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Abstract: The primary goal of optimization theory is to formulate solutions for real-life challenges
that play a fundamental role in our daily lives. One of the most significant issues within this
framework is the Linear Fractional Programming Problem (LFrPP). In practical situations, such as
production planning and financial decision-making, it is often feasible to express objectives as a
ratio of two distinct objectives. To enhance the efficacy of these problems in representing real-
world scenarios, it is reasonable to utilize fuzzy sets for expressing variables and parameters. In
this research, we have worked on the Fully Fuzzy Linear Fractional Linear Programming Problem
(FFLFrLPP). In our approach to problem-solving, we simplified the intricate structure of the FFLFrLPP
into a crisp Linear Programming Problem (LPP) while accommodating the inherent fuzziness.
Notably, unlike literature, our proposed technique avoided variable transformation, which is highly
competitive in addressing fuzzy-based problems. Our methodology also distinguishes itself from
the literature in preserving fuzziness throughout the process, from problem formulation to solution.
In this study, we conducted a rigorous evaluation of our proposed methodology by applying it to a
selection of numerical examples and production problems sourced from the existing literature. Our
findings revealed significant improvements in performance when compared to established solution
approaches. Additionally, we presented comprehensive statistical analyses showcasing the robustness
and effectiveness of our algorithms when addressing large-scale problem instances. This research
underscores the innovative contributions of our methods to the field, further advancing the state-of-the-
art in problem-solving techniques.
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1. Introduction

The procedures that benefit the attainment of the optimal solution for LFrPPs constitute one
of the important areas of study within optimization theory. In this context, there can be various
interpretations of the objective function, which is expressed as the ratio of individual objectives. Today,
effective decision-making in inherently complex and uncertain environments has become crucial for
numerous business and engineering applications. Uncertainties frequently encountered in decision-
making processes may arise from the natural structure of the decision-making environment as well as
external factors. These uncertainties complicate the optimization problems and make it challenging
to address the limitations of traditional mathematical optimization models. However, addressing these
challenges adds significant value.

The fuzzy set theory was developed to address situations characterized by uncertainty, offering the
flexibility required in decision-making processes. It enables the construction of mathematical models
in a more realistic manner. An FFLFrLPP emerges when the coefficients and variables within the
LFrPP are represented using fuzzy numbers, harnessing the principles of fuzzy set theory. Pop and
Stancu-Minasian [14] examined an LFrPP constructed with Triangular Fuzzy Numbers (TFNs) and
employed variable transformation to address it within the context of crisp Multiple Objective Linear
Programming Problems (MOLPPs). Stanojević and Stancu-Minasian [19] focused on the FFLFrPP,
utilizing the concept of fuzzy inequalities and employing the technique from [4] as their solution
strategy. Singh and Yadav [17] tackled a fuzzy LFrPP, where all parameters were defined using
intuitionistic TFNs and variables as crisp, transforming it into a crisp multi-objective LFrPP, and using
Charnes-Cooper transformation [4]. Chinnadurai and Muthukumar [5] implemented an algorithm
that leverages alpha cuts for upper and lower bounds to solve the FFLFrPP. Ebrahimnejad et al. [7]
presented an extended version of this aforementioned work. Nayak and Maharana [11] devised a
unique linearization procedure for the fuzzy multi-objective LFrPP concept of the centroid of TFNs
for defuzzification. Anukokila et al. [1] not only addressed a transportation problem expressed as
LFrPP by converting it to a multi-objective LFrPP but also proposed lexicographic ordering to get
a solution of the equivalent multi-objective LFrPP. Srinivasan [18] tackled a problem related to a
wooden company as a fuzzy LFrPP with TFN parameters, solving it by transforming it into a crisp
LFrPP and using centroid ranking and LU decomposition. Manesh et al. [9] researched the solution of
multi-objective LFrPPs with uncertain data using parametric approaches and the robust optimization
techniques. Bhatia et al. [3] conducted a detailed examination of the transportation problem modeled
as FFLFrPP in literature and argued that the Fully Fuzzy Linear Programming Problem (FFLPP)
obtained by the transformation approach of Charnes-Cooper in the context of uncertainty would not
be equivalent to the investigated FFLFrPP. Thus, they proposed a Mehar technique for the optimal
solution of the transportation problem modeled as FFLFrPP. In the study conducted by Das [6], they
offered a solution method that utilized the transformation technique from [4] and lexicographic order
for FFLFrPP. A transportation model was employed to illustrate the presented technique. Mitlif [10]
proposed a solution methodology to address FFLFrPPs using Pentagonal fuzzy numbers and three
distinct ranking functions. In a different approach, Stanojević and Stanojević [20] relied on Monte
Carlo Simulation for solving FFLFrPP.

To the best of our knowledge, there has been no attempt to solve FFLFrPP iteratively without
variable transformation. In this study, we present an iterative approach for solving FFLFrPP while
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retaining uncertainty. We believe this approach makes sense within a fuzzy framework, where variable
conversion is often impractical.

The subsequent sections of this article are structured as follows: Definitions and preliminary
information are provided in Section 2, the solution approach is described in Section 3, Section 4
includes several numerical examples and applications, and finally, Sections 5 and 6 compare our
findings to existing methodologies and provide conclusions, respectively.

2. Preliminaries and problem definition

To begin with, certain fundamental concepts, operations, and definitions related to fuzzy numbers,
which are essential for addressing the FFLFrPP using the proposed method, will be reintroduced. For
more comprehensive information, please refer to [2].

Zadeh described a fuzzy set K̃ in X, which has an association with a real number in the
interval [0, 1], with the value of hK̃(x) described by a characteristic function corresponding the “degree
of membership” of x in K̃ [21].

