
AIMS Mathematics, 9(6): 14618–14639.

DOI: 10.3934/math.2024711

Received: 29 December 2023

Revised: 05 March 2024

Accepted: 08 March 2024

Published: 23 April 2024

http://www.aimspress.com/journal/Math

Research article

Simplicial decomposition of variational inequalities with multiple

nonlinear column generation

William Chung*

Department of Management Sciences, City University of Hong Kong, Kowloon, Hong Kong

* Correspondence: Email: william.chung@cityu.edu.hk; Tel: +85234427057; Fax: +85234420198.

Abstract: Simplicial decomposition (SD) of variational inequalities experiences the long-tail

convergence property. That is, the equilibrium solution rapidly progresses at first but then tails off,

making only a tiny amount of progress per column generation iteration, which is a drawback of SD-

VI. In the context of Dantzig-Wolfe of LP, it is reported that the more proposals are used to initialize

the algorithm, the faster the solution can be found by reducing the number of decomposition steps.

Therefore, I proposed to solve multiple nonlinear column generation (mNCG) subproblems in each

SD-VI iteration (SD-VI-mNCG) instead of solving only one subproblem as in SD-VI. Generating

multiple column generation subproblem solutions in each SD-VI iteration enabled the corresponding

convex hull to be rapidly enlarged. Consequently, the number of SD-VI iterations could be greatly

reduced. A transportation network equilibrium problem was used to study the performance of the SD-

VI-mNCG.

Keywords: column generation; simplicial decomposition; convergence rate; variational inequalities;

nonlinear programming

Mathematics Subject Classification: 90C33, 90C59

1. Introduction

Column generation (CG) is a method to solve large-scale mathematical programming problems

such as optimization models and variational inequalities (VI) involving a vast number of variables.

These models can be found in multi-cloud systems, multi-commodity economic equilibrium models,

and transportation models. These models would become too large to be solved due to the rise of big

14619

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

data. For example, large-scale VI problems can be easily found in stochastic VI settings with large-

scale scenario analysis. Even a well-established VI solver (PATH) has been found to terminate when

attempting to solve a large-scale VI problem due to a lack of memory [1]. Using column generation

algorithms, such large-scale problems can be decomposed into smaller subproblems to be solved on

several computers. Another motivation for using CG is to improve model development and

maintenance efficiency by joining separately well-developed submodels when a converged solution is

needed. Other research groups, such as Murphy et al. [2], have made similar observations. These

smaller submodels can even reside on different computers connected by a network. On top of

improving model development and maintenance, CG may improve computational efficiency. For

example, Chung [3] reported that some computational instances of CG were faster than the reference

method, the PATH solver. Chung [3] also reported that the PATH solver terminated when attempting

to solve a large-scale VI problem because of insufficient memory.

However, CG has a major drawback which is the long-tail convergence property, called long-tail

effect. CG involves solving a subproblem and a master problem iteratively. An example of CG is

simplicial decomposition (SD) method. Simplicial decomposition was recently employed and

modified for different application aspects, such as Bettiol et al. [4], Uciński [5], Guignard and

Ahlatcioglu [6], and Delle Site [7]. For the multiple subproblems aspect, see Morabit et al. [8]. It is

assumed that there are efficient solution methods to solve the subproblem and the master problem.

However, it is well known that the SD converge rapidly at first but subsequently slowly, with a long

tail of near-optimal solutions. As the final optimality gap cannot be closed, this long-tail convergence

resulting in poor computational performance becomes a drawback. Other drawbacks are dual

oscillations and primal degeneracy, and alternative dual optimal solutions in optimization models. In

my experience, CG methods for VI problems inherit this long-tail convergence property. That is, CG-

VI is likely to approach the equilibrium solution rapidly at first but then tail off, making only a tiny

amount of progress per CG iteration. Consequently, the time savings afforded by the rapid initial

convergence tend to be offset by the tailing off. I develop a new method to alleviate the long-tail effect

of CG-VI in the current paper.

1.1. Literature review of the methods of resolving the tailing-off effect

1.1.1. Existing methods of resolving the tailing-off effect for LP

Implementation enhancement: Nazareth [9] used a set of LP problem examples consisting of a

few constraints and variables to identify the numerical difficulties that can generally occur when

applying the DW method. Nazareth showed that even when stable techniques, such as the stable

refactorization of the corresponding basis matrix, are used, the columns of the computed master

program can differ substantially from those of the true one. Later, Nazareth [10] noted that because

changes in primal and dual variables are applied iteratively, a certain amount of “cleaning up” is to be

expected. According to Ho [11] explanation of long-tail convergence, implicit error bounds may imply

a tolerance for convergence below which further apparent improvements should be considered as noise.

However, Lübbecke and Desrosiers [12] remarked that tailing off also occurs when columns are

computed exactly, e.g., through the use of combinatorial algorithms.

