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Abstract: Practitioners employ operator splitting methods—such as alternating direction method
of multipliers (ADMM) and its “dual” Douglas-Rachford method (DR)—to solve many kinds of
optimization problems. We provide a gentle introduction to these algorithms, and illustrations of their
duality-like relationship in the context of solving basis pursuit problems for audio signal recovery.
Recently, researchers have used the dynamical systems associated with the iterates of splitting methods
to motivate the development of schemes to improve performance. These developments include
a class of methods that act by iteratively minimizing surrogates for a Lyapunov function for the
dynamical system. An exemplar of this class is currently state-of-the-art for the feasibility problem
of finding wavelets with special structure. Early experimental evidence has also suggested that, when
implemented in a primal-dual (ADMM and DR) framework, this exemplar may provide improved
performance for basis pursuit problems. We provide a reasonable way to compute the updates for
this exemplar, and we study the application of this method to the aforementioned basis pursuit audio
problems. We provide experimental results and visualizations of the dynamical system for the dual DR
sequence. We observe that for highly structured problems with real data, the algorithmic behavior is
noticeably different than for randomly generated problems.
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1. Introduction

Throughout, H denotes a Hilbert space. Additionally, Γ0(H) denotes the set of proper lower
semicontinuous convex functions from H to [∞−,∞+]. For readers unfamiliar with these notions,
it suffices to know that the functions f , g, f ∗, g∗ from the problems described herein all belong to the
class Γ0(Rr).

The alternating direction method of multipliers (ADMM) solves problems of the form
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minimize
(x,z)∈Rn×Rm

f (x) + g(z) subject to Jx + Bz − ν = 0, (p)

where f and g are convex functions, ν ∈ Rr, J ∈ Rr×n, and B ∈ Rr×m. The ADMM algorithm deals with
the two functions f and g separately, and so it is said to be an operator splitting method. Depending
upon how we choose the functions f and g, we can model many different problems in this very flexible
form. These include regression and classification problems, image and signal denoising, probabilistic
optimization problems like progressive hedging, and basis pursuit [13]. We can use the latter to recover
an approximate audio signal from a compressed set of sampling data.

This paper is outlined as follows. In Section 2 we introduce the basis pursuit audio problem. In
Section 3 we introduce ADMM, motivating with basis pursuit. In Section 4, we describe the Douglas-
Rachford method (DR) and use the basis pursuit problem to illustrate DR’s duality-like relationship
with ADMM. In Section 5, we describe the exemplar Lyapunov surrogate method with which we
will work and provide (Theorem 2), a clean way to compute it. The remainder of the paper contains
our experimental results, which we summarize in Section 7. This paper is intended to be widely
accessible, including to researchers who are unfamiliar with ADMM. As such, we adopt a somewhat
tutorial approach to the topic.

2. Basis pursuit for audio signal recovery

When digital audio is recorded, a microphone’s diaphragm vibrates in response to sound waves, and
N measurements are taken of the diaphragm’s displacement. A typical rate at which these samples are
collected is 44,100 per second (44.1 kHz). Recording over a time interval of length L, we denote by vi

the measurement value at sample time:

ti :=
(
2i − 1

2

) ( L
N

)
. (2.1)

We can define a continuous function

V(t) :=
x0
√

N
+

√
2
√

N

∑N−1

k=1
xk cos

(
kπt
L

)
such that V(ti) = vi ∀i ∈ {1, . . . ,N}.

The unique constants xk can be computed as follows. First, writing down the equality for the ith sample
yields

vi = V(ti) =
x0
√

N
+

√
2
√

N

∑N−1

k=1
xk cos

(
kπti

L

)
(just the definition)

=
x0
√

N
+

√
2
√

N

∑N−1

k=1
xk cos

(
kπ
L

(2i − 1)L
2N

)
(substituting (2.1))

=

√
2
√

N

(
x0
√

2
+

∑N−1

k=1
xk cos

(
kπ(2i − 1)

2N

))
.

Since we have N such equalities (one for each sample (ti, vi)) in N unknowns (x0, . . . , xN−1), we can
write them as the following linear system:
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√
2
√

N



1
√

2
cos( π

2N ) cos( 2π
2N ) · · · cos( (N−1)π

2N )
1
√

2
cos( 3π

2N ) cos(2·3π
2N ) · · · cos( (N−1)3π

2N )
1
√

2
cos( 5π

2N ) cos(2·5π
2N ) · · · cos( (N−1)5π

2N )
...