Definition 1. A triplet that has a membership function defined as below and expressed with T̃ =(
tl, tm, tu

)
is called a TFN.

hT̃ (x) =


x − tl

tm − tl , tl ≤ x < tm,

x − tu

tm − tu , tm ≤ x ≤ tu,

0, others,

where tl, tm, tu ∈ R, and T̃ ∈ F(R) (fuzzy set on real number).

Definition 2. Let T̃ =
(
tl, tm, tu

)
and S̃ =

(
sl, sm, su

)
be TFNs

(i) τT̃ =
(
τtl, τtm, τtu

)
, where τ ∈ R+.

(ii) τT̃ =
(
τtu, τtm, τtl

)
, where τ ∈ R−.

(iii) T̃ ⊕ S̃ =
(
tl + sl, tm + sm, tu + su

)
.

(iv) T̃ 	 S̃ =
(
tl − su, tm − sm, tu − sl

)
.

(v) T̃ ⊗ S̃ =
(
min{tlsl, tlsu, tusl, tusu}, tmsm, max{tlsl, tlsu, tusl, tusu}

)
.

(vi) T̃
S̃ =

(
min

{
tl
sl ,

tl
su ,

tu
sl ,

tu
su

}
, tm

sm , max
{

tl
sl ,

tl
su ,

tu
sl ,

tu
su

})
where bγ , 0, ∀γ = l,m, u.

Definition 3. [8] Let T̃ =
(
tl, tm, tu

)
be a TFN, R(T̃ ) = tl+2tm+tu

4 is a ranking function mapped from
F(R) to R had a natural order.

Definition 4. [8] Assuming T̃ , S̃ , T̃ j ∈ F(R) ∀j, then

• R
(
T̃ ⊕ S̃

)
= R

(
T̃
)

+ R
(
S̃
)
.
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• Generally, R
(∑n

j=1 T̃ j

)
=

∑n
j=1 R

(
T̃ j

)
.

Definition 5. [8] The formulation of FFLPPs, characterized by m mixed constraints and n fuzzy
variables, can be described as follows:

max
n∑

j=1

c̃ j ⊗ x̃ j,

n∑
j=1

ãp j ⊗ x̃ j ≈ b̃p for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j � b̃q for q = t + 1, . . . , s,

n∑
j=1

ãr j ⊗ x̃ j � b̃r for r = s + 1, . . . ,m,

x̃ � 0̃.

(2.1)

Using matrix notation,

maximize (or minimize) ÃT ⊗ X̃,

Ã ⊗ X̃ 4,≈,< b̃,
(2.2)

is obtained. Where C̃T = [̃c j]1×n, X̃ = [x̃ j]1×n, Ã = [̃ai j]m×n, b̃ = [̃bi]m×1 and ãi j, c̃ j, b̃i ∈ F(R) and x̃ j is a
non-negative fuzzy number.

Definition 6. [8] The Optimal Fuzzy Solution (OFS) of the FFLPP (2.4) is denoted as X̃∗ = [x̃∗j]n×1, if
it satisfies the following criteria:

• x̃∗j is a non-negative fuzzy number.

• Ã ⊗ X̃∗ ≺,=,� b̃.

Furthermore, if there exists any non-negative X̃ = [x̃ j]n×1 such that Ã⊗ X̃∗ ≺,=,� b̃, then the following
inequalities hold:

• In the case of a maximization problem: R (C̃T ⊗ X̃∗) ≥ R (C̃T ⊗ X̃).

• In the case of a minimization problem: R (C̃T ⊗ X̃∗) ≤ R (C̃T ⊗ X̃).

Kumar and Kaur [8] offered a methodology for determining the OFS of FFLPP with mixed
constraints. In the method, parameters are performed by arbitrary TFNs, and decision variables are
handled with non-negative TFNs. The infeasibility situation of the FFLPP cannot be studied by the
provided technique. Therefore, Ozkok et al. [12] presented an expansion of the technique of Kumar
and Kaur [8] for solution FFLPPs by claiming the infeasibility situation.
Remark 1. [8] The solution of the FFLPP expressed with (2.1) is obtained by finding OFS of the
corresponding FFLPP (2.3) by means of the crisp system (2.4).
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max
n∑

j=1

c̃ j ⊗ x̃ j,

n∑
j=1

ãp j ⊗ x̃ j ≈ b̃p for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q ≈ b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãr j ⊗ x̃ j ⊕ K̃r ≈ b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃,

(2.3)

where ãi j, c̃ j, b̃i = (bγi ), K̃q = (kγq), Ñq = (nγq), K̃r = (kγr ) and Ñr = (nγr ) are arbitrary TFNs for γ = l,m, u.
Using Zadeh’s expansion principle and presuming ãi j ⊗ x̃ j =

(
yl

i j, ym
i j, yu

i j

)
for j = 1, . . . , n, and i =

1, . . . ,m.

maxR

 n∑
j=1

c̃ j ⊗ x̃ j

 ,
n∑

j=1

yγp j = bγp for p = 1, . . . , t and ∀γ,

n∑
j=1

yγq j + kγq = bγq + nγq for q = t + 1, . . . , s and ∀γ,

n∑
j=1

yγr j + kγr = bγr + nγr for r = s + 1, . . . ,m and ∀γ,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 ∀ j,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = t + 1, . . . ,m,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = t + 1, . . . ,m.

(2.4)

Remark 2. If an infeasible case arises while solving the system 2.4, the following FFLPP (2.5) is
solved as an expansion procedure [12] of the Kumar and Kaur’s technique [8] to obtain an approximate
OFS of Problem 2.1.
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max
n∑

j=1

c̃ j ⊗ x̃ j,

n∑
j=1

ãp j ⊗ x̃ j ⊕ K̃p = b̃p ⊕ Ñp for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q = b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãr j ⊗ x̃ j ⊕ K̃r = b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃.

