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1. Introduction

Hardy type inequalities play crucial roles in analysis, probability, and partial differential equations.
We first recall the classical L2- Hardy inequality:∫

Rn
|∇φ|2 dx ≥

(
n − 2

2

)2 ∫
Rn

|φ|2

|x|2
dx,

for n ≥ 3 and φ ∈ C∞0 (Rn \ {0}). The constant
(

n−2
2

)2
is sharp and is never attained by nontrivial

functions. The Rellich inequality is a natural generalization of the above Hardy inequality. In Rn, it
reads as follows: ∫

Rn
|∆φ|2 dx ≥

(
n(n − 4)

4

)2 ∫
Rn

|φ|2

|x|4
dx,

where n ≥ 5 and φ ∈ C∞0 (Rn \ {0}).
In recent years, there have been many results in the literature on the Hardy and Rellich type

inequalities in the context of a complete Riemannian manifold. In particular, the following Hardy
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inequality has been first established on Riemannian manifold (M, g) by Carron [1]:∫
M
ρα |∇φ|2 dvg ≥

(C + α − 1)2

4

∫
M
ρα−2φ2dvg,

where α ∈ R, C +α− 1 > 0, φ ∈ C∞0
(
M \ ρ−1 {0}

)
. The weight function ρ is nonnegative and it satisfies

|∇ρ| = 1 and ∆ρ ≥ C
ρ

in the sense of distribution. Here, dvg, ∇, and ∆ denote the volume element,
the gradient, and the Laplace operator on M. Under the same geometric assumptions on the weight
function ρ, Kombe and Özaydin [2] established the weighted Lp-Hardy inequality:∫

M
ρα |∇φ|p dvg ≥

(
C + 1 + α − p

p

)p ∫
M
ρα−pφpdvg,

where 1 ≤ p < ∞, C + 1 + α − p > 0, and φ ∈ C∞0
(
M \ ρ−1 {0}

)
. Kombe and Özaydin [3] also

proved a new weighted Hardy-Poincaré inequality. They showed that if M is a complete non-compact
Riemannian manifold of dimension n > 1 and ρ is a nonnegative function on M such that |∇ρ| = 1 and
∆ρ ≥ C

ρ
in the sense of distribution, where C > 0, the following inequality holds:∫

M
ρα+p |∇ρ · ∇φ|p dvg ≥

(
C + 1 + α

p

)p ∫
M
ρα |φ|p dvg.

Xia [4] proved the following Hardy type inequality on a complete non-compact Riemannian manifold.
Let M be an n-dimensional complete non-compact Riemannian manifold, where n ≥ 2, and let ρ be
a nonnegative function on M such that |∇ρ| = 1 and ∆ρ ≥ C

ρ
+ H in the sense of distribution, where

H is a continuous function on M and C is a constant. The result is the following: For any p, q ∈ R
with q > 1 + C and any compactly supported smooth function φ ∈ C∞0

(
M \ ρ−1 {0}

)
, the following

inequality holds:

(q −C − 1)
∫

M

|φ|p

ρq dvg ≤ |p|
∫

M

|φ|p−1

ρq−1 |∇φ| dvg +

∫
M

H |φ|p

ρq−1 dvg.

Huang and Ye [5] considered the first order Hardy inequalities using simple identities. This basic
setting not only permits to derive quickly many well-known Hardy inequalities with optimal constants,
but also supplies improved or new estimates in miscellaneous situations. We also refer the interested
reader to [6–16], which are excellent monographs on the topic.

In this paper, we are interested in proving some Hardy type identities and inequalities on the smooth
metric measure spaces related to the divergence type operator L f ,V . Before that, we would like to briefly
introduce the smooth metric measure spaces and the divergence type operator L f ,V .

A smooth metric measure space (Mn, g, dµ) is a Riemannian manifold (Mn, g) equipped with a
conformal Riemannian volume dµ = 1

V e− f dvg, where dvg denotes the Riemannian volume measure on
M, V is a positive twice differentiable function on M, and f is a real-valued smooth function on M.

On a smooth metric measure space (Mn, g, dµ), we can define the weighted Ricci curvature
R̂ic

V
f ,m [17] given by

R̂ic
V
f ,m =

∆ f V
V

g −
1
V
∇2V + Ricm

f ,
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where
∆ f · := e f div

(
e− f∇·

)
= ∆ · −∇ f∇, (1.1)

is the f -Laplacian (see [18–21]),

Ricm
f = Ric + ∇2 f −

1
m − n

∇ f ⊗ ∇ f ,

is the m-Bakry-Émery Ricci curvature, and m is a real constant. Here, ∇, ∆, ∇2, and div are the gradient,
Laplacian, Hessian, and divergence operator on M with respect to g, respectively.