...
...

. . .
...

1
√

2
cos( (2N−1)π

2N ) cos( 2(2N−1)π
2N ) · · · cos( (N−1)(2N−1)π

2N )

︸                                                                           ︷︷                                                                           ︸
=:M



x0

x1

x2
...

xN−1


=



v1

v2

v3
...

vN


·

The matrix M is the inverse discrete cosine transform matrix, and it is orthogonal. Its inverse MT —the
discrete cosine transform matrix, allows us to compute the x values as x = MT v. The nonzero values
in x determine the shifts and dilates of the cosine function (i.e., the frequencies) that are present in the
signal v. For this reason, x is said to be the spectrum of v.

2.1. Signal compression

To reduce the size of audio files, we can delete some of the samples. The deletion of a sample (ti, vi)
is reflected in the system by the removal of row i from M and v. For example, removing samples (t2, v2)
and (t4, v4), the previous linear system becomes

√
2
√

N


1
√

2
cos

(
π

2N

)
cos

(
2π
2N

)
cos

(
3π
2N

)
cos

(
4π
2N

)
1
√

2
cos

(
5π
2N

)
cos

(
2·5π
2N

)
cos

(
3·5π
2N

)
cos

(
4·5π
2N

)
...

...
...

...
...

︸                                                                    ︷︷                                                                    ︸
=:M̃



x0

x1

x2

x3
...

︸︷︷︸
=:x̃

=


v1

v3

v5
...

︸︷︷︸
ṽ

.

Of course, the solution x̃ is no longer unique. The set of solutions is a subspace of dimension 2,
since 2 is the number of samples we have deleted and therefore the number of free variables we have
gained. We can still use the Moore-Penrose pseudo-inverse M̃T to obtain a spectrum x̃ = M̃T ṽ. The
signal Ṽ that corresponds to this spectrum x̃ still matches the samples we have not thrown away.
Assuming we have not thrown away many samples, Ṽ may still provide a good approximation of V .
In practice, of course, we want to reduce file size appreciably. When we remove 90% of samples
(as is typical), the spectrum M̃T ṽ no longer provides a good approximation signal. Note that while
we removed entries 2 and 4 for illustrative purposes, there is nothing special about removing even-
numbered entries; in our experiments, we remove 90% of entries randomly.

2.2. Basis pursuit for signal recovery

We would expect that the sparsest solution x̃ consists of the frequencies that actually matter, while
avoiding the superfluous ones. Finding the sparsest solution to a linear system Ax = c is equivalent to
the optimization problem:

minimize
x∈Rn

||x||1 subject to Ax − c = 0, with A ∈ Rr×n, c ∈ Rr. (2.2)

This is called the basis pursuit problem. For our signal recovery application, we solve this optimization
problem with A = M̃ and c = ṽ. Using a Matlab code (P-signal) to generate a signal c, we compare
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in Figure 1∗ the solution from (2.2) to a solution obtained using the Moore-Penrose pseudo-inverse.
For this problem, c has 15 frequencies (i.e., Freq=15) denoted by b1, . . . , b15 ∈ {1, 2, . . . , 500} with
corresponding amplitudes a1, . . . , a15 ∈ [0, 1]. Here c represents 1/10th of a second of audio, and so is
defined over domain d = [0, 1

44100 ,
2

44100 , ...,
4410

44100 ].

Matlab code 1. The code used for signal generation.
d = (0:(1/44100):(0.1-(1/44100)))’;

a = rand(Freq,1);

b = randi(500,Freq,1);

c = 0; (P-signal)
for i = 1:Freq

c = c + (a(i)*sin(pi*b(i)*d));

end

Moore-Penrose Signal
Sparse Solution Signal

Original Signal v
Kept Samples

Sparse Solution

Moore-Penrose

Figure 1. Portion of the reconstructed signals (left) and their most significant spectra (right).

3. The alternating direction method of multipliers

We can use ADMM to solve the basis pursuit problem. We first define the following set and
associated function:

Let S :={x | M̃x − c = 0} and define δS :=

0, if x ∈ S ,

∞, otherwise.

