
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(8): 21799–21815.
DOI: 10.3934/math.20241060
Received: 22 May 2024
Revised: 28 June 2024
Accepted: 02 July 2024
Published: 09 July 2024

Research article

Yabu’s formulae for hypergeometric 3F2-series through Whipple’s
quadratic transformations

Marta Na Chen1 and Wenchang Chu2,*

1 School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, China;
chennamarta@zknu.edu.cn

2 Via Dalmazio Birago 9/E, Lecce 73100, Italy

* Correspondence: Email: hypergeometricx@outlook.com, chu.wenchang@unisalento.it.

Abstract: By means of Whipple’s quadratic transformations, two classes of hypergeometric 3F2-series
are expressed in terms of the Lerch transcendent function. Several difficult series with a free variable
are explicitly evaluated in closed form, including Yabu’s three remarkable identities.

Keywords: hypergeometric series; Whipple’s quadratic transformations; the Lerch transcendent
function
Mathematics Subject Classification: Primary 33C20, Secondary 33C90

1. Introduction and outline

Denote by Z and N, respectively, the sets of integers and natural numbers. For an indeterminate x,
define the rising factorials by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for n ∈ N.

According to Bailey [3, §2.1], the classical hypergeometric series, for m ∈ N and an indeterminate z,
reads as

1+mFm

[
a0, a1, · · · , am

b1, · · · , bm

∣∣∣∣z] =

∞∑
k=0

(a0)k(a1)k · · · (am)k

k! (b1)k · · · (bm)k
zk.

When |z| < 1 and none of the numerator and denominator parameters results in a non-positive integer,
the corresponding series is not only convergent, but also well-defined and nonterminating.

There exist numerous hypergeometric series identities in the literature (see [4, Chapter 8] and [6,7]).
Recently, algebraic expressions for certain classes of 3F2-series arose much attention (see [1, 2, 5]). In
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particular, Yabu [9] succeeded in evaluating explicitly the following series with a free variable x in
terms of the logarithmic function:

3F2

1, 1, 1
2

4
3 ,

5
3

∣∣∣∣x , 3F2

1, 1, 1
2

5
4 ,

7
4

∣∣∣∣x , 3F2

1, 1, 1
2

7
6 ,

11
6

∣∣∣∣x .
The formulae for these series are remarkable, since it is rare that a hypergeometric series of higher
order beyond Gauss’ classical 2F1-series with a free variable turns into a closed algebraic expression.
Motivated by Yabu’s formulae, we shall investigate two general classes of the 3F2-series as below:

F (m, λ, y) := 3F2

 1, m
2 ,

1+m
2

1 + λ, 1 + m − λ

∣∣∣∣y ,
G(m, λ, y) := 3F2

 1, 1+m
2 , 1 + m

2
1 + λ, 1 + m − λ

∣∣∣∣y ,
where λ ∈ (0, 1) and m ∈ N, with y being a free variable subject to |y| < 1 such that the series are
convergent. Instead of algebraic-geometric approach employed in [1, 2, 9], we find that the quadratic
transformations due to Whipple [8] (cf. Bailey [3, page 97]) are more efficient. To facilitate their
subsequent use, they are reproduced as follows:

3F2

[ a
2 ,

1+a
2 , 1 + a − b − c

1 + a − b, 1 + a − c

∣∣∣∣y] = (1 − x)a
3F2

[
a, b, c

1 + a − b, 1 + a − c

∣∣∣∣x] , (1)

3F2

[ 1+a
2 , 1 + a

2 , 1 + a − b − c
1 + a − b, 1 + a − c

∣∣∣∣y] =
(1 − x)1+a

1 + x 4F3

[
a, 1 + a

2 , b, c
a
2 , 1 + a − b, 1 + a − c

∣∣∣∣x] , (2)

where the two variables are related by equations

y =
−4x

(1 − x)2 
 x =
(1 −

√
1 − y)2

−y
, (3)

with the domain y ∈ (−1, 1) and the codomain x ∈ (−1, 3 − 2
√

2), respectively.
In the next section, we shall first reformulate F (m, λ, y) by means of (1) and then evaluate the

resulting series by the Lerch transcendent function. Then, in Section 3, the series G(m, λ, y) will be
treated analogously via the second quadratic transformation (2). The two main theorems (Theorems 1
and 2) state that the series F (m, λ, y) (also G(m, λ, y)) results in a two-term linear combination of the
Lerch transcendent function plus a remainder polynomial. Finally, the paper will end in Section 4,
where several difficult series are explicitly evaluated in closed form as applications. Compared with
the algebraic method adopted by Yabu [9], the authors believe that the approach presented in this paper
is simpler and more accessible.

2. Evaluation of series F (m, λ, y)

In Whipple’s first transformation (1), by specifying the parameters

a = m, c = λ, b = a − c,
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we can reformulate the series F (m, λ, y) as

3F2

 1, m
2 ,

1+m
2

1 + λ, 1 + m − λ

∣∣∣∣y = (1 − x)m
3F2

 m, λ, m − λ

1 + λ, 1 + m − λ

∣∣∣∣x . (4)

The rightmost 3F2(x)-series can be explicitly expressed as

3F2

 m, λ, m − λ

1 + λ, 1 + m − λ

∣∣∣∣x =
λ(m − λ)
(m − 1)!

∞∑
n=0

(n + 1)m−1xn

(n + λ)(n + m − λ)
. (5)

Keeping in mind that λ ∈ (0, 1) and m ∈ N, it suffices to examine the case “m , 2λ”. Otherwise, the
only case exists for “m = 2λ = 1”, in which we have a simpler series

3F2

1, 1, 1
2

3
2 ,

3
2

∣∣∣∣y =(1 − x) × 3F2

1, 1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣x
=

∞∑
n=0

(1 − x)xn

(2n + 1)2 =
1 − x

4
Φ
(
x, 2,

1
2

)
,

where Φ(· · · ) stands for the Lerch transcendent function:

Φ(z, σ, α) =

∞∑
n=0

zn

(n + α)σ
, for |z| < 1, <(σ) > 0 and α < Z\N.

