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Abstract: Blockchain (BC) in healthcare can be used for sharing medical records and secure storage 

and other confidential data. Deep learning (DL) assists in disease recognition through image analysis, 

specifically in detecting medical conditions from images. Image encryption ensures the security and 

privacy of medical images by encrypting the image before sharing or storage. The combination of 

image encryption, BC, and DL provides an efficient and secure system for medical image analysis and 

disease detection in healthcare. Therefore, we designed a new BC with an Image Encryption-based 

Optimal DL for Secure Disease Detection and Classification (BIEODL-SDDC) technique. The 

presented BIEODL-SDDC technique enables the secure sharing of medical images via encryption and 

BC technology with a DL-based disease classification process. Furthermore, the medical image 

encryption process took place using the ElGamal Encryption technique with a giraffe kicking 

optimization (GKO) algorithm-based key generation process. In addition, BC-based smart contracts 

(SCs) were used for the secure sharing of medical images. For the disease detection process, the 

BIEODL-SDDC technique encompassed EfficientNet-B7-CBAM-based feature extraction, Adam 

optimizer, and a fully connected neural network (FCNN). The experimental validation of the BIEODL-

SDDC technique was tested on medical image datasets and the outcome highlighted an enhanced 

accuracy outcome of 94.81% over other techniques. 
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1. Introduction 

The smart healthcare system has received more attention with the development of the medical 

structure in recent times [1]. Smart healthcare denotes a set of rules that include treatment, prevention, 

management, and detection. Unlike conventional medical systems, smart medical systems can exchange 

and connect data anywhere and anytime [2]. Smart healthcare has the features of the interconnection of 

information, preventability, and immediacy of conventional medical treatment. With the wireless 

network, utilizing portable mobile gadgets, medical personnel can constantly analyze, perceive, and 

process major medical events (preventability). Clinicians can get the case data of all patients quickly and 

make a treatment plan and diagnosis (immediacy) [3]. Patients and other users log in to medical facilities 

through a healthcare information system, for retrieving health data through the internet. Secure 

communication was essential to ensure public network security and to protect patient privacy [4]. 

Information access, like healthcare, plays a major role in day-to-day lives because of rapid 

technological development [5]. Data sharing is becoming a hot research topic in personal healthcare. 

The security of data communication is more and more significant. For data management with other 

entities, this infrastructure necessitates secured data transmission [6]. Healthcare data is very private 

and data transmission may raise the exposure possibility. On top of that, the present method of data 

transmission uses a centralized structure that requires centralized trust. Encryption of delicate data is 

the vital and primary technique in cryptography regarding the historical data of patients [7]. 

Considering the digital health care technique as the environment for transferring and receiving medical 

data of patients. Transmitting medical data to authorized users becomes a crucial requirement of 

effective healthcare [8]. However, the current system lacks security methods as the majority of these 

cases lack suitable access control and encryption approaches. Many researchers have devised DL-

based methods for disease detection [9]. Apart from that, DL methods necessitated higher 

computational resources and time to reach higher performance because of the complicated nature of 

the feature extraction process and image textures. Owing to the lack of availability of healthcare 

datasets [10], it is hard to take the true potential of DL methodology. A lot of training dataset is needed 

to use the actual potential of DL-related methods and realize an accurate and robust model.   

We designed a new BC with an Image Encryption-based Optimal DL for Secure Disease 

Detection and Classification (BIEODL-SDDC) technique. In the presented BIEODL-SDDC technique, 

the medical image encryption process takes place using the ElGamal Encryption technique with a 

giraffe kicking optimization (GKO) algorithm-based key generation process. In addition, BC-based 

SCs are used for the secure sharing of medical images. For the disease detection process, the BIEODL-

SDDC technique encompasses EfficientNet-B7-CBAM-based feature extraction, Adam optimizer, and 

a fully connected neural network (FCNN). The experimental validation of the BIEODL-SDDC method 

is tested on medical image datasets. 

The remaining sections of the article are arranged as: Section 2 offers literature review, and 

section 3 represents the proposed method. Then, section 4 elaborates on the results evaluation, and 

section 5 completes the work. 

https://www.sciencedirect.com/topics/computer-science/healthcare-information
https://www.sciencedirect.com/topics/computer-science/network-security
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2. Related works 

The researchers in [11] presented an innovative hybrid Deep Belief-based Diffie Hellman (DBDH) 

security structure for the protection of healthcare data against malicious events. Through the 

incorporation of a DBN mechanism constantly oversee the mechanism and find the attacks. Initially, 

from the standard site, the IoMT dataset has been collected and imported into the mechanism. Also, 

hash 1 has been computed for the original database and saved in the cloud server for authentication. 

Then, for data hiding, the original dataset was encoded with private keys. The amalgamation of 

homomorphic properties will be helpful in the computation of hash 2 for the encoded dataset. Jadav et 

al. [12] offer a BC and AI-envisioned secure and trusted framework (HEART). In this study, to classify 

wearable devices as non-malicious or malicious, LSTM was employed. Next, the researcher devises 

an SC that permits only the patient dataset with wearable devices that should be categorized as non-

malicious to public BC networks. This data can be accessed by those who are indulged in the patient’s 

care. 

Pustokhina et al. [13] introduced a novel BC-based secured data-sharing scheme (BBSDSS) with 

the use of image encryption and steganography approaches for telemedicine applications. This 

particular method has 3 stage processes they are encryption, secure data sharing, and image 

steganography. The glowworm swarm optimization method was implemented first for the image 

steganography procedure. This method involved a signcryption system to encode the stegno images. 

Later the BC method can be implemented to enable the safe sharing of patient records. Wu et al. [14] 

devised a new content-aware deoxyribonucleic acid (DNA) computing mechanism to encode 

healthcare images, consequently promoting a secure healthcare environment and guaranteeing privacy. 

This system contains a receiver and sender to execute tasks of decryption and encryption, which 

comprise a similar structure but effectuate opposite operations. In receiver or sender, the author 

designed an arbitrary DNA encoding and content-aware permutations and diffusion modules.  