We can use these to rewrite (2.2) in the following form:

minimise
(x,z)

δS (x) + ||z||1 subject to x − z = 0. (BP-p)

∗The specific signal of Figure 1 can be generated by fixing the random generators with the additional code rng(3).
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The function δS is called the indicator of the set S . We introduce it so that we can take advantage of
ADMM’s ability to treat the functions f (x) = δS (x) and g(z) = ‖z‖1 separately. ADMM solves the
problem

min
(x,z)∈Rn

max
λ∈Rm

Lρ(x, z, λ) = δS (x) + ||z||1 + (λk)T (x − z) +
ρ

2
||x − z||2, (3.1)

by finding a triple (x∗, z∗, λ∗). This triple is a saddle point for L0 in the sense that (x∗, z∗) minimizes
(x, z) 7→ L0(x, z, λ∗) while λ∗ maximizes λ 7→ L0(x∗, z∗, λ). See, for example, [9, Section 5.5] and [10,
Section 4.3]. Here ρ is a chosen constant. The multiplier variable λ generalizes the classical notion
of a Lagrange multiplier for a general convex optimization problem, and is also called a dual variable.
The primal variables x and z have the property that the optimal pair (x∗, z∗) is a solution to (BP-p). The
ADMM update steps are

xk+1 := argminx{Lρ(x, zk, λk)}, (3.2a)
zk+1 := argminz{Lρ(xk+1, z, λk)}, (3.2b)
λk+1 := λk + ρ(xk+1 − zk+1). (3.2c)

The multiplier update (3.2c) maximizes a concave quadratic approximation to λ 7→ Lρ(xk+1, zk+1, λ).
ADMM draws its name from this iterative process of minimizing with respect to the primal variables
x and z, and then maximizing over the dual variable λ.

3.1. ADMM updates for basis pursuit

Let us look at how these updates are computed for the basis pursuit problem. We begin with the x
update:

xk+1 = argminx{δS (x) + ||zk||1 + (λk)T (x − zk) +
ρ

2
||x − zk||2}

= argminx

{
δS (x) +

∥∥∥∥∥x − zk +
1
ρ

(λk)T
∥∥∥∥∥2} (

completing the square &
dropping terms without x

)
= arg min

x∈S

∥∥∥∥∥∥x −
(
zk +

1
ρ
λk

)∥∥∥∥∥∥2

=: PS

(
zk −

λk

ρ

)
. (3.3)

Here PS is the closest-point projection operator for the set S . As S is closed and convex in a Hilbert
space, PS has nonempty, single-valued images [3]. Moreover, since S is an affine subspace defined by
M̃x = c, PS has a closed form [11]. We can use that closed form to write (3.3) explicitly:

xk+1 = (zk −
λk

ρ
) + M̃T (M̃M̃T )−1(c − M̃(zk −

λk

ρ
)) = (I − M̃T (M̃M̃T )−1M̃)(zk −

λk

ρ
) + M̃T (M̃M̃T )−1c.

We compute the z update as follows:

zk+1 = argminz{δS (xk+1) + ||z||1 + (λk)T (xk+1 − z) +
ρ

2
||xk+1 − z||2}

= argminz

{
‖z‖1 +

∥∥∥∥∥xk+1 +
1
ρ

(λk)T − z
∥∥∥∥∥2} (

completing the square &
omitting terms without z

)
=: S 1

ρ

(
xk+1 +

1
ρ
λk

)
.
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The operator S 1
ρ
(u) is known as the soft thresholding function. It is computable as follows:

(∀i ∈ {1, 2, . . . , n}) S 1
ρ
(u)i :=


ui −

1
ρ
, if ui >

1
ρ
,

0, if |ui| ≤
1
ρ
,

ui + 1
ρ
, if ui < −

1
ρ
.

Both the projection operator PS and the shrinkage operator S 1
ρ

are examples of proximity operators.
The proximity operator for a function h ∈ Γ0(H) is defined as follows:

proxh : H → H : w 7→ argminu∈H ( f (u) +
1
2
||w − u||2).

Straight from the definition, one sees that the projection operator PS is proxδS
, while the soft

thresholding operator S 1
ρ

is prox‖·‖1 . Such operators are used to compute the steps for operator splitting
methods.

