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Abstract: Motivated by empirical observations, we proposed a possible extension of Gibrat’s law. By 

applying it into the random growth theory of income distribution, we found that the income distribution 

is described by a generalized Pareto distribution (GPD) with three parameters. We observed that there 

is a parameter 𝜂 in the GPD that plays a key role in determining the shape of income distribution. By 

using the Kolmogorov-Smirnov test, we empirically showed that, for typical market-economy 

countries, 𝜂 is significantly close to 0, indicating that the income distribution is characterized by a two-

class pattern: The bottom 90% of the population is approximated by an exponential distribution, while 

the richest 1%~3% is approximated by an asymptotic power law. However, we empirically found that 

in China during the period of the planned economy and the early stages of market reform (from 1978 

to 1990), 𝜂  deviated significantly from 0, indicating that the bottom of the population no longer 

conformed to an exponential distribution. 
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1. Introduction 

Global income inequality in the 21st century is growing, and top earners are taking hold of a 

larger and larger fraction of total income [1,2]. The upper tail of the income distribution, which is 

referred to as the richest 1%~3% of the population, has been long known to be approximated by the 

Pareto distribution [3,4]. Based on the random growth theory of income distribution (RGTID) [5–9], 
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it has been acknowledged that the Pareto distribution arises because the dynamics of income obey the 

Gibrat’s law in the stochastic process. This law was first observed by  Gibrat [10] while investigating 

the growth of a firm’s size, stating that firm growth is a purely random effect, independent of firm size. 

When this law is applied to the RGTID, the resulting distribution of income is governed by the Pareto 

law [5,9,11,12]. For this reason, Gibrat’s law is widely used to understand the rise in top-income 

inequality. However, the singular focus on the top-income class of households overlooks the 

component of earnings inequality that is arguably most consequential for the low and middle-income 

classes of citizens [13]. Empirical observations [14–18] have indicated that, in market-economy 

countries, the income structure of the bottom 90% of the population is approximated by an exponential 

distribution. Therefore, it has been proposed [14,15] that the income distribution is characterized by a 

two-class pattern, in which the bottom 90% of the population is approximated by an exponential 

distribution and the richest 1%~3% is approximated by a Pareto distribution. In this paper, we attempt 

to reproduce this two-class pattern of income distribution within the framework of the RGTID by using 

a possible extension of Gibrat’s law. 

Although Gibrat’s law accounts for the emergence of the Pareto distribution, it is not exact. In 

fact, literature on firm size has observed that small firms may grow faster than large ones [19,20]. 

Moreover, the independence between firm size and growth becomes clearer as time passes [21]. This 

suggests that Gibrat’s law holds asymptotically for firms above a certain size threshold. Likewise, in 

the literature on income distribution, Blanchet et al. [22] proposed to identify the Pareto distribution 

of income as an asymptotic law above a certain high level, while Gabaix et al. [23] considered possible 

deviations from Gibrat’s law to explore the extension of the Pareto distribution. By combining these 

two strands of literature, in this paper we use a possible extension of Gibrat’s law to study the income 

distribution. As with empirical observations in the literature on firm size [19–21], the extension of 

Gibrat’s law is required to satisfy that the growth rate of a person’s income is asymptotically 

independent of their income above some high level. By applying this extension of Gibrat’s law to the 

RGTID, we find that the resulting distribution of income is denoted by a generalized Pareto distribution 

(GPD) with three parameters. In particular, we observe that there is a key parameter 𝜂 in the GPD to 

determine the shape of income distribution. As 𝜂 = 0, the GPD becomes an exponential distribution. 

However, as long as 𝜂 > 0, the GPD always has an asymptotic power-law tail (or the Pareto tail) above 

some high level. This implies that when 𝜂 is close to 0, the GPD may exhibit a two-class pattern in 

income distribution. In this pattern, the bottom of the distribution is approximated by an exponential 

law, while the upper tail is approximated by a Pareto law. 

The rest of the paper is organized as follows. Section 2 introduces a possible extension of Gibrat’s 

law motivated by empirical observations. Section 3 applies this extension of Gibrat’s law into the 

RGTID to derive income distribution, where we find that the resulting distribution of income is 

denoted by the GPD with three parameters. Section 4 shows that there is a key parameter 𝜂 in the GPD 

to determine the shape of income distribution. In particular, we show that, as 𝜂 ≈ 0, the GPD yields a 

two-class pattern of income distribution, in which the bottom of the distribution is approximated by an 

exponential law, and the upper tail of the distribution is approximated by the Pareto law. Section 5 

employs the Kolmogorov-Smirnov test to examine if the parameter 𝜂 is significantly close to 0 by 

using the data from the United States, the United Kingdom, China, and Canada. Section 6 concludes. 
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2. The extension of Gibrat’s law 

Gibrat’s law is a rule of proportionate growth. If one denotes the size of a firm at the time 𝑡 by 

𝑋𝑡, this law states that the increment of firm size is a linear function of firm size [19–21] 

𝑋𝑡+Δ𝑡 − 𝑋𝑡 = Δ휀𝑡𝑋𝑡,         (1) 

where Δ𝑡  denotes the increment of time, and the proportional coefficient Δ휀𝑡  is assumed to be 

independent of 𝑋𝑡. In the simplest form, Δ휀𝑡 can be considered as a constant, but a more realistic model 

allows for randomness. 