Column dropping: One may anticipate that dropping columns from the master problem will

improve computational efficiency. Dantzig [13] proposed some methods for deciding how long

14620

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

proposals should be kept in the master problem, such as deleting all non-basic proposals immediately

(apart from those just generated). Indeed, it is not entirely clear when to delete proposals from the

master problem. Beale et al. [14] reported that when using Dantzig’s [13] above-mentioned methods,

for a problem with 450 constraints, the DW method performed marginally better than the simplex

method. For NLP, Murphy [15] provided two conditions under which columns may be dropped from

the restricted master problem. However, O’Neill’s [16] computational results revealed virtually no

differences in the measures of computational efficiency when all columns were retained and when only

basic columns were retained.

Stabilized column generation methods: Another approach is to use stabilized column

generation methods to ensure that the dual variable values of the linking constraints smoothly converge

to their respective optima without vehement oscillation. From the literature, three stabilization

techniques of optimization models can be found. These techniques are the proximity of a stability

center, smoothing techniques, and centralized prizes for stabilizing the iterative dual solutions from

the master problems. There are some well-known stabilization principles, such as the Boxtep method

developed by Marsten et al. [17]. These stabilization methods are widely used in branch-and-bound

algorithms for mixed integer programs. It should be noted that these techniques rely on solving dual

master optimization problems. It would become a big challenge when one tries to use the dual master

VI problems.

1.1.2. Existing methods of resolving the tailing-off effect for VI

To resolve the tailing-off problem afflicting simplicial decomposition of VI (SD-VI), Larsson and

Patriksson [18] considered the use of subproblem column generations of nonlinear simplicial

decomposition (NSD) to reduce the number of decomposition iterations. The generalized NSD method

is obtained from the restricted simplicial decomposition method by replacing the linear column

generation subproblem with a nonlinear column generation (NCG) subproblem. Generating columns

based on the NCG subproblem requires fewer columns to describe an optimal solution, resulting in

fewer decomposition iterations. There are three kinds of NSD column generation subproblems

addressed by adopting Newton’s method, the diagonalized Newton algorithm, and the projection

method.

Chung et al. [19] extended the application of the DW procedure from linear programming (LP)

to VI problems. The master problem and the subproblems of the decomposed VI are VIs. To shorten

the computation time, Chung and Fuller [20] derived an approximation method to solve the

subproblem VIs. Chung [3] integrated the results of Çelebi and Fuller [1] and Chung and Fuller [20]

to develop an approximation method to solve DW-VI, in which both master VI and subproblem VI can

be solved approximately as DW for LP. Chung [21] derived a truncated DW-VI method, in which the

subproblem VI was approximately solved by one iteration of DW. Although they did not discuss the

tailing-off effect, their computational results showed that the tailing-off effect for VI was alleviated.

In recent years, in the context of optimization problems, some research works concentrated on

using machine learning to predict the stabilization technique for column generation and the patterns of

different existing columns for re-optimization, see Morabit et al. [22] and Kraul et al. [23]. Although

these approaches do not focus on column generation, their results can help to overcome the tailing-off

effect in the re-optimization processes.

14621

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

1.2. Approaches and contributions

In the context of Dantzig-Wolfe of LP, Dirickx and Jennergren [24] reported that, in general, the

more proposals are used to initialize the algorithm, the faster the solution can be found. Therefore, in

the current paper, I propose to solve multiple column generation subproblems in each SD-VI iteration

instead of solving only one subproblem. By solving multiple column generation subproblems in each

SD-VI iteration, I obtain two advantages, as follows: (1) Different columns will be generated and

stored in the master problem to improve the representativeness of the corresponding convex hull. (2)

Generating multiple column generation subproblem solutions in each SD-VI iteration will enable the

corresponding convex hull to be rapidly enlarged. Consequently, the number of SD-VI iterations can

be greatly reduced. The idea of generating multiple columns at a given iteration is not a new strategy

in nonlinear programming, see Morabit et al. [8]. In short, I propose a new method, simplicial

decomposition with multiple subproblems for VI, that solves multiple column generation subproblem

in each SD-VI iteration to reduce the number of decomposition steps and thereby ease the tailing-off

effect. One of the challenges of the new method is how to derive “multiple” subproblems. According

to my knowledge, there is no research on solving multiple subproblems in SD-VI. It is a research gap

in the literature. Moreover, the proposed method can also apply to NLP since the VI framework

includes NLP.

While employing multiple subproblems (multiple column generation) in SD of optimization

models, convergence properties and theories may be easily derived based on the existing results of the

monotonic convergence properties. However, the convergence property of the SD-VI is non-monotone.

Hence, the convergence properties and theories of multiple column generation of SD-VI is derived,

and empirical tests are given.

In brief, the main contribution of the current paper is to derive a new method, simplicial

decomposition with multiple subproblems for VI. The major challenges are (1) to derive “multiple

subproblems” in SD-VI in the Subsection 3.2 and (2) to prove the convergence of the new method.