We introduce the divergence type operator L f ,V on M as follows (see [17, 22] for detail):

L f ,Vϕ = e f div
[
e− f V2∇

(
ϕ

V

)]
, (1.2)

where ϕ is a smooth function and V is a positive twice differentiable function defined on M. In general,
the divergence type operator L f ,V is not self-adjoint with respect to the standard L2-inner product
because of the first order term, but it is self-adjoint with respect to the weighted measure dµ = 1

V e− f dvg.
That is, for any smooth functions u, v ∈ C∞0 (M), we have∫

M
uL f ,Vvdµ = −

∫
M

V3∇
u
V
∇

v
V

dµ =

∫
M

vL f ,Vudµ. (1.3)

We observe that the divergence type operator L f ,V encompasses, as very special cases, many differential
linear operators. In the case that V = 1, i.e., L f ,1ϕ = ∆ fϕ. In the case that f is constant,
i.e., L f ,Vϕ = LVϕ = V∆ϕ − ϕ∆V , we call LV by the generalized Schrödinger operator. From
the viewpoint of geometry, the generalized Schrödinger operator LV plays an important role in the
geometric understanding of the sub-static manifolds; see [23].

Du and Mao [24] proved that some Hardy and Rellich type inequalities on the smooth metric
measure spaces related to the f -Laplace. Also, Li, Abolarinwa, Alkhaldi, and Ali [25] generalized
some integral inequalities of Hardy type to the setting of the smooth metric measure spaces. These
studies are without the curvature conditions. On the other hand, the case of additional curvature
conditions has been studied. Kolesnikov and Milman [26] proved the Hardy-Poincaré inequality under
the curvature condition Ricm

f > 0 on M:

m
m − 1

∫
M
ϕ2e− f dvg ≤

∫
M

e− f
〈(

Ricm
f

)−1
∇ϕ,∇ϕ

〉
dvg,

where 1
m ∈ (−∞, 1

n ] and ϕ ∈ C1(M). Huang and Zhu [22] gave the following Hardy-Poincaré inequality:

Let M be a compact Riemannian manifold and R̂ic
V
f ,m > 0, then

m
m − 1

∫
M

Vϕ2e− f dvg ≤

∫
M

e− f V
〈(

R̂ic
V
f ,m

)−1
∇ϕ,∇ϕ

〉
dvg,

where ϕ ∈ C∞(M). Huang and Zhu [22] studied weighted L2-Hardy-Poincaré inequalities on a smooth
metric measure space related to the divergence type operator L f ,V under the curvature condition.
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The primary objectives of the present paper are twofold: First, we want to establish some L2 Hardy
type identities and Lp Hardy type inequalities related to the divergence type operator L f ,V on the smooth
metric measure spaces without curvature conditions. Second, as application we would like to show
some Rellich type inequalities for the divergence type operator L f ,V .

The remainder of the paper is as follows: In Section 2, we will prove Hardy type identity related to
the divergence type operator L f ,V and several related corollaries. Then, we will prove some Lp Hardy
type inequalities in Section 3. In the last section, we will prove a Rellich type inequality related to the
divergence type operator L f ,V .

2. Hardy type identity and its applications

In this section, we will prove some Hardy type identities related to the divergence type operator
L f ,V and several related corollaries.

Theorem 2.1. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M and W ∈ C1 (M). Then, for any compactly supported smooth functions u

V ∈ C1
0 (M) and

ϕ

V ∈ C2
0 (M) , the following identity holds:∫

M
WV3

∣∣∣∣∣∇ ( u
V

)∣∣∣∣∣2 dµ =

∫
M

WV3
∣∣∣∣∣∇ ( u

V

)
−

( u
V

) (
ϕ

V

)−1
∇

(
ϕ

V

)∣∣∣∣∣2 dµ

−

∫
M

e f V
( u
V

)2 (
ϕ

V

)−1
div

(
e− f V2W∇

(
ϕ

V

))
dµ,

(2.1)

where dµ = 1
V e− f dvg and dvg is the Riemannian volume element related to g.

Proof. As a consequence of the integration by parts (1.3), we have
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∫
M

WV3
∣∣∣∣∣∇ ( u

V

)
−

( u
V

) (
ϕ

V

)−1
∇

(
ϕ

V

)∣∣∣∣∣2 dµ

=

∫
M

e− f V2W
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dvg − 2
∫

M
e− f V2W

〈
∇

( u
V

)
,
( u
V

) (
ϕ

V

)−1
∇

(
ϕ

V

)〉
dvg

+

∫
M

e− f V2W
( u
V

)2 (
ϕ

V

)−2 ∣∣∣∣∣∇ (
ϕ

V

)∣∣∣∣∣2 dvg

=

∫
M

e− f V2W
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dvg −

∫
M

e− f V2W
〈(
ϕ

V

)−1
∇

( u
V

)2
,∇

(
ϕ

V

)〉
dvg

+

∫
M

e− f V2W
( u
V

)2 (
ϕ

V

)−2 ∣∣∣∣∣∇ (
ϕ

V

)∣∣∣∣∣2 dvg

=

∫
M

e− f V2W
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dvg +

∫
M

( u
V

)2
div

(
e− f V2W

(
ϕ

V

)−1
∇

(
ϕ

V

))
dvg

+

∫
M

e− f V2W
( u
V

)2 (
ϕ

V

)−2 ∣∣∣∣∣∇ (
ϕ

V

)∣∣∣∣∣2 dvg

=

∫
M

e− f V2W
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dvg +

∫
M

(
ϕ

V

)−1 ( u
V

)2
div

(
e− f V2W∇

(
ϕ

V

))
dvg

−

∫
M

(
ϕ

V

)−2 ( u
V

)2 〈
∇

(
ϕ

V

)
, e− f V2W∇

(
ϕ

V

)〉
dvg +

∫
M

e− f V2W
( u
V

)2 (
ϕ

V

)−2 ∣∣∣∣∣∇ (
ϕ

V

)∣∣∣∣∣2 dvg

=

∫
M

WV3
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dµ +

∫
M

e f V
( u
V

)2 (
ϕ

V

)−1
div

(
e− f V2W∇

(
ϕ

V

))
dµ.