4. ADMM and DR duality

We will next look at another operator splitting method, one that has a special duality-like
relationship with ADMM. Let I be the identity map and Rh denote the reflected proximal mapping:

Rh := 2proxh − I. (4.1)

The Douglas-Rachford algorithm (DR) minimizes f + g where f , g ∈ Γ0(H) by generating a sequence
(yn)∞n=1 as

yn+1 ∈ Tg, f (yn) where Tg, f :=
1
2

(I + R f Rg). (4.2)

In [2], Attouch showed† that if f and g are convex and 0 belongs to the interior of {x : f (x) < ∞}− {x :
g(x) < ∞}, then f + g satisfies the necessary conditions for the classical DR convergence result of
Lions and Mercier.

Theorem 1. ( [2, 26] ) If f , g ∈ Γ0(H) and Attouch’s criterion holds, then yk from (4.2) converges
weakly to some y ∈ H such that proxgy minimizes f + g.

For our context, we are interested in the setting where the Douglas-Rachford method is applied to
the problem

minimize
y

f ∗(−AT y) + g∗(y), (d)

where A is a matrix of appropriate dimension. Here h∗ denotes the Fenchel-Moreau-Rockafellar
conjugate of h [3, 24], defined as

h∗(y) = sup{yT x − h(x)}.

†Attouch’s actual requirements are less restrictive than what we have presented.
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We are particularly interested in the case when A = I, f ∗ = δ∗S , and g∗ = ‖ · ‖∗1. The conjugates are

δ∗S (y) = sup
y∈S
{yT x} and ‖ · ‖∗1(y) =

0, if ||x||∞ ≤ 1,
∞, otherwise.

Note that Attouch’s condition is satisfied for δ∗S and ‖ · ‖∗1, as long as the system Ax = b is consistent.
The general problem (d) is said to be dual to the general problem (p), while the specific problem

minimizey δ∗S (−y) + ‖y‖∗1 (BP-d)

is dual to the primal basis pursuit problem (BP-p). For fully convex problems, DR and ADMM
are closely related, with ADMM for (p) being equivalent to DR for (d) [19, 20, 24, 25]. The linear
relationship between DR and ADMM variables is outlined in Table 1.

Table 1. The relationship between ADMM and DR variables.

Primal Dual
ρAxk+1 = proxρ f ∗◦(−AT )(Rρg∗yk) − Rρg∗(yk) Tρg∗,ρ f ∗◦(−AT )yk−1 = yk = λk + ρzk

ρzk = yk − proxρg∗y
k Rρg∗yk = λk − ρzk

λk = proxρg∗y
k Rρ f ∗◦(−AT )Rρg∗yk = λk − ρzk + 2ρAxk+1

From Theorem 1 and the relationships in the table, it is clear that the multiplier sequence λk

converges to the solution of (d). For the basis pursuit problem (BP-p) and its dual problem (BP-d),
the relationship in Table 1 is illustrated in Figure 2. Because the DR operator Tg∗, f ∗ has particularly
desirable properties, DR convergence results are often cited as particularly elegant proofs of the
convergence of ADMM, and the two algorithms are frequently studied together [22, 23].

z3z4

z7

z5
z6

x1 = x2 = x3 = λ1 = y1

x4

x7

x5
x6

λ2 = y2

λ3

λ4

λ5

λ6

λ7
y3

y4

y5

y6

y7
LT y3

S

{x | ‖x‖∞ ≤ 1}

0 = x0 = y0 = λ0

= z0 = z1 = z2

Figure 2. The ADMM sequence (xn, zn, λn)n∈N for solving (BP-p) and the associated dual
DR sequence (yn)n∈N for solving (BP-d). They have the relationship in Table 1.
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5. A Lyapunov surrogate method for basis pursuit

Benoist, Dao, Tam, Giladi, and Rüffer used Lyapunov functions to describe the dynamics of DR
in cases when it exhibited spiraling patterns similar to the one in Figure 2 [8, 14, 21]. All of their
Lyapunov functions U shared the property that

〈OU(yn), yn−1 − yn〉 = 0. (5.1)

Borrowing inspiration from their constructions, the method introduced in [24] provides an update
candidate that minimizes a spherical surrogate for such a Lyapunov function. Figure 2 shows an
example of such a surrogate, and the update obtained from it. When yk, yk+1, yk+2 are collinear, the
construction is not possible and so a normal algorithmic update would be accepted. Otherwise, this
update, denoted LT (yk), is constructed to belong to the 2-dimensional affine subspace containing yk,
yk+1, and yk+2, and to have the property that 〈LT yk − yk+1, yk+1 − yk〉 = 〈LT yk − yk+2, yk+2 − yk+1〉 = 0. A
candidate update for the multiplier is

λLT := proxρg∗LT (yk) = P{x | ‖x‖∞≤1}(LT (yk)).