(2.5)

where K̃ξ and Ñξ’s are arbitrary TFNs.

2.1. Fully fuzzy linear fractional programming problem

Utilizing matrix notation, the mathematical formula for any FFLFrPP is constructed as follows.

max Z̃ =
Ñ(x̃)
D̃(x̃)

=
c̃Tx̃ + α̃

d̃Tx̃ + β̃
,

Ã ⊗ x̃ �,=�, b̃,
x̃ � 0̃,

(2.6)

where Z̃(x̃) = (Zl,Zm,Zu), c̃T =
[
c̃ j

]
1×n
, d̃T =

[
d̃ j

]
1×n
, x̃ =

[
x̃ j

]
n×1

, Ã =
[
ãi j

]
m×n

, b̃ =
[
b̃i

]
m×1

.
Furthermore, x̃ j are nonnegative TFNs, ãi j, c̃ j, d̃ j, b̃i, α̃, β̃ ∈ F(R), and T represents the transpose. In
general, it is accepted that d̃Tx̃ + β̃ � 0̃ in the feasible region 4 =

{
x̃ | Ã ⊗ x̃ �,≈,� b̃, x̃ � 0̃

}
.

Some definitions below have already been defined in our previous research [13]. The following
notations and definitions are presented for brevity. Readers can refer to [13] for details.
Remark 3. With the assumption d̃T x̃ + β̃ � 0̃, each component of the fractional objective function is
continuous on the domain. Namely, Zγ is continuous at x̃i ∈ 4, ∀i ∈ N, the superscript i denotes the
iteration counter. Note that Zγ(x̃) = Zγ and Zγ

(
x̃i
)

= Zγ,i.

Definition 7. For all γ, each component of the fractional objective function Zγ is continuous on R
satisfied that for all point x̃i ∈ 4 and ε > 0, a fuzzy number δ > 0 is obtained that Zγ provides∣∣∣Zγ − Zγ,i

∣∣∣ < ε whenever x̃ ∈ 4 and
∣∣∣xγ − xγ,i

∣∣∣ < δ.
Moreover, the Definition 7 can be restated from the standpoint of traditional neighborhoods

as follows:
For all ε and γ, if δ > 0 is obtained that ∀xγ ∈ B

(
xγ,i, δ

)
and Zγ ∈ B

(
Zγ,i, ε

)
, then Zγ is continuous

at x̃i ∈ F (R).
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3. Proposed fuzzy approach

First, the inequality constraints are turned into the equality constraints in compliance with the
types of constraints of FFLFrPP (2.6) using fuzzy numbers and Remark 1, and the corresponding
FFLFrPP (3.1) is obtained.

max Z̃,

s.t.
n∑

j=1

ãp j ⊗ x̃ j = b̃p for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q = b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãr j ⊗ x̃ j ⊕ K̃r = b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃.

(3.1)

Afterward, with the help of definitions and notations explained in Section 2, the Cartesian
product of neighborhoods defined by B

(
xγ,i, δ

)
and B

(
Zγ,i, ε

)
is B

(
xγ,i, δ

)
× B

(
Zγ,i, ε

)
={

(xγ,Zγ)
∣∣∣ ∣∣∣xγ − xγ,i

∣∣∣ < δ, ∣∣∣Zγ − Zγ,i
∣∣∣ < ε}. For all ordered pairs (Zγ, xγ) and ∀γ in the Cartesian product

region, the inequality ∣∣∣Zγ − Zγ,i
∣∣∣ ∣∣∣xγ − xγ,i

∣∣∣ < ε̄, (3.2)

holds where ε̄ = ε.δ. Since the inequality (3.2) is satisfied for all ε̄, our convergence constraint(
Zγ − Zγ,i

) (
xγ − xγ,i

)
= 0, (3.3)

is constructed. If the convergence condition 3.3 is rearranged and using the fact that the Fuzzy
Fractional Objective (FFrO) function components can be written as Zγ = cγT xγ+αγ

dγT xγ+βγ , the following
linear equations (

Zγ,idγT
− cγT

)
xγ +

(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ, (3.4)

are attained, where the objective (Z̄γ) will be used for the fuzzy MOLPP. The following fuzzy MOLPP
is a reduced version of the given FFLFrPP using (3.4).

max
{
Z̄l, Z̄m, Z̄u

}
,

s.t.
(
Zγ,idγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ,

x̃ ∈ 4.

(3.5)

To solve fuzzy MOLPP via a fuzzy approach, linear membership functions are utilized for simplicity
in the solution phase. For the determination of the membership, the lower (Zγ−) and upper (Zγ+)
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boundaries regarding the satisfaction levels of the elements of the Fuzzy Objective Function (FOF) are
calculated on the feasible region as follows.

Zγ− = min
x̃∈4

Zγ (x̃) and Zγ+ = max
x̃∈4

Zγ (x̃) , ∀γ.

For the fuzzy objective, which has a maximization direction, the linear membership functions are
identified as follows:

hγ (Zγ(x̃)) =


1 Zγ(x̃) > Zγ+,
Zγ(x̃) − Zγ−

Zγ+ − Zγ−
, Zγ− ≤ Zγ(x̃) ≤ Zγ+,

0, Zγ(x̃) < Zγ−,

where Zγ− , Zγ+, ∀γ.
With the help of Zimmermann’s minimum operator [22], the fuzzy MOLPP (3.5) can be

expressed as:

max min
γ

hγ
(
Z̄γ

)
,

s.t.
(
Zγ,idγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ,

x̃ ∈ 4.