To extend Gibrat’s law (1), we write the increment of firm size as a general function of firm size  

𝑋𝑡+Δ𝑡 − 𝑋𝑡 = Δ휀𝑡𝑓(𝑋𝑡),        (2) 

where 𝑓(𝑋𝑡) is assumed to be a smooth function of 𝑋𝑡. 

When 𝑓(𝑋𝑡) = 𝑋𝑡, Eq (2) returns to Gibrat’s law (1). Mathematically, the smooth function 𝑓(𝑋𝑡) 

can be always expanded as a Taylor series: 

𝑓(𝑋𝑡) = 𝑎0 + 𝑎1𝑋𝑡 + 𝑎2𝑋𝑡
2 + 𝑎3𝑋𝑡

3 +⋯.     (3) 

By using Eq (3), Eq (2) can be written as 

𝑋𝑡+Δ𝑡 − 𝑋𝑡 = Δ휀𝑡(𝑎0 + 𝑎1𝑋𝑡 + 𝑎2𝑋𝑡
2 + 𝑎3𝑋𝑡

3 +⋯).   (4) 

Using Eq (4), the growth rate of firm size, 𝑟𝑡+Δ𝑡, is equal to 

𝑟𝑡+Δ𝑡 =
𝑋𝑡+Δ𝑡−𝑋𝑡

𝑋𝑡
= Δ휀𝑡 (

𝑎0

𝑋𝑡
+ 𝑎1 + 𝑎2𝑋𝑡 + 𝑎3𝑋𝑡

2 +⋯).    (5) 

Empirical observations indicate that small firms may grow faster than large firms [19,20], and the 

independence between size and growth becomes clearer as time passes [21]. This can be summarized 

as a stylized fact as below: 

Stylized fact 1: The growth rate of firm size is asymptotically independent of the size above a certain 

size threshold. 

By observing Eq (5), we find that 𝑎2 = 𝑎3 = 𝑎4 = ⋯ = 0  is the unique choice to satisfy the 

stylized fact 1. In this way, Eq (5) reads 

𝑟𝑡+Δ𝑡 =
𝑋𝑡+Δ𝑡−𝑋𝑡

𝑋𝑡
= Δ휀𝑡 (

𝑎0

𝑋𝑡
+ 𝑎1),      (6) 

which is independent of 𝑋𝑡 as 𝑋𝑡 → ∞. 

Therefore, we assume 𝑎2 = 𝑎3 = 𝑎4 = ⋯ = 0, by which Eq (4) can be written as 

𝑋𝑡+Δ𝑡 − 𝑋𝑡 = Δ휀𝑡(𝑎0 + 𝑎1𝑋𝑡).      (7) 

In particular, according to Eq (6), when Δ휀𝑡𝑎0 > 0 and Δ휀𝑡𝑎1 > 0, 𝑟𝑡+Δ𝑡 is a decreasing function 

of 𝑋𝑡. This implies that for firms whose size increases over time, small firms tend to grow faster than 

large ones, which aligns with empirical observations [19,20]. 

Let us order Δ𝑊𝑡 = Δ휀𝑡𝑎0 and 𝜂 = 𝑎1 𝑎0⁄ . Thus, Eq (7) can be rewritten as 

𝑋𝑡+Δ𝑡 − 𝑋𝑡 = (1 + 𝜂𝑋𝑡)Δ𝑊𝑡.      (8) 
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Equation (8) is a possible extension of Gibrat’s law (1). It asymptotically returns to Gibrat’s law (1) 

as1 𝑋𝑡 → ∞. 

To obtain the continuous-time form of Eq (8), we assume that Δ𝑊𝑡 denotes the Brownian motion 

with drift, i.e., Δ𝑊𝑡~𝑁(𝜇Δ𝑡, 𝜎
2Δ𝑡). Consequently, as Δ𝑡 → 𝑑𝑡, Eq (8) yields 

𝑑𝑋𝑡 = (1 + 𝜂𝑋𝑡)(𝜇𝑑𝑡 + 𝜎𝑑𝑍𝑡),      (9) 

where 𝜇 and 𝜎 are two constants, and 𝑑𝑍𝑡~𝑁(0, 𝑑𝑡) denotes the standard Brownian motion. 

In this paper, we assume 𝜂 ≥ 0. In Appendix B, we discuss its economic implications. Under this 

assumption, 𝜇 < 0 is allowed. Empirical observations [19,20] only indicate that for firms whose size 

increases over time, small firms tend to grow faster than large ones. This does not rule out the 

possibility of 𝜇 < 0. Here, we propose using Eq (9) with 𝜇 < 0 to describe the dynamics of firms 

whose size decreases over time. In fact, if 𝜂 ≥ 0, 𝜇 < 0 has been found to be necessary in the random 

growth process with a reflecting barrier, particularly when the birth and death processes of firms are 

ignored; see Gabaix’s discussion regarding Eq (11) below, specifically on page 263 in [6]. 

