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1. Introduction and outline

Denote by Z and N, respectively, the sets of integers and natural numbers. For an indeterminate x,
define the rising factorials by

(x)p=1 and ((x),=x(x+1)---(x+n—-1) for neN.

According to Bailey [3, §2.1], the classical hypergeometric series, for m € N and an indeterminate z,
reads as

ap, ap, ---, am‘ ] _ o (aoani - @i g

by e bl | T LK B e

When |z] < 1 and none of the numerator and denominator parameters results in a non-positive integer,
the corresponding series is not only convergent, but also well-defined and nonterminating.

There exist numerous hypergeometric series identities in the literature (see [4, Chapter 8] and [6,7]).
Recently, algebraic expressions for certain classes of ;F,-series arose much attention (see [1,2,5]). In
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particular, Yabu [9] succeeded in evaluating explicitly the following series with a free variable x in
terms of the logarithmic function:

11,1 11,1 1,1, 1
3F2[ 4 i‘x],3F2[ 5 i‘x]’ﬂ%[ 7 121‘36}-
323 104 6° 6

The formulae for these series are remarkable, since it is rare that a hypergeometric series of higher
order beyond Gauss’ classical ,Fj-series with a free variable turns into a closed algebraic expression.
Motivated by Yabu’s formulae, we shall investigate two general classes of the 3 F,-series as below:

b

m H_m‘

27 2 ,
1+L1+m—ﬂy

1+m m
L +T’1+E‘
1+4,1+m—-2A

F(m,A,y) :=3F;

Q(m’/l’)’) = 3F2

b

where 4 € (0,1) and m € N, with y being a free variable subject to [y| < 1 such that the series are
convergent. Instead of algebraic-geometric approach employed in [1,2, 9], we find that the quadratic
transformations due to Whipple [8] (cf. Bailey [3, page 97]) are more efficient. To facilitate their
subsequent use, they are reproduced as follows:

I a, b, c
20 20 — (1] — @ » b,
32 1+a—b,1+a—c|y =1 =0%F l+a—b,1+a—c‘x (1)
La 142 14g-b-c (1 — x)'+e a, 1+4, b, c
27 27 — b 29 b
o g Th 1 va-c | I %,1+a—b,1+a—c‘x @)
where the two variables are related by equations
—4x (1= y1-y)y
y=———> = X= —, 3)
(1-x) -y

with the domain y € (-1, 1) and the codomain x € (-1,3 — 2 V2), respectively.

In the next section, we shall first reformulate 7 (m, A,y) by means of (1) and then evaluate the
resulting series by the Lerch transcendent function. Then, in Section 3, the series G(m, A,y) will be
treated analogously via the second quadratic transformation (2). The two main theorems (Theorems 1
and 2) state that the series ¥ (m, 4, y) (also G(m, 4, y)) results in a two-term linear combination of the
Lerch transcendent function plus a remainder polynomial. Finally, the paper will end in Section 4,
where several difficult series are explicitly evaluated in closed form as applications. Compared with
the algebraic method adopted by Yabu [9], the authors believe that the approach presented in this paper
is simpler and more accessible.

2. Evaluation of series  (m, A, y)

In Whipple’s first transformation (1), by specifying the parameters

a=m,c=A1, b=a-c,
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we can reformulate the series ¥ (m, A, y) as

b 5, 5 ‘ aosmr| ™ A,m=-2A ‘ W
= - X .
lieatem-a Hieatem-2
The rightmost 3 F,(x)-series can be explicitly expressed as
m, &, m=4 Am =) v (14 Doy
3F || = -y — 5)
l+A4,14+m-2 (m—-1)! nzo(n+/l)(n+m—/l)

Keeping in mind that A € (0, 1) and m € N, it suffices to examine the case “m # 21”. Otherwise, the
only case exists for “m = 21 = 17, in which we have a simpler series

i
o (I—x)x" 11—
“Zinv 12 4 0(x.2.3)

1’ 2 2

3F

1
2’
3
2’