(3.6)

By the aid of an ancillary variable λ, (3.6) can be turned into the following equivalent the iterative
LPP (3.7) and the fuzzy optimal point of (2.6) is attained by optimizing the iterative LPP (3.7)

max λ,

s.t.
(
Zγ,idγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ,

min
γ

hγ
(
Z̄γ

)
≥ λ, ∀γ,

n∑
j=1

yγp j = bγp for p = 1, . . . , t and ∀γ,

n∑
j=1

yγq j + kγq = bγq + nγq for q = t + 1, . . . , s and ∀γ,

n∑
j=1

yγr j + kγr = bγr + nγr for r = s + 1, . . . ,m and ∀γ,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 ∀ j,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = t + 1, . . . ,m,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = t + 1, . . . ,m,

0 ≤ λ ≤ 1.

(3.7)
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If an infeasible case arises, the following process (3.8) is pursued by the aid of Remark 2 to obtain
an approximate OFS of (2.6).

max min
γ

hγ
(
Z̄γ

)
,

s.t.
(
ZγidγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = ZγidγT xγ,i + αγ, ∀γ,

n∑
j=1

ãp j ⊗ x̃ j ⊕ K̃p = b̃p ⊕ Ñp for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q = b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãp j ⊗ x̃ j ⊕ K̃r = b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃.

(3.8)

Beginning with an incipiency fuzzy solution (x̃0, Z̃0), we can iterate the sub-problem (3.7) or (3.8)
using the solution (x̃i∗ , Z̃i) at i-th iteration for finding the fuzzy optimal point (x̃i+1∗ , Z̃i+1) at (i + 1)-
th iteration.

Proposition 1. For all γ, the gradient vectors of each component of the FFrO function Zγ in (2.6) and
its linear objective functions Z̄γ in (3.6) have the same value at every solution x̃i ∈ 4.

Proof. The gradient vectors of component functions of objective Zγ can be signified as follows:

∇Zγ (xγ) =

(
dγT xγ + βγ

)
∇

(
cγT xγ + αγ

)
−

(
cγT xγ + αγ

)
∇

(
dγT xγ + βγ

)
(
dγT xγ + βγ

)2

=

(
dγT xγ + βγ

)
cγT −

(
cγT xγ + αγ

)
dγT(

dγT xγ + βγ
)2 =

cγT −
(cγT xγ+αγ)
(dγT xγ+βγ)dγT(

dγT xγ + βγ
)

=
cγT − Zk(xγ)dγT

dγT xγ + βγ
.

Hence, the values of the gradient vectors at the point xγ

∇Zγ (xγ) =
cγT − Zγ(xγ)dγT

dγT xγ + βγ
=

cγT − Zγ,idγT

dγT xγ + βγ
,

can be written. On the other hand, rearranging the Eq (3.4), the gradient vectors of components of
fuzzy linear objective function Z̄γ (xγ) are as follows:(

Zγ,idγT
− cγT

)
∇xγ +

(
dγT xγ + βγ

)
∇Z̄γ = 0,
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∇Z̄γ (xγ) =
cγT − Zγ,idγT

dγT xγ + βγ
.

Furthermore, the values of the gradient vectors at the point xγ

∇Z̄γ (xγ) =
cγT − Zγ,idγT

dγT xγ + βγ
,

can be written. �

Remark 4. The increment at components of fuzzy linear objective function such that Z̄γ
(
x̃i
)
≤ Z̄γ(x̃∗)

indicates that the increment at components of fuzzy linear fractional objective function such that
Zγ

(
x̃i
)
≤ Zγ(x̃∗).

Proposition 2. The values of components of FFrO function Zγ,i generate a monotonic non-decreasing
sequence at the consecutive OFSs x̃i ∈ 4 of the Problem (2.6). Beginning with an incipiency fuzzy
point x̃0 ∈ 4, that is Zγ0 ≤ Zγ1 ≤ . . . . ≤ Zγi ≤ Zγi+1 ≤ . . . , ∀γ ∈ {l,m, u} and ∀i ∈ N.

Proof. Let the nonempty set 4i be defined such that 4i = 4 ∩ B
(
xγ,i, δ

)
. The following inequality is

satisfied for all x̃ ∈ 4i.
Zγ(x̃) ≤ max

x̃∈4i
Zγ(x̃). (3.9)

Considering x̃i ∈ 4i and Zγ,i, if max
x̃∈4i

Zγ(x̃) = Zγ(x̃∗), then the inequality (3.9)

Zγ(x̃i) ≤ Zγ(x̃∗), (3.10)

can be rewritten. In the proposed algorithm, x̃i+1 = x̃∗ can be defined due to the fact that the fuzzy
optimal point x̃∗ is used in the next iteration. Hence, the inequality (3.10) is denoted by Zγ,i ≤ Zγi+1. If
the alike process is reiterated for the set 4i+1 = 4 ∩ B

(
xγi+1, δ

)
, then

Zγ(x̃i+1) ≤ Zγ(x̃i+2), (3.11)

is obtained for all x̃i+1 ∈ 4i+1, that is Zγi+1 ≤ Zγi+2.
If this procedure is continued, it is unfalteringly said that the values of fractional objective functions

generate a non-decreasing sequence as

Zγ,0 ≤ Zγ,1 ≤ · · · ≤ Zγ,i ≤ Zγ,(i+1) ≤ . . . , ∀γ, ∀i ∈ N.

�

Theorem 1. If a non-decreasing sequence
(
Zγ,i

)
i∈N

is bounded above, the monotonic sequence
is convergent.

Proof. The proof is straightforward. �

3.1. Determining an incipiency point

To start the algorithm, an arbitrary fuzzy value can be selected, or the incipiency fuzzy point
x̃0 can be determined by solving one of the problems that assumes one of the elements of the set{
max
x̃∈4

0̃, max
x̃∈4

c̃T x̃, max
x̃∈4
−d̃T x̃, max

x̃∈4

(
c̃T − d̃T

)
x̃
}

as an objective function over the feasible region 4.
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3.2. Statement of the presented algorithm

Regarding the previous expressions and operations, the algorithm can be simply expressed as:
Step 0. Load the following FFLFrPP (2.6).

max Z̃ =
Ñ(x̃)
D̃(x̃)

=
c̃Tx̃ + α̃

d̃Tx̃ + β̃
,

Ã ⊗ x̃ �,=�, b̃,
x̃ � 0̃.

