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1. Introduction

Non-performing loans (NPLs), conventionally defined as loan payments delinquent for 90 days or
more, constitute a perennial challenge for financial regulatory authorities [1]. Elevated NPL ratios
significantly impair banking sector stability through multiple channels: they degrade asset quality,
constrain liquidity provision, diminish profitability margins, and potentially trigger systemic risk
contagion [2, 3]. The detrimental effects of NPLs extend to operational efficiency deterioration,
constrained intermediation capacity through reduced loan origination, and substantial erosion of profit
generation capabilities [4].

Strategic NPL resolution mechanisms can substantially rehabilitate banks’ credit portfolios,
thereby enhancing cash flow stability and liquidity positions [S]. However, accurate NPL valuation
presents considerable methodological challenges, primarily attributable to four factors: (1) market
illiquidity and price opacity, (2) uncertainty in collateral recovery rates, (3) pronounced information
asymmetries between originating institutions and potential investors [1], and (4) protracted
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bureaucratic procedures [6]. Furthermore, robust empirical analyses have identified significant
regime-dependent dynamics in NPL behavior across different macroeconomic environments,
suggesting state-contingent patterns in credit deterioration [7].

The effective disposal of NPLs has emerged as a critical challenge in financial risk management.
Drawing on Italy’s experience in NPL resolution, a comparative scenario analysis of two primary
disposal methods—direct sale and securitization—reveals that securitization significantly reduces costs
for originating banks [8]. Under the assumption that portfolio returns follow a lognormal distribution,
the value-at-risk (VaR) methodology can be employed to assess the risk-return characteristics of NPL-
backed securities. This analysis demonstrates that securitization constitutes the most value-enhancing
deleveraging strategy, optimizing outcomes for both banks and investors [9]. These findings suggest
that asset securitization represents a comparatively efficient mechanism for NPL resolution.

Unlike standardized traded assets, the NPL market is inherently incomplete, exhibiting three key
features: illiquidity, non-replicable cash flows, and pronounced information asymmetry. These
structural limitations render conventional risk-neutral pricing models unsuitable. To address this, we
adopt a utility indifference pricing framework, which is specifically designed for incomplete markets
and explicitly incorporates investor risk aversion into the valuation process [10].

In financial mathematics, transitions between different macroeconomic states are formally
characterized as regime switching, which is conventionally modeled using continuous-time,
finite-state Markov chains. This framework has been successfully incorporated into various derivative
pricing models. Notably, the canonical Black-Scholes option pricing framework has been extended to
accommodate regime-switching dynamics for the valuation of American options [11]. Subsequent
developments in credit risk modeling have applied this approach to price defaultable options within a
reduced-form risk framework [12].

Building upon these theoretical foundations, we employ a finite-state continuous-time Markov
chain to model macroeconomic states [13]. This specification proves particularly appropriate given
the empirically documented regime-dependent characteristics of both repayment intensities and
recovery amounts. The resulting regime-switching model provides a robust framework for
characterizing the evolution of repayment risk, thereby establishing a theoretically sound and
empirically realistic basis for the valuation of non-performing loans under economic uncertainty.

In this study, we propose a unified valuation framework for NPLs within a regime-switching
economic context. Specifically, we employ a Cox process with regime-dependent intensity to model
the stochastic payment times and derive the utility indifference price within a Merton-type investment
framework featuring exponential utility. Under a two-regime scenario, we provide explicit
closed-form solutions for indifference pricing. Numerical illustrations demonstrate the impacts of risk
aversion and regime-switching on valuation.

The remainder of the paper is organized as follows. Section 2 formulates the indifference valuation
problem for NPLs. Section 3 presents the analytical results. Section 4 offers numerical examples to
illustrate the effects of key parameters. Section 5 concludes the study.

2. Model formulation

Let (Q,%,P) be a complete probability space supporting an m-dimensional standard Brownian
motion B(t) = (Bi(?),...,B,())". In real economic activities, changes in macroeconomic conditions
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significantly affect the assets and investment income of entities, and the credit quality of defaultable
entities. Typically, in line with [14], we model macroeconomic regimes by a continuous-time,
finite-state Markov chain X = {X(#)};>0 with state space D = {1, ..., O} and transition rate matrix

A= 2.1)

—da;p dip e aip ]
agr dga -+ —dgg

where a;; > 0,i # jand a;; = Z[Q:L#/.aij fori,j=1,2,---,0. Let F* and F® be the natural filtrations
of X(¢) and B(¢), respectively, and set F: = FX Vv FL. Assume X(r) and B(¢) are independent. For any
matrix C, denote its transpose by CT.

