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Abstract: This research paper presented a novel investigation into an implicit coupled system
of fractional variable order, which has not been previously studied in the existing literature. The
study focused on establishing and developing sufficient conditions for the existence and uniqueness
of solutions, as well as the Ulam-Hyers stability, for the proposed coupled system without using
semigroup property. By extending the existing conclusions examined for the Atangana-Baleanu-
Caputo (ABC) operator, we contributed to advancing the understanding of variable-order fractional
differential equations. The paper provided a solid theoretical foundation for further analysis, numerical
simulations, and practical applications. The obtained results have implications for designing and
controlling systems modeled using fractional variable order equations and serve as a basis for
addressing a wide range of dynamical problems. The transformation techniques, qualitative analysis,
and illustrative examples presented in this work highlight its unique contributions and potential to serve
as a foundation for future research.
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1. Introduction

The fundamental concept of fractional calculus involves replacing natural numbers with rational
numbers in the order of differentiation operators. Although this concept may initially appear
undeveloped and straightforward, it carries profound implications and yields significant results that
effectively describe phenomena in various fields, including bioengineering, dynamics, modeling,
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control theory, and medicine. For more detailed information on this topic, we refer the reader to the
following references [1-4]. Fractional differential equations (FDEs) play a critical role in modeling
the growth of systems, particularly through nonlocal Cauchy-type problems that describe nonnegative
quantities like species concentrations or temperature distributions. Before applying these models to
real-world phenomena, it is crucial to establish the existence of solutions, which can be addressed
using fixed point theory. Furthermore, it is essential to develop stable algorithms and reliable numerical
procedures to obtain accurate results and ensure the practicality and validity of the models in real-
life applications. The articles [5-8] and their references explore a wide range of interesting and
innovative findings related to the existence and stability of coupled systems in various types of FDEs.
These studies delve into different aspects of coupled systems and contribute to our understanding
of their dynamics and properties. They provide valuable insights into the behavior and solutions of
coupled FDEs, opening up avenues for further research and applications in this field. New strategies
and methodologies have been developed to describe the dynamics of real problems. In particular,
Caputo and Fabrizio [9] introduced a new class of fractional derivatives within the exponential kernel,
which Losada and Nieto [10] explored further, uncovering intriguing characteristics. Atangana and
Baleanu [11] investigated a novel type of fractional derivatives using Mittag-Leffler (ML) kernels.
Abdeljawad [12] extended the ABC fractional derivative to higher arbitrary orders and included their
associated integral operators. The reader may find theoretical works on the ABC fractional operator in
references [13-16].

It is evident that the challenges posed by operators of variable order are more complex compared
to operators of constant order. Recently, several authors have explored the applications of variable
order derivatives in various scientific fields, including multi-fractional Gaussian noises, mechanical
applications, and anomalous diffusion models. Among these, numerous studies have focused on
developing numerical techniques for a specific class of variable-order FDEs, as exemplified by [17-20].
In this regard, Lorenzo et al. [21], utilizing fractional operators with variable order, addressed the
problem of fractional diffusion. Subsequently, fractional variable order has found applications in
various areas of science and engineering (see [22—24]). Sun et al. [25] conducted a comparative study
between constant and variable order models to describe systems with memory. Various techniques are
available for approximating solutions to fractional boundary value problems with variable orders. For
instance, the authors in [26] developed a nonlinear model of alcoholism within the framework of FDEs
with variable order and examined its solutions numerically and analytically. Recently, Li et al [27]
investigated the following fractional problem using a novel numerical strategy

{MLD;;“’y(L) +a(y() = H,yw), te[0,1],

B») =0, -

where, MLDS’f‘) is the Mittag-Lefller fractional derivative of order w(¢). Kaabar et al. [28] examined the
qualitative characteristics of the following implicit FDEs with variable order

{cngf‘>y<o = H(,y©, “Dgy@), ¢€10,b], (12)

¥(0) =0,y() =0,
where, CDS’f‘) is the Caputo fractional differential (FD) of variable order w(:). Jeelani et al. [29]

employed generalized intervals, Krasnoselskii and Banach’s fixed point theorems, and piecewise
constant functions to conduct qualitative analyses on a nonlinear fractional integrodifferential equation.
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Based on the provided justifications, we are motivated to evaluate and investigate the necessary
conditions for a coupled system within the context of the ABC-fractional derivative with a variable
order as the following

DY) = Hiw Y20, Dy @), 1€ T = (0,81,
ABCTy@®) _ ABCTy@®) .
D0+ YZ(L) - 7‘IZ(L’ )’I(L), D0+ )’Z(L)), LE j .= (0’ b] 5
y1(0) = 0,y1(b) = X5_; yi(ti), 7% € (0,b),
¥2(0) = 0,y2(b) = 32y y2(¥), vk € (0,D),

(1.3)

where

i) ABCDSL(‘) is the ABC-FD of variable order w(1) € (1,2].

i) 7, € R, kK = 1,2,...,n, are prefixed points satisfying 0 < x; < k, < ... < k, < b and
O<y1 <y <. <y, <b.

iii) H,,H, : J x R*> — R are continuous functions that comply with a few later-described
presumptions.

To the best of our knowledge, no studies in the aforementioned body of research address an implicit
coupled system of fractional variable order. The proposed implicit coupled system (1.3) is a more
general form compared to the previous problems (1.1) and (1.2) in [26,28,29]. The proposed implicit
coupled system (1.3) contains nonlocal conditions and variable order w(t) € (1,2]. The complexity of
calculations and partitioning the principal time interval has limited the number of studies specifically
addressing the stability and existence of fractional integrodifferential boundary value problems with
variable order. To bridge this gap, we conduct a comprehensive qualitative analysis of a new implicit
coupled system (1.3) with a variable order within the framework of ABC fractional operators. By
employing extended intervals and piecewise constant functions, we accurately transform the coupled
system into an equivalent standard system with constant order in the context of the ABC-fractional
derivative. The existence and uniqueness of solutions to the coupled system (1.3) are then demonstrated
using fixed point techniques such as Krasnoselskii and Banach theorems. The Ulam-Hyers stability
result of the suggested problem is also discussed. Additionally, we establish suitable conditions for
the existence of effective solutions to the coupled system (1.3). The contributions of this work lie
in providing a framework to address the challenges associated with variable-order FDEs involving
the ABC fractional operator. The study offers transformation techniques, investigation of qualitative
properties, existence and uniqueness analysis, stability analysis, and illustrative examples to support
its findings. The results obtained in this study will contribute to understanding the stability properties
of the considered implicit coupled system of fractional variable order. This knowledge is valuable
for designing and controlling systems modeled using such equations, ensuring their robustness, and
predicting their behavior accurately.