Then, we can get∫
M

WV3
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dµ =

∫
M

WV3
∣∣∣∣∣∇ ( u

V

)
−

( u
V

) (
ϕ

V

)−1
∇

(
ϕ

V

)∣∣∣∣∣2 dµ

−

∫
M

e f V
( u
V

)2 (
ϕ

V

)−1
div

(
e− f V2W∇

(
ϕ

V

))
dµ.

This completes the proof of Theorem 2.1. �

As a special case for W = 1 in Theorem 2.1, we have the following.

Corollary 2.2. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Then, for any u

V ∈ C1
0 (M) and ϕ

V ∈ C2
0 (M), the following identity holds:∫

M
V3

∣∣∣∣∣∇ ( u
V

)∣∣∣∣∣2 dµ =

∫
M

V3
∣∣∣∣∣∇ ( u

V

)
−

( u
V

) (
ϕ

V

)−1
∇

(
ϕ

V

)∣∣∣∣∣2 dµ

−

∫
M

V
( u
V

)2 (
ϕ

V

)−1 (
L f ,Vϕ

)
dµ,

(2.2)

where dµ = 1
V e− f dvg and dvg is the Riemannian volume element related to g.
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By using Corollary 2.2, we have the following.

Corollary 2.3. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Then, for any u

V ∈ C1
0 (M) and ϕ

V ∈ C2
0 (M), the following inequality holds:∫

M
V3

∣∣∣∣∣∇ ( u
V

)∣∣∣∣∣2 dµ ≥ −
∫

M
V

( u
V

)2 (
ϕ

V

)−1 (
L f ,Vϕ

)
dµ, (2.3)

where dµ = 1
V e− f dvg and dvg is the Riemannian volume element related to g.

As the special case that ϕ

V =
(
ρ

V

) 1−C
2 in the Corollary 2.3, we have the following.

Corollary 2.4. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≥ C( ρV )−1V2 in

the sense of distribution, where C is a constant and C > 1. Then, for any u
V ∈ C1

0(M \
(
ρ

V

)−1
{0}), the

following inequality holds:∫
M

V3
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dµ ≥
(C − 1)2

4

∫
M

V3
( u
V

)2 (
ρ

V

)−2
dµ,

where dµ = 1
V e− f dvg and dvg is the Riemannian volume element related to g.

Proof. Taking ϕ

V =
(
ρ

V

) 1−C
2 , we have

−

(
ϕ

V

)−1 (
L f ,Vϕ

)
= − e f

(
ρ

V

)C−1
2

div
(
e− f V2∇

(
ρ

V

) 1−C
2
)

= −

(
ρ

V

)C−1
2

e f div
((

1 −C
2

)
e− f V2

(
ρ

V

) −C−1
2
∇

(
ρ

V

))
= −

(
1 −C

2

) (
ρ

V

)C−1
2

e f

〈
∇

(
ρ

V

) −C−1
2
, e− f V2∇

(
ρ

V

)〉
−

(
1 −C

2

) (
ρ

V

)C−1
2

(
ρ

V

) −C−1
2

e f div
(
e− f V2∇

(
ρ

V

))
=

1 −C2

4
V2

(
ρ

V

)−2 ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 +
C − 1

2

(
ρ

V

)−1
L f ,Vρ.

Then, we have
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−

(
ϕ

V

)−1 (
L f ,Vϕ

)
=

1 −C2

4
V2

(
ρ

V

)−2 ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 +
C − 1

2

(
ρ

V

)−1
L f ,Vρ

≥
1 −C2

4
V2

(
ρ

V

)−2
+

C2 −C
2

V2
(
ρ

V

)−2

=
C2 − 2C + 1

4
V2

(
ρ

V

)−2

=
(C − 1)2

4
V2

(
ρ

V

)−2
,

where we use the assumption
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≥ C( ρV )−1V2. As a result, we can get

−

(
ϕ

V

)−1 (
L f ,Vϕ

)
≥

(C − 1)2

4
V2

(
ρ

V

)−2
. (2.4)

Substituting (2.4) into (2.3), we can get∫
M

V3
∣∣∣∣∣∇ ( u

V

)∣∣∣∣∣2 dµ ≥
(C − 1)2

4

∫
M

V3
( u
V

)2 (
ρ

V

)−2
dµ.

This completes the proof of Corollary 2.4. �

Remark 2.5. In the special case that f is a constant and V = 1, Corollary 2.4 reduces to Carron’s result
in [1, Proposition 2.1] .