Consider a bank investing in one risk-free asset and n risky assets over a finite time horizon 7. The
risk-free rate r > 0 is constant. Risky asset prices S(¢), k = 1,..., n are characterized by the following

stochastic differential equation
dS (1) = S0 [1e(t, X(0)) dt + o (£, X (1) TdB(1)] (2.2)

where o (1, X(¢)) = (01(t, X(2)),...,0u:(t, X(2)))". Since the price of the risky asset is influenced
by changes in macroeconomic conditions, we define u(z, X(7)) and o;(¢, X(#)) as functionals of the
Markov chain X(?), i.e.,

Y 0
(8, X(2)) = Z e Lix=ip, o8, X(1)) = Z U;(j Lixay=iys (2.3)
i=1 i=1

where i, 0';;,- are constants, and I}, is the indicator function.
Let w(t) = (m(?),...,m,(¢))" denote the bank’s allocation in risky assets at time ¢. The wealth
process W(?) is governed by the following stochastic differential equation

dW () = r(W(@) — 17 (6))dt + u(t, X)) m(t)dt + n(£) "o (¢, X(1)) dB(2), 2.4)
where u(t, X(1)) = (u1 (¢, X(2)), . .., u,(t, X()))", and
ont, X@) - o X))
o(t, X)) = : .. : - (2.5)
o, X(@) - ot X(1))

Assume the total value of the bank’s non-performing loan pool is normalized to one. Over the finite
horizon [0, T'], the bank undertakes collection efforts; if unsuccessful, it may liquidate borrower assets
via legal proceedings, after which further collection ceases.

Distinct from standard loans, NPL repayments feature both stochastic timing and amounts. Let
7, denote the /-th repayment time and Y, the associated repayment amount of borrower k for k =
1,2,---, K. Specifically, 7y is the /-th jump time of a Cox process Ny(f) with intensity A;(¢, X(¢)). This
means that we start with a standard Poisson process N;(f) independent of A;(¢, X(#)) and construct N(z)
by

Ni(®) = Ne(A(D),  Ay(t) = [) A(s, X(s)) ds. (2.6)
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Therefore, the [-th repayment time 7;; from borrower k can be characterized as
T = inf{t > 0 : N (1) > 1).
Assumption 2.1. The Poisson processes Ni(t), N»(t), - - - , Nx(t) are independent.

Using Assumption 2.1, the Cox processes N;(f), No(f), - - - , Nk () are independent given FX.

Remark 2.1. The repayment intensity refers to the number of repayment events occurring per unit of
time. In real-world economic activities, repayment counts exhibit additivity. To align the model with
empirical observations, it is necessary to assume that Assumption 2.1 holds, thereby ensuring that the
repayment intensity within the model also satisfies the additive property.

Considering that the repayment times and amounts are influenced by changes in macroeconomic
conditions, we define the repayment intensity A,(z, X(#)) as a functional of the Markov chain X(¢), i.e.,

Qo
6 X(0) = D Ailixo=y fork = 1,2, K, 2.7)

i=1

where A;; is a non-negative constant. This implies that the repayment intensity varies across different
macroeconomic states.

Similarly, let fi(y,t, X(¢)) denote the probability density of the non-negative repayment Y,(?),
defined as

0
RO 6X0) = D fuil) ey fork = 1,2, K, (2.8)
i=1

where f ;(y) 1s the density in state i. Then, the cumulative cash flow from borrower k up to time ¢ is
dLi(2) = Yy () AN(2). (2.9)

Conditional on ¥7, the jump size Y,(¢) (with density fi.(y,t, X(#))) is independent of L, (1—), Li(T) —
Li(1), and of Ny(7).

Thus, the accumulated cash flow L() that the bank receives from all borrowers in the pool at time #
is

K
dL() = D Ye(t) dNy(2). (2.10)
k=1
{L(t)}o<:<r and the wealth process {W(#)}o<<r are assumed conditionally independent given 7:TX .

By the property of conditional independence and identical distribution, following [15, pp.44-45],
we can rewrite the process L(¢) in Eq (2.10) as a compound Cox process, as stated in Lemma 2.1.