The paper’s structure is as follows: Section 2 offers an overview of fractional calculus notations,
definitions, and relevant lemmas, including a crucial lemma that converts the coupled system of
ABC-fractional derivative into an equivalent integral equation. Section 3 focuses on establishing the
existence and uniqueness of solutions for the coupled system, while Section 4 investigates the Ulam-
Hyers stability of the system. To illustrate the obtained results, Section 5 presents numerical examples.
Finally, the paper concludes with a summary of the findings, concluding remarks, and suggestions for
potential future research directions.
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2. Preliminary results and essential concepts

Let C (J,R) be a Banach space consisting of all continuous functionsy : J — R, where J := (0, b]
with the following supremum norm

Ivll = sup{ly()] : e € T}

Define the product space T = C (J,R) X C (J,R). Thus, T is Banach space with the following norm

13 y2)lle = [yl + lyall

for each (y;,y,) € Y.

Derivatives and integrals that have orders as functions of specific variables belong to the category
of operators with variable order, which is a more complex classification. Variable order fractional
integrals and derivatives can be defined in various ways.

Definition 2.1. [17] Let w(t) € (n—1,n],y € H'(J), then, the left ABC fractional derivative of
order w(t) for function y(1) with the lower limit zero are defined as

A L

asepotoyy = MOV (Fp OO o) vgas, > o. 2.1)
—w() Jo w() —1

The normalization function A(w(v)) satisfies A(0) = A(1) = 1, where E,, is the ML function defined

by
k

N y
E, Q) = kzz(; —F(kw(t) it Re(w) > 0,y e C.

The left Atangana-Baleanu (AB) fractional integral of order w(1) for function y(t) are defined as

AByw(0) - w() ‘U(L) f w1
lo @ = A(w@)y() A@OT @) Jo 797 s

Lemma 2.2. [12] Let y(1) be a function defined on the interval [0,b] andn < w < n+1, n € Ny. Then,
we have

(k)
(ABIa)ABCDO+y @ = y(0) Z y (0) 3

Theorem 2.3. [30] Let X be a Banach space and S C X be a nonempty, closed, convex and bounded
subset. If there exist two operators ®', ®? satisfying the following conditions:

(1) ®'u+ d>veX,forallu,yveX.
(2) @' is completely continuous and ®* is a contraction mapping.

Then, there exists a function z € S such that z = ®'z + D27
Remark 2.4. Let u(t),v(t) € C (J,R) be two continuous functions. Then, we have

AB AB AB
LY ARy 2 AP Oy0).
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Lemma 2.5. [I2] Let w € (1,2] and h € C ([a,b],R). Then, the following integral equation
y©) =ci + ¢ (L —a) +18 I 7(0),
is an equivalent to the following linear problem

{ ABCD (o) = Ao,
y(a) = c1,y'(a) = o,

where

AByw 2-w ft f ol
L.a() = Ao-D . h(s)ds + —A( @) (t = )" h(s)ds. (2.2)

2.1. Notations

For the sake of simplicity in our analysis, we will use the following notations:

© = (bi-bi)- ) (r—bi1) #0,
k=1
® = (bi=bi)= ) (re—bi1) #0,
k=1
2—(1),' (,()l'—l 2—a),- (,()i—l
Pl=——— Py= o Py = Py = ,
Awi-1""7 7 AW =D Awi-D T A - D))
P, ,
Zn =\|P3(b; — b ——— (b = b))
11 (3(1 tl)+r(wi+1)(l ll) ),

Pi(b; — b;_ .
Gn, = 1(—1) [Z (te — biz1) + (b; — bi—l)]

0,
Pabi=biy) o
@HMHiZu H>Haam}

Pi(b; — b;
%Z:JL—J%ZwrloﬂbbmJ

k=1

Pz(b bi_1) A :

bi-1)” + (bi = bi-1)” |,

@ﬂMH)Zm D%+ (bi = biy)

m, = Gn, +Zn and Ry, = Gn, + Zn,
and

Q=R and Q, = Ry, — 2t (2.3)
1 Hll—‘ﬁq{l 2 = Hzl_m%- )
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2.2. Equivalent integral equations

In this part, we convert the coupled system (1.3) with variable-order w(¢) into an equivalent integral
equations. To begin, we transform the coupled system with variable order into a coupled system with
constant order by using generalized intervals and piecewise constant functions. Let B be a partition of
the interval J defined as

={J1 =1b0,b11, 92 = (b1,b2], 93 = (b2, b3] , ... T = (bp-1, by 1},

such that by = 0,5, = b and n € N. Let w(¢) : J — (1,2] be a piecewise constant function concerning
B. This means that the function w(¢) takes values in the interval (1,2] and is constant over different
intervals or “pieces” defined by the set 8. In other words, for each interval in 8B, the function w(t)
remains constant within that interval. The specific values of w(¢) within each interval can vary, but they
will always be within the range of (1,2]. The set B defines the partition or division of the domain
into different intervals, and within each interval, the function w(¢) takes on a constant value. So, the
function w(¢) can be a representation as

w1, lf L€ jh
wy, ift€ Y,
n
W) = ) (o) =
i=1
Wy, If LET,
where, w; € (1,2] are constants numbers, and U; is the indicator of the interval ; := (b;_1, b;],

i=1,2,...,nsuch that
_ 1, ifted;,
U©= { 0, forelsewhere.