Equation (9) can be rewritten in the form 

𝑑𝑋𝑡 = 𝜇(1 + 𝜂𝑋𝑡)𝑑𝑡 + 𝜎(1 + 𝜂𝑋𝑡)𝑑𝑍𝑡.     (10) 

Equation (10) is the starting point of this paper. It is easy to check that Eq (10) satisfies the asymptotical 

scale invariance as 𝑋𝑡 → ∞. To see this, we order 𝑋𝑡 → ∞ so that Eq (10) asymptotically yields 

𝑑𝑋𝑡 = 𝜇𝜂𝑋𝑡𝑑𝑡 + 𝜎𝜂𝑋𝑡𝑑𝑍𝑡.       (11) 

Distinguishing from Eq (10), the proportional increment 𝑑𝑋𝑡 𝑋𝑡⁄  in Eq (11) during 𝑑𝑡 has a systematic 

drift component 𝜇𝜂𝑑𝑡 and a stochastic diffusion component 𝜎𝜂𝑑𝑍𝑡, both of which are independent of 

𝑋𝑡. Therefore, Eq (11) is invariant under the scaling change 𝑋𝑡
′ → 𝜆𝑋𝑡. The scale invariance implies a 

certain kind of fractal property. Based on the RGTID, it has been known [5–9,11,12] that if the 

dynamics of income obey the random process (11), the resulting distribution of income is denoted by 

a power law (or the Pareto law). Jones and Kim [9] have pointed out that top-income inequality is well 

characterized by this fractal property. However, Eq (10) indicates that the scale invariance does not 

hold exactly but only asymptotically, such that the income distribution of top earners should be 

approximated by an asymptotic power law. Next, we apply Eq (10) into the RGTID. 

3. The basic model 

By using the well-established result in the RGTID literature for generating the income 

distribution [5,9,11,12], if the dynamics of income 𝑥 obey the random process (10), the density of the 

income distribution, 𝑓(𝑥, 𝑡), satisfies a Kolmogorov forward equation2 (also known as the Fokker-

Planck equation): 

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
= −

𝜕[𝜇(1+𝜂𝑥)𝑓(𝑥,𝑡)]

𝜕𝑥
+

1

2

𝜕2[𝜎2(1+𝜂𝑥)2𝑓(𝑥,𝑡)]

𝜕𝑥2
.    (12) 

 
1 It is easy to check that, as 𝑋𝑡 → ∞, 1 + 𝜂𝑋𝑡 yields 𝜂𝑋𝑡 asymptotically. Then, Eq (8) can be asymptotically written 

as 𝑋𝑡+Δ𝑡 − 𝑋𝑡 = 𝜂Δ𝑊𝑡𝑋𝑡, which is the same as Eq (1). 
2 The Kolmogorov forward equation, as applied to standard Brownian motion, demonstrates how the probability 

density function of the motion shifts over time while considering dispersion and drift. 
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The derivation of Eq (12) can be found in Appendix A. 

To obtain the steady-state solution of Eq (12), we consider a lower bound on income so that a 

person cannot go below a given level 𝑥𝑚𝑖𝑛. In real economies, the unemployment compensation plays 

the role of the lower bound 𝑥𝑚𝑖𝑛. Thus, Eq (12) describes a random growth with a reflecting barrier 

𝑥𝑚𝑖𝑛 [5]. For the steady-state distribution of income, 𝑓(𝑥, 𝑡) = 𝑓(𝑥), we should have 𝜕𝑓(𝑥, 𝑡) 𝜕𝑡⁄ =

0, such that Eq (12) yields  

−
𝜕[𝜇(1+𝜂𝑥)𝑓(𝑥)]

𝜕𝑥
+

1

2

𝜕2[𝜎2(1+𝜂𝑥)2𝑓(𝑥)]

𝜕𝑥2
= 0,      (13) 

It is easy to get a solution of Eq (13) as below: 

{𝑓(𝑥) =
𝑐0

𝜎2
(1 + 𝜂𝑥)

2𝜇

𝜎2𝜂
−2

𝑥 ≥ 𝑥𝑚𝑖𝑛

,       (14) 

where 𝑐0 denotes an integral constant. 

The existence of the lower bound 𝑥𝑚𝑖𝑛 requires the normalization equation: 

∫ 𝑓(𝑥)𝑑𝑥
∞

𝑥𝑚𝑖𝑛
= 1,        (15) 

which is used to determine the integral constant 𝑐0. 