1. 4
. gjy] =(1 = 1) X 3F
2° 2

2

s NIW I—

where @(- - -) stands for the Lerch transcendent function:

(D(z,O',a):Z( - > forld <1, R(o) > 0and a ¢ Z\IN.
o n—+aoa

Now rewrite the rational function by

(n+ Dy _<n+1>m_1{1 I } ©

- n+Dn+m-2) m-2A n+d n+m-2

R(n)

According to the Chu-Vandermonde convolution formula
m—1
(n+ Dyy = Z ( o )(n + it (1= Ay
m—1
= ( . )(n #m =iy (1 =m+ Dy

W€ can express

1 (1-Dpet v (m—1 o _
R(n)—m_z/l{ — +':2(i_1)(1+n+/1),_2(1 D

1

n+m-—4 Z i—1
=2

_d=mA Doy _Z(m_ 1)(1 +n+m—A)(1 —m+/l)m_,}.

Rewrite further the shifted factorials
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i

(L +n+2)is = Z (,i 2)<n + Do (Wi,

i

I+n+m-2A),, = Z (k 2)(” + Di—o(m — )iy,
and then making substitutions, we can manipulate the double series

m, /l9m_/l /1(m /l)
R(n)x"
? l+A4,1+m-2 1)'2

A(m = ) i{(l—a)mln (1—m+ﬂ)m_1xn}
=0

T(m - 1)lm—22) 4 n+ A n+m— A
o _/liziz(;f_) o ;x Z ( 1 )(1 —m+ )y ,Zi: (; 2)(n + Dgoa(m = )ik
e The sum in the first line results in
. _1(11) . ”f)i" O 1 - (”(1”; _1)1()1‘(;:1_2 j))’” O(x, 1,m - A).

e The double sum in the middle line can be simplified into a finite sum
Am =) —i- k o X (n+ k-2
2" 7 1~
DY (it DG A D 3P e
/l(m A) ik —i= A\ =2\ —x)'*k
FED D IETS iy e e

i=2 k=2

e The double sum in the ultimate line can be reduced analogously to a finite sum

Am = Q) < fA=-m\ e X' (n+k-2
m—2A4 i=2(m l)kZ( D ( k)Zl—l( k-2 )
_Am =) : i A—m\(1 - x0'*
m-24 ZZ( ( )(z—k) i-1

i=2 k=2

Summing up, we have established the following theorem:

Theorem 1 (m # 21). For two variables x and y related by (3), we have
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[t m Lin ' o m. A om—A '
=(1-x x
T A tem—al A l+m=2
A1 = 1),
= (1 = 0)"A(m, A 1 — 0"Dd(x, 1,2
(1 =" A, 20 + T (1= 27 1)
m-DA-m+ 1),
- 1= 0"®(x, 1,m — 1),
= Dim =2 T e Lm=d)

where the remainder term is given by two finite sums

/l A i — A\ =2\ (1 =x)'*
i S S

i=2 k=2
_Am =) < ’ kA (A=m\ (=0
m—24 ;;( D (m—i)(i—k) i-1

3. Evaluation of series G(m, A, y)
Alternatively, by specifying the parameters in Whipple’s second transformation (2)
a=m,c=41, b=a-c,

we can transform the series G(m, A,y) as

L [ 1 — x)ym! m, 1+2 2, m—2A
) PR ¥ B : [x|. @
1+, 1+m-2A I+x Z1+A4,1+m=-2
The 4F3(x)-series on the right can be explicitly restated as
m, 1+7%, 4, m—/1| Am =) ~a (n+ D)y (m + 2n) o ®
edsatem-al | ml Lo+ Darm-D"

Analogously, the only series with “m = 24 = 17 is the following reduced one:

' l—x)sz
y 1+ x 211

2 Fy

1, %’ _ (1 - x)*arctanh vx
W d+ove

Let R(n) be a rational function subject to with “m # 21"

(n+ Dpa(n+3) (n+1)m_1{ 1 1 }

R(n)::(n+/l)(n+m—/l)_ 2 n+/l+n+m—/1 '