Noman et al. [15] devised a federated learning (FL) system that learns from multiclass and 

heterogeneous respiratory healthcare datasets. This system aggregates and trains local methods using 

BC technology. The weight manipulation approach is also presented dissimilar to other studies while 

aggregating the local methods, which employ local model test accurateness as principal parameters. 

Ren et al. [16] devised a BC-driven tensor meta-learning-powered intellectual healthcare system with 

IoT assistance. IoT gadgets such as light nodes upload local shared datasets to full nodes for training the 

model and effectuate local private datasets by a non-tampered method downloaded through an SC. To 

be specific, a tensor meta-learning algorithm termed tensor-prototype graph network was formulated. 

Singh et al. [17] integrated Fog computing and AI including smart health for carrying out reliable 

platforms for initial-stage identification of COVID-19. An innovative ensemble-based technique was 

devised for diagnosing COVID-19 patients. The researchers also provided a BC technology. 

Ala et al. [18] introduced a new model within smart healthcare systems (SHS) by incorporating 

artificial intelligence (AI) and the Internet of Things (IoT). The approach also presented the integration 

of the Particle Swarm Optimization-Long Short-Term Memory (PSO-LSTM) technique into the IoT-

based SHS model for optimization purposes. In [19], the authors concentrated on establishing a Smart 

Deals System (SDS), leveraging improved machine learning (ML) models. Furthermore, a secure 

consumer application is also designed, which is centered around human requirements for facilitating the 

system's functionality. Ala et al. [20] proposed a Mixed-Integer Linear Programming (MILP) approach. 

The objective of the Admission Scheduling Problem (ASP) model is to reduce patient waiting time. We 
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also explored the Fuzzy Ant Lion Optimization (FALO) strategy and Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) approaches for addressing the multi-objective ASP. 

3. The proposed model 

In this study, a BIEODL-SDDC technique is developed for a secure and smart healthcare 

environment. The presented BIEODL-SDDC technique allows the secure sharing of medical images 

via encryption and BC technology with a DL-based disease classification process. It involves three 

major processes: Image encryption, secure data distribution, and disease diagnosis module. Figure 1 

depicts the workflow of the BIEODL-SDDC algorithm.  

 

Figure 1. Workflow of BIEODL-SDDC algorithm. 
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3.1. ElGamal encryption with optimal key generation 

At the initial stage, the medical image encryption process is performed by the ElGamal 

Encryption technique. The ECC-based ElGamal encryption using various steps and parameters is 

shown below [21]. The additive homomorphic method can be formulated using the following equation, 

𝐸(𝑚1) + 𝐸(𝑚2) = 𝐸(𝑚1 + 𝑚2)                                    (1) 

where the "+" symbol is projected for the additive homomorphic and the public key is represented 

as "E". The additive homomorphic encryption can be assumed in ECC. Based on the elliptic curve’s 

(ECs) algebraic infrastructure on finite domains, ECC-based ElGamal is illustrated. The finite field 

was divided into 2 types, namely binary and prime fields 2𝑛. In this analysis, ECs over the prime field 

were inspected. The special class of EC illustrated in Eq (2) used in EC over real numbers as follows, 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏                                                  (2) 

In Eq (2), 𝐸𝑟(𝑎, 𝑏) represents the resulting curve where the modulus is 𝑟, and a and 𝑏 represent 

the new coefficients. The 𝑥 value ranges from zero to 𝑟 and is on the curve. Also, using lower bit size 

ECC projected related security level by processing overhead decreases when we compare with 

homomorphic and RSA approaches.   

To optimally choose the keys involved in the ElGamal Encryption algorithm, the GKO algorithm 

is used. The GKO is a novel metaheuristic algorithm, motivated by the kicking behaviour of giraffes 

[22]. The mother giraffe starts to bond with her calf and lick it clean of residual amniotic fluid. Similarly, 

they urge the calf to remain by commonly kicking 3 times and making the first stride that enables the 

youthful giraffe to nurture originally and this can be performed in real‐time solicitations such as 

optimized data clustering, and information routing. The mathematical expression is formulated by the 3 

times kicking style of the giraffe and the formula is defined in the following that assists in making the 

sensor energetic from sleeping mode and provides better performance and fast data transmission. 

𝐷𝑙𝛼⃗⃗⃗⃗⃗⃗  ⃗ = |𝐹 ⋅ 𝐾𝑃⃗⃗ ⃗⃗  ⃗(𝑡𝑖) − �⃗⃗� (𝑡𝑖)|                                      (3) 

�⃗⃗� (𝑡𝑖 + 1) = 𝐾𝑃⃗⃗ ⃗⃗  ⃗(𝑡) − �⃗⃗⃗� ⋅ 𝐷𝑙𝛼⃗⃗⃗⃗⃗⃗  ⃗                                   (4) 

where 𝑡𝑖 denotes the existing location, �⃗⃗⃗�  and 𝐹  indicate the Coefficient vector, 𝐾𝑃⃗⃗⃗⃗  ⃗ represents the 

location vector of the infant, and �⃗⃗�  indicates the location vector of the Giraffe as defined below: 

�⃗⃗⃗� = 5 ⋅ 𝛼 ∙ 𝑟1⃗⃗⃗⃗ − 𝛼                                                     (5) 

𝐹 = 5 ⋅ 𝑟2⃗⃗⃗⃗                                                                    (6) 

𝛼 = 5 − (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑔𝑜 ×
5

Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)                  (7) 

where 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑔𝑜 = 1,2, … ,Max𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

Let 𝛼  be the random number within [0,5] for making the balance between the exploration and 

exploitation of the maximal amount of iteration, and 𝑟1 and 𝑟2 were random vectors within [0,1]. From 

the abovementioned condition, a giraffe in the condition of (𝐾, 𝑌)  could invigorate its situation 

according to the infant situation (𝐾∗, 𝑌∗). 𝐷𝑙𝛼⃗⃗⃗⃗⃗⃗  ⃗ is represented as the space amongst the infant and mother 

giraffes and 𝑡𝑖 denotes the existing location of the giraffe. This method encourages further exploitation 

according to the iteration values increasing quickly. For instance, (𝐾∗ − 𝐾, 𝑌∗) set as 𝛼 = (1,0) and 
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𝐹 = (1,1). The random vectors help the giraffe to obtain any state amongst two certain points. Hence, a 

giraffe could rejuvenate its location intimate space toward the infant in a random zone as follows. 