By substituting Eq (14) into Eq (15), we get the density distribution of income 

{
𝑓(𝑥) = (

𝜂+
1

𝜃

1+𝜂𝑥𝑚𝑖𝑛
) (

1+𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−2

𝑥 ≥ 𝑥𝑚𝑖𝑛

,     (16) 

with 

𝜃 = −
𝜎2

2𝜇
,         (17) 

where 𝜇 < 0 and 𝜂 ≥ 0 are used to satisfy the normalization Eq (15). Here, 𝜇 < 0 arises because entry 

and exit processes (or birth and death processes) of agents in markets are ignored in the Kolmogorov 

forward equation indicated by Eq (12), as discussed by Gabaix [6]. Later, we will explore the 

Kolmogorov forward equation when the entry and exit processes of agents are taken into account. 

We denote the cumulative distribution of income by 

𝐹𝜂(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑧)𝑑𝑧
𝑥

𝑥𝑚𝑖𝑛
,        (18) 

where 𝐹𝜂(𝑋 ≤ 𝑥) denotes the fraction of the population with income not exceeding 𝑥. 

Substituting Eq (16) into Eq (18) yields 

𝐹𝜂(𝑋 ≥ 𝑥) = (
1+𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−1

,      (19) 
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where 𝑥 ≥ 𝑥𝑚𝑖𝑛, and 𝐹𝜂(𝑋 ≥ 𝑥) = 1 − 𝐹𝜂(𝑋 ≤ 𝑥) denotes the counter-cumulative distribution, which 

is known as the survival function. 

Equation (19) can be written in the standard form of the generalized Pareto distribution [24–27]3: 

𝐹𝜂(𝑋 ≥ 𝑥) = [1 + 𝐴 (
𝑥−𝑥𝑚𝑖𝑛

𝐵
)]

−
1

𝐴
,      (20) 

where 

𝐴 =
𝜃𝜂

1+𝜃𝜂
 and 𝐵 =

𝜃(1+𝜂𝑥𝑚𝑖𝑛)

1+𝜃𝜂
. 

Therefore, we call Eq (19) the generalized Pareto distribution (GPD). Equation (19) is the main 

result of this paper. It has three parameters to determine the shape of income distribution. 

In particular, if 𝜂 > 0 , Eq (19) always has an asymptotical power-law tail (i.e., the Pareto 

distribution); that is, as 𝑥 → ∞, one has4 

𝐹𝜂>0(𝑋 ≥ 𝑥)~ (
𝑥

𝑥0
)
−

1

𝜃𝜂
−1

,        (21) 

where 𝑥0 = (1 + 𝜂𝑥𝑚𝑖𝑛) 𝜂⁄ . 

To account for the entry and exit processes of agents, the Kolmogorov forward equation indicated 

by Eq (12) can be revised as follows: 

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
= −𝛿𝑓(𝑥, 𝑡) −

𝜕[𝜇(1+𝜂𝑥)𝑓(𝑥,𝑡)]

𝜕𝑥
+

1

2

𝜕2[𝜎2(1+𝜂𝑥)2𝑓(𝑥,𝑡)]

𝜕𝑥2
,     (22) 

where 𝛿 ≥ 0 is a constant, signifying that agents may exit (or retire) at rate 𝛿 [23]. In [9], 𝛿 is also 

interpreted as the exogenous destruction rate, where the existing agents (entrepreneurs) are replaced 

by new “young” agents (entrepreneurs). 

By solving Eq (22), the steady-state solution can be obtained: 

𝑓(𝑥) = 𝐶−(1 + 𝜂𝑥)−𝜙(𝛿)−−1 + 𝐶+(1 + 𝜂𝑥)−𝜙(𝛿)+−1,    (23) 

where 

𝜙(𝛿)± =
1

𝜂
[−

𝜇−
1

2
𝜎2𝜂

𝜎2
±√(

𝜇−
1

2
𝜎2𝜂

𝜎2
)

2

+
2𝛿

𝜎2
], 

𝐶− and 𝐶+ are two constants. 

 
3 In fact, Eq (20) represents the survival function of the generalized Pareto distribution. However, for simplicity, we 

do not distinguish between the terms “survival function” and “counter-cumulative distribution”. Therefore, we refer 

to Eq (20) directly as the generalized Pareto distribution. Furthermore, this distribution is also known as the Pareto 

type II distribution. 

4  As 𝑥 → ∞ , one has 1 + 𝜂𝑥~𝜂𝑥 , such that 𝐹𝜂>0(𝑋 ≥ 𝑥)~(
𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−1

= (
𝑥

𝑥0
)
−

1

𝜃𝜂
−1

 , which represents the 

survival function of the Pareto type I distribution. For simplicity, in this paper, we refer to Eq (21) directly as the 

Pareto distribution. 
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Equation (23) indicates a generalized double-Pareto distribution 5 , which will be discussed 

elsewhere. 

4. The parameter 𝜼 

Here, we show that the parameter 𝜂 in the GPD (19) plays a key role in determining the shape of 

income distribution. To this end, we observe that, when 𝜂 = 0, the GPD (19) becomes an exponential 

distribution  

𝐹𝜂=0(𝑋 ≥ 𝑥) = lim
𝜂→0

𝐹𝜂(𝑋 ≥ 𝑥) = 𝑒𝑥𝑝 (−
𝑥−𝑥𝑚𝑖𝑛

𝜃
),   (24) 

where 𝑥𝑚𝑖𝑛 > 0. 