Observe that the above R(n) resembles almost identically that R(n) in (6) under replacements “m—21 —
2” for denominator factors and “— — +” inside braces “{-- - }”. By applying the same procedure used
to prove Theorem 1, we derive the formula presented in the following theorem.
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Theorem 2 (m # 21). For two variables x and y related by (3), we have

L ey ] (1 -2 [m,1+%,ﬂ’m—ﬂ
3 ‘ T T Ly A

1+, 1+m-A4 Hl+4,1+m-2
1 - m+1 /ll-/lm 1 - m+1
=L Gy A= 1= 0)
1+x m! 1+x
- (1 - D (1 = mel
+(m YA —m+ ), (1 —x) OCx, 1m - 1),
m! 1+x

[x

1+x

DO(x, 1, 4)

where the remainder term is given by two finite sums

L Am =D A, fm—i= A~ =)
I N S

i=2 k=2

Am—2A) ¥ © A A—m\(1 —x)'*
i m ZZ( D (m—i)(i—k) i-1

i=2 k=2
4. Closed formulae ¥ (m, A,y) and G(m, A, y)

According to Theorems 1 and 2, both series ¥ (m, A, y) and G(m, A, y) can be expressed in terms of
the Lerch transcendent function ®(x, m, 1) plus a remainder polynomial. When the involved ®(x, m, 1)
admit explicit expressions in terms of logarithmic and arctan functions, we then find closed formulae
for the corresponding series ¥ (m, 4,y) and G(m, 4, y).

Throughout this section, x and y are two variables related by (3). Form = 1 and 4 € {%, %,’ %},
we are first going to review three formulae due to Yabu [9]. Then, for m = 1 and irreducible rational
numbers A = p/q € Q with g € {5, 8, 10, 12}, several closed formulae will be shown in pairs for series
F(,p/q,y)and G(1, p/q,y). Finally, when m # 1, we shall record a few expressions, as examples, for
F(m, p/q,y) and G(m, p/q,y) in terms of the Lerch transcendent function.

4.1. Review of Yabu’s three formulae

We first review the explicit formulae for three particular ;F,-series in terms of the logarithmic
function, obtained by Yabu in his thesis [9].

e Yabu’s first formula (cf. [9, Theorem 1.4]) can be reproduced as below:

F 1’%‘t6 B PV PO (1+3—t3Bt)+At1 (1—3—t3B %it)
3F> %% =30 (e31)In > () (t)In > (e3¢,
where
Af) = ! - - A+ VI=8F
(1+ VI =15} t
B(r) = t -+ A+ V18P
(1+ V1 —16); !
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By making use of the trisection series (or Mathematica command “FunctionExpand”), we have the

explicit expressions

O(x,1,1) = {31 (m)+2\/§arctan( \5{/})},

2+/x 1—+x 2+ Vx
O(x, 1,2%) = 2\;;{3 ln(;i\/?\/;) - 2\/§arctan(2\/f\z/§)}.

According to Theorems 1 and 2, we obtain the following two closed formulae:

F40=3F| é'y]——(l—x){d)(x,l,;) o(x, 1,2))
33
3\/_{3(1—\F)1 (\/%) +2V3(1 + V_)arctan(zvfg)},
G(1,L,y) = 5F, lgg'y 29((11—1’6))2@( LY+ 1,2)
-4 ;g{f;fm(f;) 2vi— amtan(f@}.

Without involving the imaginary root of unity, these expressions have advantages over Yabu’s.

e Yabu’s second formula reads as (see [9, Theorem 1.5])

11,1 3ivVi—72 3V + 22
2‘#]: AN (VIZ 2 —in - +tl(\/1+t2—t).