𝐷𝑙⃗⃗⃗⃗ 𝛼 = |𝐹1⃗⃗⃗⃗  ⃗ ⋅ 𝐾𝛼⃗⃗⃗⃗  ⃗ − �⃗⃗� |                                                              (8) 

𝐷𝑙⃗⃗⃗⃗ 𝛽 = |𝐹1⃗⃗⃗⃗  ⃗ ⋅ 𝐾𝛽⃗⃗ ⃗⃗  ⃗ − �⃗⃗� |                                                                 (9) 

𝐷𝑙⃗⃗⃗⃗ 𝛿 = |𝐹1⃗⃗⃗⃗  ⃗ ⋅ 𝐾𝛿⃗⃗⃗⃗  ⃗ − �⃗⃗� |                                                                  (10) 

�⃗⃗� 1 = 𝐾𝛼⃗⃗⃗⃗  ⃗ − �⃗⃗⃗� 1 ⋅ (𝐷𝑙⃗⃗⃗⃗ 𝛼)                                                         (11) 

�⃗⃗� 2 = 𝐾𝛽⃗⃗⃗⃗  ⃗ − �⃗⃗⃗� 1 ⋅ (𝐷𝑙⃗⃗⃗⃗ 𝛽)                                                       (12) 

�⃗⃗� 3 = 𝐾𝛿⃗⃗⃗⃗  ⃗ − �⃗⃗⃗� 1 ⋅ (𝐷𝑙⃗⃗⃗⃗ 𝛿)                                                            (13) 

�⃗⃗� (𝑡𝑖 + 1) =
�⃗⃗� 1+�⃗⃗� 2+�⃗⃗� 3

3
                                                         (14) 

From the expression, a pursuit expert rejuvenates its condition in 𝑛‐dimensional inquiry space. 

Furthermore, the end location could be in an unbalanced spot inside the territory that can be classified 

by the condition of the giraffe during hunt space. Figure 2 defines the flowchart of GKO. 

 

Figure 2. Flowchart of GKO. 
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Exploitation provides converged or better results. The vacillation selection of 𝑊 →is further 

decreased by →𝛼 . 𝑊→[0,1] represents an unequal enticement within the interval [−5a, 5a]. 𝑎 was 

reduced from 5 to 0. The process is prone to stagnate in adjacent arrangements with this administrator. 

Exploration explores or gets better rewards. They deviate from each other to find the child and 

kick the infant giraffe. �⃗⃗⃗�  is a random quality greater than 1 to assist the search expert in finding the 

infant giraffe. This enables the algorithm and underlines investigation to look all‐around |𝑊| shows 

the mother giraffe to be removed from the child to ideally find a better arrangement. An additional role 

of calculation that favors analysis is 𝐹  which has random quality within [0, 2]. This part provides a 

random load to the child giraffe for de‐accentuate (𝐹 < 1)  or stochastically stress (𝐹 > 1)  the 

influence of the child in describing the separation. The ′𝐹′ is considered as an effect of difficulties in 

moving towards a child giraffe. Each applicant arrangement rejuvenates the separation from the child 

giraffe. In general, hopeful arrangements deviate from the infant giraffe if |�⃗⃗⃗� | > 1 and bond toward 

the child if |�⃗⃗⃗� | > 1. 

For the maximization of PSNR value, the GKO technique derives a fitness function in this study.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥 (𝑃𝑆𝑁𝑅)                                         (15) 

3.2. BC-based secure data sharing 

The SC allows privacy and security to share information among the clinics [23]. The SC is applied 

for a secured sharing of data to allow the uploading of the medical image automatically. According to 

the terms and conditions related to the data-sharing agreement, it generates the parameter. An SC 

allows access for exchanging the image dataset amongst the clinics. The IPFS stores the local model 

weight with reference id (hashes) in the BC database. Authorized or registered hospitals share the 

locally trained DL model's weight via SC. An SC allows a sharing model on the BC. Moreover, the 

BC network has multiple parties and a fully distributed data collection framework, a registered 

organization is only allowed to access the data. The SC ensures the reliability and transparency of the 

BC across geographically distributed nodes. The idea has been revitalized and the design of SC has 

been facilitated. 

The organization registers its information with the RegisterData function. For fetching the 

information, the address, hash, price, and description features are used. Afterwards uploading the 

information in the BC, each hospital access information with the authorization of another organization. 

The access token allows data sharing. Organizations share a sequence of healthcare datasets, and only 

an authorized client accesses the information. The ownership of data and the owner of Register 

Hospitals (H) are responsible for a digital signature on data. In the BC ledger, the tokens are generated. 

The SC assurances that the shared image comes from the authorized source. The SC uploads the 

information in the BC with the signature of the registered hospital. Moreover, it assists in providing 

decision support and more accurate predictions for security concerns. 

Every hospital shares the local model's weight and downloads the updated weight for the 

collectively constructed model. The hospital locally computes the gradient and transmits the weight to 

the global BC. The BC calculates the node and aggregates the model. The SC shares the aggregated 

outcomes with the hospital without disclosing the original data of the images. Furthermore, the input 

of local model weight is passed over to the BC decentralized system, and the updated model output 

can be shared in the decentralized system, after processing the input. Thus, collecting each new case 

of disease detection via the SC to train a collaborative DL method is an efficient way. 
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3.3. DL-based disease detection 

For the disease detection process, the BIEODL-SDDC technique encompasses EfficientNet-B7-

CBAM-based feature extraction, Adam optimizer, and FCNN. 