Step 1. Classify the constraints (in terms of “≤,=,≥”) and transform inequality types
constraints (“≤ , ≥”) into equality ones by aid of fuzzy numbers and Remark 1, attain the equivalent
FFLFrPP (3.1) as.

max Z̃,

s.t.
n∑

j=1

ãp j ⊗ x̃ j = b̃p for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q = b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãr j ⊗ x̃ j ⊕ K̃r = b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃.

Step 2. Select an incipiency fuzzy solution x̃0 for corresponding the value of FOF Z̃0 and assign i = 0.
Step 3. Establish the following fuzzy MOLPP (3.5).

max
{
Z̄l, Z̄m, Z̄u

}
,

s.t.
(
Zγ,idγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ,

x̃ ∈ 4.

Step 4. Via a fuzzy approach, considering the following iterative LPP (3.7),
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max λ,

s.t.
(
Zγ,idγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = Zγ,idγT xγ,i + αγ, ∀γ,

min
γ

hγ
(
Z̄γ

)
≥ λ, ∀γ,

n∑
j=1

yγp j = bγp for p = 1, . . . , t and ∀γ,

n∑
j=1

yγq j + kγq = bγq + nγq for q = t + 1, . . . , s and ∀γ,

n∑
j=1

yγr j + kγr = bγr + nγr for r = s + 1, . . . ,m and ∀γ,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 ∀ j,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = t + 1, . . . ,m,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = t + 1, . . . ,m,

0 ≤ λ ≤ 1.

(a) Obtain the OFS x̃∗, skip the Step 5.
(b) If above model (3.7) has no feasible solutions, the iterative LPP is infeasible. Then use

following (3.8) for an approximate OFS of (2.1).

max min
γ

hγ
(
Z̄γ

)
,

s.t.
(
ZγidγT

− cγT
)

xγ +
(
dγT xγ,i + βγ

)
Z̄γ = ZγidγT xγ,i + αγ, ∀γ,

n∑
j=1

ãp j ⊗ x̃ j ⊕ K̃p = b̃p ⊕ Ñp for p = 1, . . . , t,

n∑
j=1

ãq j ⊗ x̃ j ⊕ K̃q = b̃q ⊕ Ñq for q = t + 1, . . . , s,

n∑
j=1

ãp j ⊗ x̃ j ⊕ K̃r = b̃r ⊕ Ñr for r = s + 1, . . . ,m,

R
(
K̃q

)
− R

(
Ñq

)
≤ 0 for q = t + 1, . . . , s,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = s + 1, . . . ,m,

x̃ � 0̃.

Step 5. Construct x̃i+1 = x̃∗ and compute Z̃i+1 = Z̃
(
x̃i+1

)
.

Step 6. If Z̃i+1 = Z̃i, the (approximate) OFS of (2.6) is achieved, that is x̃∗ = x̃i and Z̃∗ = Z̃i. STOP.
Otherwise, take i = i + 1 and skip Step 4.
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The proposed fuzzy method’s flow diagram is shown in Figure 1. The maximal objective’s direction
is displayed for it. We also point out that, by virtue of the procedure’s flexibility, the method may be
renewed to work toward the minimal objective in terms of the FFLFrPP’s structure.

Start

Load the FFLFrPP (2.6)

Classify the constraints
of (2.6) and obtain the

corresponding FFLFrPP (3.1)

Decide an incipiency fuzzy
point

(
x̃0, Z̃0

)
and assign i = 0

Establish the fuzzy
MOLPP (3.5)

Construct the iterative LPP (3.7)

Solve the LPP (3.7)

Infeasible

Considering the (approximate)
OFS x̃∗, put x̃i+1 = x̃∗ and

calculate Z̃i+1

Z̃i+1 = Z̃i

The (approximate) OFS
of (2.6) is x̃∗ = x̃i with
corresponding objective

functions values Z̃∗ = Z̃i

Stop

Solve the problem (3.8)

i = i + 1

No

Yes

Yes

No

Figure 1. Flow diagram of our fuzzy approach.

4. Numeric Expressions

Two computational experiments and two small practical applications gathered from the literature
are offered to examine the offered fuzzy technique in this section. The steps of the suggested algorithm
are carried out for only the first example. Furthermore, all numerical findings are included in Table 1,
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together with comparisons to existing approaches.

Table 1. Comparison results for examples.
Example Ref. Z̃ Ranking

(
R(Z̃)

)
1

Proposed Algorithm (−0.1336, 0.5371, 6.8975) 1.9595
Pop and Stancu-Minasian [14] (−0.2108, 0.6667, 5.82) 1.7356

Stanojevic and Stancu-Minasian [19] (0, 0.55, 1.09) 0.5475

2
Proposed Algorithm (0.1436, 2, 27.6393) 7.9457

Safaei [15] (1.34, 2, 2.31) 1.9125
Kumar, Mandal and Edalatpanah [16] (1.5, 2, 2.8) 2.075

4.1. Examples

Example 1. Handle the FFLFrPP [14]:

max Z̃ (x̃) =
(0, 1, 2) ⊗ x̃1 ⊕ (−2,−1, 0) ⊗ x̃2 ⊕ (0, 1, 2)

(0, 1, 2) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 ⊕ (1, 2, 3)
,

s.t. (0, 1, 2) ⊗ x̃1 ⊕ (−2,−1, 0) ⊗ x̃2 � (0, 1, 2),
(0, 1, 2) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 � (1, 2, 3),
x̃1, x̃2 � 0̃.