Empirical observations [14–18] have indicated that, in market-economy countries, the income 

distribution is characterized by a two-class pattern, in which the bottom 90% of the population is 

approximated by the exponential law (24) and the richest 1%~3% is approximated by the power 

law (21). Next, we show that empirical observations can be explained by the GPD (19) as long as 𝜂 is 

close to zero. To this end, we investigate the conditions in which the GPD (19) can be replaced by Eqs 

(21) and (24). 

First, we consider 𝜂 ≈ 0 so that |𝜂𝑥| ≪ 1 and |𝜂𝑥𝑚𝑖𝑛| ≪ 1. Thus, one has 

(1 + 𝜂𝑥)
−

1

𝜃𝜂
−1

≈ 𝑒𝑥𝑝(−𝑥 𝜃⁄ ) and (1 + 𝜂𝑥𝑚𝑖𝑛)
−

1

𝜃𝜂
−1

≈ 𝑒𝑥𝑝(−𝑥𝑚𝑖𝑛 𝜃⁄ ). 

This means that the GPD (19) for 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≪ 1 𝜂⁄  can be replaced by the exponential distribution (24); 

that is, 

𝐹𝜂≈0(𝑋 ≥ 𝑥) = (
1+𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−1

≈ 𝑒𝑥𝑝 (−
𝑥−𝑥𝑚𝑖𝑛

𝜃
),     (25) 

Therefore, we expect that as long as 𝜂 is sufficiently close to zero, the exponential law (24) is roughly 

valid for the majority of the population, in which each person’s income is lower than 1 𝜂⁄ . 

Second, we consider that 𝑥 is sufficiently large so that 𝜂𝑥 ≫ 1. In this way, one has 

𝐹𝜂≈0(𝑋 ≥ 𝑥) = (
1+𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−1

≈ (
𝜂𝑥

1+𝜂𝑥𝑚𝑖𝑛
)
−

1

𝜃𝜂
−1

= (
𝑥

𝑥0
)
−

1

𝜃𝜂
−1

,   (26) 

where 𝑥0 = (1 + 𝜂𝑥𝑚𝑖𝑛) 𝜂⁄  as denoted by Eq (21). 

Equation (26) means that the GPD (19) for 𝑥 ≫ 1 𝜂⁄  can be replaced by the Pareto distribution (21). 

Thus, we expect that as long as 𝜂 is sufficiently close to zero, the Pareto distribution (21) is roughly 

valid for top earners, in which each person’s income is higher than 1 𝜂⁄ . 

Based on the discussion above, we conclude that when 𝜂 is close to zero, the GPD (19) can be 

approximated by the following two-class pattern: 

 
5  For example, the steady-state solution (23) can be written in a two-class form as follows: 

𝑓(𝑥)~{
(1 + 𝜂𝑥)−𝜙(𝛿)−−1, 𝑥 < 𝑥𝑚𝑖𝑛

(1 + 𝜂𝑥)−𝜙(𝛿)+−1, 𝑥 > 𝑥𝑚𝑖𝑛

, where 𝜇 >
1

2
𝜎2𝜂. We call it the generalized double-Pareto distribution. 
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𝐹𝜂≈0(𝑋 ≥ 𝑥) ≈ {

𝑒𝑥𝑝 (−
𝑥−𝑥𝑚𝑖𝑛

𝜃
) 𝑥𝑚𝑖𝑛 ≤ 𝑥 < 𝑥0 ≈

1

𝜂

(
𝑥

𝑥0
)
−

1

𝜃𝜂
−1

𝑥 > 𝑥0 ≈
1

𝜂

,    (27) 

where 𝑥0 = (1 + 𝜂𝑥𝑚𝑖𝑛) 𝜂⁄ ≈ 1 𝜂⁄  arises because |𝜂𝑥𝑚𝑖𝑛| ≪ 1. 

However, if 𝜂 is sufficiently larger than 0, then Eq (24) may break down. For example, if 𝜂𝑥 > 1 

for any 𝑥 ≥ 𝑥𝑚𝑖𝑛, then 

(1 + 𝜂𝑥)
−
1
𝜃𝜂

−1
≈ 𝑒𝑥𝑝(−𝑥 𝜃⁄ ) 

holds no longer. This implies that when 𝜂 deviates significantly from 0, the bottom of the population 

cannot be approximated by the exponential distribution (24). 

In practice, the statement “the parameter 𝜂 is close to 0” may be highly subjective. To address 

this problem, we use the Kolmogorov-Smirnov test to identify if the parameter 𝜂 is significantly close 

to 0. 