Section 2 provides the background of the VI problems, SD-VI methods, and SD of NLP with

nonlinear column generation (NCG). Section 3 derives SD-VI with NCG (SD-VI-NCG) and with

multiple NCGs (SD-VI-mNCG). SD-VI-NCG and SD-VI-mNCG are SD with one subproblem and

multiple subproblems for VI, respectively. Convergence properties of the SD-VI-NCG and SD-VI-

mNCG are also included. Section 4 is used to report computational performance of SD-NLP-mNCG,

SD-VI-mNCG, and their re-optimization processes. Section 5 provides the conclusion with further

research topics.

2. Background

The class of the VI problems I will study can be described as follows. 𝑉𝐼(𝐺, 𝐾): Find a vector

𝑥∗ ∈ 𝐾 ⊆ 𝑅𝑛 such that 𝐺(𝑥∗)𝑇(𝑥 − 𝑥∗) ≥ 0 ∀𝑥 ∈ 𝐾 , where G is given continuous mapping from

𝐾 𝑡𝑜 𝑅𝑛, superscript T denotes the transpose, and all vectors are considered to be column vectors. K is

a nonempty, closed, and convex set. Applications of 𝑉𝐼(𝐺, 𝐾) can be found in user equilibrium traffic

assignment problems and energy equilibrium problems. For large-scale VI, see Murphy et al. [2].

Harker and Pang [25] provided standard conditions for the existence and uniqueness of solutions to

this class of VI problems. There are different methods of solving 𝑉𝐼(𝐺, 𝐾), such as PIES-like methods

or Newtonian methods.

14622

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

2.1. Column generation of VI methods (CG-VI)

There are two popular column generation of VI methods, simplicial decomposition of VI (see

Lawphongpanich and Hearn [26]) and Dantzig-Wolfe of VI (see Fuller and Chung [27]). Since the my

results are derived from simplicial decomposition of VI (SD-VI), a brief description of SD-VI is given

below. Moreover, multiple subproblems are generated from SD with nonlinear column generation

(NCG) of nonlinear programming (Larsson et al. [28]), NCG is given in this subsection.

2.2. Simplicial decomposition of VI (SD-VI)

Lawphongpanich and Hearn [26] presented a type of simplicial decomposition of VI method for

the user equilibrium traffic assignment problem, in which 𝐾 is a closed convex set of feasible flow

patterns, and 𝐺 is a cost mapping. The following SD-VI is not exactly the one presented in

Lawphongpanich and Hearn [26]. The major differences are that there is no pre-set convergence

sequence (𝜀𝑘) for convergent of their SD-VI and no column dropping consideration for improving the

computational performance of the master-VI problems. It is because my results of employing multiple

subproblems do not require the pre-set convergence sequence and column dropping procedure.

Note that SD-VI consists of linear programming subproblem, 𝑆𝑢𝑏 − 𝐿𝑃𝑘, and an equilibrium

master problem, Master − VI𝑘, where superscript 𝑘 represents the iteration number of CG-VI. 𝑆𝑢𝑏 −

𝐿𝑃𝑘 is defined as follows:

𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌), 𝑲): find 𝑥𝑆

𝑘 ∈ 𝐾, such that 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥 − 𝑥𝑆

𝑘) ≥ 0 ∀𝑥 ∈ 𝐾,

where 𝑥𝑀
𝑘 equals the solution of master problem (Master − VIk), described below.

The feasible set for the master problem at iteration 𝑘 is restricted to all convex combinations of

the 𝑘 proposals (solutions of the subproblem). Let 𝑋𝑘 be the 𝑛 × 𝑘 matrix whose columns are the

solutions 𝑥𝑆
𝑖 of the subproblems solved at iterations 𝑖 = 1,… , 𝑘 ; i.e., 𝑋𝑘 = [𝑥𝑆

1, 𝑥𝑆
2, … , 𝑥𝑆

𝑘] . The

weights on the proposals in the convex combination are contained in the vector 𝜆 ∈ 𝑅𝑘. The feasible

set for the master problem is defined as

Λ𝑘 = {𝜆 ∈ 𝑅𝑘| 𝑒𝑘𝑇𝜆 = 1, 𝜆 ≥ 0},

where 𝑒𝑘 ∈ 𝑅𝑘 is a vector with 1 for every entry. The master problem at iteration 𝑘 is defined as

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒌(𝑮, 𝜦𝒌): find 𝜆𝑘 ∈ Λ𝑘, such that 𝐺(𝑋𝑘𝜆𝑘)𝑇(𝑋𝑘𝜆 − 𝑋𝑘𝜆𝑘) ≥ 0 ∀ 𝜆 ∈ Λ𝑘.

Alternatively, let 𝑐𝑜𝑛𝑣(𝑋𝑘) represent the set of all convex combinations of the columns of 𝑋𝑘.

Then, I have the following alternative master problem at iteration k, defined as

Master − VI𝑘(𝐺, K𝑘): find 𝑥𝑀
𝑘 ∈ 𝐾𝑘, such that 𝐺(𝑥𝑀

𝑘)
𝑇
(𝑥 − 𝑥𝑀

𝑘) ≥ 0 ∀ 𝑥 ∈ 𝐾𝑘 = {𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑋𝑘)}.