Lemma 2.1. The cash flow L(t) that the bank receives from all borrowers at time t can be rewritten as
dL(t) = Y(r) AN(1), (2.11)

where N(t) is a Cox process with intensity process A(t, X(t)) = Zl.Qzl Ai Lix@y=iy and A; = Z,le Ao The
density function of Y(t) is f(y, 1, X(t)) = 2.2, £ Lixe=y with f(y) = YK, %fk,i(y)-
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Assume the bank has exponential utility
Uw)=—-e"

with the absolute risk aversion coefficient y > 0.

The bank securitizes a proportion 0 < u < 1 of NPLs and sells them, so that v = 1 — u is retained.
Let p“(¢) denote the indifference value at time 7. The bank receives fraction v of cumulative cash flow
L(T), with initial wealth W(r) = w + p“(f) evolving as in Eq (2.4). The maximal expected utility is

Vi, w+ p“(1),Li;v)

= sup E[U(W(T) + VIIL(T))) | W) = w + p"(t), L(t) = L, X(1) = i], (2.12)
neA

where I[1(L(T)) is the present value of the cumulative cash flow L(T") collected from non-performing
loan borrowers.

If the bank does not securitize, its wealth process starts at W(¢) = w and is governed by Eq (2.4).
Then, the bank’s maximum expected utility is given by

V(t,w,1,i;1) = sup B [UW(T) + TI(T))) | W(t) = w, L(t) = L, X(®) = i]. (2.13)
neA

From the principle of indifference valuation, the indifference price p“(¢) of the non-performing
loan-backed securities satisfies

V(t,w+ p"(0), L, i5v) = V(t,w, 1,05 1). (2.14)
3. Analytical results

In this section, we present an analytical solution for the indifference price p“(¢) in Eq (2.14). Define
g(l;v) = vII(l), and consider

Vt,w, 1, i:v) = sup E[UW(T) + g(L(T): ) | W) = w, L(t) = 1, X(£) = i] . 3.1)
neEA

Theorem 3.1. Suppose g(l;v) is bounded. For any (t,w,[,i) € [0,T] X R X R x D,

V(. Lizv) = —e " e ATDE [ 7DD | 1) = X (1) = i]. (3.2)

, 2 , . . . ,
_ 1 _
where B; = a (o)) @i — 5 X (((f;)T((n(r?) 1a,~) v =W == o = (0,0 )T
and o; = (O_;Cj)nxm-

Proof. To find the value function Eq (3.1), we solve the Hamilton-Jacobi-Bellman equation:

sup {Vt (t,w,Li;v) + [rw + Z 7Tk(/.l;; — r)) V.(t,w, L i;v)

nmeA =1
m

J=1

+

N =

" 2 0
(Z ﬂkaj;‘,] Vi, w, L3 v) + Z a;;V({t,w, 1, j;v)
k=1 Jj=1
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+ AE[VE,w, I+ Y(@®),i;v)—V(t,w, 1, i;v)] } =0,

subject to
V(T w,1,i;v) = —e 780,
Conjecture that
V(t,w,Li;v) = —e " Oh(t,1,i;v),
with the boundary condition
A(T) = 1 and I(T, 1, i;v) = 7.

Substituting Eq (3.5) into Eq (3.3) yields

sup {7At(t)h(t, Li;viw=h(t,1,i;v) + [rw + Z nk(y}; - r)] vyA(h(t,1,i;v)

neA =1

m n 2 0]
1 ‘
-3 > (§ nkO';(j] VA (O, 1,5 v) -
j=1 \ik=1 )

— A foo (h(t, 1+ y,i;v) — h(t,1,i;v)) fi(Y)d)’} =0.
0

Clijh(l, l j; V)

J

Differentiating Eq (3.7) with respect to &, we have

(oo

0=

Substituting Eq (3.8) into Eq (3.7) yields
yA(Oh(t, L i vIw — h(t, 1, i;v) + rwyAOh(t, 1, i;v) + Bih(t, L, i;v)

Q o0
= > ahte, L jiv) - A f (h(t, L+ 3, i59) = (e, 1,5 v)) fiy)dy =0,
0

J=1

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

‘ 2 . S .
— 1 i - . ) 1
where §; = &/ (0;07]") la; — 3 ;”:1 ((a'j)T(a',-a'iT) la/i) with a"j = (0'1j,o-2j, “ee ,o-j”.)T. From Eq (3.9),

we have
vA, (O, L, i;v)w + rwyA(t)h(t, 1, i;v) =0,

and

= (e, L isv) + Bi(t, L izv) = > aijh(t, 1, ji v)

