCFDα0U
)
(tn) =

1
(1 − α) Cα(tn)

∫ tn

0
e−µα(tn−s) U′(s) ds.

Applying the left-point rectangle rule on each [tk, tk+1] gives

1
(1 − α) Cα(tn)

∫ tn

0
e−µα(tn−s) U′(s) ds =

1
(1 − α) Cα(tn)

n−1∑
k=0

e−µα(tn−tk)(U(tk+1) − U(tk)
)
+ τn,

with ∥τn∥ ≤ CT h (smooth kernel and U′′ bounded). Using the model NCFDα0U = F(U) and the scheme
identity obtained by replacing the exact increments with the numerical ones Uk+1 − Uk = hF(Uk), we
arrive at

F
(
U(tn)

)
− F(Un) =

n−1∑
k=0

ωn,k (ek+1 − ek) + τn,
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where en = U(tn) − Un and ωn,k =
e−µα(tn−tk )

(1−α) Cα(tn) . Lipschitz continuity and a summation-by-parts argument
yield

∥en∥ ≤ C
n−1∑
k=0

e−µα(tn−tk+1)∥ek∥ + C ∥τn∥.

A discrete Grönwall inequality with exponentially decaying weights (and the stability implied by (5.6))
gives ∥en∥ ≤ CT (∥e0∥ +max1≤ j≤n ∥τ j∥) ≤ CT h, proving the claim. □

Replacing the rectangle rule in (5.3) by a trapezoidal correction inside the history integral yields a
global O(h2) scheme under the same assumptions and a similar explicit CFL restriction.

5.4. Consistency and accuracy

• The baseline scheme (5.4)+(5.1)+(5.5) is first-order accurate in h.

• A trapezoidal history integral upgrades the order to two without making the whole method
implicit.

• As α → 1, the O(N) recurrence avoids cancellation and the update approaches classical explicit
Euler.

5.5. Comparison with standard Caputo and CF

For context, one may compare against the standard Caputo discretization and the unnormalized
CF model. The NCF normalization keeps the total memory weight equal to one, which can shift
timing and height of epidemic peaks relative to the unnormalized and power-law cases while preserving
interpretability.

6. Numerical simulations and discussion

We investigate how fractional memory and kernel normalization shape epidemic dynamics in the
SEIR model. Unless otherwise stated, the parameters are

β = 0.4, γ = 0.15, σ = 0.2, (S 0, E0, I0,R0) = (0.95, 0.02, 0.02, 0.01),

with final time T = 25 days and step size h = 0.05. Fractional orders α ∈ {0.95, 0.85, 0.75, 0.40, 0.30}
span the range from nearly classical to strong-memory regimes. All NCF runs use the O(N) history
recurrence; for α < 0.5, we use the semi-implicit variant, which gives stable, non-oscillatory
trajectories without minimal time steps and is consistent with the explicit update under refinement.

Figure 1 shows the four classical SEIR compartments, providing the reference time scale for
comparisons. Figure 2 displays NCF trajectories as α varies: decreasing α delays and flattens the
epidemic wave peaks in I(t) and E(t) occur later and at lower amplitudes, S (t) depletes more gradually,
and R(t) accumulates more slowly. As α→ 1, the NCF curves approach the classical limit.

The peak surfaces in Figure 3 summarizes these trends over (α, β). Holding β fixed, smaller α
suppresses Ipeak and Epeak; holding α fixed, larger β raises them. The Rpeak surface tracks Ipeak, while
S peak decreases as either β or α increases, reflecting faster susceptible depletion.
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Figure 1. The classical SEIR model 3.1.

(a) (b)

(c) (d)

Figure 2. NCF–SEIR trajectories for varying fractional order α: (a) Infectious I(t), (b)
Susceptible S (t), (c) Exposed E(t), (d) Recovered R(t).
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(a) (b)

(c) (d)

Figure 3. Peak values versus fractional order α and infection rate β: (a) Infectious Ipeak,
(b) Susceptible S peak, (c) Exposed Epeak, and (d) Recovered Rpeak. Surfaces show how peak
magnitudes vary jointly with α and β.

Figure 4 contrasts the four formulations Classical, Caputo, CF (unnormalized), and NCF across
α = {0.95, 0.85, 0.75, 0.40, 0.30}. Classical shows the fastest rise permitted by h. Caputo delays and
damps the wave as α decreases. The unnormalized CF model exhibits aggressive early growth and rapid
saturation under the same parameters, a scaling artifact of the non-normalized kernel. In contrast, NCF
is well-scaled and produces delayed, lower peaks than Classical and CF while qualitatively aligning
with Caputo at the same α. These patterns are consistent with the quantitative summary in Table 1: e.g.,
at α = 0.95, the NCF infectious peak is markedly below Classical while occurring on a comparable
time scale, whereas the unnormalized CF reports unit-scale spikes with very short durations.