35 X

1
51
404

Recalling Theorems 1 and 2, and then applying two equalities:
1 1+ xt 1
d(x, 1,1 = — ln( )+2arctan(x4)},
( 4) \4/} { 1 —xi

1 1
q)(x’l’%):@{ln(lix4) 2arctan( 1)},

we can directly write down two elegant closed formulae:

L1,
F(L4y =sF] z\y] —(1—x>{<1>(x1 H- o, 1,2))
4° 4
3;\/_){(1 - \/_)ln(l +xl)+2(1 ; \/_)arctan( i)}
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LL3 | 30-x2
_ 2 2 2 _ 1 3
Q(1,4,y)—3F2 % %‘ = m{@(x,l,z)+®(x,l,—)}
— %2 i _ ,
_ 3T =x) 1+ \/_ (1 +let)_2l \/;arctan(x‘t) .
16V3 I +x 1—x3 I +x

These formulae look more transparent than Yabu’s formula.

e The third formula due to Yabu [9, Theorem 1.6] is given by

L1 5i 2 - V3B - 1) 2+ V3B - 1)
F 2 { 5 AW In }
B g't] | 7o (2+ \/§t3(B(t)—1))+ ® (2 \/_t3(B(e%t)—1))
where
r (1+ V1 - 163
Ar) = - ,
® (1+ V1 =16)3 r*
2 (1 + V1 = £6)3
B(t) = .
® (1+ «/1—t6)%+ r

By employing the two explicit expressions:

. (1— VX)L + xt)° V3xs }
O(x, 1,¢) = 2\6/_{ ((1 Y= _X6)3)+2\/§arctan( ) ,

sy | (1 - V)1 + x6)3 \V3xb
O(x, 1,2) = Z\S/F{ ((1+ \/_)(1—x6)3) 2\/§arctan( ) ,

and then, from Theorems 1 and 2, we derive the following closed formulae:

7:(1a 6,)’) - 3F2

I, 1,

7 11
6°
U500 gy (A VDA - a6y : Vit
= YT {(1 —x~)ln((1 — Vo +xé)3)+2\/§(1 +x~)arctan(1 —xé)}’
1’ 1’ 2 5(1-X)2
Gl £,y) = 5F> ;é‘ o0 (2 LD+ O 1 D)
5(1 - x)? 1+x% (1 — V(1 + x6)3 1—x3 V3xs
= S { 1o ((1+ \/_)(1—x6)3) 2\/51 P arctan(l_xé)}

They look simpler than Yabu’s original formula.
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4.2. Further closed formulae

By carrying out the same procedure as in §4.1, we can establish further closed formulae for series
F(1,4,y) and G(1, 4, y).

o (7 (1, %, y) and G(1, %, y).| Applying the explicit expressions:

P13 :41 {5 ln((l _X)lé)-‘_z\/Warctan( mjé )

Vx 1 - x3 4+ (1 - V5)xs

+\/§ln(2+(1+ V5)x$ + 243 V10 — 254 )}

+2+410 - 2\/§arctan(
2) 4+ (1 + V3)xs

2+ (1= V3)xs + 23
D(x, 1,3) = ! {5111((1 _X).;)—Z\/Marctan( \/mx% )

4 1 - 4+ (1 - Vo)xs

} 3 \J10 — 2/5x5
+\/§ln(2+(1+\/§)x7+2x2)—2 10—2\/§arctan( 1)},
2+ (1= V5)x5 + 2x5 4+ 1+ V5)x3

we derive the following two closed formulae:

11,4 4
F iy =sF| ;\y]=E(l—x){@(x,l,@—@(x,l,;-‘}
505
1 - R 1 — x3 , \/10+2\/§x§
- Sx{S(l—xS)ln( x1)+2\/10+2\/§(1+x5)arctan( 1)
15Vx* (1-x)s 4+ (1 - V5)xs

+ V30 xg)ln(Z tlo Vo +2e ) +2 M(l +x%) arctan( mﬁ )}

2+ (1+ V5)x5 +2x5 4+ (1 + V5)xs

1, L%l 41 =)
2P| 7 2501+ )

. : N 3 10 +2+/5x3
:(1 X) {51+x ln((l X)l )—2\/10+2‘/§1 al arctan( )