Now rewrite the rational function by

R(n) =
(n + 1)m−1

(n + λ)(n + m − λ)
=

(n + 1)m−1

m − 2λ

{
1

n + λ
−

1
n + m − λ

}
. (6)

According to the Chu-Vandermonde convolution formula

(n + 1)m−1 =

m∑
i=1

(
m − 1
i − 1

)
(n + λ)i−1(1 − λ)m−i

=

m∑
i=1

(
m − 1
i − 1

)
(n + m − λ)i−1(1 − m + λ)m−i,

we can express

R(n) =
1

m − 2λ

{
(1 − λ)m−1

n + λ
+

m∑
i=2

(
m − 1
i − 1

)
(1 + n + λ)i−2(1 − λ)m−i

−
(1 − m + λ)m−1

n + m − λ
−

m∑
i=2

(
m − 1
i − 1

)
(1 + n + m − λ)i−2(1 − m + λ)m−i

}
.

Rewrite further the shifted factorials
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(1 + n + λ)i−2 =

i∑
k=2

(
i − 2
k − 2

)
(n + 1)k−2(λ)i−k,

(1 + n + m − λ)i−2 =

i∑
k=2

(
i − 2
k − 2

)
(n + 1)k−2(m − λ)i−k,

and then making substitutions, we can manipulate the double series

3F2

 m, λ, m − λ

1 + λ, 1 + m − λ

∣∣∣∣x =
λ(m − λ)
(m − 1)!

∞∑
n=0

R(n)xn

=
λ(m − λ)

(m − 1)!(m − 2λ)

∞∑
n=0

{
(1 − λ)m−1

n + λ
xn −

(1 − m + λ)m−1

n + m − λ
xn

}

+
λ(m − λ)

(m − 1)!(m − 2λ)

∞∑
n=0

xn
m∑

i=2

(
m − 1
i − 1

)
(1 − λ)m−i

i∑
k=2

(
i − 2
k − 2

)
(n + 1)k−2(λ)i−k

−
λ(m − λ)

(m − 1)!(m − 2λ)

∞∑
n=0

xn
m∑

i=2

(
m − 1
i − 1

)
(1 − m + λ)m−i

i∑
k=2

(
i − 2
k − 2

)
(n + 1)k−2(m − λ)i−k.

• The sum in the first line results in

λ(1 − λ)m

(m − 1)!(m − 2λ)
Φ(x, 1, λ) −

(m − λ)(1 − m + λ)m

(m − 1)!(m − 2λ)
Φ(x, 1,m − λ).

• The double sum in the middle line can be simplified into a finite sum

λ(m − λ)
m − 2λ

m∑
i=2

(
m − i − λ

m − i

) i∑
k=2

(−1)i−k

(
−λ

i − k

) ∞∑
n=0

xn

i − 1

(
n + k − 2

k − 2

)

=
λ(m − λ)
m − 2λ

m∑
i=2

i∑
k=2

(−1)i−k

(
m − i − λ

m − i

)(
−λ

i − k

)
(1 − x)1−k

i − 1
.

• The double sum in the ultimate line can be reduced analogously to a finite sum

λ(m − λ)
m − 2λ

m∑
i=2

(
λ − i
m − i

) i∑
k=2

(−1)i−k

(
λ − m
i − k

) ∞∑
n=0

xn

i − 1

(
n + k − 2

k − 2

)

=
λ(m − λ)
m − 2λ

m∑
i=2

i∑
k=2

(−1)i−k

(
λ − i
m − i

)(
λ − m
i − k

)
(1 − x)1−k

i − 1
.

Summing up, we have established the following theorem:

Theorem 1 (m , 2λ). For two variables x and y related by (3), we have
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3F2

 1, m
2 ,

1+m
2

1 + λ, 1 + m − λ

∣∣∣∣y = (1 − x)m
3F2

 m, λ, m − λ

1 + λ, 1 + m − λ

∣∣∣∣x
= (1 − x)m∆(m, λ; x) +

λ(1 − λ)m

(m − 1)!(m − 2λ)
(1 − x)mΦ(x, 1, λ)

−
(m − λ)(1 − m + λ)m

(m − 1)!(m − 2λ)
(1 − x)mΦ(x, 1,m − λ),

where the remainder term is given by two finite sums

∆(m, λ; x) =
λ(m − λ)
m − 2λ

m∑
i=2

i∑
k=2

(−1)i−k

(
m − i − λ

m − i

)(
−λ

i − k

)
(1 − x)1−k

i − 1

−
λ(m − λ)
m − 2λ

m∑
i=2

i∑
k=2

(−1)i−k

(
λ − i
m − i

)(
λ − m
i − k

)
(1 − x)1−k

i − 1
.

3. Evaluation of series G(m, λ, y)

Alternatively, by specifying the parameters in Whipple’s second transformation (2)

a = m, c = λ, b = a − c,

we can transform the series G(m, λ, y) as

3F2

 1, 1+m
2 , 1 + m

2

1 + λ, 1 + m − λ

∣∣∣∣y =
(1 − x)m+1

1 + x 4F3

m, 1 + m
2 , λ, m − λ

m
2 , 1 + λ, 1 + m − λ

∣∣∣∣x . (7)

The 4F3(x)-series on the right can be explicitly restated as

4F3

m, 1 + m
2 , λ, m − λ

m
2 , 1 + λ, 1 + m − λ

∣∣∣∣x =
λ(m − λ)

m!

∞∑
n=0

(n + 1)m−1(m + 2n)
(n + λ)(n + m − λ)

xn. (8)

Analogously, the only series with “m = 2λ = 1” is the following reduced one:

2F1

1, 1
3
2

∣∣∣∣y =
(1 − x)2

1 + x
× 2F1

1, 1
2
3
2

∣∣∣∣x =
(1 − x)2arctanh

√
x

(1 + x)
√

x
.

Let R(n) be a rational function subject to with “m , 2λ”

R(n) :=
(n + 1)m−1(n + m

2 )
(n + λ)(n + m − λ)

=
(n + 1)m−1

2

{
1

n + λ
+

1
n + m − λ

}
.