0
J=1

(3.10)
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-4 f:o (h(t, 1+ y,i;v) — h(t,1,i;v)) fi(y)dy = 0. (3.11)
It follows from Eq (3.10) and the boundary condition in Eq (3.6) that we obtain
A =T, (3.12)
By the It0 lemma, we have

WT, L(T), X(T);v) — 0T Dt L(r), X(1); v)

T Q Y
= f D axc TV (s, L(s), X(s); v)ds + f D PO I(s, L(s), X(s);v)AMs, )
t roj=1

=

T T
- f Bxe@ " Vh(s, L(s), X(s); v)ds + f T In(s, L(s), X(s); v)ds
+ PO (s, L(s=) + AL(s), X(5); v) = h(s, L(s=), X(s); V). (3.13)

t<s<T

where M(s, j) is a martingale. Due to Eq (3.11), Eq (3.13) can be rewritten as

T, L(T), X(T);v)

7 Q0
=P 0T-Dpt L(1), X(£); v) + f Z 0T, L(s), X(s); v)AM(s, j)
t j=1

T 00
_ f f D@7 (s, L(s=) + y, Xy 1) — h(s, L(s=), X(8); 1)) fio()clydls
t 0

+ > POT (h(s, Lis=) + AL(s), X(5);v) = h(s, L(s=), X(5); V). (3.14)

t<s<T

Taking the expectation on both sides and then applying Eq (3.6), we obtain

AT, 1, i;v) =E [W(T, L(T), X(T); v)|L(t) = 1, X(¢) = i]

=E [ MWL) = 1,X(0) = i]. (3.15)

Therefore,
Wt Lisv) = e PTVR e EDVILe) = 1,X(1) = . (3.16)
From Egs (3.5) and (3.16), we get Eq (3.2). O

Thus, from Eqs (2.12) and (2.13) and Theorem 3.1, the indifference price depends on
@lt, 1 i;v) 2 B e U | L) = 1,X(r) = i, (3.17)

where
T T 0o
II(L(T)) = f eIV dL(s) = f f "7 x Ny, (ds x dx), (3.18)
0 0 0
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and Nx(dt X dx) is a Poisson random measure with intensity Ay fx)(dx) dz.
To obtain analytical results for Eq (3.17), we consider a two-state Markov chain for X(7),
representing expansion and contraction, with transition matrix

A= (_“1 & ) (3.19)

To calculate the conditional expectation of Eq (3.17), we introduce the occupation times of the
Markov chain X(#). The occupation time of the Markov chain X(¢) at state i in interval [0, ] is defined
as

t
0;(r) = f I{X(s)=“ds, i=1,2.
0
Following from [16], the density function of occupation time O;(t) is

Li(t, x) =e7415,(x) + e ¥ @A~ [ailo (2 a;a;x(t — x))

al-ajx . .
+ ; I (2 a;a;x(t — x)) , a=a+a, i #je{l,2}, (3.20)
—X

where 1,(z), z > 0 is the modified Bessel function of the first kind

2k+,
L@ = ) ’

kZ:;Jk!F(k+p+1) 2

Theorem 3.2. For the two-state Markov chain, the conditional expectation in Eq (3.17) is given by

r(T—1)

o(t,Lisv) = e Tyt iy y), (3.21)
where
T—t I+1 00 T—$)
Wt l, i;v):f exp{f f [e7 = 1]A; fi(x)dxds
0 t 0
T ) o)
+ f f [e '°X—1]ajfj(x)dxds}g,-(T—t,tl)dtl. (3.22)
t+t; JO

Proof. By the tower property of conditional expectation, we first write

T 00
ot,1,isv) = B [exp {_w (W-n . f f T XNy (ds X dx))} L = 1.x0 = z]
t 0

T 00
= g [E [exP {—)’V f f " T Ny (ds X dx)}
t 0

Following Proposition 3.6 in [17], we obtain

T 00
E [exp {—yv f f e’(T_“')xNX(x)(ds X dx)} 'TTX ]
¢ Jo
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T 00
=exp { f f (e = 1) Ay fX(s)(x)dxds} : (3.24)
t 0