Let C (7, R), i € {1,2,...,n} be a Banach space of all continuous functions defined as y; : J; —» R
with the following norm

llyill = sup{ly(@I : ¢ € Ji}.
By (2.1), the coupled system (1.3) can be expressed as

(2.4)

BAD [ By (2221 (1= 0)°) v (0)d0 = H,1(1, y2(0), *EDGy, (1),
B [* Euy (2225 (= 0)°) y5(0)d0 = Ha(t, 31(1), *EDG 3, (1),

Then, for ¢ € J;,i = 1,2,...,n the coupled system (2.4) on J; can express as a sum of left ABC-
coupled systems of constant-orders wy, w;, ....w, as follows

w b w1 (1=0)” ’ [ wi(L=0)"i
B [P E,, (LB V(00 + ..+ 3L [ E,, (287) y1(0)d0 = Hi (1 y2(0), Dy (1),

1-w; JO w;—1 w;—1

w by w1 (=61 w; wi(t—O)“i
Aew [P, (LB vy (00 + ..+ 3L [ E,, (2487) y(0)d6 = Ha(t, 11(0), *ED s (0).
(2.5)
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Let the function (y;, y») be such that y;(t) = y»(t) = Oon¢ € [0,b;_1],i = 1,2,....,n, and such that
it solves the system (2.5). Hence, the coupled system (1.3) with variable-order w(¢) is reduced to the
following system
ABCDZ?_])H(L) = Hi(, yz(l),ABCDZj,i;l)/1(l)),L €Y
ABCDZ{IM(O = 'Hz(t,Y1(L),ABCDZ)Z§;IY2(L)),L SV
yi(bi-1) = 0, yi(b) = 2y yi(T), i € (0,b),
y2(bi-1) = 0, ya(bi) = 2y y2(71), vx € (0,b).
Now, to analyze the properties of solutions using fixed point theorems, we transform the coupled
system (2.6) into an equivalent integral equation. For that, we present the following theorem.

(2.6)

Theorem 2.6. Fori = 1,2,...,n, let w; € (1,2], and H : J; x R* — R be a continuous function and
0,0, # 0. If (y1,y2) € Y is a solution of coupled system (2.6), then, (y,y,) satisfies the following
fractional integral equations

C=b) [ ypeo " | "
yl(L) = ®—1 Z ABIbi Wy. (o) —AB Ib; 7‘(y1 (b)) +AB Ib; 7‘(y1 ), (2.7)
1 = i—1 i-1 ] i-1
and i .
(t—biy) | o o o
20 = 5= | ) M Hu ) L HL ()| 4T H ), (2.8)
bl =1 i—1 i—1 | i—1
where

H,, (1) = Hi(, )’2(L),ABCDZ)’§;I)’1(L)),
H,, (1) = Hao(t,y1(v), ABCDZ;;lyz(L))-

Proof. We assume that (y;,y,) € T is a solution of coupled system (2.6). Apply the operator ABIZ’i to

i—

both sides of (2.6) and using Lemma 2.5, we get

yi() =ci +c(t = biy) +17 IZ{]?‘{N ), (2.9)
and

¥2(t) = ¢35 + ca(t — biy) +*2 I H, (). (2.10)

By conditions y;(b;_;) = 0 and y,(b;,_1) = 0, we get ¢c; = ¢3 = 0. Hence. Egs (2.9) and (2.10) become
as
Y@ = et = bioy) +° IZ)£17-{Y1 o,

and
() = ea = bi) + P L Hy, ().

By second conditions y(b;) = X;_; y1(7x) and y2(b;) = X, Y2(ye), we get

N o |
L ! o :
and i} .
1 [< o w;
Cq = ®_2 Z ABIbi{]q_{yz(')/k) —AB Ib[fl_lq—(yz(bi) :
[ =1 .
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Substitute the values of ¢y, ¢z, c3, ¢4 into (2.9) and (2.10), and we get (2.7) and (2.8). Conversely,
assume that (y1,y,) € T satisfies (2.7) and (2.8). Then, by applying “*“DY’/ on both sides of (2.7)
i-1

and (2.8), with using the fact **“DY/ (1 - b;_;) = 0, we get (2.6). Next, take t — 7 in (2.7), and we get

- Die1 (T = bizy) - ;i w
Qv = SEEC=E ) I H () = L 9, ()
k=1 k=1

n
ABywi
+§ I H, ()
k=1

k=1

(b — biy) — O, [ - ]

+ Z ABIZ);_Iq‘[yl )
k=1
= yi(by).
In the same manner, we get y,(b;) = >;_, y2(¥x). Thus, the nonlocal conditions are satisfied. O

For further analysis, we simplify the solutions (2.7) and (2.8) as

Pt —bip) (< f fbf ]
= — H ds — H. d
MO 0, [; . Vi (s)ds - Vi (s)ds

bi

Pz(L - bi—l) - T wi—1 w;—1
+m (; Ll (tk = 8)” H,, (s)ds — . (b — )" H,, (s)ds

L P4 L -
+P f H,, (s)ds + (t— )" H, (s)ds,
’ bi_i ’ ['(w)) bi_1 !

and

Pi(t—bioy) - fy"
= — =7 E H, ds —
yZ(L) @2 (kzl b 2 (S) S

Pyt —biy) ([ [
O, (w;)

bi
H,, (s) ds]

i—

(3 b;
(= ™V H,, (5) ds — f (bi - Y™V H,, (5) ds
bi-1

l=1 ~bi-1

L P4 L .
P d — 5 : ds.
+P; Ll H,, (s)ds + @ J, (¢t =85 H,, (s)ds

3. Existence and uniqueness of solutions

In this part, we will examine the necessary conditions for the existence and uniqueness for the
coupled system (2.6) by using some fixed point theorems.

Theorem 3.1. Suppose that

AIMS Mathematics Volume 9, Issue 6, 15303—-15324.
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(H,) The functions H,,H, : J: x R> — R are continuous and there exist constant numbers
Ny, Ngy, > 0 such that

|7—(1(La X,)’) - 7_{l(L’ }’y)l m‘]’ﬁ (|X - xl + |y - ﬂ) 792(}(1 > 09
|?{2(L’ X, }’) - 7~{2(L’ x?i)l = En?‘(z (|X - xl + |y - ﬂ) 5m(1’(2 > Oa

IA

A

for all x,y,x,y € C(J;,R). Then, the coupled system (2.6) has a unique solution provided that
max {Q,Q,} < 1, where Q, and Q, are defined by (2.3).