254 1 —x3 1+x 4+ (1 - V5)xs

3 1,2 _ 43 V10 = 254
+\/§1+x51n(2+(1+\/§)x5+2x5)_2 /10_2\51 x3 )}
1+x 1+x

2+ (1= Vo)xs + 2x5 4+ + V5)xs

G(1,1,y) = 3F, (@, 1,1+ ®(x, 1, 1))

wloy

arctan (

o | F(1, %, y) and G(1, %, y).| By employing the two equalities:

D(x, 1, 2) :4\;;{5 ln((1 — x),é)+ 2Marctan( mx% )

: 4+ (1 - V5)xs

1 — x5

AIMS Mathematics Volume 9, Issue 8, 21799-21815.
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+\/§ln(2+(1 — \/§)x% +2x§)—2\/10+2\/§arctan( ikl )}

2+ (1+ V3)xs +2x5 4+ (1+ V5)xs

5

ot = {s(02) 2 o an L2 E

Tave 4+ - V55

+\/§ln(2+(1 — \/g)X% +2x§)+2\/10+2\/§arctan( 102750 )},

2+ (1+ V5)x5 +2x3 4+ (1+ V5t

we can establish the following two closed formulae:

1
F(1,%,y) =3F,

5
_ 3(1_’6){5(1—x )ln( - )+2\/10—2\/§(1+x%)arctan( “10+2\/§xé)

10V (1 - x)3 4+ (1 - V35)xb

+V5(1 - x)1 (2+(1 + Vi +2x5)—2\/10+2\/§(1 +x%)arctan( 10215 )}

2+ (1= V5)x5 + 243 4+ (1+ VS)xs

1,1,3 6(1 — x)>
2 _ > 2 _ 2 3
g(1,5,y) =3F, %,%l ]—m{q)(X,l,g)"‘q)(X,l,E}
— 2 ! _ _ b V10 +2V5x
B Uk {51”5 1n((1 x)s)—2\/10—2\/§1 = arotan )
503 | 1+x 1 — x5 1+x 4+ (1 - V5)xs

L+x5 (24(1- 54 2x% 1 —x3 V10 = 2+/5x3
+ V52 ln( * \/E)x?+ x2)+2\/10+2\/§ al arctan( 1)}
L+x 24 (1+ V5)x5 + 245 1+ x 441+ V5)xs

o |7F(1,1 £ )) and G(1, 8,y). By utilizing the two explicit expressions:

1 1+ x3 1+ + 2x¢

D(x,1,3) =— {2 ln( xt: ) \/_ln( Vi + ot ) + 4 arctan (xB) +2 \/_arctan( \/_xsl )},
2x 1 - x3 1= V2x% + xt =
1 1+ x 1+ + 27

O(x, 1,1) = - {ZIn( x?) \/_ln( \/_xs X4) 4 arctan (xS) 2 \/zarctan( \/_xgl )},
2Vx7 1 —xs 1 — V2x8 + xi 1 —x3

we find the following two closed formulae:

b ’

F(Liy) =:F| "'5|y]——8<1—x>{<b<x,1 H- o, 1.D)

3> 8

AIMS Mathematics Volume 9, Issue 8, 21799-21815.
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7(1 - s (1 —xs :
- %{2(1 _ xi)ln( i ) +4(1 + x}) arctan (xé)
96 Vx7 1+ x8
+ 2x¢
+\/§(1—x%)ln( Vaxt x) 2\/_(1+x4)arctan(\/_x8 )},
1+ V2x% + xi 1 —x3
Ll L1, 3 _ 1A -0 L4
G(l,5.y) =3k, 2’%| —m{ (x, 1, 5) + O(x, 1 ’8}
Y 3 1 3
:7(1 8x) 21+x4ln(1+xf:)_41 x4arctan(x%)
128Vx? | 1+x 1 — x% I+x
1+x3 (14 V2x8 +x3 1 - x3 2xt
V-t - ln( +\/_XT+XT)—2\/§ al arctan( \/_xsl )}
I+x 1 — V2xs + xi I+x 1 —x3

o | F(1,2 z»y) and 61,3 z»Y).| By employing the two equalities:

1 1+ 1- + 23

(D(x,l,%): 5 {21n( xg) \/_ln( Vaxt X4) 4arctan(x8)+2\/_arctan( \/_xsl )},
23 1 — x¥ 1+\/_x8+x4 1—xs
1 1+ x8 1- V2 2x3

(D(x,l,%): - {2ln( T)+ V21n ( \/_xg +)64)+4arctan(x8) 2\/§arctan( \/_xsl )},
25 1 —xs 1+ V2x% + x3 1 —x1

we deduce the following two closed formulae:

b b

1
y EM - —2(1 ~ 0@, 1,3) - d(x, 1, D))
8

8

T(l’ %7))) = 3F2

_ M{2(1—;ci)111(1_’”) 4(1+x4)arctan( %)

32V 1+ x%
1+ + DxE
n ﬁ(l—x%)ln( V2 + 2t ) 2\/_(1+x4)arctan( V2x: )}
1- \/_xs +x4 1 —x3
1,1, 3 15(1 - x)>
3 — b b 2 — 3
G(1,3,y) = +F, %’1—5‘ T (@ LD+ o1, D)
151 =x)2 (_1+xt (1+xb 1- |
= ( Sx) 2 +x4ln( +x?)+4 X4arctan(x8)
128Vs U 1+x  \[—xs x
1+xi  (1-— 1 —xi Dx§
+ \/5 +X41 ( X/_X8+X4) 2\/5 v arctan( \/_xsl )}
l+x 1+ V2x§ + xt l+x 1 —xz
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o (F(1, 1—10, y) and G(1, %, y).| By utilizing the two explicit expressions:

G, 1 { ~ 1 + x10 ~ 1-+x 2+ (1 + V3)x™ + 2x3
O 1, 45) == 5 ﬁ)ln(l_x%)ul \/g)ln(1+\/})+2\/§ln(2_(1+\/§)x&)+2x;)

V10 +2V5x0 10 - 25
+2+/10 + 2\/§arctan(—l) +24/10 - 2\/§arctan(—)},

2 —2x5 2 — 2yt

oy 1 _ L+ i _ 1- Vx 2+ (1+ V5)xm +2x3
b {(5 \/g)ln(l )+(1 \/g)ln(Hﬁ)”\gln(z—(u«@)x%uxé)

——— V10 +25x™ ——— V10— 2+/5xT
210+ 2‘/§arctan(2—) —-2+10 - 2\/§arctan(—)};

2 —2x5

we establish the following closed formulae:

L1, 1 9
F&y =3k ;\y]=%<1—x>{<1><x,1,1‘—0>—<1><x,1,%}

- 2~ (1+ V3t +2x}
_ X mx){Z\/g(l—x?)ln( (L+ Vo + =)
320 Vx? 2+ (1 + V5)xm +2x3
1 — xh \10 +25xT
+(5—\/§)(1—x%‘)1n( x10)+2\/10+2\/§(1+x§)arctan( , )
1+ x10 2 —2x5
1 \/10—2\/§x11*0
r(- \/3)(1—x‘s‘)1n( i \/})+2\/10—2\/§(1+x2)ar0tan( 1 )}
1 - +x 2 —2x3
L1 3 9(1 — x)?
1 _ > 2 _ 1 9
G(1, 35.y) = 3F> iy }_(9)’ ]— m{q)(x,l’m)*‘q)(x’l’ﬁ }

_oa —mx)z{z\/gl + x5 ln(2+(1 + «/§)xr:o +2x%)
400 V¥ L+x  \2— (14 V5)xm + 245

4 € _ \/10+2\/§x%
+(5—\/§)11x5 1n(i+x'f)—2\/10+2\/§1 il arctan( )
X

1 — xT10 1+x 2—2xé

L+x5 (1- [ ~1-xb V10 = 2v5xm
+(1 - \/g) al ln( \/})—2 10-2+5 al arctan( 1 )}

1+x 1+ Vx 1+x 2 —2x5

e | F(1, %, y) and G(1, %, y).| By employing the two equalities:
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l

e e e R e R o e )
—2\/10—2\/§arctan(—'l(2)+z\/]_5xlb)+2\/10+2\/§arctan( 10- z\/_XIIU)}
—2x3 2 —2x5
e e e ]