5. Tests using the data from the US, the UK, China, and Canada 

From a statistical perspective, the data on household income can be regarded as a sample drawn 

from the income distribution 𝐹𝜂(𝑋 ≥ 𝑥) . Therefore, we selected household income data6  from the 

latest years available for four representative market-economy countries to test if the parameter 𝜂 is 

significantly close to 0. The four countries include three developed economies (the United States in 

2020, the United Kingdom in 2018, and Canada in 2018) and one developing economy (China in 2015) 

that is at present the world’s second-largest economy. Figure 1 shows that, for each country, the income 

distribution of the bottom 90% of the sample (circle) is well approximated by the exponential law (24) 

(red curve), while the upper tail of the sample is approximated by the power law (21) [i.e., the Pareto 

distribution] (black curve). By Eq (27), this implies that 𝜂 is close to 0 for the four countries. 

To strictly identify if the parameter 𝜂 is significantly close to 0 for four countries, we use the 

Kolmogorov-Smirnov (KS) test. The hypothesis testing is written as: 

𝐻0: 𝜂 = 0, 

𝐻1: 𝜂 > 0, 

where by Eq (24), the null hypothesis 𝜂 = 0 indicates that the income distribution is described by the 

exponential law, in which 𝑥𝑚𝑖𝑛 is chosen to be the first quantile of the sample. In our database, the 

data from the United States, the United Kingdom, and China constitute large samples, each comprising 

99 quantiles7. This implies that the KS test is feasible for these three countries. Although the data from 

Canada only includes 12 quantiles, we still use the KS test to perform a rough examination. 

 
6 The data resource can be found in Data Availability Statement. 
7 Here, we also list the quantile functions of the Pareto distribution (21) and the exponential distribution (24), that is, 

𝑥(𝑝) =
1+𝜂𝑥𝑚𝑖𝑛

𝜂
(1 − 𝑝)

−
𝜃𝜂

1+𝜃𝜂 and 𝑥(𝑝) = 𝑥𝑚𝑖𝑛 − 𝜃𝑙𝑛(1 − 𝑝), respectively, where 𝑝 = 𝐹𝜂(𝑋 ≤ 𝑥). The derivation of 

both quantile functions can be found in page 10 in [28]. 
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The testing result is listed in Table 1. For the United States in 2020, the United Kingdom in 2018, 

Canada in 2018, and China in 2015, 𝜂 = 0 cannot be rejected at the significance level of 0.05. This 

means that 𝜂 is significantly close to 0. However, 𝜂 is not exactly equal to zero, as Figure 1 has shown 

that the income distribution of each country has a power-law tail as described by Eq (21). Furthermore, 

for the four countries depicted in Figure 1, by using Eqs (21) and (24) we have presented the least 

square estimations for the three parameters in the GPD (19) in Table 2. For the sake of simplicity, 

monetary units have been omitted from the estimation results presented in Table 2. Here, the parameter 

𝜂 is found to be approximately in the order of 10−6 to 10−5, which is in accordance with the KS test. 

To perform the least square estimation, we use the top four quantile points for China, the United 

Kingdom, and the United States, as well as the top three quantile points for Canada to represent the 

upper tail areas (i.e., the Pareto area), as shown in Figure 1. To show top-income inequality in four 

countries, we estimate the Pareto exponent in Table 2, which is denoted by 1 + 1 (𝜃𝜂)⁄  according to 

Eq (21). In this regard, Jones and Kim [9] have pointed out that a larger Pareto exponent is associated 

with lower top-income inequality. This suggests that when the income distribution follows a Pareto 

distribution with a larger exponent, the concentration of income among the top earners is less 

pronounced. 

 

Figure 1. Income distributions of the US, the UK, China, and Canada. 
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Table 1. Kolmogorov-Smirnov (KS) test for the US, the UK, China, and Canada in the 

latest years available. 

Year 2015 2018 2020 

China 

P-value (KS) 

0.633 —— —— 

US —— —— 0.741 

UK —— 0.970 —— 

Canada —— 0.593 —— 

Table 2. The least square estimation of three parameters in the GPD (19) and the Pareto 

exponent for four countries in Figure 1. 

Country 𝜼 𝒙𝒎𝒊𝒏 𝜽 1+𝟏 (𝜽𝜼)⁄  

China (2015) 5.72 × 10−5 −1.07 × 103 5.23 × 104 1.33 

Canada (2018) 1.72 × 10−5 5.58 × 103 4.17 × 104 2.39 

UK (2018) 4.92 × 10−5 1.10 × 104 2.05 × 104 1.99 

US (2020) 8.67 × 10−6 7.79 × 103 8.53 × 104 2.35 

China is a special sample that has undergone the transition from a centrally planned economy to 

a market economy. Here, we selected the data8 from China in 1978, 1980, 1990, and 2000 to check if 

the parameter 𝜂  was significantly close to 0 in the early stages of market-oriented economic 

reformation. As shown in Table 3, 𝜂 = 0 is rejected at the significance level of 0.01 in 1978, 1980, and 

1990, while it cannot be rejected in 2000. This suggests that for China during the period of the planned 

economy and the early stages of market reform (from 1978 to 1990), 𝜂 deviates significantly from 0, 

such that the bottom of the population no longer conforms to an exponential distribution9. The KS test 

results are supported by the data fitting presented in Figure 2, which illustrates how the income 

distribution of the bottom 90% of the population in China deviates from an exponential distribution 

(represented by the red curve) between 1978 and 1990. 