Next, the distribution of the time spent in each regime is characterized by the occupation time
density (-, -) in Eq (3.20). Thus, by integrating over all possible occupation times #; in state i during

[7,T],
T ) .
E [exp {f f (e_m'( - l)ﬂX(s)fX(s)(x)dXdS} ‘X(f) = i]
0
T—t t I+1] 00 T—s)
:f exp{f f (e_we - 1)zl,-f,-(x)dxds
0 t 0
T 00 P
+ f fo (e 1) f,-(x)dxds}g,-(T — 1, 1y)d1,. (3.25)
1+
Combining Egs (3.23)—(3.25) yields Eq (3.21). O

Remark 3.1. Note that before Theorem 3.2, without loss of generality, we assume that the Markov
chain only has two states. When the Markov chain has more than two states, we cannot obtain the
closed-form expressions of the density function of occupation time in the literature, which makes it
very difficult to derive the analytic expressions of ¢(t,1,i;v).

Theorem 3.3. For the two-state Markov chain, the indifference price of the NPL-backed securities is

Yt i 1))

AR (3.26)

1
Pt =1 —-v)l——e"0 ln(
4

where Y(t,1,i;v) is given by Eq (3.22).
Proof. Applying Theorem 3.2 and plugging the related expectations into the price formula, we have

1
U = — 2 T-D]
P =-je n(so(t,l,i;v)

Direct substitution and simplification yield Eq (3.26). O

Remark 3.2. The parameter u can be interpreted as the proportion of cash flow sold in the senior
tranche. When considering the risk and return characteristics of different tranches, certain results can
be derived from the perspective of fair premium pricing. However, under the utility-based framework
of indifference pricing, some technical challenges remain unresolved.

4. Numerical results

In this section, we assume that the repayment amount Y(#) follows an exponential distribution, with
density

fiy) = Bie ™
fory > 0.

AIMS Mathematics Volume 10, Issue 10, 23394-23410.



23403

To demonstrate the theoretical findings, we perform numerical simulations using a representative
parameter configuration, as summarized in Table 1. For simplicity, the non-performing loans in the
pool are treated as a single aggregate entity. The parameter values presented in Table 1 indicate that
A1 < A, B1 > Bo, and a; > a,. Here, State 1 corresponds to a contraction regime, whereas State 2
represents an expansion regime.

Table 1. The economic meaning of the model parameters.

Parameters Value Economic meaning

r 0.02  the risk-free rate

T 3 investment horizon

9% 3 the absolute aversion coefficient of the bank

A4 0.3 0.3A(?) repayment events occurred during the time interval (7,7 + A(¢)) in regime 1
A> 0.5 0.5A(#) repayment events occurred during the time interval (z, ¢ + A(¢)) in regime 2
Bi 10 the reciprocal of the expected repayment amounts in regime 1

B2 8 the reciprocal of the expected repayment amounts in regime 2

a; 0.6 the reciprocal of the average sojourn time in regime 1

a 0.3 the reciprocal of the average sojourn time in regime 2

Remark 4.1. If sufficient data on non-performing loan recoveries are available, specifically the
amounts recovered at the end of each year, the parameter estimates can be obtained using maximum
likelihood estimation. The detailed parameter estimation methodology is presented in the appendix.

Figures 1-3 illustrate the relationships between the securitization proportion u# and the unit
indifference price p*/u under different model parameters and economic regimes. Across all scenarios,
the indifference price increases with u, indicating that a higher securitization proportion leads to a
higher price. Moreover, for a given u, the indifference price is consistently higher in the expansion
regime than in the contraction regime, suggesting that banks can achieve better prices for NPL-backed
securities during periods of economic growth.

Figures 1-3 show that the unit indifference price p“/u is an increasing function of the securitization
ratio . This indicates that as the proportion of assets sold increases, the bank demands a higher unit
indifference price. The bank is willing to discount its riskiest assets but insists on maintaining the
original price for the portion of assets that already carries low risk. Initially, when selling the first
unit, the bank’s primary objective is to rapidly reduce risk, making price a secondary consideration.
The bank is inclined to accept a price as long as it covers the expected value and provides slight
compensation. However, by the time the last units are sold, risk mitigation is no longer the primary
concern. The bank’s main goal shifts to profit maximization and it is no longer willing to accept a
discount for risk reduction. Instead, it requires the buyer to pay a price close to the full expected
value of the asset. This phenomenon occurs because securitization represents a transition from a high-
risk to a low-risk state. As more units are sold, the risk profile of the remaining assets improves.
Consequently, the bank’s valuation of these remaining assets approaches their full expected value,
which naturally leads to a higher unit price.