We can propagate the update to the primal variables by zLT ← LT yk − λLT
and xLT ← PS (zLT − λLT ).

Then xLT is a candidate for updating x. There are various criteria we can use to decide whether to
accept it or reject it in favor of a regular ADMM update. In this paper, the main criterion we use in
our experiments is whether xLT has a smaller 1-norm value than a regular update would. Based on the
symbol for the operator LT : Rr → Rr, we refer to the full algorithm in this case as LT. For comparison,
in some experiments we instead accept the xLT update always. We denote the algorithm in such cases
by LTA. The operator LT may be computed efficiently, as we now show.

Theorem 2. Let y0, y1, y2 ∈ H . Let w1 = y1 − y0 and w2 = y2 − y0. If ‖w1‖2‖w2‖2 − (〈w1,w2〉)2 = 0, then
y0, y1, y2 are collinear. Otherwise, let w = y0 + µ1w1 + µ2w2 where

δ :=‖w1‖2‖w2‖2 − (〈w1,w2〉)2,

µ :=
1
δ

[
‖w2‖2 −〈w1,w2〉

−〈w1,w2〉 ‖w1‖2

] [
‖w1‖2

‖w2‖2 − 〈w1,w2〉 + ‖w1‖2

]
,

and w is the unique point in the 2-dimensional affine subspace ofH containing {y0, y1, y2} that satisfies

〈w − y1, y1 − y0〉 = 〈w − y2, y2 − y1〉 = 0.

Proof. Letting u = w − y0, the linear system rewrites to

〈u − w2,w2 − w1〉 = 0 and 〈u − w1,w1〉 = 0.

The second equality yields 〈u,w1〉 = ‖w1‖2, whereupon the first equality yields

〈u,w2 − w1〉 = 〈w2,w2 − w1〉 = ‖w2‖2 − 〈w2,w1〉

=⇒ 〈u,w2〉 = ‖w2‖2 − 〈w2,w1〉 + 〈u,w1〉 = ‖w2‖2 − 〈w2,w1〉 + ‖w1‖2.
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As w belongs to the 2-dimensional affine subspace containing {y0, y1, y2}, there must exist µ1, µ2 ∈ R

such that u = µ1w1 + µ2w2. Substituting this identity into the two equalities above yields the system:

〈w1, µ1w1 + µ2w2〉 = ‖w1‖2,

and 〈w2, µ1w1 + µ2w2〉 = ‖w2‖2 − 〈w2,w1〉 + ‖w1‖2,

⇐⇒

[
‖w1‖2 〈w1,w2〉

〈w1,w2〉 ‖w2‖2

] [
µ1

µ2

]
=

[
‖w1‖2

‖w2‖2 − 〈w1,w2〉 + ‖w1‖2

]
.

The left matrix is invertible so long as its determinant δ is nonzero. Bearing in mind that
‖w1‖‖w2‖ cos(θ) = 〈w1,w2〉 where θ is the angle between w1 and w2, we have that this determinant
is zero exactly when the angle between w1 and w2 is 0 or π (i.e., y0, y1, y2 are collinear). When the
determinant is nonzero, we take the inverse of the matrix on the left and obtain the claimed identity for
µ. �

Remark 1 (Checking collinearity). In computational practice, to decide whether the determinant δ in
Theorem 2 is nonzero, one must choose some ε > 0 and replace the condition δ , 0 with |δ| > ε. In
our experiments, we used the threshold ε = 10−10, and never encountered the case when |δ| < ε. If
ε is chosen very small and the condition number is very large, the computed µ may suffer numerical
inaccuracy. This is another important reason for the inclusion of the objective function check.