3.3.1. Feature extraction: EfficientNet-B7-CBAM 

At this stage, the EfficientNet-B7-CBAM architecture is applied to produce feature vectors. The 

advent of EfficientNet is based on the balance between width, resolution, and depth [24]. B0-B7 

EfficientNet is a new version of EfficientNet-B7-CBAM. The basic framework of the network was 

Mobile Inverted Bottleneck Convolution (MBConv). This model presents the core concept of the 

Squeeze-and-Excitation (SE) model to enhance the Network structure. First, the MBConv uses 1x1 

convolution to up-dimension the feature maps, and afterward kxk depthwise convolution. Next, the 

SE module adjusts the feature map matrix, and finally, 1x1 convolution to down-dimension the feature 

maps. Also, the MBConv can able to perform short-cut concatenation once the input and output feature 

mappings have a similar shape. This decreases the training time. A conventional Efficientnet-B7 

comprises 1 layer of FC classification, 55 layers of MBConv module, 2 layers of Conv module, and 1 

layer of global average pool. EfficientNetB7 is encompassed by the stacked MBConv, with every 

MBConv model having a SE model. The SE model controls the gating or focus of the channel 

dimension. The module emphasizes channel features that have the majority of data while disregarding 

the trivial channel features. However, this process considered the data of the channel and lost the spatial 

data, which plays a vital role in visual recognition that adversely affected the classification accuracy. 

In this study, add a CBAM to Efficientnet-B7 to optimize the ability of the model to feature extraction.  

The SE model in every MBConv of the original EfficientNetB7 architecture was replaced by a 

CBAM model. This allows obtaining channel data without the loss of spatial data concerning pepper 

plug seedlings. After the second Conv layer, the CBAM model was embedded in the EfficientNet-B7-

CBAM module. It improves the ability of the module to categorize dissimilar quality plug seedlings 

by improving the classification ability and refining the extracted feature data. 

In addition, the Adam optimizer is used for the hyperparameter tuning process. It is an 

optimization technique, as an alternative to the SGD method for the network weight updating during 

the training dataset [25], and implements optimization and it is one of the better optimizers. Adam is 

an adaptable technique based on Adagrad where ADAGRAD and momentum are together termed 

Adam. Parameters 𝑤(𝑡)  and 𝐿(𝑡) , where index 𝑡  shows the existing training iteration, Parameter 

updating in ADAM can be represented as follows: 

𝑚𝑤
(𝑡+1)

← 𝛽1𝑚𝑤
(𝑡)

+ (1 − 𝛽1)𝛻𝑤𝐿(𝑡)                                         (16) 

𝑣𝑤
(𝑡+1)

← 𝛽2𝑣𝑤
(𝑡)

+ (1 − 𝛽2)(𝛻𝑤𝐿(𝑡))2                                       (17) 

�̂�𝑤 =
𝑚𝑤

(𝑡+1)

1−(𝛽1)
(𝑡+1)                                                      (18) 

𝑉𝑤 =
𝑣𝑤

(𝑡+1)

1−(𝛽2)
(𝑡+1)                                                        (19) 

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂
�̂�

√�̂�𝑤+∈
                                                   (20) 
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where 𝛽1 and 𝛽2 indicate the gradient forgetting factor and 2nd moment of the gradient. In Eq. (20), ∈ 

denotes the small scalar used for avoiding division by 0. 

3.3.2. Image classification: FCNN Model 

The FCNN is the popular DL network [26], where every node in the FC layer is interconnected 

to all the nodes of the succeeding layer, and every connection has a correspondingly specific and 

different weight that is not shared by any node. To classify the medical images, the generated features 

are examined by the FCNN model. The FCNN is better than RNN and CNN, it is known that the 

performance degradation was caused by the gradient disappearing problems during backpropagation. 

Though the backpropagation problem had constrained the development of ANN, it was solved by the 

advent of the ReLU function. 

Therefore, most DL technique use the ReLU function to prevent the gradient disappearing 

problem using the sigmoid function. Also, leaky ReLu is adopted as an activation function, like RELU. 

At the last layer, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function with cross-entropy cost function generates the last outcome 

for every input dataset. The common formula for softmax activation function, Leaky ReLU, sigmoid, 

and ReLu are given below: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1+𝑒−𝑥                                                                                 (21) 

𝑅𝑒𝐿𝑈 = {
0 𝑓𝑜𝑟 𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

                                                                     (22) 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 = {
0. 01𝑥 𝑓𝑜𝑟𝑥 < 0
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

                                             (23) 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                                                                     (24) 

In the final layer, the three‐layer MLP with softmax function is similar to the multi‐class logistic 

regression method. Generally, MLP with 𝑛 hidden layers are mathematically expressed in the following: 

𝐻(𝑥) = 𝐻𝑛(𝐻𝑛−1(𝐻𝑛−2(⋯ (𝐻1(𝑥)))))))                                    (25) 

The activation function, the number of hidden layers, and the output class are the parameters for 

constructing NNs to dynamically configure in the platform. At the output layer, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function 

with the cross-entropy cost function generates the final output.  

4. Results and discussion 

The experimental validation of the BIEODL-SDDC technique is tested on the osteosarcoma dataset 

[27], covering 1144 images under three classes as provided in Table 1. It includes 345 images under 

viable tumor (VT), 536 images under Non-Tumor (NT), and 263 images under the non-viable Tumor 

(NVT) class. The suggested technique is simulated by utilizing the Python 3.6.5 tool on PC i5-8600k, 

250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The parameters settings are provided 

as: learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 0.5, and size of the batch: 5. 

Figure 3 shows the histogram analysis of the BIEODL-SDDC technique. Figure 3a demonstrates the 

original images and its histogram representation is provided in Figure 3b. Then, the encrypted image by the 
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BIEODL-SDDC technique is depicted in Figure 3c and the respective histograms are given in Figure 3d. 

Table 1. Details of database. 

Class No. of Samples 

Non-Tumor 355 

Non-Viable Tumor 263 

Viable Tumor 536 

Total Number of Samples 1154 

 

Figurte 3. a) Original Images, b) Histogram of Original Images, c) Encrypted Images, and 

d) Histogram of Encrypted Images. 
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The MSE examination of the BIEODL-SDDC technique is studied with existing ones in Table 2 

and Figure 4. The figure exhibits the CO-ECC method results in poor performance with exceeding 

MSE values. Then, the hybrid-CE and PSOECC models obtain moderately reduced MSE values. Then, 

the BEEPO and BPPIE models reached considerable MSE values. However, the BIEODL-SDDC 

technique outperforms the other models with minimal MSE of 0.082, 0.053, 0.123, 0.156, and 0.151, 

respectively. 