Figure 1 shows that, holding u fixed, the indifference price decreases as the absolute risk aversion
coefficient y increases. This reflects the fact that more risk-averse banks are willing to sell at lower
prices. This is because risk-averse banks prioritize the safety of assets over potential returns. Thus,
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according to expected utility theory, a bank seeking to rapidly reduce risk exposure is willing to accept
a lower price in exchange for certainty.

=3 1 014

=7 E 013}

042 o 012} S

omE q 011+

(a) X(0) = 1. (b) X(0) = 2.
Figure 1. The relationships between proportion u of securitization and the unit indifference
price p“/u for different absolute risk aversion coefficients .

Figure 2 demonstrates that the indifference price increases with the repayment intensity A; as
borrowers repay more frequently, the expected cash flows rise, leading to higher security prices. In
contrast, Figure 3 reveals that the indifference price declines as S increases, since a higher
corresponds to smaller expected repayment amounts, thereby reducing the value of the securitized
NPLs. An improvement in repayment ability increases the amount and certainty of expected cash
flows, thereby driving the indifference price of the security higher. The price of a non-performing
loan-backed security is fundamentally determined by the quality of its underlying non-performing
loans. An enhancement in borrowers’ repayment ability directly leads to an improvement in the
overall credit quality of the asset pool; what was once an asset “likely to incur losses” transforms into
one with the potential to recover a significant portion. As asset quality improves, the security becomes
more attractive to investors. This increased demand further pushes its indifference price upward.

—,=0.10,1,=0.20 —3,=0.10,1,=0.20
018} 2,=0.30,1,=0.40 g 018} 2,=0.30,1,=0.40
— — 1,=0.50,),=0.60 — — 1,=0.50,),=0.60
016} ,=0.70,1,=0.80 ] 0161 2,=0.70,1,=0.80

(a) X(0) = 1. (b) X(0) = 2.
Figure 2. The relationships between proportion u of securitization and the unit indifference
price p“/u for different repayment intensities 4; and A,.
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o o1r A
0.09 - - -7
- 01F _— -
0.08F -7 R -7
0.07 1 008k ————~
0.06 -
0.05 . . . . . . . . . 0.06
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
(a) X(0) =1. (b) X(0) = 2.

Figure 3. The relationships between proportion u of securitization and the unit indifference
price p"/u for different parameters 8, and 3.

5. Conclusions

This paper presents a unified valuation framework for NPL-backed securities in the presence of
regime-switching macroeconomic conditions. By modeling the random payment times of NPLs with
a Cox process featuring regime-dependent intensities, and adopting an exponential utility-based
indifference pricing approach, we are able to accommodate both market incompleteness and investor
risk preferences. Closed-form solutions for the indifference price are derived under a two-regime
Markov chain representing expansion and contraction states. Numerical experiments reveal several
key insights: the indifference price increases with the securitization proportion and repayment
intensity, but decreases with higher risk aversion and larger repayment scale parameters. Moreover,
prices are consistently higher during economic expansion than contraction, highlighting the
importance of macroeconomic dynamics in NPL valuation. These results provide a practical reference
for both banks and investors in structuring and pricing NPL transactions under uncertainty.
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Supplementary

Parameters estimation methodology

Let 0 be the vector of parameters. Without loss of generality, following [18], we assume that the
initial state X(0) of the Markov chain has a stationary distribution

a ai

P(X(0)=1) =

dP(X(0)=2) = .
a +ap an ( () ) a +a

(S.1)

Proposition S.1. Assume that X(s) = i for 0 < s < t, the density function of L(t) can be represented as

/lfxl‘le‘”"x A A2)!

I'(J) l!

flit6)= ) (S.2)

=1
where i = 1,2.

Proof. For sufficiently small £ such that x < L(r) < x + h, we have

P,(x<L(t)<x+h;60)
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( ZYm<x+h,N(t):l;0]

i
=0
l

P,-(x< ZYm <
1 m=0

fx+h /lfSl_le_/lis q y (/lit)l
—dse " ———.
i () I

M HMg

= l] P, (N(t) = L. 0)
[

l

1l
—

Dividing by & and taking 7 — 0, we obtain the density function of L(¢) in Eq (S.2)
Denote by
dLi(1) = Yi()dN(1),
where N;(?) is a Poisson process with parameter A;, and the density function of Y; is fi(y).
Lemma S.1. Given O;(t) = s for 0 < s < t, the process L(t) can be written as
L(t) = Li(s) + Lj(t — 5),

where i, j= 1,2 andi # j.