With the convergence gap, 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘), for the stopping condition, I can define

the standard SD-VI algorithm as follows:

[SD-VI]

Step 0: Set 𝑘 = 0. Choose 𝜀 > 0, 𝑥𝑀
1 ∈ 𝐾, and 𝑋0 is a null matrix.

Step 1: Increment 𝑘 ← 𝑘 + 1.

Solve 𝑆𝑢𝑏 − 𝐿𝑃𝑘(𝐺(𝑥𝑀
𝑘), 𝐾) and place the solution 𝑥𝑆

𝑘 in the matrix 𝑋𝑘 = [𝑋𝑘−1, 𝑥𝑆
𝑘].

14623

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

If 𝑘 = 1 then go to Step 2; if 𝐶𝐺𝑘 ≥ −𝜀 then STOP; else go to Step 2.

Step 2: Solve Master − VI𝑘(𝐺, 𝐾𝑘). Record 𝐺(𝑥𝑀
𝑘). Go to Step 1.

In the next subsection, I describe the result of Larsson et al. [28] concerning how the nonlinear

column generation (NCG) is employed in the context of SD of NLP. Based on their results, I first

derive a SD of VI with NCG, then I derive a SD of VI with multiple NCG.

2.3. Simplical decomposition of NLP with nonlinear column generation (NCG)

According to Larsson et al. [28], SD of NLP with NCG (SD-NLP-NCG) is the combination of

the SD principle and the nonlinear search direction finding subproblem of a primal descent algorithm

for NLP, not VI.

NLP: 𝑀𝑖𝑛𝑥∈𝐾 ∫ 𝐺(𝑥)𝑑𝑥.

For NLP, the master problem and the subproblem of SD are shown below:

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑵𝑳𝑷𝒌(𝑮,𝑲𝒌): 𝑀𝑖𝑛𝑥∈𝑐𝑜𝑛𝑣(𝑋𝑘) ∫ 𝐺(𝑥)𝑑𝑥.

𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀

𝑘)
𝑇
𝑥.

For NCG, the above subproblem, 𝑆𝑢𝑏 − 𝐿𝑃𝑘, becomes the combination of the SD principle and

the nonlinear search direction finding subproblem of a primal descent algorithm for NLP. Larsson

et al. [28] modified the subproblem by adding a continuous regularization function, 𝜑(𝑥, 𝑥): 𝐾 ×

𝐾 ⟼ 𝑅, with the following properties:

(1) 𝜑(⋅, 𝑦) is strictly convex and continuously differentiable on 𝐾 for every 𝑦 ∈ 𝐾;

(2) ∇𝑥𝜑(𝑥, 𝑦) = 0 holds if and only if 𝑥 = 𝑦.

Then, given an iterate 𝑥𝑀
𝑘 , the subproblem of SD-NLP-NCG becomes an NLP.

𝑺𝒖𝒃𝑵𝑪𝑮 −𝑵𝑳𝑷
𝒌(𝑮(𝒙𝑴

𝒌), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘)
𝑇
𝑥 + 𝜑(𝑥, 𝑥𝑀

𝑘).

It is noted that the solution of 𝑆𝑢𝑏𝑁𝐶𝐺 − 𝑁𝐿𝑃
𝑘, 𝑥𝑆

𝑘, is unique due to the compactness of 𝐾 and

the strict convexity of 𝜑(⋅, 𝑦). Moreover, 𝑥𝑀
𝑘−1 is optimal in NLP if and only if 𝑥𝑀

𝑘−1 solves 𝑆𝑢𝑏𝑁𝐶𝐺 −
𝑁𝐿𝑃𝑘, that is, 𝑥𝑆

𝑘 = 𝑥𝑀
𝑘−1. In the numerical experiments of Larsson et al. [28], the function 𝜑 had the

form:

𝜑(𝑥, 𝑦) =
1

2
(𝑥 − 𝑦)𝑇𝑄(𝑦)(𝑥 − 𝑦),

where 𝑄(𝑦) is a positive definite and symmetric matrix for every 𝑦 in 𝐾 . Three matrixes were

proposed: 𝑄(𝑦) ≡ 𝛾𝐼, 𝛾 > 0, 𝑄(𝑦) = 𝛻𝐺(𝑥𝑀
𝑘), and 𝑄(𝑦) = diag 𝛻𝐺(𝑥𝑀

𝑘).

3. Simplicial decomposition of VI and NCG

Based on the results of Larrsson et al. [28], I first define the method of SD-VI with a NCG (SD-

VI-NCG), then SD-VI with multiple NCG (SD-VI-mNCG).

14624

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

3.1. Simplicial decomposition of VI with NCG (SD-VI-NCG)

To derive a SD-VI with NCG, the 𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌), 𝑲) of SD-VI is replaced with 𝑺𝒖𝒃𝑵𝑪𝑮 −

𝑵𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌), 𝑲). Then, I can define the standard SD-VI-NCG algorithm as follows:

[SD-VI-NCG]

Step 0: Set 𝑘 = 0. Choose 𝜀 > 0, 𝑥𝑀
1 ∈ 𝐾, and 𝑋0 is a null matrix.