Table 2. MSE analysis of BIEODL-SDDC approach with other systems on several images. 

MSE Values 

Test 

images 
BIEODL-SDDC BPPIE-ODL BEEPO model Hybrid-CE PSOECC CO-ECC 

Image 1 0.082 0.156 0.235 0.332 0.389 0.459 

Image 2 0.053 0.156 0.223 0.329 0.391 0.440 

Image 3 0.123 0.186 0.267 0.329 0.392 0.445 

Image 4 0.156 0.211 0.314 0.398 0.491 0.549 

Image 5 0.151 0.198 0.260 0.333 0.433 0.519 

 

Figure 4. MSE analysis of the BIEODL-SDDC approach on several images. 

The PSNR examination of the BIEODL-SDDC technique is studied with existing ones in Table 

3 and Figure 5. The outcomes display that the CO-ECC method results in poor performance with the 
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least PSNR values. Then, the hybrid-CE and PSOECC models obtain moderately improved PSNR 

values. Then, the BEEPO and BPPIE models reached considerable PSNR values. However, the 

BIEODL-SDDC technique outperforms the other models with higher PSNR of 58.99dB, 60.89dB, 

57.23dB, 56.20dB, and 56.34dB, respectively. 

Table 3. PSNR analysis of BIEODL-SDDC approach with other systems on several images. 

PSNR (dB) 

Test images BIEODL-SDDC BPPIE-ODL BEEPO model Hybrid-CE PSOECC CO-ECC 

Image 1 58.99 56.20 54.42 52.92 52.23 51.51 

Image 2 60.89 56.20 54.65 52.96 52.21 51.70 

Image 3 57.23 55.44 53.87 52.96 52.20 51.65 

Image 4 56.20 54.89 53.16 52.13 51.22 50.74 

Image 5 56.34 55.16 53.98 52.91 51.77 50.98 

 

Figure 5. PSNR analysis of BIEODL-SDDC approach on several images. 

The CC examination of the BIEODL-SDDC technique is studied with existing ones in Table 4 

and Figure 6. The figure indicates that the CO-ECC method results in poor performance with the least 

CC values. Then, the hybrid-CE and PSOECC models obtain moderately improved CC values. 

Thereafter, the BEEPO and BPPIE models reached considerable CC values. However, the BIEODL-

SDDC technique outperforms the other models with higher CC of 99.40%, 99.56%, 99.74%, 99.96%, 

and 99.75%, respectively. 
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Table 4. CC analysis of the BIEODL-SDDC approach with other systems on several images. 

Correlation Co-efficient (%) 

Test 

images 
BIEODL-SDDC BPPIE-ODL BEEPO model Hybrid-CE PSOECC CO-ECC 

Image 1 99.40 99.04 99.06 98.83 98.53 98.45 

Image 2 99.56 99.22 99.11 99.00 98.82 98.30 

Image 3 99.74 99.28 99.09 99.10 98.73 98.35 

Image 4 99.96 99.46 99.44 98.99 98.91 98.51 

Image 5 99.75 99.38 99.15 99.11 98.62 98.70 

 

Figure 6. CC analysis of BIEODL-SDDC approach on several images. 

The CT examination of the BIEODL-SDDC technique is studied with existing ones in Table 5 

and Figure 7. The outcomes indicate that the CO-ECC approach results in poor performance with 

exceeding CT values. Then, the hybrid-CE and PSOECC models obtain moderately reduced CT values. 

Thereafter, the BEEPO and BPPIE models reached considerable CT values. However, the BIEODL-

SDDC technique outperforms the other models with minimal CT of 38.23s, 33.21s, 30.11s, 46.87s, 

and 37.68s, respectively. 
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Table 5. CT analysis of the BIEODL-SDDC approach with other systems on several images. 

Computational Time (sec) 

Test 

images 
BIEODL-SDDC BPPIE-ODL BEEPO model Hybrid-CE PSOECC CO-ECC 

Image 1 38.23 42.59 54.91 65.35 101.02 110.91 

Image 2 33.21 36.26 40.68 57.74 116.55 120.56 

Image 3 30.11 32.34 39.9 41.29 127.62 146.76 

Image 4 46.87 50.42 62.61 77.25 138.34 148.87 

Image 5 37.68 41.79 48.44 59.17 129.46 155.15 

 

Figure 7. CT analysis of the BIEODL-SDDC approach on several images. 

The confusion matrices of the BIEODL-SDDC technique are exhibited in Figure 8. The outcomes 

exhibit that the BIEODL-SDDC technique reaches proficient performance in the osteosarcoma 

classification process. 
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Figure 8. Confusion matrices of BIEODL-SDDC algorithm (a) Entire, (b) 70% of TRP, 

and (c) 30% of TSP. 

The classifier outcomes of the BIEODL-SDDC technique are deliberated in Table 6. The 

outcomes indicate that the BIEODL-SDDC technique recognized all kinds of tumors. For the dataset, 

the BIEODL-SDDC technique attains an average 𝑎𝑐𝑐𝑢𝑦  of 93.18%, 𝑝𝑟𝑒𝑐𝑛  of 90.79%, 𝑟𝑒𝑐𝑎𝑙  of 

89.27%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 89.96%, and 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑖𝑛𝑑𝑒𝑥 of 81.85%. Moreover, for 70% of TRP, the BIEODL-

SDDC technique attained an average 𝑎𝑐𝑐𝑢𝑦 of 92.48%, 𝑝𝑟𝑒𝑐𝑛 of 89.78%, 𝑟𝑒𝑐𝑎𝑙 of 88.53%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

89.10%, and 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑖𝑛𝑑𝑒𝑥 of 80.47%. Eventually, for 30% of TSP, the BIEODL-SDDC technique 

attained an average 𝑎𝑐𝑐𝑢𝑦  of 94.18%, 𝑝𝑟𝑒𝑐𝑛  of 93.21%, 𝑟𝑒𝑐𝑎𝑙  of 90.99%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 91.98%, and 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑖𝑛𝑑𝑒𝑥 of 85.21%. 