(S.3)

(S4)

(S.5)

Proof. Given O,(t) = s for 0 < s < t, from the additivity, the stationary increments property, and the
independent increments property of the Poisson processes, L(f) can be written as Eq (S.5) by summing

up the jumps in each state.

O

Proposition S.2. Given O;(t) = s for 0 < s < t, the density function of L(t) can be represented as

x/lll l-1 —xi,y/l (x — y)lle it

f(x;i, 5,1,0) = ZZf i i dy

=1 h=1
(1 — I
X e_m—(/l"s) e—ﬁj(f—ﬂw’
I! L!

where i, j= 1,2 and i # j.

Proof. Taking sufficiently small 4 such that x < L(f) < x + h, from Lemma S.1, we have

P;(x < L(t) < x+ h;0(0:(1) = 5)

x P, (N,-(s) =11, N(t - 5) = L: 6]0:(1) = s)

x+h  px+h—y /lll h=1p=diy /12 h=1p-1;z
dzd
f f T, T(L) Y

y e—/lis(/lis) -t A~ S))lz‘
! !

Dividing by 4 and taking 7 — 0, we obtain the density function of L(¢) in Eq (S.6)

< Li(s) + Li(t — 5) < x + h; 0|0:(t) = s, N(s)—ll,N(t—s)—lz)

[C o)

—_

b

(S.6)

(S.7)

O
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We denote by M(¢) the number of state transitions up to time #. From [19, p.283], M(¢) is a Poisson
process with parameter a = a; + a,. Thus,

—daj(a)" _,

P, (X(1) = j, M() = n) = — =

(S.8)

From [19, pp.285-286], given X(¢) = i and M(t) = n, the conditional distribution of occupation time
can be represented as

Pi(n, s, t,i) = P(O;(t) < s|X(®) =i, M(t) = n, X(0) =)
R I RO

and given X(¢) = jand M(t) = n, where j # i, the conditional distribution of occupation time can be
represented as

Pin, 5,1, j) = P(OI(D) < sIX(8) = j, M(t) = n, X(0) = i)
B n—1\(a;\*! ja;\"*
Z( )( ) (a) Clk.n, 5.1) (S.10)

where
Ck,n, s, 1) Z(")(S)j(l s)n_j O<s<t
s, S, = . - - = 5 N
‘= JJ\t t
for i, j = 1,2. It is easy to see that
OPi(n, s,t,10) n—1 ( )" 2 (ai )""‘“
- 4 CS k’ b ,t 9
Os kzz;(k 2) a (k.. 5,1)
and
0P;(n, s, t, ) ~ (n—1 (aj)k l(al)” k
— e = CS k’ 9 ’t b
os kzz;(k— 1) a k., 5,1)

where

0C(k,n, s, 1) = (n) (s s\"J7l jt —ns
ST CTU TT R s EE
Js ,Z:,:‘ jI\t t 2

To simplify the expression, for 0 < s < ¢, we define

O,(s,t, j) = ZP(X(I) = j,M(t) = n|X(0) = 1) P(n s, t, J), (S.11)

n=2
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where the right hand side has two cases, one for i # j and the other for i = j. Suppose there are
observed values Ly, L, - - , Ly. From [20, 21], the likelihood function of the model parameters can be
written as

H 2
L6) = | D (¢ (Lo Xk + DAD = i 01X (kA1) = i)

k=0 i=1
+f (L, X((k + DA = j; 01X (kA1) = i)) P(X(kAt) = D)},

where
f (L, X((k + 1)Ar) = 1; 01X (kAr) = i)
At
:e‘“"A’f (L i, At, 0) + f(Ly; i, s, At, 0)0;(s, At, i)ds (S.12)
0
and
At
S (L, X((k + DA = j; 01X (kAr) = i) = Sy i, 5,At,0)0,(s, At, j)ds, (S.13)
0

where i, j = 1,2 and i # j. The maximum likelihood estimation is to find the estimated values 8" of
model parameters that maximize the likelihood of occurrence of the observed data, which is

0" = argmax/L(0). (S.14)
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