Interestingly, for structured feasibility problems of the kind studied in [8, 14, 21], it was shown
in [24] that the circumcentered reflections method (see, for example, [1,4–7,15,17]) is another example
of an algorithm that returns minimizers for surrogates of a Lyapunov function for the DR dynamical
system. For reasons described in [24], the natural generalization of circumcentered reflections method
does not work for basis pursuit problems, and so we do not include it here. Indeed, a key motivation
for the algorithm LT is that whenever a Lyapunov function has the property (5.1), LT and LTA return
minimizers of spherical surrogates for that Lyapunov function [24]. This means that they may be useful
for a wider variety of applications than those listed here. Algorithm 1 shows their implementation for
basis pursuit specifically. In Table 2, we summarize the criteria that we use in our experiments to decide
whether to accept an update candidate derived from LT (yk) or reject it in favor of a regular update.
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Algorithm 1 LT / LTA.
Data: Am×n, absolute and relative tolerances such that εabs, εrel > 0, a tolerance εdet > 0, and a data

vector b.
Initialisation:
i, x, z, ẑ, λ, yi ← 0; r = x − z; s = ẑ − z;
εpri =

√
nεabs + εrel max{||x||, ||ẑ||}; εdual =

√
nεabs + εrel||λ||;

while ||r|| ≥ εpri, ||s|| ≥ εdual do
if i ≥ 2 then

w1 ← yi−1 − yi−2;
w2 ← yi − yi−2;
δ← ‖w1‖2‖w2‖2 − (w1T w2)2;
if |δ| > εdet then

µ← 1
δ

 ||w2||2 −w1T w2

−w1T w2 ||w1||2

 [ ||w1||2

||w2||2 − w2T w1 + ||w1||2

]
;

yLT ← yi−2 + µ1w1 + µ2w2;
λLT ← S 1

ρ
(yLT );

zLT ← yLT − λLT ;
xLT ← (I − AT (AAT )−1A)(zLT −

λLT
ρ

) + AT (AAT )−1b;
criterion = ||xLT ||1 < ||x||1;

if criterion then
x← xLT ;
z← zLT ;
λ← λLT ;
i← 0;

end
end

end
i← i + 1;
x← (I − AT (AAT )−1A)(z − λ

ρ
) + AT (AAT )−1b;

ẑ← z; z← S 1
ρ
(x + λ

ρ
); λ← λ + ρ(x − z); yi ← λ + ρz;

r = x − z; s = ẑ − z;
end

Table 2. The criteria for LT and LTA in Algorithm 1.

Algorithm variation Criterion used
LT ||xLT ||1 < ||x||1
LTA true
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6. Experimental results

Performance profiles are a popular way of comparing algorithm performance; see [18], whose
notation we closely follow. We use them to compare the performances of LT, LTA, and ADMM.
For each problem p and solver s, we define

tp,s = the number of iterations required to solve problem p by solver s.

The performance of each algorithm is evaluated relative to the superior algorithm in each instance.
This is done according to the following ratio, where S denotes the set of solvers

rp,s =
tp,s

min{tp,s : s ∈ S }
.

Our performance profile graphs depict the cumulative distribution functions Φs, defined as

Φs(τ) =
1
np

size{p ∈ P | rp,s ≤ τ},

where np is the total number of problems solved by s. For example, if Φs(1.5) = 0.8, then algorithm s
solved 80% of problems using no more than 150% of the passes through (3.2) required by the algorithm
that used the fewest passes.

6.1. Random problems

In [24], LT was found to reliably outperform ADMM for problem (2.2), where the problems were
randomly generated according to the specifications in Boyd, Parikh, Chu, Peleato and Eckstein’s
Matlab scripts [12]. The code for these problems is (P-random). Here, A ∈ R500×5000, with each
entry drawn from the standard normal distribution, while x ∈ R5000 is sparse with approximately 500
nonzero xi ∼ N(0, 1). The data vector c is given by c = Ax. The performance profile for LT, LTA,
and ADMM in solving 1000 problems of this kind is Figure 3b. For these problems, the algorithms
stopped once locating solutions within ±10−4 of optimality (i.e., εabs = εrel = 10−4).

Matlab code 2. The code used for randomly-generating basis pursuit problems.
n = 5000;

m = 500;

A = randn(m,n); (P-random)
x = sprandn(n,1,0.1*n);

c = A*x.