3. Lp-Hardy type inequality

In this section, we will prove some Lp-Hardy type inequalities on smooth metric measure spaces.
Our first result is the following.

Theorem 3.1. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≤ (H +C( ρV )−1)V2

in the sense of distribution, where H is a continuous function on M and C is a constant. Then, for any

p, q ∈ R, q > 1 + C, and any compactly supported smooth functions φ

V ∈ C∞0
(
M \

(
ρ

V

)−1
{0}

)
, the

following inequality holds:

(q −C − 1)
∫

M
V3

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dµ ≤ |p|

∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p−1 (
ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dµ
+

∫
M

HV3
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dµ.

(3.1)
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Proof. For a vector field X on M, we denote by div X the divergence of X. Note that

div
(
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q
∇

(
ρ

V

))
=pe− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+

∣∣∣∣∣ φV
∣∣∣∣∣p div

(
e− f V2

(
ρ

V

)1−q
∇

(
ρ

V

))
=pe− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q
div

(
e− f V2∇

(
ρ

V

))
+ (1 − q) e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p 〈(

ρ

V

)−q
∇

(
ρ

V

)
,∇

(
ρ

V

)〉
=pe− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+ e− f

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q (
L f ,Vρ

)
+ (1 − q) e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 .
By direct computation, we have

div
(
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q
∇

(
ρ

V

))
=pe− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+ e− f

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q (
L f ,Vρ

)
+ (1 − q) e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2
≤pe− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+ e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)1−q
(
H + C

(
ρ

V

)−1
)

+ (1 − q)e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)−q

=pe− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p−1 〈
∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
+ (1 + C − q) e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q

+ e− f V2H
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
,

(3.2)

where we use the assumption
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≤ (H + C( ρV )−1)V2.

Since q > 1 + C and
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1, we have
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(q −C − 1)
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dvg

≤p
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
dvg

+

∫
M

e− f V2H
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dvg

≤

∣∣∣∣∣∣p
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

∣∣∣∣∣ φV
∣∣∣∣∣ , ( ρV

)1−q
∇

(
ρ

V

)〉
dvg

∣∣∣∣∣∣
+

∫
M

e− f V2H
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dvg

≤ |p|
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 (

ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣ dvg

+

∫
M

e− f V2H
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dvg

= |p|
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−1 (

ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dvg

+

∫
M

e− f V2H
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dvg.

Then, we have

(q −C − 1)
∫

M
V3

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dµ ≤ |p|

∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p−1 (
ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dµ
+

∫
M

HV3
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)1−q
dµ.

(3.3)

This completes the proof of Theorem 3.1. �

Remark 3.2. In the special case that V = 1 and f is a constant, the inequality (3.1) reduces to Xia’s
result in [4, Theorem 2.1] .

Theorem 3.3. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 in the sense of distributions.
Then, for any p, q ∈ R, 1 < p < +∞, 0 ≤ q ≤ p, and any compactly supported smooth function
φ

V ∈ C∞0
(
M \

(
ρ

V

)−1
{0}

)
, we have

(i) When L f ,Vρ ≤ C
(
ρ

V

)−1
V2 in the sense of distributions, where C < q − 1 is a constant, the following

inequality holds:

∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)−q
dµ ≤

(
p

q −C − 1

)q (∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p dµ
) p−q

p
(∫

M
V3

∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dµ
) q

p

. (3.4)
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(ii) When L f ,Vρ ≥ C
(
ρ

V

)−1
V2 in the sense of distributions, where C > q − 1 is a constant, the following

inequality holds:∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)−q
dµ ≥

(
p

C + 1 − q

)q (∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p dµ
) p−q

p
(∫

M
V3

∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dµ
) q

p

. (3.5)

Proof. (i) In the special case that H = 0 in (3.1), we can get

(q −C − 1)
∫

M
V3

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dµ ≤ |p|

∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p−1 (
ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dµ. (3.6)

It follows from the Hölder inequality that∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p−1 (
ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dvg

=

∫
M

(
e− f V2

) 1
p
(
e− f V2

) p−1
p

∣∣∣∣∣ φV
∣∣∣∣∣p−1 (

ρ

V

)1−q ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣ dvg

≤

(∫
M

e− f V2
∣∣∣∣∣∇ (

φ

V

)∣∣∣∣∣p dvg

) 1
p
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

) p(1−q)
p−1

dvg

 p−1
p

≤

(∫
M

e− f V2
∣∣∣∣∣∇ (

φ

V

)∣∣∣∣∣p dvg

) 1
p
(∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dvg

) q−1
q

(∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p dvg

)(1− p(q−1)
q(p−1)

) p−1
p

.

(3.7)

Substituting (3.7) into (3.6), we can get

(q −C − 1)
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dvg

≤ |p|
(∫

M
e− f V2

∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dvg

) 1
p
(∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dvg

) q−1
q

(∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p dvg

)(1− p(q−1)
q(p−1)

) p−1
p

≤ |p|
(∫

M
e− f V2

∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dvg

) 1
p
(∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)−q
dvg

) q−1
q

(∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p dvg

) p−q
pq

.