However, for all the years presented, the income distribution consistently exhibits a power-law 

tail, as indicated by the black curve in Figure 2. This empirical observation is in agreement with 

Eq (21).  

 
8 The data resource can be found in Data Availability Statement. 
9  In Appendix B, we further discuss the economic implication of the parameter 𝜂 . Within the framework of the 

random growth theory of income distribution (RGTID), we find that the parameter 𝜂 may have a significance on 

characterizing the inequality of earning opportunities. Ideally, 𝜂 = 0  corresponds to the equality of earning 

opportunities. From this sense, 𝜂 = 0 being rejected for China in the years 1978, 1980, and 1990 implies that the 

equality of earning opportunities was significantly disrupted during the period of the planned economy and the early 

stages of market reform. 
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Table 3. Kolmogorov-Smirnov (KS) test for China in the early stages of market-oriented 

economic reformation. 

Year P-value (KS) 

1978 0.000 
1980 0.000 
1990 0.008 
2000 0.658 

 

Figure 2. Income distribution in China from 1978 to 2000. 

6. Conclusions 

Motivated by empirical observations, we propose a possible extension of Gibrat’s law, which 

states that the growth rate of firm size is asymptotically independent of the size above a certain size 

threshold. By applying this extension of Gibrat’s law to the RGTID, we find that the income 

distribution is described by a generalized Pareto distribution (GPD) with three parameters. In particular, 

we observe that there is a key parameter 𝜂 in the GPD to determine the shape of income distribution. 

As 𝜂 = 0, the GPD becomes an exponential distribution. However, as long as 𝜂 > 0, the GPD always 

has an asymptotic power-law tail (or the Pareto tail) above some high level. This implies that when 𝜂 

is close to 0, the GPD may exhibit a two-class pattern in income distribution. In this pattern, the bottom 

of the distribution is approximated by an exponential law, while the upper tail is approximated by a 

Pareto law. 

By employing the Kolmogorov-Smirnov test, we empirically demonstrate that 𝜂 = 0 cannot be 

rejected at the significance level of 0.05 for typical market-economy countries such as the United 



15071 

AIMS Mathematics  Volume 9, Issue 6, 15060–15075. 

States, the United Kingdom, Canada, and China (post-2000), while the income distributions in these 

countries exhibit a power-law tail without exception. This suggests that 𝜂 is significantly close to 0 for 

these market-economy countries, indicating that the income distribution is characterized by a two-class 

pattern: The bottom 90% of the population is well approximated by an exponential distribution, while 

the richest 1%~3% of the population is approximated by the Pareto distribution. However, we 

empirically find that 𝜂 = 0 is rejected at the significance level of 0.01 for China between 1978 and 

1990. This suggests that for China during the period of the planned economy and the early stages of 

market reform, 𝜂 deviates significantly from 0, indicating that the bottom of the population no longer 

conforms to an exponential distribution. 
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Appendices 

Appendix A. Derivation of Eq (12) 

Let us consider the Ito process 

𝑑𝑋𝑡 = 𝒜(𝑡, 𝑋𝑡)𝑑𝑡 + ℬ(𝑡, 𝑋𝑡)𝑑𝑍𝑡,      (A.1) 

where 𝒜(𝑡, 𝑋𝑡)  and ℬ(𝑡, 𝑋𝑡)  are two functions of 𝑋𝑡  and 𝑡 , and 𝑑𝑍𝑡  denotes the standard Brownian 

motion. 

By using the theory of stochastic differential equations, it has been known that when the variable 

𝑥  evolves according to the random process (A.1), the density distribution of 𝑥  satisfies the 

Kolmogorov forward equation: 

𝜕𝑓(𝑥,𝑡)

𝜕𝑡
= −

𝜕[𝒜(𝑡,𝑥)𝑓(𝑥,𝑡)]

𝜕𝑥
+

1

2

𝜕2[ℬ(𝑡,𝑥)2𝑓(𝑥,𝑡)]

𝜕𝑥2
.     (A.2) 

The derivation of Eq (A.2) can be found in any book on stochastic calculus, e.g., see [29, page 282] 

or [30, page 50]. 

Comparing Eqs (10) and (A.1), one has 

𝒜(𝑡, 𝑋𝑡) = 𝜇(1 + 𝜂𝑋𝑡),       (A.3) 

and 
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ℬ(𝑡, 𝑋𝑡) = 𝜎(1 + 𝜂𝑋𝑡).       (A.4) 

Substituting Eqs (A.3) and (A.4) into Eq (A.2) yields Eq (12). 