Observe that the aboveR(n) resembles almost identically that R(n) in (6) under replacements “m−2λ→
2” for denominator factors and “− → +” inside braces “{· · · }”. By applying the same procedure used
to prove Theorem 1, we derive the formula presented in the following theorem.
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Theorem 2 (m , 2λ). For two variables x and y related by (3), we have

3F2

 1, 1+m
2 , 1 + m

2

1 + λ, 1 + m − λ

∣∣∣∣y =
(1 − x)m+1

1 + x 4F3

m, 1 + m
2 , λ, m − λ

m
2 , 1 + λ, 1 + m − λ

∣∣∣∣x
=

(1 − x)m+1

1 + x
∇(m, λ; x) +

λ(1 − λ)m

m!
(1 − x)m+1

1 + x
Φ(x, 1, λ)

+
(m − λ)(1 − m + λ)m

m!
(1 − x)m+1

1 + x
Φ(x, 1,m − λ),

where the remainder term is given by two finite sums

∇(m, λ; x) =
λ(m − λ)

m

m∑
i=2

i∑
k=2

(−1)i−k

(
m − i − λ

m − i

)(
−λ

i − k

)
(1 − x)1−k

i − 1

+
λ(m − λ)

m

m∑
i=2

i∑
k=2

(−1)i−k

(
λ − i
m − i

)(
λ − m
i − k

)
(1 − x)1−k

i − 1
.

4. Closed formulae F (m, λ, y) and G(m, λ, y)

According to Theorems 1 and 2, both series F (m, λ, y) and G(m, λ, y) can be expressed in terms of
the Lerch transcendent function Φ(x,m, λ) plus a remainder polynomial. When the involved Φ(x,m, λ)
admit explicit expressions in terms of logarithmic and arctan functions, we then find closed formulae
for the corresponding series F (m, λ, y) and G(m, λ, y).

Throughout this section, x and y are two variables related by (3). For m = 1 and λ ∈ { 13 ,
1
4 ,

1
6 },

we are first going to review three formulae due to Yabu [9]. Then, for m = 1 and irreducible rational
numbers λ = p/q ∈ Q with q ∈ {5, 8, 10, 12}, several closed formulae will be shown in pairs for series
F (1, p/q, y) and G(1, p/q, y). Finally, when m , 1, we shall record a few expressions, as examples, for
F (m, p/q, y) and G(m, p/q, y) in terms of the Lerch transcendent function.

4.1. Review of Yabu’s three formulae

We first review the explicit formulae for three particular 3F2-series in terms of the logarithmic
function, obtained by Yabu in his thesis [9].

• Yabu’s first formula (cf. [9, Theorem 1.4]) can be reproduced as below:

3F2

1, 1, 1
2

4
3 ,

5
3

∣∣∣∣t6

 =
−4i

3
√

3t3

{
A(e

πi
3 t) ln

(
1 +

3t3

2
B(t)

)
+ A(t) ln

(
1 −

3t3

2
B(e

πi
3 t)

)}
,

where

A(t) =
t

(1 +
√

1 − t6)
1
3

−
(1 +

√
1 − t6)

1
3

t
,

B(t) =
t

(1 +
√

1 − t6)
1
3

+
(1 +

√
1 − t6)

1
3

t
.
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By making use of the trisection series (or Mathematica command “FunctionExpand”), we have the
explicit expressions

Φ(x, 1, 1
3 ) =

1
2 3
√

x

{
3 ln

( 3√1 − x
1 − 3
√

x

)
+ 2
√

3 arctan
( √3 3

√
x

2 + 3
√

x

)}
,

Φ(x, 1, 2
3 ) =

1

2
3√

x2

{
3 ln

( 3√1 − x
1 − 3
√

x

)
− 2
√

3 arctan
( √3 3

√
x

2 + 3
√

x

)}
.

According to Theorems 1 and 2, we obtain the following two closed formulae:

F (1, 1
3 , y) = 3F2

1, 1, 1
2

4
3 ,

5
3

∣∣∣∣y =
2
3

(1 − x)
{
Φ(x, 1, 1

3 ) − Φ(x, 1, 2
3 )

}
=

1 − x

3
3√

x2

{
3(1 − 3√x) ln

(1 − 3
√

x
3√1 − x

)
+ 2
√

3(1 +
3√x) arctan

( √3 3
√

x
2 + 3
√

x

)}
,

G(1, 1
3 , y) = 3F2

1, 1, 3
2

4
3 ,

5
3

∣∣∣∣y =
2(1 − x)2

9(1 + x)

{
Φ(x, 1, 1

3 ) + Φ(x, 1, 2
3 )

}
=

(1 − x)2

9
3√

x2

{
3

1 + 3
√

x
1 + x

ln
( 3√1 − x
1 − 3
√

x

)
− 2
√

3
1 − 3
√

x
1 + x

arctan
( √3 3

√
x

2 + 3
√

x

)}
.

Without involving the imaginary root of unity, these expressions have advantages over Yabu’s.

• Yabu’s second formula reads as (see [9, Theorem 1.5])

3F2

1, 1, 1
2

5
4 ,

7
4

∣∣∣∣t4

 = −
3i
√

1 − t2

2t3 ln(
√

1 − t2 − it) −
3
√

1 + t2

2t3 ln(
√

1 + t2 − t).

Recalling Theorems 1 and 2, and then applying two equalities:

Φ(x, 1, 1
4 ) =

1
4
√

x

{
ln

(1 + x
1
4

1 − x
1
4

)
+ 2 arctan

(
x

1
4

)}
,

Φ(x, 1, 3
4 ) =

1
4√

x3

{
ln

(1 + x
1
4

1 − x
1
4

)
− 2 arctan

(
x

1
4

)}
,

we can directly write down two elegant closed formulae:

F (1, 1
4 , y) = 3F2

1, 1, 1
2

5
4 ,

7
4

∣∣∣∣y =
3
8

(1 − x)
{
Φ(x, 1, 1

4 ) − Φ(x, 1, 3
4 )

}
=

3(1 − x)

8
4√

x3

{
(1 −

√
x) ln

(1 − x
1
4

1 + x
1
4

)
+ 2(1 +

√
x)arctan

(
x

1
4

)}
,
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21806

G(1, 1
4 , y) = 3F2

1, 1, 3
2

5
4 ,

7
4

∣∣∣∣y =
3(1 − x)2

16(1 + x)

{
Φ(x, 1, 1

4 ) + Φ(x, 1, 3
4 )

}
=

3(1 − x)2

16
4√

x3

{
1 +
√

x
1 + x

ln
(1 + x

1
4

1 − x
1
4

)
− 2

1 −
√

x
1 + x

arctan
(
x

1
4

)}
.

These formulae look more transparent than Yabu’s formula.