Following [24], we say that an algorithm shows signs of spiraling when ‖proxg∗y
k+1−proxg∗y

k‖ (i.e.,
‖λk+1−λk‖) exhibits a distinct “tombstone” pattern (observable in Figure 3a). This phenomenon is often
associated with the existence of a Lyapunov function satisfying condition (5.1). Problems generated
using (P-random) typically exhibit signs of spiraling.

In Figure 4, we illustrate the behavior of the DR dual sequence (yk)k∈N for a problem generated using
(P-random)‡. We visualize (yk)’s behavior by projecting it onto 10 different 2-dimensional subspaces

‡For the example shown, the random seed state was rng(8).
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(i.e., plotting coordinate pairs). Namely, we plot (yn
1, y

n
2) (red), (yn

1, y
n
3) (neon green), (yn

1, y
n
4) (blue),

(yn
1, y

n
5) (cyan), (yn

2, y
n
3) (magenta), (yn

2, y
n
4) (yellow), (yn

2, y
n
5) (purple), (yn

3, y
n
4) (teal), (yn

3, y
n
5) (orange),

and (yn
4, y

n
5) (green). In Figure 4b and 4c, we zoom in on the tail of the sequence (yn

2, y
n
3) and plot the

sequence ((yn
LT )2, (yn

LT )3) of coordinate pairs (blue shades) as well as the sequence ((yn
LT A)2, (yn

LT A)3)
(green shades). The accepted LT updates are shown as squares.

C
ha

ng
e

0 200 400 600 800

10−5

100

ADMM ‖rk‖

ADMM ‖sk‖

LT ‖rk‖

LT ‖sk‖

ADMM vs LT

Iteration

(a) Typical Iterate-change graph.

1 3 5 7 9
0

1

LT
LTA
ADMM

(b) The performance profile generated for 1000
problems.

Figure 3. Algorithm performance for basis pursuit problems generated using (P-random).

(a) Coordinate pairs. (b) Sequences (yn
2, y

n
3) (magenta),

((yn
LT )2, (yn

LT )3) (blues) and
((yn

LT A)2, (yn
LT A)3) (greens).

(c) Enhanced view of Figure 4b.

Figure 4. A basis pursuit problem showing signs of spiralling. Squares (shaded lighter)
denote accepted LT updates.

Because LT and LTA afforded measurable improvement for solving basis pursuit problems with
random structure, we next benchmarked their performance on the audio compression and recovery
problem.
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6.2. Audio signal recovery

To evaluate the performance of LT and LTA for audio recovery problems, we generated signals
using (P-signal). d = [0, 1

44100 ,
2

44100 , ...,
4410

44100 ] was used as the domain of each c, while c is the sum
of shifted and dilated sine functions with amplitudes and frequencies specified by a1, ..., aFreq ∈ [0, 1]
and b1, ..., bFreq ∈ [1, 2, ..., 500]. The number of frequencies (Freq) corresponds to the number of such
functions composing c, with a higher number of frequencies resulting in more complex signals. To
assess the algorithms on a variety of signals, we ran experiments with Freq = 2, 5 and 10. For each
Freq value, 1000 problems were solved where A = M̃441×4410. We include the performance profiles for
these problems in Figure 5.

1 1.2 1.4 1.6 1.8 2
0

1

LT
LTA
ADMM

(a) Freq = 2

1 1.2 1.4 1.6 1.8 2
0

1

LT
LTA
ADMM

(b) Freq = 5

1 1.2 1.4 1.6 1.8 2
0

1

LT
LTA
ADMM

(c) Freq = 10

Figure 5. The performance profiles generated for LT, LTA, and ADMM in solving 1000
problems with A = M̃441×4410 and c generated using (P-signal).

We provide a sense of how the algorithms pursue a sparse solution in Figure 6, where we define
the superfluous xi as having absolute values less than 0.7. This threshold was determined based on
plotting the spectra for various solved problems (as in Figure 1). Figures 6a–c depict Mx5, Mx30 and
Mx∗ (x∗ = x158), as produced by ADMM solving (2.2) with A = M̃ and c specified by (P-signal) with
Freq = 15§. We graph the percentage of xk

i that satisfy |xk
i | > 0.7 for k = 5, 30, 158, in Figure 6d. These

signals were reconstructed with εabs = εrel = 10−3 accuracy. Although not perfect, we found that lower
εabs and εrel values did not result in better approximations for V , so this accuracy is used throughout our
experiments.