Step 1: Increment 𝑘 ← 𝑘 + 1.

Solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀
𝑘), 𝐾) and place the solution 𝑥𝑆

𝑘 in the matrix 𝑋𝑘 = [𝑋𝑘−1, 𝑥𝑆
𝑘].

If 𝑘 = 1 then go to Step 2; if 𝐶𝐺𝑘 ≥ −𝜀 then STOP; else go to Step 2.

Step 2: Solve 𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒌(𝑮,𝑲𝒌). Record 𝐺(𝑥𝑀
𝑘). Go to Step 1.

Noted that if I use 𝐺̃(𝑥; 𝑥𝑀
𝑘) = 𝐺(𝑥𝑀

𝑘) + 𝑄(𝑥𝑀
𝑘)(𝑥 − 𝑥𝑀

𝑘), the subproblem is equal to the one in

SD-NLP-NCG, 𝑺𝒖𝒃𝑵𝑪𝑮 −𝑵𝑳𝑷
𝒌(𝑮(𝒙𝑴

𝒌), 𝑲). That is,

𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘)
𝑇
𝑥 +

1

2
(𝑥 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥 − 𝑥𝑀
𝑘).

3.1.1. Convergence of SD-VI-NCG

With the assumption of 𝐺̃(𝑥; 𝑥𝑀
𝑘) is strictly monotone in 𝑥 and 𝐺̃(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘) = 𝐺(𝑥𝑀

𝑘) , I can

extend the results of Chung and Fuller [20] to have the following properties.

Theorem 1a. 𝜆𝑘 solves 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑘(𝐺, Λ𝑘) iff there exist 𝜆𝑘 ∈ 𝑅+
𝑘 and 𝜃𝑘 ∈ 𝑅 such that the

following relations hold:

𝑋𝑘
𝑇
𝐺(𝑋𝑘𝜆𝑘) + 𝑒𝑘𝜃𝑘 = 0,

𝑒𝑘𝜆𝑘 − 1 = 0,

𝜆𝑘
𝑇
(𝑋𝑘

𝑇
𝐺(𝑋𝑘𝜆𝑘) + 𝑒𝑘𝜃𝑘) = 0.

Proof. This is a standard result for VI problems. See, e.g., Proposition 2.2 in Harker and Pang [25].

Theorem 2a. Given the property 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘). If 𝑥𝑀
𝑘 solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘), 𝐾), then

𝑥𝑀
𝑘 solves 𝑉𝐼(𝐺, 𝐾).

Proof. Ref. new Theorem 4 in Chung and Fuller [20].

Suppose that 𝑥𝑀
𝑘 = 𝑋𝑘𝜆𝑘 solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘), 𝐾) . It follows that 𝐺̃(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘)
𝑇
(𝑥 −

𝑥𝑀
𝑘) ≥ 0 ∀𝑥 ∈ 𝐾. As 𝐺̃(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘) = 𝐺(𝑥𝑀

𝑘), I have 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥 − 𝑥𝑀

𝑘) ≥ 0 ∀𝑥 ∈ 𝐾 and I may conclude

that 𝑥𝑀
𝑘 solves 𝑉𝐼(𝐺, 𝐾).

Theorem 3a. Assume that 𝐺̃(𝑥; 𝜉𝑘) is strictly monotone in 𝑥. Given the property 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘).

If 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘) ≥ 0, then 𝑥𝑀
𝑘−1 solves 𝑉𝐼(𝐺, 𝐾).

Proof. Ref. new Theorem 6(a) of Chung and Fuller [20].

We shall show that if 𝑥𝑀
𝑘 does not solve 𝑉𝐼(𝐺, 𝐾), then 𝐶𝐺𝑘 < 0. By Theorem 2a, 𝑥𝑀

𝑘 ≠ 𝑥𝑆
𝑘, and

since 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘) , strict monotonicity of 𝐺̃(𝑥; 𝜉𝑘) implies that (𝐺(𝑥𝑀
𝑘) −

𝐺̃(𝑥𝑆
𝑘; 𝜉𝑘))

𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆

𝑘) > 0 . Since 𝑥𝑆
𝑘 solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘), 𝐾) , it follows that

14625

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

𝐺̃(𝑥𝑆
𝑘; 𝜉𝑘)

𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆

𝑘) ≥ 0. Adding this last inequality to the strict inequality and multiply by -1 yields

𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘) < 0.

Theorem 4. Either 𝐶𝐺𝑘 ≥ 0 at a finite iteration number 𝑘, or 𝐶𝐺𝑘 < 0 for all iterations 𝑘. In the latter

case, any infinite subsequence of {(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘)}
𝑘=1

∞
 has at least one limit point, and if 𝐺 is continuous then

𝑙𝑖𝑚𝑘→∞𝐶𝐺
𝑘 = 0.