• The third formula due to Yabu [9, Theorem 1.6] is given by

3F2

1, 1, 1
2

7
6 ,

11
6

∣∣∣∣t6

 =
5i

12t3

{
A(e

πi
3 t) ln

(2 −
√

3t3(B(t) − 1)

2 +
√

3t3(B(t) − 1)

)
+A(t) ln

(2 +
√

3t3(B(e
πi
3 t) − 1)

2 −
√

3t3(B(e
πi
3 t) − 1)

)}
,

where

A(t) =
t2

(1 +
√

1 − t6)
2
3

−
(1 +

√
1 − t6)

2
3

t2 ,

B(t) =
t2

(1 +
√

1 − t6)
2
3

+
(1 +

√
1 − t6)

2
3

t2 .

By employing the two explicit expressions:

Φ(x, 1, 1
6 ) =

1
2 6
√

x

{
ln

( (1 −
√

x)(1 + x
1
6 )3

(1 +
√

x)(1 − x
1
6 )3

)
+ 2
√

3 arctan
( √3x

1
6

1 − x
1
3

)}
,

Φ(x, 1, 5
6 ) =

1

2
6√

x5

{
ln

( (1 −
√

x)(1 + x
1
6 )3

(1 +
√

x)(1 − x
1
6 )3

)
− 2
√

3 arctan
( √3x

1
6

1 − x
1
3

)}
,

and then, from Theorems 1 and 2, we derive the following closed formulae:

F (1, 1
6 , y) = 3F2

1, 1, 1
2

7
6 ,

11
6

∣∣∣∣y =
5

24
(1 − x)

{
Φ(x, 1, 1

6 ) − Φ(x, 1, 5
6 )

}
=

5(1 − x)

48
6√

x5

{
(1 − x

2
3 ) ln

( (1 +
√

x)(1 − x
1
6 )3

(1 −
√

x)(1 + x
1
6 )3

)
+ 2
√

3(1 + x
2
3 ) arctan

( √3x
1
6

1 − x
1
3

)}
,

G(1, 1
6 , y) = 3F2

1, 1, 3
2

7
6 ,

11
6

∣∣∣∣y =
5(1 − x)2

36(1 + x)

{
Φ(x, 1, 1

6 ) + Φ(x, 1, 5
6 )

}
=

5(1 − x)2

72
6√

x5

{
1 + x

2
3

1 + x
ln

( (1 −
√

x)(1 + x
1
6 )3

(1 +
√

x)(1 − x
1
6 )3

)
− 2
√

3
1 − x

2
3

1 + x
arctan

( √3x
1
6

1 − x
1
3

)}
.

They look simpler than Yabu’s original formula.

AIMS Mathematics Volume 9, Issue 8, 21799–21815.



21807

4.2. Further closed formulae

By carrying out the same procedure as in §4.1, we can establish further closed formulae for series
F (1, λ, y) and G(1, λ, y).

• F (1, 1
5 , y) and G(1, 1

5 , y). Applying the explicit expressions:

Φ(x, 1, 1
5 ) =

1
4 5
√

x

{
5 ln

( (1 − x)
1
5

1 − x
1
5

)
+ 2

√
10 + 2

√
5 arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5 ln
(2 + (1 +

√
5)x

1
5 + 2x

2
5

2 + (1 −
√

5)x
1
5 + 2x

2
5

)
+ 2

√
10 − 2

√
5 arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

Φ(x, 1, 4
5 ) =

1

4
5√

x4

{
5 ln

( (1 − x)
1
5

1 − x
1
5

)
− 2

√
10 + 2

√
5 arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5 ln
(2 + (1 +

√
5)x

1
5 + 2x

2
5

2 + (1 −
√

5)x
1
5 + 2x

2
5

)
− 2

√
10 − 2

√
5 arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

we derive the following two closed formulae:

F (1, 1
5 , y) = 3F2

1, 1, 1
2

6
5 ,

9
5

∣∣∣∣y =
4

15
(1 − x)

{
Φ(x, 1, 1

5 ) − Φ(x, 1, 4
5 )

}

=
1 − x

15
5√

x4

{
5(1 − x

3
5 ) ln

( 1 − x
1
5

(1 − x)
1
5

)
+ 2

√
10 + 2

√
5(1 + x

3
5 ) arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5(1 − x
3
5 ) ln

(2 + (1 −
√

5)x
1
5 + 2x

2
5

2 + (1 +
√

5)x
1
5 + 2x

2
5

)
+ 2

√
10 − 2

√
5(1 + x

3
5 ) arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

G(1, 1
5 , y) = 3F2

1, 1, 3
2

6
5 ,

9
5

∣∣∣∣y =
4(1 − x)2

25(1 + x)

{
Φ(x, 1, 1

5 ) + Φ(x, 1, 4
5 )

}

=
(1 − x)2

25
5√

x4

{
5

1 + x
3
5

1 + x
ln

( (1 − x)
1
5

1 − x
1
5

)
− 2

√
10 + 2

√
5

1 − x
3
5

1 + x
arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5
1 + x

3
5

1 + x
ln

(2 + (1 +
√

5)x
1
5 + 2x

2
5

2 + (1 −
√

5)x
1
5 + 2x

2
5

)
− 2

√
10 − 2

√
5

1 − x
3
5

1 + x
arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
.

• F (1, 2
5 , y) and G(1, 2

5 , y). By employing the two equalities:

Φ(x, 1, 2
5 ) =

1

4
5√

x2

{
5 ln

( (1 − x)
1
5

1 − x
1
5

)
+ 2

√
10 − 2

√
5 arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)
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+
√

5 ln
(2 + (1 −

√
5)x

1
5 + 2x

2
5

2 + (1 +
√

5)x
1
5 + 2x

2
5

)
− 2

√
10 + 2

√
5 arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

Φ(x, 1, 3
5 ) =

1

4
5√

x3

{
5 ln

( (1 − x)
1
5

1 − x
1
5

)
− 2

√
10 − 2

√
5 arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5 ln
(2 + (1 −

√
5)x

1
5 + 2x

2
5

2 + (1 +
√

5)x
1
5 + 2x

2
5

)
+ 2

√
10 + 2

√
5 arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

we can establish the following two closed formulae:

F (1, 2
5 , y) = 3F2

1, 1, 1
2

7
5 ,

8
5

∣∣∣∣y =
6
5

(1 − x)
{
Φ(x, 1, 2

5 ) − Φ(x, 1, 3
5 )

}

=
3(1 − x)

10
5√

x3

{
5(1 − x

1
5 ) ln

( 1 − x
1
5

(1 − x)
1
5

)
+ 2

√
10 − 2

√
5(1 + x

1
5 ) arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5(1 − x
1
5 ) ln

(2 + (1 +
√

5)x
1
5 + 2x

2
5

2 + (1 −
√

5)x
1
5 + 2x

2
5

)
− 2

√
10 + 2

√
5(1 + x

1
5 ) arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
,

G(1, 2
5 , y) = 3F2

1, 1, 3
2

7
5 ,

8
5

∣∣∣∣y =
6(1 − x)2

25(1 + x)

{
Φ(x, 1, 2

5 ) + Φ(x, 1, 3
5 )

}

=
3(1 − x)2

50
5√

x3

{
5

1 + x
1
5

1 + x
ln

( (1 − x)
1
5

1 − x
1
5

)
− 2

√
10 − 2

√
5

1 − x
1
5

1 + x
arctan

( √
10 + 2

√
5x

1
5

4 + (1 −
√

5)x
1
5

)

+
√

5
1 + x

1
5

1 + x
ln

(2 + (1 −
√

5)x
1
5 + 2x

2
5

2 + (1 +
√

5)x
1
5 + 2x

2
5

)
+ 2

√
10 + 2

√
5

1 − x
1
5

1 + x
arctan

( √
10 − 2

√
5x

1
5

4 + (1 +
√

5)x
1
5

)}
.

• F (1, 1
8 , y) and G(1, 1

8 , y). By utilizing the two explicit expressions:

Φ(x, 1, 1
8 ) =

1
2 8
√

x

{
2 ln

(1 + x
1
8

1 − x
1
8

)
+
√

2 ln
(1 +

√
2x

1
8 + x

1
4

1 −
√

2x
1
8 + x

1
4

)
+ 4 arctan

(
x

1
8

)
+ 2
√

2 arctan
( √2x

1
8

1 − x
1
4

)}
,

Φ(x, 1, 7
8 ) =

1

2
8√

x7

{
2 ln

(1 + x
1
8

1 − x
1
8

)
+
√

2 ln
(1 +

√
2x

1
8 + x

1
4

1 −
√

2x
1
8 + x

1
4

)
− 4 arctan

(
x

1
8

)
− 2
√

2 arctan
( √2x

1
8

1 − x
1
4

)}
,

we find the following two closed formulae:

F (1, 1
8 , y) = 3F2

1, 1, 1
2

9
8 ,

15
8

∣∣∣∣y =
7

48
(1 − x)

{
Φ(x, 1, 1

8 ) − Φ(x, 1, 7
8 )

}
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=
7(1 − x)

96
8√

x7

{
2(1 − x

3
4 ) ln

(1 − x
1
8

1 + x
1
8

)
+ 4(1 + x

3
4 ) arctan

(
x

1
8

)
+
√

2(1 − x
3
4 ) ln

(1 −
√

2x
1
8 + x

1
4

1 +
√

2x
1
8 + x

1
4

)
+ 2
√

2(1 + x
3
4 ) arctan

( √2x
1
8

1 − x
1
4

)}
,

G(1, 1
8 , y) = 3F2

1, 1, 3
2

9
8 ,

15
8

∣∣∣∣y =
7(1 − x)2

64(1 + x)

{
Φ(x, 1, 1

8 ) + Φ(x, 1, 7
8 )

}
=

7(1 − x)2

128
8√

x7

{
2

1 + x
3
4

1 + x
ln

(1 + x
1
8

1 − x
1
8

)
− 4

1 − x
3
4

1 + x
arctan

(
x

1
8

)
+
√

2
1 + x

3
4

1 + x
ln

(1 +
√

2x
1
8 + x

1
4

1 −
√

2x
1
8 + x

1
4

)
− 2
√

2
1 − x

3
4

1 + x
arctan

( √2x
1
8

1 − x
1
4

)}
.

• F (1, 3
8 , y) and G(1, 3

8 , y). By employing the two equalities:

Φ(x, 1, 3
8 ) =

1

2
8√

x3

{
2 ln

(1 + x
1
8

1 − x
1
8

)
+
√

2 ln
(1 −

√
2x

1
8 + x

1
4

1 +
√

2x
1
8 + x

1
4

)
− 4 arctan

(
x

1
8

)
+ 2
√

2 arctan
( √2x

1
8

1 − x
1
4

)}
,

Φ(x, 1, 5
8 ) =

1

2
8√

x5

{
2 ln

(1 + x
1
8

1 − x
1
8

)
+
√

2 ln
(1 −

√
2x

1
8 + x

1
4

1 +
√

2x
1
8 + x

1
4

)
+ 4 arctan

(
x

1
8

)
− 2
√

2 arctan
( √2x

1
8

1 − x
1
4

)}
,

we deduce the following two closed formulae:

F (1, 3
8 , y) = 3F2

1, 1, 1
2

11
8 ,

13
8

∣∣∣∣y =
15
16

(1 − x)
{
Φ(x, 1, 3

8 ) − Φ(x, 1, 5
8 )

}

=
15(1 − x)

32
8√

x5

{
2(1 − x

1
4 ) ln

(1 − x
1
8

1 + x
1
8

)
− 4(1 + x

1
4 ) arctan

(
x

1
8

)

+
√

2(1 − x
1
4 ) ln

(1 +
√

2x
1
8 + x

1
4

1 −
√

2x
1
8 + x

1
4

)
+ 2
√

2(1 + x
1
4 ) arctan

( √2x
1
8

1 − x
1
4

)}
,

G(1, 3
8 , y) = 3F2

1, 1, 3
2

11
8 ,

13
8

∣∣∣∣y =
15(1 − x)2

64(1 + x)

{
Φ(x, 1, 3

8 ) + Φ(x, 1, 5
8 )

}

=
15(1 − x)2

128
8√

x5

{
2

1 + x
1
4

1 + x
ln

(1 + x
1
8

1 − x
1
8

)
+ 4

1 − x
1
4

1 + x
arctan

(
x

1
8

)