§For the example shown, the random seed state was rng(3).
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(a) 5 iterations. (b) 30 iterations. (c) 158 iterations (solved).
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(d) Solution sparsity at each iteration.

Figure 6. The signals reproduced at different stages of ADMM solving basis pursuit with
A = M̃ and c generated using (P-signal).

6.2.1. Experiments on real audio

We likewise applied LT and LTA to recovering the waveform signal of a performance of Frédéric
Chopin’s Scherzo No. 2. We decomposed the 2 minute and 14 second performance into 1340 problems,
each recovering 0.1 seconds of audio. Using the file’s sampling rate of 44800 Hz, each problem was
formulated with A = M̃448×4480. The performance profile for this experiment is Figure 7.

1 1.2 1.4 1.6 1.8 2
0

1

LT

LTA

ADMM

Figure 7. The performances of LT, LTA, and ADMM in recovering Chopin’s Op. 31. The
profile depicts 1340 problems with A = M̃448×4480.
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6.3. Experiments: Discussion

The meta algorithms exhibited noticeably less improvement relative to ADMM when the random
problem structure of (P-random) was replaced by the structure of the simulated audio problem
(P-signal), and even less improvement for a real audio problem. For problems we solved using M̃,
we typically did not observe signs of spiraling for the dual sequence yk; when we did observe signs
of spiraling, we only observed it after the signal was recovered (i.e. when computing more than
necessary). Figure 8 shows yk coordinate pairs for an example problem generated using (P-signal)¶
with Freq = 10. Enhanced views of sequences (yn

1, y
n
3) and (yn

1, y
n
4) for this problem are included in

Figure 9a. Figure 9b enhances the sequence (yn
2, y

n
3), and also shows the sequence of coordinate pairs

((yn
LT )2, (yn

LT )3) generated by LT, as well as the sequence of coordinate pairs ((yn
LT A)2, (yn

LT A)3) generated
by the variant LTA. For the latter two sequences, regular DR updates are circles while updates accepted
from the surrogate are squares.

C
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10−1

101

ADMM ‖rk‖

ADMM ‖sk‖

LT ‖rk‖

LT ‖sk‖

ADMM vs LT

Iteration

Figure 8. Convergence plot (left) and plot of coordinate pairs (right) for a problem not
displaying signs of spiraling.

¶For the example shown, the random seed state was rng(4)
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(a) Sequences (yn
1, y

n
3) (green) and (yn

1, y
n
4) (blue). (b) Sequence (yn

2, y
n
3) (magenta), ((yn

LT )2, (yn
LT )3)

(blues) and ((yn
LT A)2, (yn

LT A)3) (greens).

Figure 9. Enhanced views of sequences for the problem in Figure 8. Squares (shaded lighter)
denote accepted LT updates. All three coordinate pair sequences entered from bottom right
and terminated at top right.

7. Conclusions

Our results highlight the importance of testing algorithms on problems with real data. While the
Lyapunov surrogate variant LTA is state-of-the-art (much faster than DR and equally reliable) for the
real world problem of finding wavelets [16], its performance for the real world audio compression and
recovery problem is less impressive than experiments on random problems might suggest.

Additionally, our results are consistent with the hypothesis in [24] that Lyapunov surrogate methods
are more likely to deliver improvement in situations when signs of spiraling are present, as we suspect
that LT’s inconsistent performance is due to differences in the dynamics of the underlying DR dual
algorithm.

Finally, the visualizations in Figures 4 and 9 are interesting in two ways. First, they support the
hypothesis that signs of spiraling do, in fact, reflect the dynamic they purport to. The dynamics we
observe for the simulated audio problem in Figure 9, when signs of spiraling were not present, appear
much less regular than those we observed for the fully random problem in Figure 4b, when signs of
spiraling were present. Second, the latter dynamics still exhibit patterns that may lend themselves to
extrapolation methods or other dynamics-based schemes. We suggest this as future research.
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Data Availability

The code used to generate all examples in this paper is available at https://github.com/
AndrewCalcan/Basis-Pursuit-via-LT-LTA-ADMM.git.
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