Proof. Ref. new Theorem 8 of Chung and Fuller [20].

Suppose that 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘) < 0 for all 𝑘 and suppose, contrary to my desired

conclusion, that there exists an 𝜀 > 0 and infinite set of iteration numbers, 𝒯 , such that

𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘) < −𝜀 for all 𝑘 ∈ 𝒯 . For any 𝑘 and 𝑟 with 𝑟 > 𝑘 , 𝑥𝑆
𝑘 is one of the proposals

available to 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑟(𝐺, Λ𝑟); thus, I may use the complementarity conditions in Theorem 1 to

derive an inequality. I do this by examining the dual feasibility constraint in 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑟(𝐺, Λ𝑟)
associated with the primal variable 𝜆𝑘

𝑟 which is the weight associate with the proposal 𝑥𝑆
𝑘 :

𝑥𝑆
𝑘𝑇𝐺(𝑥𝑀

𝑟) + 𝜃𝑟 ≥ 0. I may eliminate the variable 𝜃𝑟 using the complementarity slackness condition

∑ (𝑥𝑆
𝑖𝑇𝐺(𝑥𝑀

𝑟) + 𝜃𝑟)
𝑇
𝜆𝑖
𝑟 = 0𝑟

𝑖=1 , and using the constraint ∑ 𝜆𝑖
𝑟 = 1𝑟

𝑖=1 , and the fact that 𝑥𝑀
𝑟 =

∑ 𝜆𝑖
𝑟𝑥𝑆
𝑖𝑟

𝑖=1 : 𝜃𝑟 = −𝑥𝑀
𝑟 𝑇𝐺(𝑥𝑀

𝑟) . This allow us to rewrite the constraint associated with

𝜆𝑘
𝑟 : 𝐺(𝑥𝑀

𝑟)𝑇(𝑥𝑆
𝑘+1 − 𝑥𝑀

𝑟) ≥ 0, for all 𝑘 and 𝑟 with 𝑟 > 𝑘. Subtracting this from the strict inequality

derived earlier, yields 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘) − 𝐺(𝑥𝑀
𝑟)𝑇(𝑥𝑆

𝑘 − 𝑥𝑀
𝑟) < −𝜀 , for all 𝑘, 𝑟 ∈ 𝒯 with 𝑟 > 𝑘 .

Note that continuity of 𝐺 makes the left of the inequality continuous in (𝑥𝑀, 𝑥𝑆). By the property that

any infinite subsequence {(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘)}
𝑘=1

∞
 has at least one limit point, there exists a subset 𝒯̂ ⊂ 𝒯 such

that lim𝑘→∞,𝑘∈𝒯̂(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘) = (𝑥̂𝑀, 𝑥̂𝑆), a limit point. Finally, I let 𝑟 → ∞ through values 𝑟 ∈ 𝒯̂, in the

inequality, and then let 𝑘 → ∞ through values 𝑘 ∈ 𝒯̂ (this order of limits ensures that 𝑟 > 𝑘

throughout the limiting process) to derive the contradiction 0 = 𝐺(𝑥̂𝑀)
𝑇(𝑥̂𝑆 − 𝑥̂𝑀) − 𝐺(𝑥̂𝑀)

𝑇(𝑥̂𝑆 −
𝑥̂𝑀) < −𝜀 < 0. That is, 𝐶𝐺𝑘 < 0, contradicting the assumption that 𝐶𝐺𝑘 ≥ 0.

After deriving a SD-VI-NCG, I derive SD-VI with multiple NCG (SD-VI-mNCG) in the next

subsection.

3.2. Simplicial decomposition of VI with multiple NCG (SD-VI-mNCG)

For having multiple NCGs, I introduce a parameter, 𝛼𝑗, to the additional component of SD-VI

subproblem approximation. Then, I define the 𝑗𝑡ℎ subproblem approximation mapping:

𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀

𝑘) + 𝛼𝑗𝑄(𝑥𝑀
𝑘)(𝑥 − 𝑥𝑀

𝑘).

The corresponding subproblem of SD-VI-mNCG:

𝑺𝒖𝒃̃ − 𝑵𝑳𝑷𝒋
𝒌(𝑮̃𝒋(𝒙; 𝒙𝑴

𝒌 ; 𝜶𝒋), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘)
𝑇
𝑥 +

𝛼𝑗

2
(𝑥 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥 − 𝑥𝑀
𝑘).

Assuming that I have 𝐽 subproblems, then, for each SD iteration, I have 𝐽 subproblem proposals,

(𝑥𝑆1
𝑘 , … , 𝑥𝑆𝑗

𝑘 , … , 𝑥𝑆𝐽
𝑘) . For the 𝑗𝑡ℎ subproblem, the proposal, 𝑥𝑆𝑗

𝑘 , is stored in the matrix 𝑋𝑆𝑗
𝑘 =

[𝑋𝑆𝑗
𝑘−1, 𝑥𝑆𝑗

𝑘] = [𝑥𝑆𝑗
1 , 𝑥𝑆𝑗

2 , … , 𝑥𝑆𝑗
𝑘]. Then, let 𝑋𝑚𝑁𝐶𝐺

𝑘 = [𝑋𝑆1
𝑘 , … , 𝑋𝑆𝑗

𝑘 , … , 𝑋𝑆𝐽
𝑘].