+
√

2
1 + x

1
4

1 + x
ln

(1 −
√

2x
1
8 + x

1
4

1 +
√

2x
1
8 + x

1
4

)
− 2
√

2
1 − x

1
4

1 + x
arctan

( √2x
1
8

1 − x
1
4

)}
.
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• F (1, 1
10 , y) and G(1, 1

10 , y). By utilizing the two explicit expressions:

Φ(x, 1, 1
10 ) =

1
4 10
√

x

{
(5 −

√
5) ln

(1 + x
1
10

1 − x
1
10

)
+ (1 −

√
5) ln

(1 −
√

x
1 +
√

x

)
+ 2
√

5 ln
(2 + (1 +

√
5)x

1
10 + 2x

1
5

2 − (1 +
√

5)x
1
10 + 2x

1
5

)

+2
√

10 + 2
√

5 arctan
( √

10 + 2
√

5x
1

10

2 − 2x
1
5

)
+ 2

√
10 − 2

√
5 arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
,

Φ(x, 1, 9
10 ) =

1

4
10√

x9

{
(5 −

√
5) ln

(1 + x
1
10

1 − x
1
10

)
+ (1 −

√
5) ln

(1 −
√

x
1 +
√

x

)
+ 2
√

5 ln
(2 + (1 +

√
5)x

1
10 + 2x

1
5

2 − (1 +
√

5)x
1
10 + 2x

1
5

)

−2
√

10 + 2
√

5 arctan
( √

10 + 2
√

5x
1

10

2 − 2x
1
5

)
− 2

√
10 − 2

√
5 arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
;

we establish the following closed formulae:

F (1, 1
10 , y) = 3F2

1, 1, 1
2

11
10 ,

19
10

∣∣∣∣y =
9

80
(1 − x)

{
Φ(x, 1, 1

10 ) − Φ(x, 1, 9
10 )

}

=
9(1 − x)

320
10√

x9

{
2
√

5(1 − x
4
5 ) ln

(2 − (1 +
√

5)x
1
10 + 2x

1
5

2 + (1 +
√

5)x
1
10 + 2x

1
5

)

+ (5 −
√

5)(1 − x
4
5 ) ln

(1 − x
1

10

1 + x
1

10

)
+ 2

√
10 + 2

√
5(1 + x

4
5 ) arctan

( √
10 + 2

√
5x

1
10

2 − 2x
1
5

)

+ (1 −
√

5)(1 − x
4
5 ) ln

(1 +
√

x
1 −
√

x

)
+ 2

√
10 − 2

√
5(1 + x

4
5 ) arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
,

G(1, 1
10 , y) = 3F2

1, 1, 3
2

11
10 ,

19
10

∣∣∣∣y =
9(1 − x)2

100(1 + x)

{
Φ(x, 1, 1

10 ) + Φ(x, 1, 9
10 )

}

=
9(1 − x)2

400
10√

x9

{
2
√

5
1 + x

4
5

1 + x
ln

(2 + (1 +
√

5)x
1
10 + 2x

1
5

2 − (1 +
√

5)x
1
10 + 2x

1
5

)

+ (5 −
√

5)
1 + x

4
5

1 + x
ln

(1 + x
1

10

1 − x
1

10

)
− 2

√
10 + 2

√
5

1 − x
4
5

1 + x
arctan

( √
10 + 2

√
5x

1
10

2 − 2x
1
5

)

+ (1 −
√

5)
1 + x

4
5

1 + x
ln

(1 −
√

x
1 +
√

x

)
− 2

√
10 − 2

√
5

1 − x
4
5

1 + x
arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
.

• F (1, 3
10 , y) and G(1, 3

10 , y). By employing the two equalities:
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Φ(x, 1, 3
10 ) =

1

4
10√

x3

{
(5 +

√
5) ln

(1 + x
1
10

1 − x
1
10

)
+ (1 +

√
5) ln

(1 −
√

x
1 +
√

x

)
+ 2
√

5 ln
(2 − (1 +

√
5)x

1
10 + 2x

1
5

2 + (1 +
√

5)x
1
10 + 2x

1
5

)

−2
√

10 − 2
√

5 arctan
( √

10 + 2
√

5x
1

10

2 − 2x
1
5

)
+ 2

√
10 + 2

√
5 arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
,

Φ(x, 1, 7
10 ) =

1

4
10√

x7

{
(5 +

√
5) ln

(1 + x
1
10

1 − x
1
10

)
+ (1 +

√
5) ln

(1 −
√

x
1 +
√

x

)
+ 2
√

5 ln
(2 − (1 +

√
5)x

1
10 + 2x

1
5

2 + (1 +
√

5)x
1
10 + 2x

1
5

)

+2
√

10 − 2
√

5 arctan
( √

10 + 2
√

5x
1

10

2 − 2x
1
5

)
− 2

√
10 + 2

√
5 arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
,

we find the following two closed formulae:

F (1, 3
10 , y) = 3F2

1, 1, 1
2

13
10 ,

17
10

∣∣∣∣y =
21
40

(1 − x)
{
Φ(x, 1, 3

10 ) − Φ(x, 1, 7
10 )

}

=
21(1 − x)

160
10√

x7

{
2
√

5(1 − x
2
5 ) ln

(2 + (1 +
√

5)x
1

10 + 2x
1
5

2 − (1 +
√

5)x
1

10 + 2x
1
5

)

+ (5 +
√

5)(1 − x
2
5 ) ln

(1 − x
1

10

1 + x
1

10

)
− 2

√
10 − 2

√
5(1 + x

2
5 ) arctan

( √
10 + 2

√
5x

1
10

2 − 2x
1
5

)

+ (1 +
√

5)(1 − x
2
5 ) ln

(1 +
√

x
1 −
√

x

)
+ 2

√
10 + 2

√
5(1 + x

2
5 ) arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
,

G(1, 3
10 , y) = 3F2

1, 1, 3
2

13
10 ,

17
10

∣∣∣∣y =
21(1 − x)2

100(1 + x)

{
Φ(x, 1, 3

10 ) + Φ(x, 1, 7
10 )

}

=
21(1 − x)2

400
10√

x7

{
2
√

5
1 + x

2
5

1 + x
ln

(2 − (1 +
√

5)x
1

10 + 2x
1
5

2 + (1 +
√

5)x
1

10 + 2x
1
5

)

+ (5 +
√

5)
1 + x

2
5

1 + x
ln

(1 + x
1

10

1 − x
1

10

)
+ 2

√
10 − 2

√
5

1 − x
2
5

1 + x
arctan

( √
10 + 2

√
5x

1
10

2 − 2x
1
5

)

+ (1 +
√

5)
1 + x

2
5

1 + x
ln

(1 −
√

x
1 +
√

x

)
− 2

√
10 + 2

√
5

1 − x
2
5

1 + x
arctan

( √
10 − 2

√
5x

1
10

2 − 2x
1
5

)}
.