The TACY and VACY of the BIEODL-SDDC technique are inspected on BC performance in 

Figure 9. The figure highlighted that the BIEODL-SDDC approach has improvised performance with 

higher values of TACY and VACY. The BIEODL-SDDC technique has greater TACY outcomes. 
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Table 6. Classifier outcome of BIEODL-SDDC approach with various classes. 

Class Accuracy Precision Recall F-Score Jaccard Index 

Entire Dataset 

Non-Tumor 91.85 87.39 85.92 86.65 76.44 

Non-Viable Tumor 96.88 96.71 89.35 92.89 86.72 

Viable Tumor 90.81 88.26 92.54 90.35 82.39 

Average 93.18 90.79 89.27 89.96 81.85 

Training Phase (70%) 

Non-Tumor 90.83 86.33 85.00 85.66 74.92 

Non-Viable Tumor 96.78 95.93 89.67 92.70 86.39 

Viable Tumor 89.84 87.07 90.91 88.95 80.10 

Average 92.48 89.78 88.53 89.10 80.47 

Testing Phase (30%) 

Non-Tumor 94.24 90.32 88.42 89.36 80.77 

Non-Viable Tumor 97.12 98.59 88.61 93.33 87.50 

Viable Tumor 93.08 90.71 95.95 93.26 87.37 

Average 94.81 93.21 90.99 91.98 85.21 

 

Figure 9. TACY and VACY outcomes of the BIEODL-SDDC approach. 

The TLOS and VLOS of the BIEODL-SDDC method are tested on BC performance in Figure 10. 

The figure pointed out that the BIEODL-SDDC approach has better performance with minimal values 

of TLOS and VLOS. Visibly, the BIEODL-SDDC technique has reduced VLOS outcomes. 
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Figure 10. TLOS and VLOS outcomes of the BIEODL-SDDC method.  

A clear precision-recall examination of the BIEODL-SDDC method under the test database is 

portrayed in Figure 11. The figure indicated that the BIEODL-SDDC system has enhanced values of 

precision-recall values under all classes. 

 

Figure 11. Precision-recall outcome of BIEODL-SDDC approach. 
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The detailed ROC study of the BIEODL-SDDC technique under the test database is portrayed in Figure 

12. The figure shows that the BIEODL-SDDC method has exposed its ability to categorize distinct classes.  

 

Figure 12. ROC outcome of the BIEODL-SDDC approach. 

A comparison results of the BIEODL-SDDC technique with other DL models is made in Table 7 

[28,29]. Figure 13 signifies the comparative outcomes of the BIEODL-SDDC method in terms of 𝑎𝑐𝑐𝑢𝑦. 

The outcomes exhibit that the BIEODL-SDDC technique reaches improving values of 𝑎𝑐𝑐𝑢𝑦. Based on 

𝑎𝑐𝑐𝑢𝑦, the BIEODL-SDDC technique gains a higher 𝑎𝑐𝑐𝑢𝑦 of 94.81%, while the Handcrafted Feature, 

EfficientNet-B0, Xception, EfficientNet-B0-Handcrafted, and Xception-Handcrafted methods obtain 

reduced 𝑎𝑐𝑐𝑢𝑦 of 91.90%, 89.45%, 93.16%, 90.38%, and 93.09%, respectively. 

Table 7. Comparative outcome of BIEODL-SDDC approach with other DL techniques. 

Methods Accuracy Precision Recall F-Score 

BIEODL-SDDC 94.81 93.21 90.99 91.98 

Handcrafted Feature 91.90 92.69 86.77 90.84 

EfficientNet-B0 89.45 90.51 87.69 89.43 

Xception 93.16 91.51 86.13 90.10 

EfficientNet-B0-Handcrafted 90.38 90.08 88.71 89.75 

Xception-Handcrafted 93.09 92.36 88.72 90.47 
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Figure 13. 𝐴𝑐𝑐𝑢𝑦 outcome of BIEODL-SDDC approach with other DL techniques. 

Figure 14 demonstrates the detailed results of the BIEODL-SDDC approach in terms of 𝑝𝑟𝑒𝑐𝑛, 

𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒. The outcomes specify that the BIEODL-SDDC approach reaches improving values 

of 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹𝑠𝑐𝑜𝑟𝑒. Based on 𝑝𝑟𝑒𝑐𝑛, the BIEODL-SDDC technique gains a higher 𝑝𝑟𝑒𝑐𝑛 of 

93.21% while the Handcrafted Feature, EfficientNet-B0, Xception, EfficientNet-B0-Handcrafted, and 

Xception-Handcrafted methods obtain reduced 𝑝𝑟𝑒𝑐𝑛 of 92.69%, 90.51%, 91.51%, 90.08%, and 92.36%, 

respectively. Also, based on 𝑟𝑒𝑐𝑎𝑙, the BIEODL-SDDC technique gains a higher 𝑟𝑒𝑐𝑎𝑙 of 90.99% 

while the Handcrafted Feature, EfficientNet-B0, Xception, EfficientNet-B0-Handcrafted, and 

Xception-Handcrafted approaches obtain a reduced 𝑟𝑒𝑐𝑎𝑙 of 86.77%, 87.69%, 86.13%, 88.71%, and 

88.72% respectively. 

At last, based on 𝐹𝑠𝑐𝑜𝑟𝑒, the BIEODL-SDDC technique gains a higher 𝐹𝑠𝑐𝑜𝑟𝑒 of 91.98% while the 

Handcrafted Feature, EfficientNet-B0, Xception, EfficientNet-B0-Handcrafted, and Xception-

Handcrafted approaches obtain reduced 𝐹𝑠𝑐𝑜𝑟𝑒  of 90.84%, 89.43%, 90.10%, 89.75%, and 90.47%, 

respectively. These results pointed out that the BIEODL-SDDC technique accomplishes enhanced 

performance in the healthcare sector. 
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Figure 14. Comparative outcome of BIEODL-SDDC approach with other DL techniques. 