The feasible set for the master problem at iteration 𝑘 is restricted to all convex combinations of

the 𝑘 proposals (solutions of all subproblems). Let 𝑋𝑚𝑁𝐶𝐺
𝑘 be the 𝑛 × (𝑘 × 𝑗) matrix whose columns

14626

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

are solutions 𝑥𝑆𝑗
𝑖 of all subproblems solved at iterations 𝑖 = 1,… , 𝑘. The weights on the proposals in

the convex combination are contained in the vector 𝜆𝑗
𝑘 ∈ 𝑅𝑘×𝑗. The feasible set for the master problem

is defined as Λ𝑚𝑁𝐶𝐺
𝑘 = {𝜆𝑗

𝑘 ∈ 𝑅𝑘×𝑗| (𝑒𝑘×𝑗)
𝑇
𝜆𝑗
𝑘 = 1, 𝜆𝑗

𝑘 ≥ 0} , where 𝑒𝑘×𝑗 ∈ 𝑅𝑘×𝑗 is a vector with 1

for every entry. The master problem at iteration 𝑘 is defined as

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒎𝑵𝑪𝑮
𝒌 (𝑮, 𝜦𝒎𝑵𝑪𝑮

𝒌): Find 𝜆𝑗
𝑘 ∈ Λ𝑚𝑁𝐶𝐺

𝑘 , such that 𝐺(𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘)
𝑇
(𝑋𝑚𝑁𝐶𝐺

𝑘 𝜆 −

𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘) ≥ 0 ∀ 𝜆𝑗
𝑘 ∈ Λ𝑚𝑁𝐶𝐺

𝑘 .

Alternatively, let 𝑐𝑜𝑛𝑣(𝑋𝑘) represent the set of all convex combinations of the columns of 𝑋𝑘.

Then, I have the following alternative master problem at iteration k, defined as

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒎𝑵𝑪𝑮
𝒌 (𝑮,𝑲𝒎𝑵𝑪𝑮

𝒌): Find 𝑥𝑀
𝑘 ∈ 𝐾𝑚𝑁𝐶𝐺

𝑘 , such that 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥 − 𝑥𝑀

𝑘) ≥ 0 ∀ 𝑥 ∈ 𝐾𝑚𝑁𝐶𝐺
𝑘 =

{𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑋𝑚𝑁𝐶𝐺
𝑘)}.

Since I have 𝐽 subproblems, I can have 𝐽 convergence gaps for the stopping condition, according

to Theorems 3 and 4, 𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘) for all 𝑗.

We first state the algorithm of SD-VI-mNCG and then the corresponding new theorems about the

convergence and the stopping conditions.

[SD-VI-mNCG]

Step 0: Set 𝑘 = 0 . Choose 𝜀 > 0 , 𝛼𝑗 > 𝛼𝑗−1 > ⋯ > 𝛼1 > 0, 𝑥𝑀
1 ∈ 𝐾 , and 𝑋𝑖

0 is a null matrix

i=1,… , 𝑗.
Step 1: Increment 𝑘 ← 𝑘 + 1.

Solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘 ; 𝛼𝑗), 𝐾) for all 𝑗 , and place the solution 𝑥𝑆𝑖
𝑘 in the matrix

[𝑋𝑆𝑖
𝑘−1, 𝑥𝑆𝑖

𝑘], 𝑖 = 1,… , 𝑗; and update 𝑋𝑚𝑁𝐶𝐺
𝑘 = [𝑋𝑆1

𝑘 , … , 𝑋𝑆𝑗
𝑘] . If 𝑘 = 1 then go to Step 2; else if

𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘) ≥ −𝜀 then STOP; else go to Step 2.

Step 2: Solve Master − VI𝑚𝑁𝐶𝐺
𝑘 (𝐺, 𝐾𝑚𝑁𝐶𝐺

𝑘). Record 𝐺(𝑥𝑀
𝑘). Go to Step 1.

3.2.1. The computational sequence of SD-VI-mNCG

The SD-VI-mNCG algorithm first solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃1
1 with 𝛼1 = 0 , to generate a column

proposal (𝑥𝑆𝑗
1) for all 𝑗 to be placed in the matrix 𝑋𝑚𝑁𝐶𝐺

1 of 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺
1 to enlarge the set

Λ𝑚𝑁𝐶𝐺
1 . 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺

1 is solved to obtain a new 𝑥𝑀
1 for new 𝐺(𝑥𝑀

1) and 𝑄(𝑥𝑀
1). The algorithm

proceeds with 𝑘 = 𝑘 + 1, and the new column proposals from 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘 is added to the matrix 𝑋𝑆𝑗

𝑘

for all 𝑗 and update 𝑋𝑚𝑁𝐶𝐺
𝑘 which 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺

𝑘 uses to define its convex combinations, and the

next solution of the 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑘 produces a new 𝐺(𝑥𝑀
𝑘) and 𝑄(𝑥𝑀

𝑘) for 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘 . The

algorithm proceeds in this manner until the stopping criterion is satisfied (see Theorem 5 in the

following subsection).