Then, ∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p (
ρ

V

)−q
dµ ≤

(
p

q −C − 1

)q (∫
M

V3
∣∣∣∣∣ φV

∣∣∣∣∣p dµ
) p−q

p
(∫

M
V3

∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dµ
) q

p

.

This completes the proof of (i).
(ii) Similar to the derivation of (3.4) above, the inequality (3.5) can be obtained without any

difficulty. This completes the proof of Theorem 3.3.
�

Remark 3.4. In the special case that V = 1, Theorem 3.3 reduces to the result of Du and Mao
in [24, Theorem 2.1].

Then, we prove the following Hardy-Poincaré type inequalities related to the divergence type
operator L f ,V .
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Theorem 3.5. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued
smooth function on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≥(
C

(
ρ

V

)−1
+ G

)
V2 in the sense of distribution, where C > 0 is a constant and G is a continuous function.

Then, for any p, q, α ∈ R, ϕ ∈ C∞0
(
M \

(
ρ

V

)−1
{0}

)
, p ∈ (1,∞), Aα =

(C+α+1)
p with C +α+ 1 > 0, we have

the following inequality:∫
M

V3
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dµ ≥Ap
α

∫
M

V3
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dµ + Ap−1

α

∫
M

V3G
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p dµ. (3.8)

Proof. It follows from
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≥
(
C

(
ρ

V

)−1
+ G

)
V2 that

e f div
(
e− f V2

(
ρ

V

)
∇

(
ρ

V

))
=

〈
∇

(
ρ

V

)
,V2∇

(
ρ

V

)〉
+ e f

(
ρ

V

)
div

(
e− f V2∇

(
ρ

V

))
=V2

∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 +

(
ρ

V

)
L f ,Vρ

≥V2
(
1 + C + G

(
ρ

V

))
.

(3.9)

Multiplying (3.9) by
(
ρ

V

)α ∣∣∣ ϕ
V

∣∣∣p and integrating both sides over M gives

(1 + C)
∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg +

∫
M

e− f GV2
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

≤

∫
M

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p div

(
e− f V2

(
ρ

V

)
∇

(
ρ

V

))
dvg

= −

∫
M

〈(
ρ

V

)
∇

(
ρ

V

)
, e− f V2∇

((
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p)〉 dvg

= − α

∫
M

e− f V2
(
ρ

V

)α−1 ∣∣∣∣∣ϕV
∣∣∣∣∣p (

ρ

V

) 〈
∇

(
ρ

V

)
,∇

(
ρ

V

)〉
dvg

− p
∫

M
e− f V2

∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) (
ρ

V

)α (
ρ

V

) 〈
∇

(
ϕ

V

)
,∇

(
ρ

V

)〉
dvg

= − α

∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg − p

∫
M

e− f V2
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg,

(3.10)

which implies

(1 + C + α)
∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg +

∫
M

e− f V2G
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

≤ − p
∫

M
e− f V2

(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg.

(3.11)
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It follows from the Hölder inequality that

− p
∫

M
e− f V2

(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg

≤

∣∣∣∣∣∣p
∫

M
e− f V2

(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg

∣∣∣∣∣∣
≤p

∫
M

e− f V2
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−1 ∣∣∣∣∣〈∇ (

ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣ dvg

=p
∫

M

(
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p)

p−1
p

(
e− f V2

(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p) 1
p

dvg

≤p
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg

) 1
p

.

Thus,

− p
∫

M
e− f V2

(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg

≤p
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg

) 1
p

.

(3.12)

Then, we use the Young inequality in (3.12), which is described as follows: Denoting

Φ =:
(∫

M
e− f V2

(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg

) 1
p

and Ψ =:
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

) p−1
p

,

then for any ε > 0,

ΦΨ = εΦ
Ψ

ε
≤

1
p

(εΦ)p +
1
q

(
Ψ

ε

)q

with q =
p

p − 1
relating to p,

we can get (∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg

) 1
p

≤
(p − 1)

pε
p

p−1

∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg +

1
p
ε p

∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg,

namely,

− p
∫

M
e− f V2

(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p−2 (

ϕ

V

) 〈
∇

(
ρ

V

)
,∇

(
ϕ

V

)〉
dvg

≤
(p − 1)

ε
p

p−1

∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg + ε p

∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg.

(3.13)

Hence, putting (3.11) and (3.13) together, we can get∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dvg

≥ε−p

(
1 + C + α −

p − 1

ε
p

p−1

) ∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg + ε−p

∫
M

e− f V2G
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p dvg.

(3.14)
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We take Y(ε) to be the function Y(ε) = ε−p
(
1 + C + α − p−1

ε
p

p−1

)
. By direct computation, we can conclude

that Y(ε) reaches its maximum value when ε =
(

p
1+C+α

) p−1
p (for details, see [25, Theorem 3]).

Finally, the required inequality can be determined by substituting ε =
(

p
1+C+α

) p−1
p into (3.14)

as follows: ∫
M

V3
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
ϕ

V

)〉∣∣∣∣∣p dµ ≥Ap
α

∫
M

V3
(
ρ

V

)α ∣∣∣∣∣ϕV
∣∣∣∣∣p dµ

+ Ap−1
α

∫
M

V3G
(
ρ

V

)α+1 ∣∣∣∣∣ϕV
∣∣∣∣∣p dµ.