(4.1)

The feasible region is denoted by 4.
Step 1. ransforming the constraints of FFLFrPP (4.1), the following equivalent FFLFrPP is constructed.

max Z̃ (x̃) =
(0, 1, 2) ⊗ x̃1 ⊕ (−2,−1, 0) ⊗ x̃2 ⊕ (0, 1, 2)

(0, 1, 2) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 ⊕ (1, 2, 3)
,

s.t. (0, 1, 2) ⊗ x̃1 ⊕ (−2,−1, 0) ⊗ x̃2 ⊕ K̃1 = (0, 1, 2) ⊕ Ñ1,

(0, 1, 2) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 ⊕ K̃2 = (1, 2, 3) ⊕ Ñ2,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = 1, 2

x̃ j � 0̃ j = 1, 2.

(4.2)

Step 2. x̃0 = [(0, 1, 1) , (0, 0, 0)] the incipiency fuzzy solution and the value of FOF Z̃0 = (0, 0.6667, 4)
are obtained by dealing with the FFLPP (4.3)

max 0̃,
s.t. (0, 1, 2) ⊗ x̃1 ⊕ (−2,−1, 0) ⊗ x̃2 ⊕ K̃1 = (0, 1, 2) ⊕ Ñ1,

(0, 1, 2) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 ⊕ K̃2 = (1, 2, 3) ⊕ Ñ2,

R
(
K̃r

)
− R

(
Ñr

)
≥ 0 for r = 1, 2,

x̃ j � 0̃ j = 1, 2,

(4.3)
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and its corresponding to the LPP (4.4).

max 0,
s.t. − 2xu

2 + kl
1 = nl

1

xm
1 − xm

2 + km
1 = 1 + nm

1

2xu
1 + ku

1 = 2 + nu
1

xm
1 + xm

2 + km
2 = 2 + nm

2

2xu
1 + 2xu

2 + ku
2 = 3 + nu

2

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2

(4.4)

Step 3. Utilizing x̃0, Z̃0 and FFLFrPP (4.5), the fuzzy MOLPP (4.6) corresponding to (3.5) is obtained.

max Z̃ (x̃) =

(
−2xu

2

2xu
1 + 2xu

2 + 3
,

xm
1 − xm

2 + 1
xm

2 + 2
,

xu
1 + 2
1

)
,

s.t.
(
−2xu

2, x
m
1 − xm

2 , 2xu
1
)
⊕

(
kl

1, k
m
1 , k

u
1

)
= (0, 1, 2) ⊕

(
nl

1, n
m
1 , n

u
1

)
,(

0, xm
1 + xm

2 , 2xu
1 + 2xu

2
)
⊕

(
kl

2, k
m
2 , k

u
2

)
= (1, 2, 3) ⊕

(
nl

2, n
m
2 , n

u
2

)
,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2.

(4.5)

max
{
Z̄l, Z̄m, Z̄u

}
,

s.t. 2xu
2 + 5Z̄l = 0,
− 0.3333xm

1 + 1.6667xm
2 + 3Z̄m = 1.6667,

− 2x1
u + Z̄u = 2,(

−2xu
2, x

m
1 − xm

2 , 2xu
1
)
⊕

(
kl

1, k
m
1 , k

u
1

)
= (0, 1, 2) ⊕

(
nl

1, n
m
1 , n

u
1

)
,(

0, xm
1 + xm

2 , 2xu
1 + 2xu

2
)
⊕

(
kl

2, k
m
2 , k

u
2

)
= (1, 2, 3) ⊕

(
nl

2, n
m
2 , n

u
2

)
,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2.

(4.6)
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Step 4. With the fuzzy approach, the LPP corresponding to (3.7) is constituted as:

max λ,
s.t. 2xu

2 + 5Z̄l = 0,
− 0.3333xm

1 + 1.6667xm
2 + 3Z̄m = 1.6667,

− 2x1
u + Z̄u = 2,

Z̄l − 0.7272λ ≥ −0.7272,
Z̄m − 0.9643λ ≥ −0.25,
Z̄u − 6λ ≥ 2,
− 2xu

2 + kl
1 = nl

1,

xm
1 − xm

2 + km
1 = 1 + nm

1 ,

2xu
1 + ku

1 = 2 + nu
1,

xm
1 + xm

2 + km
2 = 2 + nm

2 ,

2xu
1 + 2xu

2 + ku
2 = 3 + nu

2,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2,

0 ≤ λ ≤ 1.

(4.7)

The OFS of (4.7) is x̃∗ = [(0, 0, 2.411) , (0, 0.055, 0.357)].
Step 5. x̃1 = x̃∗ = [(0, 0, 2.411) , (0, 0.055, 0.357)] and the value of FFrO is Z̃1 =

(−0.143, 0.525, 6.823).
Step 6. Due to Z̃0 , Z̃1, assign i = 1 and skip Step 4.
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Step 4. With x̃1 and Z̃1, the LPP corresponding to (3.7) is constituted as:

max λ,
s.t. − 0.1671x1

u + 1.8329xu
2 + 8.5363Z̄l = −0.4626,

− 0.54xm
1 + 1.46xm

2 + 2.0548Z̄m = 1.0252,
− 2x1

u + Z̄u = 2,
Z̄l − 0.7272λ ≥ −0.7272,
Z̄m − 0.9643λ ≥ −0.25,
Z̄u − 6λ ≥ 2,
− 2xu

2 + kl
1 = nl

1,

xm
1 − xm

2 + km
1 = 1 + nm

1 ,

2xu
1 + ku

1 = 2 + nu
1

xm
1 + xm

2 + km
2 = 2 + nm

2 ,

2xu
1 + 2xu

2 + ku
2 = 3 + nu

2,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2,

0 ≤ λ ≤ 1.