Appendix B. Economic implication of the parameter 𝜂 

Here, we provide a possible economic implication for the parameter 𝜂 within the framework of 

the RGTID. In the setting of random growth process (10), the resulting distribution of income is 

characterized by the random variable 𝑋 with the survival function 𝐹𝜂(𝑋 ≥ 𝑥). This setting implies that 

the income distribution 𝐹𝜂(𝑋 ≥ 𝑥) can be understood as a probability distribution10, which represents 

the likelihood of a person acquiring an income equal to 𝑥. Given this understanding, we propose a 

special definition for identifying the equality of earning opportunities. To this end, let us calculate the 

following conditional probability: 

𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) =
𝐹𝜂({𝑋≥𝑥+𝑦}∩{𝑋≥𝑦})

𝐹𝜂(𝑋≥𝑦)
=

𝐹𝜂(𝑋≥𝑥+𝑦)

𝐹𝜂(𝑋≥𝑦)
,    (B.1) 

which denotes the probability of a person acquiring an income equal to 𝑥, given that they have earned 

an income of 𝑦. 

Definition B.1 (Equality of earning opportunities). If the probability of a person acquiring earnings 

equal to 𝑥 is denoted by 𝐹𝜂(𝑋 ≥ 𝑥), then earning opportunities are considered equal for everyone as 

long as 𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) is independent of 𝑦 for any 𝑥 and 𝑦. 

To understand the implication of Definition B.1, we substitute Eq (19) into Eq (B.1) and obtain 

𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) = [
1+𝜂(𝑥+𝑦)

1+𝜂𝑦
]
−

1

𝜃𝜂
−1

.     (B.2) 

When 𝜂 = 0, Eq (B.2) becomes 

𝐹𝜂=0(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) = lim
𝜂→0

𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) = 𝑒𝑥𝑝 (−
𝑥

𝜃
),   (B.3) 

which means that a person’s probability of acquiring future earnings of 𝑥 is irrelevant to their past 

earnings of 𝑦. In other words, the probability of acquiring earnings of 𝑥 is equal for everyone. 

However, when 𝜂 > 0, Eq (B.2) can be written as 

𝐹𝜂>0(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) = [1 +
𝜂𝑥

1+𝜂𝑦
]
−

1

𝜃𝜂
−1

,     (B.4) 

which is a monotonically increasing function of 𝑦. This means that when 𝜂 > 0, a person’s probability 

of acquiring future earnings of 𝑥 is positively proportional to their past earnings 𝑦. This represents the 

manifestation of the Matthew effect [31] in income accumulation. 

Based on Eqs (B.3) and (B.4) and according to Definition B.1, we identify the parameter 𝜂 as an 

indicator that characterizes the inequality of earning opportunities. That is, 𝜂 = 0  indicates the 

presence of equal earning opportunities, while 𝜂 > 0 suggests a situation where equal opportunity is 

compromised. However, it should be clarified that Definition B.1 is only applied to the RGTID, 

 
10 This understanding is widely used in the literature of income distribution [9, 22]. 
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wherein the income distribution is ideally equivalent to a probability distribution of income. It does 

not correspond to the general concept of “equality of earning opportunities”. In fact, identifying the 

equality of earning opportunities in a general sense is a complex issue. For example, earnings mobility 

should be taken into account [32]. From this sense, identifying 𝜂 = 0 as representing the equality of 

earning opportunities in a strict sense is naive. It holds strictly only if the income distribution is ideally 

equivalent to a probability distribution of income. 

According to Definition B.1, one can explain why the richest 1%–3% of the population is 

capturing an increasingly larger share of total income, in stark contrast to the bottom 90%, thereby 

exacerbating global income inequality, as reported in the literature [33]. First, we demonstrate that if 

𝜂 is not equal to zero, the earning opportunities of top earners may be significantly enhanced. To do 

so, according to Eq (B.4), 𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) is observed to be a monotonically increasing function 

with respect to 𝑦, provided that 𝜂 remains greater than zero. In particular, as 𝑦 → ∞, by Eq (B.4) 

one has 

lim
𝑦→∞

𝐹𝜂>0(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) = 1,       (B.5) 

which means that if a person’s past income 𝑦 is sufficiently high, then they have the potential to earn 

any amount of income 𝑥 in the future. 

Second, based on our empirical observations presented in Section 5, it can be inferred that 𝜂 is 

approximately equal to zero in typical market-economy countries. Under this assumption, by Eq (B.4), 

𝐹𝜂(𝑋 ≥ 𝑥 + 𝑦|𝑋 ≥ 𝑦) is roughly independent of the variable 𝑦, provided that 𝜂𝑦 ≪ 1. This implies 

that when 𝜂 is approximately equal to zero, individuals11 in the lower-income bracket of the population 

have roughly equal probabilities of earning an amount 𝑥, as indicated by Eq (B.3). However, when 𝑦 

becomes sufficiently large, Eq (B.5) suggests that the earning probabilities for top earners may be 

improved significantly, even if 𝜂 is approximately zero. This, in turn, can lead to a sharp increase in 

the earnings opportunity gap between the top earners and those at the lower end of the population. 
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11 The statement “individuals in the lower-income bracket of the population” means that their income in the past is 

much less than 1 𝜂⁄ . 