This completes the proof of Theorem 3.5. �

Using Theorem 3.5, we can obtain the following applications:

Theorem 3.6. Let (Mn, g, dµ) be an n-dimensional complete noncompact smooth metric measure
space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth function
on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 in the sense of distributions.
Then for any p, q ∈ R, 1 < p < +∞, 0 ≤ q ≤ p, and any compactly supported smooth function
φ

V ∈ C∞0
(
M \

(
ρ

V

)−1
{0}

)
, we have

(i) When L f ,Vρ ≤ C
(
ρ

V

)−1
V2 in the sense of distributions, where C > 0 is a constant and C + α < −1,

the following inequality holds:∫
M

V3
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dµ ≥
(
|C + α + 1|

p

)p ∫
M

V3
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dµ. (3.15)

(ii) When L f ,Vρ ≥ C
(
ρ

V

)−1
V2 in the sense of distributions, where C > 0 is a constant and C + α > −1,

the following inequality holds:∫
M

V3
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dµ ≥
(
C + α + 1

p

)p ∫
M

V3
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dµ. (3.16)

Proof. (i) It follows from
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1 and L f ,Vρ ≥ C
(
ρ

V

)−1
V2 that

div
(
e− f V2

(
ρ

V

)
∇

(
ρ

V

))
=e− f V2

∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 +

(
ρ

V

)
div

(
e− f V2∇

(
ρ

V

))
≥ (1 + C) e− f V2.

Thus,

div
(
e− f V2

(
ρ

V

)
∇

(
ρ

V

))
≥ (1 + C) e− f V2. (3.17)
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Multiplying (3.17) by
(
ρ

V

)α ∣∣∣ φ
V

∣∣∣pand integrating over M yields

(1 + C)
∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

≤

∫
M

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p div

(
e− f V2

(
ρ

V

)
∇

(
ρ

V

))
dvg

= −

∫
M

〈(
ρ

V

)
∇

(
ρ

V

)
, e− f V2∇

((
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p)〉 dvg

= − α

∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg − p

∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p−2 (
φ

V

) (
ρ

V

)α+1 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg.

(3.18)

Since C + α + 1 < 0, by using the Hölder inequality, we can infer from (3.18) that

|C + α + 1|
∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

≤ − p
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−2 (

φ

V

) (
ρ

V

)α+1 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg

≤

∣∣∣∣∣∣p
∫

M
e− f V2

∣∣∣∣∣ φV
∣∣∣∣∣p−2 (

φ

V

) (
ρ

V

)α+1 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg

∣∣∣∣∣∣
≤p

∫
M

e− f V2
∣∣∣∣∣ φV

∣∣∣∣∣p−1 (
ρ

V

)α+1 ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣ dvg

≤p
∫

M

(
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p)

p−1
p

(
e− f V2

(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p) 1
p

dvg

≤p
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dvg

) 1
p

.

(3.19)

It follows from the Young inequality that

|C + α + 1|
∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

≤p
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dvg

) 1
p

≤(p − 1)

ε−1
(∫

M
e− f V2

(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg

) p−1
p


p
p−1

+

ε (∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dvg

) 1
p


p

= (p − 1) ε
−p
p−1

∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg + ε p

∫
M

e− f V2
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dvg.

(3.20)
Thus, for any ε > 0, from (3.20), we have∫

M
e− f V2

(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dvg

≥ε−p
(
|C + α + 1| − (p − 1) ε

−p
p−1

) ∫
M

e− f V2
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dvg.
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Taking

ε =

(
p

|C + α + 1|

) p−1
p

,

in the above inequality, we can get∫
M

V3
(
ρ

V

)α+p ∣∣∣∣∣〈∇ (
ρ

V

)
,∇

(
φ

V

)〉∣∣∣∣∣p dµ ≥
(
|C + α + 1|

p

)p ∫
M

V3
(
ρ

V

)α ∣∣∣∣∣ φV
∣∣∣∣∣p dµ.

(ii) Similar to the proof of (3.15) above, the inequality (3.16) can be obtained without any difficulty.
This completes the proof of Theorem 3.6. �

Remark 3.7. In the special case that V = 1, Theorem 3.6 reduces to the result of Du and Mao
in [24, Theorem 4.1].

Then, we will prove the weighted Lp-Hardy type inequality .

Theorem 3.8. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued

smooth function on M. Let ρ be a nonnegative function on M such that
(
ρ

V

)
L f ,Vρ ≥ CV2

∣∣∣∣∇ (
ρ

V

)∣∣∣∣2
in the sense of distribution, where C > 0 is a constant. Then, the following inequality holds for any
φ

V ∈ C∞0
(
M \ ρ−1 {0}

)
:∫
M

V3
(
ρ

V

)α (
sinhβ

(
ρ

V

)) ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2−p ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dµ

≥

(
C + 1 + α + β − p

p

)p ∫
M

V3
(
ρ

V

)α−p (
sinhβ

(
ρ

V

)) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dµ,
(3.21)

where p, α, β ∈ R, 1 ≤ p < ∞, and C + 1 + α + β − p > 0.