• F (1, 1
12 , y) and G(1, 1

12 , y). By utilizing the two explicit expressions:
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Φ(x, 1, 1
12 ) =

1
2 12
√

x

{
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3 ln
(1 +

√
3x

1
12 + x

1
6

1 −
√

3x
1
12 + x

1
6

)

+2
√

3 arctan
( √3x

1
12

1 − x
1
6

)
+ 2π + 2 arctan

( 3x
1

12 − 3x
1
4

1 − 4x
1
6 + x

1
3

)}
,

Φ(x, 1, 11
12 ) =

1

2
12√

x11

{
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3 ln
(1 +

√
3x

1
12 + x

1
6

1 −
√

3x
1

12 + x
1
6

)

−2
√

3 arctan
( √3x

1
12

1 − x
1
6

)
− 2π − 2 arctan

( 3x
1

12 − 3x
1
4

1 − 4x
1
6 + x

1
3

)}
,

we derive the following two closed formulae:

F (1, 1
12 , y) = 3F2

1, 1, 1
2

13
12 ,

23
12

∣∣∣∣y =
11

120
(1 − x)

{
Φ(x, 1, 1

12 ) − Φ(x, 1, 11
12 )

}

=
11(1 − x)

240
12√

x11

{
(1 − x

5
6 ) ln

( (1 + x
1
4 )(1 − x

1
12 )3

(1 − x
1
4 )(1 + x

1
12 )3

)
+
√

3(1 − x
5
6 ) ln

(1 −
√

3x
1
12 + x

1
6

1 +
√

3x
1
12 + x

1
6

)

+ 2π(1 + x
5
6 ) + 2

√
3(1 + x

5
6 ) arctan

( √3x
1

12

1 − x
1
6

)
+ 2(1 + x

5
6 ) arctan

( 3x
1

12 − 3x
1
4

1 − 4x
1
6 + x

1
3

)}
,

G(1, 1
12 , y) = 3F2

1, 1, 3
2

13
12 ,

23
12

∣∣∣∣y =
11(1 − x)2

144(1 + x)

{
Φ(x, 1, 1

12 ) + Φ(x, 1, 11
12 )

}

=
11(1 − x)2

288
12√

x11

{
1 + x

5
6

1 + x
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3
1 + x

5
6

1 + x
ln

(1 +
√

3x
1
12 + x

1
6

1 −
√

3x
1
12 + x

1
6

)

− 2π
1 − x

5
6

1 + x
− 2
√

3
1 − x

5
6

1 + x
arctan

( √3x
1
12

1 − x
1
6

)
− 2

1 − x
5
6

1 + x
arctan

( 3x
1
12 − 3x

1
4

1 − 4x
1
6 + x

1
3

)}
.

• F (1, 5
12 , y) and G(1, 5

12 , y). By employing the two equalities:

Φ(x, 1, 5
12 ) =

1

2
12√

x5

{
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3 ln
(1 −

√
3x

1
12 + x

1
6

1 +
√

3x
1
12 + x

1
6

)

−2
√

3 arctan
( √3x

1
12

1 − x
1
6

)
+ 2π + 2 arctan

( 3x
1
12 − 3x

1
4

1 − 4x
1
6 + x

1
3

)}
,

Φ(x, 1, 7
12 ) =

1

2
12√

x7

{
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3 ln
(1 −

√
3x

1
12 + x

1
6

1 +
√

3x
1
12 + x

1
6

)
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+2
√

3 arctan
( √3x

1
12

1 − x
1
6

)
− 2π − 2 arctan

( 3x
1
12 − 3x

1
4

1 − 4x
1
6 + x

1
3

)}
,

we find the following two closed formulae:

F (1, 5
12 , y) = 3F2

1, 1, 1
2

17
12 ,

19
12

∣∣∣∣y =
35
24

(1 − x)
{
Φ(x, 1, 5

12 ) − Φ(x, 1, 7
12 )

}

=
35(1 − x)

48
12√

x7

{
(1 − x

1
6 ) ln

( (1 + x
1
4 )(1 − x

1
12 )3

(1 − x
1
4 )(1 + x

1
12 )3

)
+
√

3(1 − x
1
6 ) ln

(1 +
√

3x
1
12 + x

1
6

1 −
√

3x
1
12 + x

1
6

)

+ 2π(1 + x
1
6 ) − 2

√
3(1 + x

1
6 ) arctan

( √3x
1

12

1 − x
1
6

)
+ 2(1 + x

1
6 ) arctan

( 3x
1

12 − 3x
1
4

1 − 4x
1
6 + x

1
3

)}
,

G(1, 5
12 , y) = 3F2

1, 1, 3
2

17
12 ,

19
12

∣∣∣∣y =
35(1 − x)2

144(1 + x)

{
Φ(x, 1, 5

12 ) + Φ(x, 1, 7
12 )

}

=
35(1 − x)2

288
12√

x7

{
1 + x

1
6

1 + x
ln

( (1 − x
1
4 )(1 + x

1
12 )3

(1 + x
1
4 )(1 − x

1
12 )3

)
+
√

3
1 + x

1
6

1 + x
ln

(1 −
√

3x
1
12 + x

1
6

1 +
√

3x
1
12 + x

1
6

)

− 2π
1 − x

1
6

1 + x
+ 2
√

3
1 − x

1
6

1 + x
arctan

( √3x
1
12

1 − x
1
6

)
− 2

1 − x
1
6

1 + x
arctan

( 3x
1
12 − 3x

1
4

1 − 4x
1
6 + x

1
3

)}
.

4.3. Examples of F (m, λ, y) and G(m, λ, y) with m , 1

A few explicit expressions for F (m, λ, y) and G(m, λ, y) are recorded as examples, in particular,
those for λ = 1/2.