Sensitivity tests in Figure 5 show that perturbing a single initial compartment mainly influences
the initial rise: increasing E0 or I0 elevates and slightly advances the early E(t) or I(t); increasing
S 0 accelerates depletion and amplifies the ensuing wave; increasing R0 dampens transmission. In
comparison, peak timing and height are governed chiefly by α and by β, σ, and γ.

Overall, the NCF derivative offers a robust and interpretable representation of short-range memory
in epidemic transmission. Normalization preserves a probabilistic weighting of recent history, avoids
the scaling issues of unnormalized CF, and yields trajectories that smoothly recover the classical limit
as α→ 1. Combined with the semi-implicit stepping for small α, the NCF–SEIR framework provides
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a practical vehicle for studying memory effects and for scenario analysis in public-health forecasting.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4. SEIR dynamics across fractional orders. Columns show α ∈

{0.95, 0.85, 0.75, 0.40, 0.30}; rows show Infectious I(t) and Exposed E(t). Curves: Classical,
Caputo, CF, and NCF. Decreasing α delays and reduces peaks; NCF remains well scaled and
aligns with Caputo’s damping at the same α.

AIMS Mathematics Volume 10, Issue 10, 24712–24729.



24726

Table 1. Summary metrics for multi-α comparison figures.

α Model Ipeak tpeak Final Size Epidemic Duration
0.95 Classical 0.129360 25.00 0.503570 –
0.95 Caputo 1.000000 1.70 0.000000 1.25
0.95 CF 1.000000 0.20 0.000000 0.15
0.95 NCF 0.078697 25.00 0.281100 –

0.85 Classical 0.129360 25.00 0.503570 –
0.85 Caputo 0.569680 14.60 0.948480 10.75
0.85 CF 1.000000 0.40 0.000000 0.25
0.85 NCF 0.112100 25.00 0.422690 –

0.75 Classical 0.129360 25.00 0.503570 –
0.75 Caputo 0.129900 15.80 0.733280 –
0.75 CF 1.000000 0.70 0.000000 0.35
0.75 NCF 0.120370 25.00 0.464280 –

0.40 Classical 0.129360 25.00 0.503570 –
0.40 Caputo 0.040534 25.00 0.134140 –
0.40 CF 0.135820 25.00 0.622040 –
0.40 NCF 0.126560 25.00 0.523210 –

0.30 Classical 0.129360 25.00 0.503570 –
0.30 Caputo 0.030054 25.00 0.093276 –
0.30 CF 0.088428 25.00 0.325990 –
0.30 NCF 0.124980 25.00 0.536850 –
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(a) (b)

(c) (d)

Figure 5. Sensitivity of the NCF–SEIR model to initial conditions. (a) Effect of E0 on E(t);
(b) effect of I0 on I(t); (c) effect of S 0 on S (t); (d) effect of R0 on R(t).

7. Conclusions

This work presents the first comprehensive formulation and analysis of the fractional-order SEIR
epidemic model utilizing the NCF derivative. We have established key theoretical properties,
including existence, uniqueness, positivity, and conservation of the total population, thereby ensuring
the mathematical validity of the model. A discrete numerical scheme for the NCF-SEIR model
was developed and implemented, enabling a robust investigation of memory effects and kernel
normalization on epidemic dynamics. Numerical simulations demonstrate that introducing the
normalized memory kernel substantially modifies the qualitative behavior of the epidemic compared
to both classical and unnormalized fractional models. Specifically, decreasing the fractional order α
results in delayed and flattened epidemic peaks in the exposed and infectious compartments, capturing
the gradual spread and persistent memory effects observed in real-world outbreaks. The NCF kernel
ensures a physically consistent distribution of memory, leading to more realistic and interpretable
epidemic trajectories, particularly in scenarios with significant latency or behavioral adaptation.
Sensitivity analyses further confirm that while initial conditions can influence the early phase of an
epidemic, the overall shape and progression are primarily governed by the memory parameter and
main epidemiological rates. The NCF-SEIR model thus offers a flexible and practical framework for
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exploring the impact of memory effects in epidemiological modeling and public health forecasting.
Future research directions include parameter estimation from empirical epidemic data to validate the
predictive performance of the NCF-SEIR model, as well as extensions to models incorporating vital
dynamics, vaccination, control interventions, or more complex multi-stage compartmental structures.
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