Proof. On the light of Theorem 2.6, we define the operator Il : 1 — T as

(i, y2) () = AL (yi,y2) O, 1 (1, y2) (1),

where
k 1 )
PZ(L l 1) il _ w, 1
o) Ol (w;) [k 1 f I (T = 7 Hy () ds f (&i - Hy, () ds]
wi—1
+P3 L_] |7’{y1 (S)|ds + T(w) L_, (t—19) 7—{y1 (s)ds,
and

k=1

Yk
(1, y2) (1) = 1(‘®—2”)[Z H,, (5)ds - f Wyz(s)ds)

Py(t - b; ) o ; .
+ 2@)21“(0),1 (klfl()/k—s) j 1Wy2(s>ds_fb,-l(bi_s) “UH,, (s)ds

l

+P; fb:_l |7'(y2 (S)|ds + @) ]b:_l (L— )™ H, (5)ds.

Let 8, be a closed ball defined as

Bo =101,y € Y oLyl < 1)

(D +D)) and

with radius 7], Z Tmax(Q,.0)°

®; = R, Ly = 1,2,

where Ly, = max,cy, |7‘(1(L, 0, 0)| . Now, we show that IIg,, C §,,.. For the operator II;, let (y;,y1) € 3,
and ¢ € ;. Then, we have

P —b,‘_ & Tk b;
1) O = %[Z [ olas= [, (S)|ds)
k=1 i i
Pae=b, . .
gLF(wl . (Zf (T — )~ |H,, (s)|ds—f (b; — )" | H,, (S)|ds)

bi-

AIMS Mathematics Volume 9, Issue 6, 15303-15324.
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. fb [ ] ds + 505 fb (c= )" [ Hy, ()] ds.
By (H,), we have
[, 0| = |H, (t)l = [H0 320, 5D 310) = H,(1,0,0)] + [, 0,0)|
S 1z %Hl V20 + Ly, (3.1)
Hence

Pit—biy) [ (™ bi
I Gyl < %{Z f [Hy, ()] ds - f A, (S)|ds)
Zi ), .

L Pale=bi) . N
Lora |2 e olas [ oo, ol

bi-

+P; f |H,, (s)|ds + f (= )" |H,y, (9)|ds
bioi [(w))
< Qplyall + @y

In the same manner, for the operator Il,, we get

L (1, y2)Il < Qo [Iyill + Do

Hence, by the fact |[IL(yr, y2)lly = ITL (y1, y2)Il + [0z (v1, yoll , we get

M GLy)lly < Qulyill + Qallyall + (@ + D5)
max {Qy, Qo } ([y1ll + [[y2l]) + (D1 + D)
max {Q, Q}(y1, y)lly + (D1 + D5)

;-

IA

IAN A

Thus II (y1, y,) € B,,- Now, we shall prove that II (y;, y,) is a contraction. Let (y;,y,),()1,2) € B8, and
t € ;. Then, for the operator I, we have

I 01, v2) O = I (571, 52) )
Pit-b) [ (™ g
< 1®—11 (; fb ) |H,, (5) — H, (s)|ds + fb ) |H,, (5) — H, (5) ds)

Py(t = b;i-y)

n - by
® T(w,) [; f (% — S)wi_l |7‘{y1 (s) - 7‘(% (S)| ds + fb;l (b; — S)wi—l |7_{y1 (s) — 7_{?1 (S)| ds]

= 9" |H,, (5) - H, (s)| ds.

+P; f_ |7_[y1 (5) = H; (S)|ds+ Nw z) bi-1

By (H,), we obtain

AIMS Mathematics Volume 9, Issue 6, 15303-15324.
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[H, (9= Hs ()] = [F(5,3209), 5D yi(9) = H(5,5(5), 5D Fi(9))

Ry (|ya(s) = Fa(9)] + [ Hy, (5) = Hs, (5)])

=4 (b)) 32)

IA

IA

1

Hence
[T 1, y2) = T 51 30)|| < (”yz —/y\z”)-
In the same manner, for the operator I1;, we get

||H2 1, y2) — 1 @152)” <O (”yl —/y\1||).

Thus, we have

Moy -G,

I G y0) = I G 30) ||+ (2 G ) = T G 30) |

Q ||y2 —3’\2” +Q, ||y1 —/)71”

max {Q1, Q} |12 = G157, -

Due to max {Q;,Q,} < 1, we deduce that the operator Il is a contraction mapping. Thus, II has a

unique fixed point. By Banach contraction principle, we deduce that the coupled system (2.6) has a
unique solution. O

IA

IA

Theorem 3.2. Under the hypothesis (H|) mentioned in Theorem 3.1. If Zp max( 2 o ) <1,

=%y, > T- %y,
then, the coupled system (2.6) has at least one solution

Proof. Define the operators Fi,G{,F,,G, : T — T as

[ P ' wi—
P3L |(Hyl (s)|ds + F(ai,-) fb,-l (t— ) 17—{y1 (s)ds,

i-1

P3fb |[H,, ()| ds + F(ai,-) fb,-l (- 5" H,, (s)ds,

i-1

Pit-biy) [ (™ i
G (v, y2) O 1(L®—]1) [Zf H,, (s)ds — f H,, (s) ds]
k=1 Ybi-1 :

Fi(yi,y2) (0

F> (y1,y2) ()

P>(t = bi_y) wi—1 _ b
" OI'(w;) ( f i (= 9 (s b

i—1
P l Yk
1(L 1) (Z f H,, (s)ds — f H,, (s) ds]
1 1
PZ(L l 1) Z
G)zl“(w )
From the above mentioned operators, we can write

IL (i, y2) O =Fi 51, y2) O + Gy (1, y2) (O

(bi — ) H,, (5) dSJ,

G2 (1, y2) (V)

()’k - S)wi_l 7_()’2 (s)ds — f | (bi — S)wi_l 7'{yz (s) dS].
b

bll

AIMS Mathematics Volume 9, Issue 6, 15303-15324.
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and
IL (i, y2) (0 = F2 (1, y2) (0 + G2 (y1,32) (1)

Thus, the operator II can be expressed as

Iy, y) ) =L (1, y2) O, T (v, y2) (1)

We split the proof into the following steps:

Step 1: In this step, we shall prove that IT is continuous. The continuity of H,, and H,, implies the
continuity of F, G|, F, and G,. Consequently, II is continuous.