5. Conclusions 

In this study, a BIEODL-SDDC approach is developed for a secure and smart healthcare 

environment. The presented BIEODL-SDDC technique allows the secure sharing of medical images 

via encryption and BC technology with a DL-based disease classification process. In the presented 

BIEODL-SDDC technique, the medical image encryption process is performed by the GKO with the 

ElGamal Encryption technique. Moreover, BC-based SCs can be utilized for securely sharing medical 

images. For the disease detection process, the BIEODL-SDDC technique encompasses EfficientNet-

B7-CBAM-based feature extraction, Adam optimizer, and FCNN. The simulation values of the 

BIEODL-SDDC method are tested on a medical image dataset and the outcomes proved the enhanced 

performance of the BIEODL-SDDC method over other existing techniques. The limitations of the 

BIEODL-SDDC technique include scalability with larger datasets, privacy improvement, robustness 

against adversarial outbreaks, generalization across medical image modalities, and regulatory 

compliance. Future studies may be on scalability analysis, enhancing privacy and robustness, 

generalization analysis, and addressing regulatory compliance. 

Acknowledgment 

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of 

Education in Saudi Arabia for funding this research work through the project number RI-44-0839. 



16113 

AIMS Mathematics Volume 9, Issue 6, 16093–16115. 

Conflict of interest 

The authors declare that they have no conflicts of interest. The manuscript was written through 

contributions of all authors. All authors have given approval to the final version of the manuscript. 

Author contributions 

F.S.A. and L.A.: Conceptualization; F.S.A.: Methodology; M.R.: Software; F.S.A. and A.M.: Validation; L.A.: 

Investigation; F.S.A.: Data curation; L.M., A.M. and M.R.: Writing—original draft; F.S.A., L.M., A.M. and M.R.: 

Writing—review & editing; A.M.: Visualization; M.R.: Project administration; F.S.A.: Funding acquisition. All 

authors have read and agreed to the published version of the manuscript. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

References 

1. P. K. Ghosh, A. Chakraborty, M. Hasan, K. Rashid, A. H. Siddique, Blockchain application in 

healthcare systems: A Review, Systems, 11 (2023), 38. https://doi.org/10.3390/systems11010038 

2. S. Sai, V. Chamola, K. K. R. Choo, B. Sikdar, J. J. Rodrigues, Confluence of Blockchain and 

Artificial Intelligence Technologies for Secure and Scalable Healthcare Solutions: A Review, 

IEEE Internet Things, 10 (2022), 5873–5897. https://doi.org/10.1109/JIOT.2022.3232793 

3. A. I. Taloba, A. Elhadad, A. Rayan, R. M. Abd El-Aziz, M. Salem, A. A. Alzahrani, et al., A 

blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare, Alex. Eng. 

J., 65 (2023), 263–274. https://doi.org/10.1016/j.aej.2022.09.031 

4. V. Merlo, G. Pio, F. Giusto, M. Bilancia, On the exploitation of the blockchain technology in the 

healthcare sector: A systematic review, Expert Syst. Appl., 213 (2022), 118897. 

https://doi.org/10.1016/j.aej.2022.09.031 

5. A. I. Taloba, A. Elhadad, A. Rayan, R. M. Abd El-Aziz, M. Salem, A. A. Alzahrani, et al., A 

blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare, Alex. Eng. 

J., 65 (2023), 263–274. https://doi.org/10.1016/j.aej.2022.09.031 

6. M. Wang, H. Zhang, H. Wu, G. Li, K. Gai, Blockchain-based Secure Medical Data Management 

and Disease Prediction, In Proceedings of the Fourth ACM International Symposium on 

Blockchain and Secure Critical Infrastructure, (pp 71–82), 2022. 

https://doi.org/10.1145/3494106.3528678 

7. B. A. Dedeturk, A. Soran, B. Bakir-Gungor, Blockchain for genomics and healthcare: A literature 

review, current status, classification and open issues, PeerJ, 9 (2021), e12130. 

https://doi.org/10.7717/peerj.12130 

8. S. Ramzan, A. Aqdus, V. Ravi, D. Koundal, R. Amin, M. A. Al Ghamdi, Healthcare applications 

using blockchain technology: Motivations and challenges, IEEE Transactions on Engineering 

Management, 70 (2022), 2874–2890. https://doi.org/10.1109/TEM.2022.3189734 

https://doi.org/10.3390/systems11010038
https://doi.org/10.1109/JIOT.2022.3232793
https://doi.org/10.1016/j.aej.2022.09.031
https://doi.org/10.1016/j.aej.2022.09.031
https://doi.org/10.1016/j.aej.2022.09.031
https://doi.org/10.1145/3494106.3528678
https://doi.org/10.7717/peerj.12130
https://doi.org/10.1109/TEM.2022.3189734


16114 

AIMS Mathematics Volume 9, Issue 6, 16093–16115. 

9. P. Tagde, S. Tagde, T. Bhattacharya, P. Tagde, H. Chopra, R. Akter, et al., Blockchain and 

artificial intelligence technology in e-Health, Environ. Sci. Pollut. R., 28 (2021), 52810–52831. 

https://doi.org/10.1007/s11356-021-16223-0 

10. R. Shinde, S. Patil, K. Kotecha, V. Potdar, G. Selvachandran, A. Abraham, Securing AI-based 

Healthcare Systems using Blockchain Technology: A State-of-the-Art Systematic Literature 

Review and Future Research Directions, 2022, arXiv preprint arXiv:2206.04793. 

https://doi.org/10.1002/ett.4884 

11. A. Goel, S. Neduncheliyan, An intelligent blockchain strategy for decentralised healthcare 

framework, Peer Peer Netw. Appl., 16 (2023), 846–857. https://doi.org/10.1007/s12083-022-

01429-x 

12. D. Jadav, N. K. Jadav, R. Gupta, S. Tanwar, O. Alfarraj, A. Tolba, et al., A trustworthy healthcare 

management framework using amalgamation of AI and blockchain network, Mathematics, 11 

(2023), 637. https://doi.org/10.1007/s12083-022-01429-x 

13. I. V. Pustokhina, D. A. Pustokhin, K. Shankar, Blockchain-based secure data sharing scheme 

using image steganography and encryption techniques for telemedicine applications, In Wearable 

Telemedicine Technology for the Healthcare Industry, (pp. 97–108). Academic Press, 2022. 