Proof. By direct computation, we have∫
M

e− f V2
(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

≤
1
C

∫
M

e− f
(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p (

L f ,Vρ
)

dvg

=
1
C

∫
M

(
ρ

V

)α−p+1 ∣∣∣∣∣ φV
∣∣∣∣∣p sinhβ

(
ρ

V

)
div

(
e− f V2∇

(
ρ

V

))
dvg

= −
1
C

∫
M

〈
∇

(
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p (

ρ

V

)α−p+1
)
, e− f V2∇

(
ρ

V

)〉
dvg

= −

∫
M

(
α − p + 1 + β

(
ρ

V

)
coth

(
ρ

V

))
C

e− f V2
(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

−
p
C

∫
M

e− f V2
(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p−2 (

φ

V

) 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg,

(3.22)

where we have used the assumption
(
ρ

V

)
L f ,Vρ ≥ CV2

∣∣∣∣∇ (
ρ

V

)∣∣∣∣2 in the first line of the inequality.
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Observing that
(
ρ

V

)
coth

(
ρ

V

)
≥ 1, we can rewrite the inequality (3.22) as∫

M
e− f V2

(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

≤ −
(α − p + 1 + β)

C

∫
M

e− f V2
(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

−
p
C

∫
M

e− f V2
(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p−2 (

φ

V

) 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg.

Then,

(C + α − p + 1 + β)
∫

M
e− f V2

(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

≤p
∫

M
e− f V2

(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg.

(3.23)

It follows from the Hölder inequality that

(C + α − p + 1 + β)
∫

M
e− f V2

(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

≤p
∫

M
e− f V2

(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg

≤

∣∣∣∣∣∣p
∫

M
e− f V2

(
ρ

V

)α−p+1
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p−1 〈

∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg

∣∣∣∣∣∣
≤p

∫
M

(
e− f V2

(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2)
p−1

p
(
e− f V2

(
ρ

V

)α
sinhβ

(
ρ

V

) ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2−p ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p) 1
p

dvg

≤p
(∫

M
e− f V2

(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dvg

) p−1
p

(∫
M

e− f V2
(
ρ

V

)α
sinhβ

(
ρ

V

) ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2−p ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dvg

) 1
p

.

(3.24)
namely, ∫

M
V3

(
ρ

V

)α
sinhβ

(
ρ

V

) ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2−p ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣p dµ

≥

(
C + 1 + α + β − p

p

)p ∫
M

V3
(
ρ

V

)α−p
sinhβ

(
ρ

V

) ∣∣∣∣∣ φV
∣∣∣∣∣p ∣∣∣∣∣∇ (

ρ

V

)∣∣∣∣∣2 dµ.

This completes the proof of Theorem 3.8. �

4. Rellich type inequality

In this section, by applying Theorem 3.8 of Section 3, we can give the following Rellich
type inequality.

Theorem 4.1. Let (Mn, g, dµ) be an n-dimensional (n ≥ 2) complete non-compact smooth metric
measure space. Suppose that V is a positive twice differentiable function and f is a real-valued smooth
function on M. Let ρ be a nonnegative function on M such that

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1 and
(
ρ

V

)
L f ,Vρ ≥ CV2 in
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the sense of distributions, where C > 0 is a constant and max {3 −C, (7 −C) /3} ≤ α ≤ 2. Then, the

following inequality holds for φ

V ∈ C∞0
(
M \

(
ρ

V

)−1
{0}

)
:

∫
M

V3
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dµ ≥

(
C + 1 − α

2

)2 ∫
M

V3
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dµ, (4.1)

where dµ = 1
V e− f dvg and dvg is the Riemannian volume element related to g.

Proof. As a consequence of integration by parts (1.3), we compute and estimate the righthand side:∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg

=

∫
M

e− f V2
(
ρ

V

)α−2 〈
∇

(
φ

V

)
,∇

(
φ

V

)〉
dvg

=

∫
M

〈
∇

(
φ

V

)
, e− f V2

(
ρ

V

)α−2
∇

(
φ

V

)〉
dvg

= −

∫
M

(
φ

V

)
div

(
e− f V2

(
ρ

V

)α−2
∇

(
φ

V

))
dvg

= −

∫
M

(
φ

V

) (
e− f V2

〈
∇

(
ρ

V

)α−2
,∇

(
φ

V

)〉
+

(
ρ

V

)α−2
div

(
e− f V2∇

(
φ

V

)))
dvg

= −

∫
M

e− f V2
(
φ

V

) 〈
∇

(
ρ

V

)α−2
,∇

(
φ

V

)〉
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

= − (α − 2)
∫

M
e− f V2

(
φ

V

) (
ρ

V

)α−3 〈
∇

(
ρ

V

)
,∇

(
φ

V

)〉
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

= −
(α − 2)

2

∫
M

e− f V2
(
ρ

V

)α−3
〈
∇

(
ρ

V

)
,∇

(
φ

V

)2〉
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

= −
(α − 2)

2

∫
M

(
ρ

V

)α−3
〈
e− f V2∇

(
ρ

V

)
,∇

(
φ

V

)2〉
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

=
(α − 2)

2

∫
M

(
φ

V

)2

div
(
e− f V2

(
ρ

V

)α−3
∇

(
ρ

V

))
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg.