Step 2: In this step, we shall prove that G; and G, are bounded. By (3.1), we have

n Ti bi
PI(L(;_’?I'—O[Z f [, ()| ds - f [, (S)|ds]
k=1 bi- bt
Pz(t bi_1)
®F(a)l (Z

IG1 (i, y2)ll

b;
_ S)wi—l |7_(y1 (S)l ds — f (b; — S)wi—l |7’(y1 (S)l dS)

bi_y bi_
_-19%¥Eﬁ[g¥n—bH>+wf4moN mmmnmn+zﬂ)
+€%§iﬁ§g{§;aa—a4f"+wf—a4wj(fiﬁ;unn+zm)
< Gn 1= mHl Ivill + G, L,
- 0.

In the same manner, we get

G2 i, Il < Gn,
0»,

1 IIszI + G, L,

which implies
IG 1, y2)lly < max(Qi, Qa),

where

0: = Gl — il + L]
[ Hil—mr]_{i yl 7‘(,"

This proves G1, G, are uniformly bounded.
Step 3: In this step, we will prove that G; and G, are equicontinuous. For this purpose, let (v, y,) €
By and 11,1, € J such that 0 < ¢, <¢; < b. Then, we have

IG1 (1, ¥2) (©2) = Gi (y1,y2) (1)

Py [(a = bi-1) = (1 — biy)]
c Pl 1@1 1 i [Zf |7—[y1 (S)|ds_f |7-{y] (s)|dS)
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b )= (11 — b n Tk bi
SRl be) —l hAw::j‘Cm—@wqwﬁﬂﬂws—j‘(h—@“qwﬁﬂﬂws.
=1 Ybi-1 bi-

0 I'(wy)

Thus
IG1 (1, ¥2) (©2) = G (1, y2) )l = 0 as 1o — ¢y.

In the same manner, we get

G2 (v1,¥2) (©2) = G2 (¥1,y2) )l = O as 1, — .

We conclude that the operator G and G, are relatively compact. Based on the previous steps and using
the Arzela-Ascoli theorem, we deduce that G is completely continuous.

Step 4: In this step, we will prove that F; and F, are contractions. Let (y1,y2),(1,y2) € B8, and
t € ;. Then, for the operator F, we have

[F1 01, 32) @) = Fi 51, 72) O

L P L _
< P f | H,, (5) = F6;, (5)] ds + =— f = )" |H,, (s) - H, (s)|ds
biy I'(w;) Jp,
N,
s(&wrhm+—fL—@—mmﬂ—i;

T(w; + 1)

Thus, we have

— Ny, —
IF: 01,32) = Fi 5, 3)|| < an —Z;?wl (”yl —y1||).

In the same manner, we get

— N —
[F2 01, 32) = F2 51, 30| < Ziny _;3{2% (Il =21])-

Consequently,

N
’1_

—~ Ny —~
||F O1,32) —F @»h)”T <Zn max( il Z;;%) ||(y1,y2) - 671,Y2)||T :

1 =Ny,

1
Ny Ry
=%yq, * Ty,
Theorem 2.3, we see that II at least one fixed point, which is the corresponding solution (y, y»); of the

coupled system (2.6). For i € {1, 2, ..., n}, we define the functions

Due to Zp max( ) < 1, we deduce that the operator F is contraction map. Hence, by

0’ Le [Oa bi—l] s
(5/’1’372)1'9 Lej—i'

As a result of this, it’s well-known that, (y;,y2); € C(J;,R) X C(J;,R) given by (3.3) satisfies the
following problem

0Ly, = { (3.3)

A@) (™ tmxn—ww
wO| T~

-0 Jo w(@) - 1 )y'“(e)dg
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N Aw@) (™ (w(t) (b-6)“"
1-w@ Jy, '\ wo-1

= Hi(w,y1/w), DL ys(w)),

)ylu(e)dg

and
Alw@) [ P OICE AW
Aw@) [ w(®) (b -0
1_—0)0) . w() ( o) — 1 ))’2,'(9)610

= Hy(w,y2(w), DLy 1(w)),

where (y;, y2); is a solution to system (2.6) equipped with (y1,¥,), (0) = (y1,y2); (b)) = (1, ¥2); (b;) = 0.

Then
0Ly O, tedn,
_ 0, (e,
()’1,)72)2 (L) - { @*1”)72)2 . L€ jz,
Oy @) = '
_ O’ L€ [07 bi—l] B
(yl’yz)i(l“)_{ @'1,3)-2)”, L€$,
is the solution for coupled system (2.6). O

4. Stability results of the coupled system (2.6)

In this section, we discuss Ulam-Hyers (UH) stability results for coupled system (2.6). For more
information about the following definition see [31-33]. Let &;,&, > 0, and y be a function such that
y() € C (¥, R) satisfies the following inequalities:

ABCDS’(‘)yl(L) -H, | <e, ted, .1
MDY, = Hy | < €2, 1€ T '
Now, we defined the functions (y1, y2); (1), 01, ¥2); (0).(k1, ka); (0), ¢ € J; as
0, i 0,b;_1],
01,32 ) = { 01, y2) Z;L o if Llo]e NI (4.2)
- _ 0, lfL S [O,bi_l],
O1.32), ) = { 01,y2) iftedi 4

and
0, ifte€[0,bi_1],

(k1,k2) (1) ifte .
In the forthcoming analyses, we will use the above notations (y;, y2) (¢), (v1,y2) (¢) and (ky, k,) (¢).

ki, k), (1) = {
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Definition 4.1. The coupled system (2.6) is UH stable if there is a real number Cq; = max {Cqy,, Cqy,} >
0 such that for each € = max{e;, &} > 0, and each solution (y1,y;) € T of coupled system (2.6)
satisfying the inequalities (4.1), there exists a solution (y,y;) € Y of coupled system (2.6) such that

”@1,/)’\2) - ()’1,)72)”Y < Cye,
where (y1,y2) and (y1,2) defined in (4.2) and (4.3), respectively.

Remark 4.2. Let (y1,y:) € Y be solutions of the inequalities (4.1) if and only if there is a function
(ky, ko) (t) € Y (which depends on (y1,y,)) satisfying the following conditions,
i) { k()| <& for all e,
k>(0)| < & for all 1€ T,
N e A TTOR R ORI STONASVE
! A”mgmm:¢@m+bwwej.