https://doi.org/10.1007/s12083-022-01429-x 

14. Y. Wu, L. Zhang, S. Berretti, S. Wan, Medical image encryption by content-aware dna computing 

for secure healthcare, IEEE T. Ind, Inform., 19 (2022), 2089–2098. 

https://doi.org/10.1109/TII.2022.3194590 

15. A. A. Noman, M. Rahaman, T. H. Pranto, R. M. Rahman, Blockchain for medical collaboration: 

A federated learning-based approach for multi-class respiratory disease classification, Healthcare 

Analytics, 3 (2023), 100135. https://doi.org/10.1016/j.health.2023.100135 

16. B. Ren, L. T. Yang, Q. Zhang, J. Feng, X. Nie, Blockchain-Powered Tensor Meta-Learning-

Driven Intelligent Healthcare System with IoT Assistance, IEEE T. Netw. Sci. Eng., 10 (2022), 

2503–2513. https://doi.org/10.1016/j.health.2023.100135 

17. P. D. Singh, R. Kaur, G. Dhiman, G. R. Bojja, BOSS: A new QoS aware blockchain assisted 

framework for secure and smart healthcare as a service, Expert Syst., 40 (2023), e12838. 

https://doi.org/10.1111/exsy.12838 

18. A. Ala, V. Simic, D. Pamucar, N. Bacanin, Enhancing patient information performance in internet 

of things-based smart healthcare system: Hybrid artificial intelligence and optimization 

approaches, Eng. Appl. Artif. Intell., 131 (2024), 107889. 

https://doi.org/10.1016/j.engappai.2024.107889 

19. A. Ala, A. H. Sadeghi, M. Deveci, D. Pamucar, Improving smart deals system to secure human-

centric consumer applications: Internet of things and Markov logic network approaches, Electron. 

Commer. Res., 2023, 1–27.  

20. A. Ala, V. Simic, D. Pamucar, E. B. Tirkolaee, Appointment scheduling problem under fairness 

policy in healthcare services: Fuzzy ant lion optimizer, Expert Syst. Appl., 207 (2022), 117949. 

https://doi.org/10.1016/j.engappai.2024.107889 

21. F. S. Alrayes, S. S. Alotaibi, K. A. Alissa, M. Maashi, A. Alhogail, N. Alotaibi, et al., Artificial 

intelligence-based secure communication and classification for Drone-Enabled emergency 

monitoring systems, Drones, 6 (2022), 222. https://doi.org/10.1016/j.engappai.2024.107889 

https://doi.org/10.1007/s11356-021-16223-0
https://doi.org/10.1002/ett.4884
https://doi.org/10.1007/s12083-022-01429-x
https://doi.org/10.1007/s12083-022-01429-x
https://doi.org/10.1007/s12083-022-01429-x
https://doi.org/10.1007/s12083-022-01429-x
https://doi.org/10.1109/TII.2022.3194590
https://doi.org/10.1016/j.health.2023.100135
https://doi.org/10.1016/j.health.2023.100135
https://doi.org/10.1111/exsy.12838
https://doi.org/10.1016/j.engappai.2024.107889
https://doi.org/10.1016/j.engappai.2024.107889
https://doi.org/10.1016/j.engappai.2024.107889


16115 

AIMS Mathematics Volume 9, Issue 6, 16093–16115. 

22. A. Behura, M. Srinivas, M. R. Kabat, Giraffe kicking optimization algorithm provides efficient 

routing mechanism in the field of vehicular ad hoc networks, J. Amb. Intel. Hum. Comp., 13 

(2022), 3989–4008. https://doi.org/10.1016/j.engappai.2024.107889 

23. R. Kumar, W. Wang, J. Kumar, T. Yang, A. Khan, W. Ali, et al., An integration of blockchain 

and AI for secure data sharing and detection of CT images for the hospitals, Comput. Med. Imag. 

Grap., 87 (2021), 101812. https://doi.org/10.1016/j.engappai.2024.107889 

24. X. Du, L. Si, X. Jin, P. Li, Z. Yun, K. Gao, Classification of plug seedling quality by improved 

convolutional neural network with an attention mechanism, Front. Plant Sci., 13 (2022). 

https://doi.org/10.1016/j.engappai.2024.107889 

25. A. Kumar, S. Sarkar, C. Pradhan, Malaria disease detection using cnn technique with sgd, rmsprop 

and adam optimizers, In Deep learning techniques for biomedical and health informatics, (pp. 

211–230), Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-33966-1_11 

26. J. Lee, J. Kim, I. Kim, K. Han, Cyber threat detection based on artificial neural networks using 

event profiles, IEEE Access, 7 (2019), 165607–165626. https://doi.org/10.1007/978-3-030-

33966-1_11 

27. P. Leavey, A. Sengupta, D. Rakheja, O. Daescu, H. B. Arunachalam, R. Mishra, Osteosarcoma 

data from UT Southwestern/UT Dallas for Viable and Necrotic Tumor Assessment [Data set], 

Cancer Imaging Arch, 2019, 14. 

28. T. Veeramakali, R. Siva, B. Sivakumar, P. C. Senthil Mahesh, N. Krishnaraj, An intelligent 

internet of things-based secure healthcare framework using blockchain technology with an 

optimal deep learning model, The Journal of Supercomputing, 2021, 1–21. 

https://doi.org/10.1007/978-3-030-33966-1_11 

29. B. Fakieh, A. S. A. M. AL-Ghamdi, M. Ragab, Optimal deep stacked sparse autoencoder based 

osteosarcoma detection and classification model, Healthcare, 10 (2022), 1040. 

https://doi.org/10.3390/ healthcare10061040 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1016/j.engappai.2024.107889
https://doi.org/10.1016/j.engappai.2024.107889
https://doi.org/10.1016/j.engappai.2024.107889
https://doi.org/10.1007/978-3-030-33966-1_11
https://doi.org/10.1007/978-3-030-33966-1_11
https://doi.org/10.1007/978-3-030-33966-1_11
https://doi.org/10.1007/978-3-030-33966-1_11
https://doi.org/10.3390/%20healthcare10061040