"2 Marctan (@) -2 \/m.arctan( \/Oiz‘/_x% )}

2 —2x5 — 2x%

we find the following two closed formulae:

1,1, 3 21
F(l, 50 =:F| 5 \y]=5<1—x>{<b<x,1, - 0(x, 1, )]

10° 10

R S NP o SR LA

+ XT0 2-2x
10 - 2 V5x
+(1+\/g)(l—xg)ln(i-l_ﬁ)+2\/10+2\/§(1+x~%)ar0tan( 5o )}
—\x - 2x5

G(1,2,y) = 3F, (@, 1, 3) + o(x, 1, )]

1 1, 3‘ ]: 21(1 - x)*

13 17
L 1 100(1 + x)

m\— J!\'—
S—

21(1—x)2{ 1+x5 . 2=+ V5)xm +
= {245 In
400 N7 L+x (2+(1+\/_)'0

+(5+ \/—)1+x (1+x10) 24/10 - 2\/_ arctan( 10+23x 10)
1 — xT0 2 —2x3
+(1+ \/—)1+x (i;g) \/10+2\/_ éarctan( 12:2;/5)“10)}

o |[7F(1,L —,y) and G(1, é, y).| By utilizing the two explicit expressions:

AIMS Mathematics Volume 9, Issue 8, 21799-21815.



21812

q’(x,l,ﬁ):z i/}{ln((l_x‘l‘)(1+x‘lz)3)+ N (1+ V3x 7+x6)

(1 + x¥)(1 — x=)3 — V3xm + xé

3x1z 3xT — 3x3

+2 \/garctan( V3x 12 ) + 21 + 2 arctan (H)}
1 —xo I —4xs + x5

1 1= x3)(1 + x12)3 1+ V3xm + x6
O(x, 1, ) =— {m(( X+ ) J+ V3 ( Y3z =)
28U\ - xhy 1= V3x® +xo

3 1 3 L_?) 1

_2\/§arctan(\/_XIT)—ZR—Zarctan(H)}’
1 — xo 1 —4xs 3

we derive the following two closed formulae:

?(17 12° )’) - 3F2

I, 1, 1
Lz 'y 1_20(1 —x){(l)(x 1 35) = @0x 1, 3 }
2

_ - (1 xhl = xby 1= VEck 4
1- + V3(1 - x9)1
240 Vi1 {( ln ((1 —xi)(1 +x12)3) (=) n(l +xé)

L L

3 3x75 — 33
+27(1 + x8) + 2 V3(1 + xb) arctan( \/_x? ) +2(1 + x%) arctan (%)}
1 —xs 1 3

11, 2 11(1 = x)?
1 _ ) L) _
g(laﬁ’y)_3F2[ 13 23 '}{i - 144(1+x){q)( 1’ ]2)+(D(x’1’ 12}

12° 12

— x)? : — Xt )3 5 T4 xb
1T - x) {1+x ln((1 xH)(1 +x ))+\/§l+x In (1+\/_x +x)

C 88 Wolt | L+ \(1 4+ xhy(1 — x)3 I+x  \]— \Bxt +xt
1—xs 1—xs 3y 1 — xé 3x12 — 3xi

- 2n ali -23 ali arctan(\/_x?)—2 ali arctan(—x12 - x41) .
1+x 1+x s 1+x Ayt 4 xt

o | F(1,3 =,y) and Ga, > 2,Y)-| By employing the two equalities:

D(x, 1,2) = 1 {ln((l—xi)(1+xé)3)+\/§ln( 3xT: + Z)