Lemma 4.3. Let (y1,y2) € Y be satisfying (4.1), then (y1,y2) satisfy the following inequalities

yl(L) P3 jl; Wyl (S) ds— F(w) b‘ (L _ S)a)i—] 7_{371 (S) ds| < gﬂ{nl,
yZ(L) yz - Ps JI; 7_(}2 (s)d F(w) b;- (l’ - s)w' 17—(}2 (s)ds| < 82?1’[2’
where
— bi
v = M( f H ()ds— | H () ds)
® k=1 *Di-1 bi_y
PZ(L _ i_l) wi—1 qr. K w;—1
+W (; f;l (tx = ) H5, (s)ds — j;_l (b — )" H;, (s)ds |,
and

y, = Pl(‘(;—zbf—l)(z ", (5)ds - f ﬂ}z(s)ds)

k=1 Ybi-1

Py(t —b;_y) o i .
+m [; Ll vk =) 1 Hs, (s)ds — fb” (b; — )" 15, (s)ds).

Proof. By Remark 4.2, we have

{ABCDZ); @) =Hu() + ki), € T, 4.4)

D} T2 = Hy () + a0 € T

Then, by Theorem 2.6, the solutions of the system (4.4) are given as

W) = ‘{’yl+P3f H,, (s)ds+r( )f (t— )" H,, (s)ds

Pile ’1)(Zf kl(s)ds—f kl(s)ds]
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P _bl_ Y Tk i bi —
+%(; fbl (te = ) T (s)ds = f (bi — ) ki (s)ds

i—1

e ,) . (L — ) ki (s)ds,

+P3f kl(S)dS +
bi_1

and

() = ‘I’y2+P3f ﬂyz(s)ds+r( )f (t— )~ 17{y2(S)dS

l(t_ bi-1) (Zf kz(s)ds—f kz(s)ds)

L Pa=b
g:r(w )1) (Z e =) lkz“)ds_f (b= 1k2(s)ds]

bi-

+P; fL ko (s)ds + f (t — 5)“ ko (s5)ds.
bi_1

I'(w;)

By some calculations, we get
Vi (L) y1 P% fb
yZ(L) )2 P3 JI;

Theorem 4.4. Suppose that (Hy) holds. If

=9 (s)ds
MO )N, (s)ds

Vi r(w) b < &1,

))2 r(w ) b S 82RH2 .

Pa(bi= b\ Ry L+ M)
IN'w; +1) 1- mf ’

(P3 (bi — bi_1) +

then the coupled system (2.6) is UH stable.

Proof. Let € = max{g;, &} > 0 and (y;,y;) € T be a solution of coupled system (2.6) satisfying (4.1),
and let (y;,y,) € T be the unique solution of the coupled system (2.6). Then, by Theorem 2.6, the
solution of coupled system (2.6) is given by

@ = Y5 + P3f H,, (s)ds + f (t—s)@! H,, (s)ds,
b,',l bi—l

P,
['(w;)

(¢t — s)@ ! H,, (s)ds.

= Y. +P H, ds + —2
) = P+ Py fb H0ds et [

Hence by Lemma 4.3 and (H,), we have

L P L
I?l(L) —yz(L)| < 'yl(t) -5 - ngh H, (s) ds_F( 4 5 f (t = s)“! H, (s)ds

+P3 fb | Hs, (5) = H,, (s)IdS+r( 3 f (e = 9“7 |[He, (5) = H,, ()| ds
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< &Rn, +|Ps(b; = biy) + =———— (b — b)) L “3’\1 _y1|| :
! IN'w; +1) 1- in T
Thus
||§1 —)’1” < Cy 81,
where R
_ 1T
C‘H. = P o % > 0.
1= (Ps (b = biot) + gy (bi = b))
In the same manner, we have
”?2 - )’2||T < Cyp, 8,
where
Cy, = Ru, >0
2 = X 9 *
1= (Ps (b = bi1) + s (b = bio)* ) 75

Thus, we have

16152 = 01yl =[5 =il + |52 = e

C;I—(I e+ C7{282
2C¢(8.

IA

IA

Hence, coupled system (2.6) is UH stability. Now, by choosing Cy(g) = Cye such that C4(0) = 0, we
conclude that coupled system (2.6) has Generalized UH stability. O

5. Examples

To illustrate our key results, this section presents numerical examples addressing the coupled
system (2.6) in the context of ABC-fractional derivative with variable order w(¢). These specific
examples have been chosen based on the conditions outlined in the theorems used, the specific
conditions mentioned in our proposed conclusions, and the values of parameters and fractional-order
derivatives. These examples serve as an illustration of the various dynamic applications that can be
created by combining the ABC-fractional derivative with variable order w(¢).

Example 5.1. Let us consider the following coupled system of ABC fractional problem with variable
order w(1)

ABCTyw®)
ABCTy@(O) _ 2 -, ol Dy 11 o
D) = & (e + 2 + ). e = 0.2,
ABCy@()
ABCTy@(®) _ 2 (1, mo Dy+ 320 .
D0+ )’Z(L) T 2(et-1) (el + 1+ly1(0) + 1+ABCD8)J§L)y2(L) ’ L€ j L (0’ 2] ’

71(0) = 0,y,(0) = 0,31(2) = 3,%2(2) = 3.
Here,a =0,b =2, and

2 ABCDw+(t) L
7,0 ! (e_L+ 0l 0] ]

Set T+ @] 1+45¢ D2y, 1)
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£ (1, @, Dm0
2 -Dle T+l 1448 py,) )

7‘{yz (L) =

Let1 € [0,1],y1,y, € C(J:,R). Then
[H,, () = H5, )]

1 - w(L w(l)—
5 (20 = 50[ + DN @ - DG

IA

and
[H,,(0) = H5, ()|

1 = w(t w()—
S 3 (1@ =5 0] + [**Dyy2(0) - **D5, ).
Therefore, hypothesis (H,) holds with Mg, = é and Ny, = % Let

{3, ifre (0,17,
“’(‘)‘{32 ifie,2].