(4.8)

The OFS of (4.8) is x̃∗ = [(0, 0.145, 2.449) , (0, 0, 0.593)].
Step 5. x̃2 = x̃∗ = [(0, 0.145, 2.449) , (0, 0, 0.593)] and the value of FFrO is Z̃2 =

(−0.1306, 0.5337, 6.8971).
Step 6. Due to Z̃1 , Z̃2, assign i = 2 and skip Step 4.
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Step 4. With x̃1 and Z̃1, the LPP corresponding to (3.7) is constituted as:

max λ,
s.t. − 0.2613x1

u + +1.7387xu
2 + 9.084Z̄l = −0.795,

− 0.4662xm
1 + 1.5338xm

2 + 2.145Z̄m = 1.0774,
− 2x1

u + Z̄u = 2,
Z̄l − 0.7272λ ≥ −0.7272,
Z̄m − 0.9643λ ≥ −0.25,
Z̄u − 6λ ≥ 2,
− 2xu

2 + kl
1 = nl

1,

xm
1 − xm

2 + km
1 = 1 + nm

1 ,

2xu
1 + ku

1 = 2 + nu
1

xm
1 + xm

2 + km
2 = 2 + nm

2 ,

2xu
1 + 2xu

2 + ku
2 = 3 + nu

2,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2,

0 ≤ λ ≤ 1.

(4.9)

The OFS of (4.9) is x̃∗ = [(0, 0.16, 2.449) , (0, 0, 0.609)].
Step 5. x̃3 = x̃∗ = [(0, 0.16, 2.449) , (0, 0, 0.609)] and the value of FFrO is Z̃3 =

(−0.1336, 0.5371, 6.8976).
Step 6. Due to Z̃2 , Z̃3, assign i = 3 and skip Step 4.
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Step 4. With x̃3 and Z̃3, the LPP corresponding to (3.7) is constituted as:

max λ,
s.t. − 0.2672x1

u + 1.7328xu
2 + 9.1156Z̄l = −0.8171,

− 0.4629xm
1 + 1.5371xm

2 + 2.16Z̄m = 1.086,
− 2x1

u + Z̄u = 2,
Z̄l − 0.7272λ ≥ −0.7272,
Z̄m − 0.9643λ ≥ −0.25,
Z̄u − 6λ ≥ 2,
− 2xu

2 + kl
1 = nl

1,

xm
1 − xm

2 + km
1 = 1 + nm

1 ,

2xu
1 + ku

1 = 2 + nu
1,

xm
1 + xm

2 + km
2 = 2 + nm

2 ,

2x1
u + 2x2

u + k2
u = 3 + n2

u,

kl
ξ + 2km

ξ + ku
ξ − nl

ξ − 2nm
ξ − nu

ξ ≥ 0 for ξ = 1, 2,

xu
j − xm

j ≥ 0, xm
j − xl

j ≥ 0, xl
j ≥ 0 for j = 1, 2,

ku
ξ − km

ξ ≥ 0, km
ξ − kl

ξ ≥ 0 for ξ = 1, 2,

nu
ξ − nm

ξ ≥ 0, nm
ξ − nl

ξ ≥ 0 for ξ = 1, 2,

0 ≤ λ ≤ 1.

(4.10)

The OFS of (4.10) is x̃∗ = [(0, 0.16, 2.449) , (0, 0, 0.609)].
Step 5. x̃3 = x̃∗ = [(0, 0.16, 2.449) , (0, 0, 0.609)] and the value of FFrO is Z̃3 =

(−0.1336, 0.5371, 6.8976).
Step 6. Due to Z̃2 = Z̃3, x̃2 = x̃∗ = [(0, 0.16, 2.449) , (0, 0, 0.609)] and Z̃2 = (−0.1336, 0.5371, 6.8976)
are the fuzzy solution of (4.1) and the FOF, respectively.

The proposed algorithm achieved a ranking score of 1.9595, which is higher than the ranking
scores obtained by the Pop and Stancu-Minasian method [14] and the Stanojevic and Stancu-Minasian
method [19] (See Table 1). This indicates that the proposed method outperforms the competing
algorithms in this example.

Example 2. Consider the following FFLFrPP [15, 16]:

max Z̃ (x̃) =
(2, 4, 7) ⊗ x̃1 ⊕ (1, 3, 4) ⊗ x̃2 ⊕ (1, 2, 4)
(1, 2, 3) ⊗ x̃1 ⊕ (3, 5, 8) ⊗ x̃2 ⊕ (0, 1, 2)

,

s.t. (1, 2, 3) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 � (2, 11, 28),
(0, 1, 2) ⊗ x̃1 ⊕ (1, 2, 3) ⊗ x̃2 � (1, 10, 17),
x̃ j � 0̃ j = 1, 2.

(4.11)

The proposed algorithm demonstrated its superiority by achieving a remarkable ranking score
of 7.9457, which significantly surpasses the ranking scores of the method of Safaei [15] and Kumar,
Mandal, and Edalatpanah [16].
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4.2. Applications

Linear fractional programming can be a highly valuable tool when it comes to creating models
that allow us to make important decisions that arise in our lives. In these decision-making structures,
it is possible to reflect the inherent uncertainty in decision-making by modeling the variables and
parameters we consider with fuzzy numbers. Examples directly related to human life, such as logistics
planning, production decisions, and portfolio optimization, can be cited as application areas where the
full fuzzy integer linear programming problem can be addressed. In this context, we have provided
solutions for these examples by addressing applications on production planning problems presented in
Chinnadurai and Muthukumar [5] and Srinivasan [18].