2 X (1 + xi)(1 — xt2)3 1+ V3xm +
3x1e 3xT — 3x3
) \/garctan( V3x , ) +2m+2 arctan(¥)}’
1 — x5 1—4xs + x3

1 (1= x)(1 +x2) 1 - V3xiz +
D(x, 1, - 1 V3In
(153 = W{ n((l +x4)(1 _x1'2)3)+ (1 + V3xm +

c\\— O\\
S—
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1

1 —4x5 +x3

L L 1
+2 V3 arctan ( V3 ) — 2m — 2 arctan (M)},

we find the following two closed formulae:

F, %,y) =3k

1,1, 4 35
> 2
17 19 ')’} = ﬂ(l - x){(D(x, I, 12) - O(x, L5 12 }

12’12

6

351 -x) (1 + x¥)(1 — x7)3 ' 1+ V3x% + x
1- V3(1 = x9)1
{( X) ( ) 3 )n(l—\/gx112+x

TR (1 - x¥)(1 + xt2)3

1
3x12

+ 2n(1 +x%)—2\/§(1 +x%)arctan( )+2(1 +x%)arctan(

1
— X6

1
G(1,2,y) = 3F,

, 1, 3' 351 -x)?
17 1911 144(1 + x)

(@@, 1, 2) + (x, 1, D)
12° 1

3x12 —3x

1 —4xs +x

+x 1+x

~ 35(1—x)2{1+x1 ln((1—xi)(1+x1‘z)3)+ \/51+x%1 (1— V3xT +
1+ \/_xﬁ+

288 N7 (1 + xH)(1 = x)?

1—xs

1 — x5 1— x5 3xm 1-
-2 ki +2V3 ki arctan( xz)—2 aki
1+ 1+ +

4.3. Examples of F (m, A,y) and G(m, A,y) withm # 1

1
6

|
)

A few explicit expressions for ¥ (m, A, y) and G(m, A,y) are recorded as examples, in particular,

those for 4 = 1/2.

(1,1,2,] 3
FRAN =3P =50 - 0o L) + o 1. D).
272
1,2,2 3(1-x)? 3(1-x)?
2,1.y)=4F 2yl = O(x, 1, 1) - d(x, 1, 2)};
g( ,z’y) 302 %’%‘y 41+ %) +16(1+X){ (x, ’2) (x, ’2)}7
1 (1,22, ] 5 , 15 5 | S
FG AN =R = 2007+ S0 -0 e 1D - o 1 D),
222
L2323 53-01-x> 501-x*
=3F 2yl = ) ) 3
g(372’y) 3472 %,%‘Y_ 24(1+X) +32(1+ ){ (, ’2)+ (-xa 52}
1 [LL3] 5 )
FAn =k b= - 0oe L) + o1 D)
33
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1,2, 2 5(1-x)?%  5(1-x)°
2,1 =, F 21yl = Ox. 1. 1) = d(x. 1. 2)!:
G(2,1.y) =3 d g,g‘y] T +27(1+x){ (1L, ) -0 1,k
1 71’ 1’% | 7 2 1 7
FQ.59)=3F2| 5 [P = 50 - 00 L)+ e 1, D)
RS ]
L2, 2] 701-x?% 21(1-x?
2,1 y)=3F > Iyl = O(x, 1, 1) - O(x, 1, Di;
G2 5.3) = a2 s, up] 16(1+x)+128(1+x){ (6. 1,5 - 0(x, 1, D)
2 El’ 1’% - 8 2 2 8
FQ.35)=3F2| 5 4P| = 55 - 00w 1. + 0. 1. D)
55 R
L2, 3] 91-x? 18(1-x)?
2,1.y)=4F 2yl = O(x,1,1) - d(x, 1, D).
G2, 5.5) = 5k 6, 1P 25(1+x)+125(1+x){ (61,5 - (x, 1, 2)]

5. Conclusions

By combining the bisection series approach with Whipple’s quadtratic transformation formulae, we
succeeded in evaluating several remarkable 3 F,(y)-series in terms of Lerch’s transcendental function,
including Yabu’s results as very initial examples. However, the remaining problem is how to extend
these methods to the generalized hypergeometric series of higher order. The interested reader is
encouraged to make further attempts to evaluate the related series explicitly.
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