Then, for i = 1, by some calculation, we get Q; = 0.65 and Q, = 0.52 and hence Q =
max {Q,Q} = 0.65 < 1. Thus, by Theorem 3.1, the coupled system of ABC (2.6) has a unique
solution. For every € = max{gy, &} > 0 and each (y1,y2) € Y satisfying

{ ABCDEYY (1) — He (0] < e,
ABCDEYT, (1) — He, (0] < &,

there exists a solution (y,y,) € Y of the coupled system of ABC (2.6) with

{ F}:l | < Cﬂlsl’
V2 = »af| < Cu &,
where R
Cyy = 1-2 w, = 0,
1- (P3 (bi = bi-1) + 75 (bi - bi—l)wi) 1_gfzf
and R
C — Ll ; > 0.
(P b + g (b — b))
Thus,
G152 = el < B =wlly + 52 = vl

< C(H181+C7{282
< 2C(HS.

Therefore, by Theorem 4.4, the coupled system (2.6) is UH stable. Now, let Cy/(g) = Cye such that
C4(0) = 0, then the coupled system of ABC-fractional derivative (2.6) is GUH stability.

AIMS Mathematics Volume 9, Issue 6, 15303-15324.



15321

Fori = 2, with some calculation, we have Q; = 0.55 and Q, = 0.43, and hence, £ = max {Q, Q,} =
0.55 < 1. Then, by Theorem 3.1, the coupled system (2.6) has a unique solution. For every € =
max{e;, &} > 0 and each (y,,y,) € Y satisfying

{

there exists a solution (y,y,) € Y of the coupled system of ABC-fractional derivative (2.6) with

16752 = orwlly < B =willy + (52 = 2]l
< 2CvH8,

ABCDEYT (1) — He (0] < &,
ABCDEOY (1) — He (0] < e,

where Cqy = max{Cqy,, Cqy,} > 0. Therefore, by Theorem 4.4, the coupled system (2.6) is UH stable.
Now, by choosing Cy(€) = Cye such that Cg(0) = 0, the coupled system (2.6) is a Generalized UH
stability.

6. Conclusions

Recent research has emphasized the Atangana-Baleanu fractional derivative, leading to the study
and development of various qualitative features of solutions to FDEs incorporating these operators.
This research paper presents a novel investigation into an implicit coupled system of fractional variable
order, filling a gap in the existing literature. In this context, we have established and examined
the necessary conditions for the existence and uniqueness of solutions to the coupled system of
the ABC fractional problem with variable order, without relying on the semigroup property. We
utilized extended intervals, piecewise constant functions, and fixed point theorems of the Banach-
type and Krasnoselskii-type to reduce the proposed ABC system into a fractional integral equation.
Furthermore, we employed mathematical analysis tools to investigate the stability results in the UH
sense. An illustrative example in two cases was provided to support the findings of the study.
By extending the existing conclusions examined for the ABC operator, this research contributes to
advancing the understanding of variable-order FDEs. The paper provides a solid theoretical foundation
that can be further explored through analysis, numerical simulations, and practical applications.
The transformation techniques, qualitative analysis, and illustrative examples presented in this work
highlight its unique contributions and potential to serve as a foundation for future research in the field.
Overall, this research paper expands the knowledge and understanding of variable-order FDEs, offering
valuable insights and paving the way for further advancements in the field. We believe that the results
obtained in this study will be significant for future research in the field of fractional calculus theory,
given the recent extensive explorations and applications of the Mittag-Leffler power law.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Conflict of interest

It is noted that the authors declare no conflicts of interest in the research study.

AIMS Mathematics Volume 9, Issue 6, 15303-15324.



15322

Funding

This research was funded by the Zhejiang Normal University Research Fund under Grant
YS304223919.

References

1. L Podlubny, Fractional differential equations, San Diego: Academic Press, 1998.

2. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives : Theory and
applications, Philadelphia: Gordon and Breach Science Publishers, 1993.

3. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Amsterdam: Elsevier, 2006.

4. R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
https://doi.org/10.1142/3779

5. S.S.Redhwan, M. Han, M. A. Almalahi, M. Alsulami, M. A. Alyami, Boundary value problem for

a coupled system of nonlinear fractional g-difference equations with Caputo fractional derivatives,
Fractal Fract., 8 (2024), 73. https://doi.org/10.3390/fractalfract8010073

6. S. Y. Al-Mayyahi, M. S. Abdo, S. S. Redhwan, B. N. Abood, Boundary value problems for a
coupled system of Hadamard-type fractional differential equations, IAENG Inter. J. Appl. Math, 51
(2021), 1-10.

7. S. S. Redhwan, S. Y. Al-mayyahi, S. L. Shaikh, M. S. Abdo, A coupled non-separated system
of Hadamard-type fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 6 (2021),
33—44. https://doi.org/10.31197/atnaa.925365

8. M. A. Almalahi, S. K. Panchal, T. A. Aljaaidi, F. Jarad, New results for a coupled system of ABR
fractional differential equations with sub-strip boundary conditions, AIMS Mathematics, 7 (2022),
4386-4404. https://doi.org/10.3934/math.2022244

9. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Differ. Appl., 1 (2015), 73-85.

10. J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract.
Differ. Appl., 1 (2015), 87-92.

11. A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm.
Sci., 20 (2016), 763—-769. https://doi.org/10.2298/TSCI160111018A

12. T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler
kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5

13. F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the
frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.
https://doi.org/10.1016/j.chaos.2018.10.006

14. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular
kernel: ~ Theory and application to heat transfer model, arXiv:1602.03408, 2016.
https://doi.org/10.48550/arXiv.1602.03408

AIMS Mathematics Volume 9, Issue 6, 15303-15324.


http://dx.doi.org/https://doi.org/10.1142/3779
http://dx.doi.org/https://doi.org/10.3390/fractalfract8010073
http://dx.doi.org/https://doi.org/10.31197/atnaa.925365
http://dx.doi.org/https://doi.org/10.3934/math.2022244
http://dx.doi.org/https://doi.org/10.2298/TSCI160111018A
http://dx.doi.org/https://doi.org/10.1186/s13660-017-1400-5
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.10.006
http://dx.doi.org/https://doi.org/10.48550/arXiv.1602.03408

15323

15. S. S. Redhwan, M. S. Abdo, K. Shah, T. Abdeljawad, S. Dawood, H. A. Abdo, et al., Mathematical
modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator,
Results Phys., 19 (2020) , 103610. https://doi.org/10.1016/j.rinp.2020.103610