F
(
2, 1

2 , y
)

= 3F2

1, 1, 3
2

3
2 ,

5
2

∣∣∣∣y =
3
8

(1 − x)2
{
Φ(x, 1, 1

2 ) + Φ(x, 1, 3
2 )

}
,

G
(
2, 1

2 , y
)

= 3F2

1, 2, 3
2

3
2 ,

5
2

∣∣∣∣y =
3(1 − x)2

4(1 + x)
+

3(1 − x)3

16(1 + x)

{
Φ(x, 1, 1

2 ) − Φ(x, 1, 3
2 )

}
;

F
(
3, 1

2 , y
)

= 3F2

1, 2, 3
2

3
2 ,

7
2

∣∣∣∣y =
5
8

(1 − x)2 +
15
64

(1 − x)3
{
Φ(x, 1, 1

2 ) − Φ(x, 1, 5
2 )

}
,

G
(
3, 1

2 , y
)

= 3F2

1, 2, 5
2

3
2 ,

7
2

∣∣∣∣y =
5(3 − x)(1 − x)2

24(1 + x)
+

5(1 − x)4

32(1 + x)

{
Φ(x, 1, 1

2 ) + Φ(x, 1, 5
2 )

}
;

F
(
2, 1

3 , y
)

= 3F2

1, 1, 3
2

4
3 ,

8
3

∣∣∣∣y =
5

18
(1 − x)2

{
Φ(x, 1, 1

3 ) + Φ(x, 1, 5
3 )

}
,
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G
(
2, 1

3 , y
)

= 3F2

1, 2, 3
2

4
3 ,

8
3

∣∣∣∣y =
5(1 − x)2

9(1 + x)
+

5(1 − x)3

27(1 + x)

{
Φ(x, 1, 1

3 ) − Φ(x, 1, 5
3 )

}
;

F
(
2, 1

4 , y
)

= 3F2

1, 1, 3
2

5
4 ,

11
4

∣∣∣∣y =
7

32
(1 − x)2

{
Φ(x, 1, 1

4 ) + Φ(x, 1, 7
4 )

}
,

G
(
2, 1

4 , y
)

= 3F2

1, 2, 3
2

5
4 ,

11
4

∣∣∣∣y =
7(1 − x)2

16(1 + x)
+

21(1 − x)3

128(1 + x)

{
Φ(x, 1, 1

4 ) − Φ(x, 1, 7
4 )

}
;

F
(
2, 2

5 , y
)

= 3F2

1, 1, 3
2

7
5 ,

13
5

∣∣∣∣y =
8

25
(1 − x)2

{
Φ(x, 1, 2

5 ) + Φ(x, 1, 8
5 )

}
,

G
(
2, 1

5 , y
)

= 3F2

1, 2, 3
2

6
5 ,

14
5

∣∣∣∣y =
9(1 − x)2

25(1 + x)
+

18(1 − x)3

125(1 + x)

{
Φ(x, 1, 1

5 ) − Φ(x, 1, 9
5 )

}
.

5. Conclusions

By combining the bisection series approach with Whipple’s quadtratic transformation formulae, we
succeeded in evaluating several remarkable 3F2(y)-series in terms of Lerch’s transcendental function,
including Yabu’s results as very initial examples. However, the remaining problem is how to extend
these methods to the generalized hypergeometric series of higher order. The interested reader is
encouraged to make further attempts to evaluate the related series explicitly.

Author contributions

Marta Na Chen: Computation, Writing, and Editing; Wenchang Chu: Original draft, Review, and
Supervision. Both authors have read and agreed to the published version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors express their sincere gratitude to the two reviewers for their careful reading, positive
comments, and valuable suggestions which improved the manuscript during revision.

Conflict of interest

Prof. Wenchang Chu is the Guest Editor of special issue “Combinatorial Analysis and Mathematical
Constants” for AIMS Mathematics. Prof. Wenchang Chu was not involved in the editorial review and
the decision to publish this article. The authors declare no conflicts of interest.

AIMS Mathematics Volume 9, Issue 8, 21799–21815.



21815

References

1. M. Asakura, T. Yabu, Explicit logarithmic formulas of special values of hypergeometric functions
3F2, Commun. Contemp. Math., 22 (2020), 1950040. https://doi.org/10.1142/S0219199719500408

2. M. Asakura, N. Otsubo, T. Terasoma, An algebro-geometric study of special
values of hypergeometric functions 3F2, Nagoya Math. J., 236 (2019), 47–62.
https://doi.org/10.1017/nmj.2018.36

3. W. N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935.

4. Y. A. Brychkov, Handbook of special functions: derivatives, integrals, series and other formulas, 1
Ed., New York: Chapman and Hall/CRC, 2008. https://doi.org/10.1201/9781584889571

5. M. N. Chen, W. Chu, Evaluation of certain exotic 3F2(1)-series, Nagoya Math. J., 249 (2023),
107–118. https://doi.org/10.1017/nmj.2022.23

6. W. Chu, Analytical formulae for extended 3F2-series of Watson–Whipple–Dixon with two extra
integer parameters, Math. Comp., 81 (2012), 467–479.

7. I. M. Gessel, D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal., 13
(1982), 295–308. https://doi.org/10.1137/0513021

8. F. J. W. Whipple, Some transformations of generalized hypergeometric series, Proc. London Math.
Soc., 26 (1927), 257–272. https://doi.org/10.1112/plms/s2-26.1.257

9. T. Yabu, Explicit logarithmic formulas for hypergeometric function 3F2, P.h.D. Thesiss, Hokkaido
University, 2022.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 8, 21799–21815.

https://dx.doi.org/https://doi.org/10.1142/S0219199719500408
https://dx.doi.org/https://doi.org/10.1017/nmj.2018.36
https://dx.doi.org/https://doi.org/10.1201/9781584889571
https://dx.doi.org/https://doi.org/10.1017/nmj.2022.23
https://dx.doi.org/https://doi.org/10.1137/0513021
https://dx.doi.org/https://doi.org/10.1112/plms/s2-26.1.257
https://creativecommons.org/licenses/by/4.0

	Introduction and outline
	Evaluation of series F(m,,y)
	Evaluation of series G(m,,y)
	Closed formulae F(m,,y) and G(m,,y)
	Review of Yabu's three formulae
	Further closed formulae
	Examples of F(m,,y) and G(m,,y) with m1

	Conclusions