(4.2)

It follows from
∣∣∣∣∇ (

ρ

V

)∣∣∣∣ = 1 and
(
ρ

V

)
L f ,Vρ ≥ CV2 that
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∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg

=
(α − 2)

2

∫
M

(
φ

V

)2

div
(
e− f V2

(
ρ

V

)α−3
∇

(
ρ

V

))
dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

= −
(2 − α)

2

∫
M

(
(α − 3) e− f V2

(
ρ

V

)α−4 (
φ

V

)2 ∣∣∣∣∣∇ (
ρ

V

)∣∣∣∣∣2 +

(
ρ

V

)α−3 (
φ

V

)2

div
(
e− f V2∇

(
ρ

V

)))
dvg

−

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

= −
(2 − α)

2

∫
M

(
(α − 3) e− f V2

(
ρ

V

)α−4 (
φ

V

)2

+ e− f
(
ρ

V

)α−3 (
φ

V

)2 (
L f ,Vρ

))
dvg

−

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

≤ −
(2 − α) (C + α − 3)

2

∫
M

e− f V2
(
ρ

V

)α−4 (
φ

V

)2

dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg.

Thus, ∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg

≤ −
(2 − α) (C + α − 3)

2

∫
M

e− f V2
(
ρ

V

)α−4 (
φ

V

)2

dvg −

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg.

(4.3)

Applying the Hölder inequality to the above, we have

−

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

≤

∣∣∣∣∣∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

∣∣∣∣∣
≤

(∫
M

e− f V2
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dvg

) 1
2
(∫

M
e− f V−2

(
φ

V

)2 (
ρ

V

)α−4
dvg

) 1
2

.

Thus,

−

∫
M

e− f
(
ρ

V

)α−2 (
φ

V

) (
L f ,Vφ

)
dvg

≤

(∫
M

e− f V2
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dvg

) 1
2
(∫

M
e− f V−2

(
φ

V

)2 (
ρ

V

)α−4
dvg

) 1
2

.

(4.4)

Then, substituting (4.4) into (4.3),(∫
M

e− f V2
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dvg

) 1
2
(∫

M
e− f V−2

(
φ

V

)2 (
ρ

V

)α−4
dvg

) 1
2

≥

∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg +
(2 − α) (C + α − 3)

2

∫
M

e− f V2
(
ρ

V

)α−4 (
φ

V

)2

dvg.
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We denote

A =

∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg,

B =

∫
M

e− f V2
(
ρ

V

)α−4 (
φ

V

)2

dvg,

D =

∫
M

e− f V2
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dvg,

and then can get
√

D ≥
√

A

√A
B

+
(2 − α)(C + α − 3)

2

√
B
A

 .
Denoting further S = A

B ,

√
D ≥

√
A

√S +
(2 − α)(C + α − 3)

2

√
1
S

 :=
√

A f (S ).

Now, we compute a lower bound for the function f (S ) =
√

S + ((2 − α)(C + α − 3)/2)
√

1/S . To

begin, we use Theorem 3.8
(
in the special case that β = 0, p = 2,

∣∣∣∣∇ (
ρ

V

)∣∣∣∣ = 1
)

and then can get

A =

∫
M

e− f V2
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dvg

≥

(
C + α − 3

2

)2 ∫
M

e− f V2
(
ρ

V

)α−4 (
φ

V

)2

dvg

=

(
C + α − 3

2

)2

B.

We have the following condition on S :

S =
A
B
≥

(
C + α − 3

2

)2

.

Next, the function f (S ) is increasing for S ∈ (0,+∞) and it attains its minimum at S = (2 − α)(C +

α − 3)/2. However, (2 − α)(C + α − 3)/2 ≤ ((C + α − 3)/2)2 when α ≥ (7 − C)/3, so f (S ) attains its
minimum at S = ((C + α − 3)/2)2 , and this minimum is equal to ((C + 1 − α)/2)2 . Finally, we obtain
the following inequality:

D =

∫
M

V3
(
ρ

V

)α ∣∣∣L f ,Vφ
∣∣∣2 dµ

≥

(
C + 1 − α

2

)2

A

=

(
C + 1 − α

2

)2 ∫
M

V3
(
ρ

V

)α−2 ∣∣∣∣∣∇ (
φ

V

)∣∣∣∣∣2 dµ.

This completes the proof of Theorem 4.1. �
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5. Conclusions

In this paper, we have established some Hardy type identities and inequalities for the divergence
type operator L f ,V on smooth metric measure spaces. First, we have established some L2 Hardy type
identities. As their corollary, we have obtained a L2 Hardy type inequality. Second, we have established
some Lp Hardy type inequalities. As their corollary, we have obtained a Lp Rellich type inequality.
From the proof of the above results, we see that our method does not work for us to obtain the sharp
constants. Hence, we shall further pursue sharp Hardy type inequalities for the divergence type operator
L f ,V on smooth metric measure spaces in the subsequent papers.
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