16. M. A. Almalahi, A. B. Ibrahim, A. Almutairi, O. Bazighifan, T. A. Aljaaidi, J. Awrejcewicz,
A qualitative study on second-order nonlinear fractional differential evolution equations with
generalized ABC operator, Symmetry, 14 (2022), 207. https://doi.org/10.3390/sym 14020207

17. C. J. Zdniga-Aguilar, H. M. Romero-Ugalde, J. F. Gémez-Aguilar, R. F. Escobar-Jiménez, M.
Valtierra-Rodriguez, Solving fractional differential equations of variable-order involving operators

with Mittag-Leffler kernel using artificial neural networks, Chaos Solitons Fractals, 103 (2017),
382-403. https://doi.org/10.1016/j.chaos.2017.06.030

18. Z. Bouazza, M. S. Souid, H. Giinerhan, Multiterm boundary value problem of Caputo
fractional differential equations of variable order, Adv. Differ. Equ., 2021 (2021), 400.
https://doi.org/10.1186/s13662-021-03553-z

19. A. Benkerrouche, M. S. Souid, S. Chandok, A. Hakem, Existence and stability of
a Caputo variable-order boundary value problem, J. Math., 2021 (2021), 7967880.
https://doi.org/10.1155/2021/7967880

20. B. P. Moghaddam, J. A. T. Machado, H. Behforooz, An integro quadratic spline approach for a class
of variable-order fractional initial value problems, Chaos Solitons Fractals, 102 (2017), 354-360.
https://doi.org/10.1016/j.chaos.2017.03.065

21. C. F. Lorenzo, T. T. Hartley, Initialized fractional calculus, Int. J. Appl. Math., 3 (2000), 249-265.

22. H. G. Sun, W. Chen, Y. Q. Chen, Variable-order fractional differential operators in anomalous
diffusion modeling, Phys. A, 388 (2009), 4586—4592. https://doi.org/10.1016/j.physa.2009.07.024

23.J. V. C. Sousa, E. C. de Oliverira, Two new fractional derivatives of variable order with non-
singular kernel and fractional differential equation, Comput. Appl. Math., 37 (2018), 5375-5394.
https://doi.org/10.1007/s40314-018-0639-x

24. 1. Suwan, M. S. Abdo, T. Abdeljawad, M. M. Mater, A. Boutiara, M. A. Almalahi, Existence
theorems for Psi-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics,
7 (2022), 171-186. https://doi.org/10.3934/math.2022010

25. H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, A comparative study of constant-order and variable-
order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top.,
193 (2011), 185-192. https://doi.org/10.1140/epjst/e2011-01390-6

26.J. F. GOmez-Aguilar, Analytical and numerical solutions of nonlinear alcoholism
model via variable-order fractional differential equations, Phys. A, 494 (2018), 52-75.
https://doi.org/10.1016/j.physa.2017.12.007

27. X.Y. Li, Y. Gao, B.Y. Wu, Approximate solutions of Atangana-Baleanu variable order fractional
problems, AIMS Mathematics, 5 (2020), 2285-2294. https://doi.org/10.3934/math.2020151

28. M. K. A. Kaabar, A. Refice, M. S. Souid, F. Martinez, S. Etemad, Z. Siri, et al., Existence and UHR
stability of solutions to the implicit nonlinear FBVP in the variable order settings, Mathematics, 9
(2021), 1693. https://doi.org/10.3390/math9141693

AIMS Mathematics Volume 9, Issue 6, 15303-15324.


http://dx.doi.org/https://doi.org/10.1016/j.rinp.2020.103610
http://dx.doi.org/https://doi.org/10.3390/sym14020207
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.06.030
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03553-z
http://dx.doi.org/https://doi.org/10.1155/2021/7967880
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2017.03.065
http://dx.doi.org/https://doi.org/10.1016/j.physa.2009.07.024
http://dx.doi.org/https://doi.org/10.1007/s40314-018-0639-x
http://dx.doi.org/https://doi.org/10.3934/math.2022010
http://dx.doi.org/https://doi.org/10.1140/epjst/e2011-01390-6
http://dx.doi.org/https://doi.org/10.1016/j.physa.2017.12.007
http://dx.doi.org/https://doi.org/10.3934/math.2020151
http://dx.doi.org/https://doi.org/10.3390/math9141693

15324

29. M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H.
Alharthi, Qualitative analyses of fractional integro differential equations with a variable
order under the Mittag-Lefler power law, J. Funct. Spaces, 2022 (2022), 6387351.
https://doi.org/10.1155/2022/6387351

30. T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett., 11 (1998), 85-88.
https://doi.org/10.1016/S0893-9659(97)00138-9

31. O. Naifar, G. Rebiai, A. B. Makhlouf, M. A. Hammami, A. Guezane-Lakoud, Stability analysis
of conformable fractional-order nonlinear systems depending on a parameter, J. Appl. Anal., 26
(2020), 287-296. https://doi.org/10.1515/jaa-2020-2025

32. A. Ben Makhlouf, D. Boucenna, M. A. Hammami, Existence and stability results
for generalized fractional differential equations, Acta Math. Sci., 40 (2020), 141-154.
https://doi.org/10.1007/s10473-020-0110-3

33. O. Naifar, A. Jmal, A. M. Nagy, A. Ben Makhlouf, Improved quasiuniform stability for
fractional order neural nets with mixed delay, Math. Probl. Eng., 2020 (2020), 8811226.
https://doi.org/10.1155/2020/8811226

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

@ AIMS Press

AIMS Mathematics Volume 9, Issue 6, 15303-15324.


http://dx.doi.org/https://doi.org/10.1155/2022/6387351
http://dx.doi.org/https://doi.org/10.1016/S0893-9659(97)00138-9
http://dx.doi.org/https://doi.org/10.1515/jaa-2020-2025
http://dx.doi.org/https://doi.org/10.1007/s10473-020-0110-3
http://dx.doi.org/https://doi.org/10.1155/2020/8811226
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminary results and essential concepts
	Notations
	Equivalent integral equations

	Existence and uniqueness of solutions
	Stability results of the coupled system (??)
	Examples
	Conclusions