Example 3. Take into account the production planning problem expressed as FFLFrPP [5]:

max Z̃ (x̃) =
1̃0 ⊗ x̃1 ⊕ 2̃0 ⊗ x̃2 ⊕ 1̃0

3̃ ⊗ x̃1 ⊕ 4̃ ⊗ x̃2 ⊕ 2̃0
,

s.t. 1̃ ⊗ x̃1 ⊕ 3̃ ⊗ x̃2 � 5̃0,
3̃ ⊗ x̃1 ⊕ 2̃ ⊗ x̃2 � 8̃0,
x̃ j � 0̃ j = 1, 2.

(4.12)

The optimal value of FFrO is Z̃ = (0.7199, 2.804, 13.992).

Example 4. Tackle the material-related production planning problem of a wooden company in India
expressed as FFLFrPP [18]:

max Z̃ (x̃) =
(1, 2, 3) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2

(1, 3, 5) ⊗ x̃1 ⊕ (1, 1, 1) ⊗ x̃2 ⊕ (3, 6, 9)
,

s.t. (4, 7, 10) ⊗ x̃1 ⊕ (0, 1, 2) ⊗ x̃2 � (4, 6, 8),
(1, 5, 9) ⊗ x̃1 ⊕ (2, 3, 4) ⊗ x̃2 � (5, 6, 7),
x̃ j � 0̃ j = 1, 2.

(4.13)

The optimal value of FFrO is Z̃ = (0.0356, 0.158, 2.2125).

Example 5. Furthermore, it is possible to fully embrace the fuzzy nature of large-scale real-world
scenarios by incorporating individual objective ratios. In this context, our study goes beyond the
limited applications found in the literature, generating large-scale Full Fuzzy Linear Fractional
Programming Problems (FFLFrPPs) using randomly generated data and solving them through the
proposed methodology. We investigate the impact of the Number of Fuzzy Variables (NoFV) and
Number of Fuzzy Constraints (NoFC) on the overall execution time and iteration count of the newly
developed approach, as outlined in Table 2. Test results demonstrate that our novel strategy for
addressing real-world problems, even those of large-scale, efficiently handles the objective function
solving process in terms of time and iterations. Additionally, Figure 2 presents the average elapsed
time and average number of iterations for the designated (NoFV, NoFC) pairs. To ensure robustness,
ten randomly generated test problems were solved for each class using the proposed approach.
Furthermore, all computational tests were conducted using the GAMS 24.3.3 software on a computer
equipped with an Intel 11th generation i7 CPU operating at 2.30 GHz and 16 GB of RAM.
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Table 2. Results with the suggested algorithm for the created FFLFrPPs.
Class Number of iterations CPU Time (in seconds)

(NoFV,NoFC) Min Max Average Min Max Average
1 (10, 10) 5 9 6.6667 1.931 2.3999 2.1273
2 (25, 25) 3 6 4.8 1.8199 2.223 2.0505
3 (50, 50) 4 6 5.5 2.0079 2.281 2.1899
4 (75, 75) 6 7 6.1 2.4119 2.7109 2.5754
5 (100, 100) 4 7 6 3.0989 4.2339 3.7125
6 (150, 150) 6 9 6.9 7.607 13.93 9.5591
7 (200, 200) 6 8 6.7 14.932 32.964 21.1138
8 (250, 250) 4 8 5.7 44.625 98.6399 67.2097
9 (300, 300) 5 8 6.2 88.6249 168.066 138.142

10 (500, 500) 5 8 6.5 733.247 1719.065 1141.71
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Figure 2. The average number of iterations and CPU time vs (NoFV, NoFC).

5. Comparison

In order to compare the proposed solution approach with the methods in the literature, examples
taken from the existing literature have been solved. Then, the effectiveness of the proposed solution
approach has been rigorously assessed through a comparative analysis with the results utilizing the
ranking function, which is used in the literature to show the superiority of the algorithms. In particular,
we have compared the outcomes achieved through our suggested methodology with those obtained
from previously reported methods [14–16,19]. As illustrated in Table 1, it is evident that our approach
consistently yields higher ranking values for every numerical challenge when compared to alternative
methods. Furthermore, due to the fact that our suggested approach solves only the LPP in each
iteration, it lends itself to easy manual or computer-based implementation and management in terms
of numerical processing load.

In addition, we have conducted a comprehensive series of tests, generating a large-scale set of test
instances, which have never been addressed by the methods for FFLFrPP in the literature, at random to
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assess the adaptability of our proposed solution approach in real-world scenarios. The results of these
tests are presented in Table 2. Notably, beyond the small-scale cases documented in the literature,
our study reveals the substantial advantages of our approach in addressing fuzzy scenarios of varying
scales. The proposed solution method differs from previous research in the field because it preserves
the fuzziness from the establishment of the problem to the final stage of obtaining the solution and
because it has been shown to be applicable to large-scale problems.

6. Conclusions

When dealing with problem structures designed using fuzzy set theory, researchers must navigate
various challenges, including handling inverse fuzzy numbers. It is crucial to prioritize clarity over
complexity to avoid potential misinterpretations. In response to these challenges, we introduced
a straightforward, traditional continuity-based methodology for solving FFLFrPP. Unlike other
approaches that require intricate fuzzy variable transformations, our method simplifies the process
by incorporating Zimmermann’s operator and transitioning to a simple, crisp LPP model, enabling us
to obtain the optimal solution easily.

Our approach has led to improved objective function values compared to previously published
studies. Additionally, through these simplifications, we have demonstrated the capability of
our proposed algorithm to tackle large-scale FFLFrPPs, critical contribution that was previously
unaddressed in the literature.

In addition, applying the proposed method to a practical situation that inherently involves
uncertainty with real market data is a future research endeavor. As another future study, we are actively
considering the expansion of our methodology to encompass multi-objective fuzzy linear fractional
programming. This potential extension holds the promise of further advancing the applicability and
scope of our proposed algorithm, addressing a critical research gap in the field.
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