3.2.2. Convergence of SD-VI-mNCG

Theorem 1b. 𝜆𝑗
𝑘 solves Master − VI𝑚𝑁𝐶𝐺

𝑘 (𝐺, Λ𝑚𝑁𝐶𝐺
𝑘) iff there exist 𝜆𝑗

𝑘 ∈ 𝑅+
𝑘×𝑗

 and 𝜃𝑗
𝑘 ∈ 𝑅 such that

all of the following relations hold:

𝑋𝑚𝑁𝐶𝐺
𝑘 𝑇

𝐺(𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘) + 𝑒𝑘×𝑗𝜃𝑗
𝑘 = 0,

14627

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

𝑒𝑘×𝑗𝜆𝑗
𝑘 − 1 = 0,

𝜆𝑗
𝑘𝑇 (𝑋𝑚𝑁𝐶𝐺

𝑘 𝑇
𝐺(𝑋𝑚𝑁𝐶𝐺

𝑘 𝜆𝑗
𝑘) + 𝑒𝑘×𝑗𝜃𝑗

𝑘) = 0.

Theorem 2b. Given the property 𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘) . If 𝑥𝑀

𝑘 solves any one of 𝐽 subproblem:

𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘 ; 𝛼𝑗), 𝐾), then 𝑥𝑀
𝑘 solves 𝑉𝐼(𝐺, 𝐾).

Proof. Ref. new Theorem 4 in Chung and Fuller [20].

Suppose that 𝑥𝑀
𝑘 solves the 𝑗𝑡ℎ subproblem, 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗

𝑘 . It follows that 𝐺̃(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗)
𝑇
(𝑥 −

𝑥𝑀
𝑘) ≥ 0 ∀𝑥 ∈ 𝐾 . As 𝐺̃𝑗(𝑥𝑀

𝑘 , 𝑥𝑀
𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀

𝑘) , I have 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥 − 𝑥𝑀

𝑘) ≥ 0 ∀𝑥 ∈ 𝐾 and I may

conclude that 𝑥𝑀
𝑘 solves 𝑉𝐼(𝐺, 𝐾).

Theorem 3b. Assume that 𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗) is strictly monotone in 𝑥 . Given the property

𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘). If any 𝐶𝐺𝑗

𝑘 = 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘) ≥ 0, then 𝑥𝑀
𝑘 solves 𝑉𝐼(𝐺, 𝐾).

Proof. Ref. new Theorem 6(a) of Chung and Fuller [20].

We shall show that if 𝑥𝑀
𝑘 does not solve 𝑉𝐼(𝐺, 𝐾), then 𝐶𝐺𝑘 < 0. By Theorem 2b, 𝑥𝑀

𝑘 ≠ 𝑥𝑆𝑗
𝑘 , and

since 𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘) , strict monotonicity of 𝐺̃𝑗(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘 ; 𝛼𝑗) implies that (𝐺(𝑥𝑀

𝑘) −

𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗))
𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆𝑗

𝑘+1) > 0. Since 𝑥𝑆𝑗
𝑘 solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗

𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗), 𝐾), it follows that

𝐺̃𝑗(𝑥𝑆𝑗
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗)
𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆𝑗

𝑘) ≥ 0. Adding this last inequality to the strict inequality and multiplying

by -1 yields 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘) = 𝐶𝐺𝑗
𝑘 < 0.

Theorem 5. Let 𝛼𝑗 > 𝛼𝑗−1 > ⋯ > 𝛼1 > 0 and let 𝑧𝑗
𝑘 be the optimal value of objective function of the

subproblem 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘. Then 𝑧𝑗

𝑘 ≥ 𝑧𝑗−1
𝑘 ≥ ⋯ ≥ 𝑧1

𝑘, and 𝐶𝐺𝑗
𝑘 ≥ 𝐶𝐺𝑗−1

𝑘 ≥ ⋯ ≥ 𝐶𝐺1
𝑘, where 𝐶𝐺𝑗

𝑘 =

𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘).

Proof. For any subproblem 𝑖 , let 𝑥𝑆 𝑖
𝑘 solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑖

𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑖), 𝐾) , and let 𝑧𝑖

𝑘(𝑥𝑆𝑖
𝑘) be the

corresponding objective value. That is, 𝑧𝑖
𝑘 = 𝐺(𝑥𝑀

𝑘)
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘). As

𝑥𝑆 𝑖+1
𝑘 is another feasible solution, it follows that 𝐺(𝑥𝑀

𝑘)
𝑇
𝑥𝑆 𝑖+1
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖+1
𝑘 −

𝑥𝑀
𝑘) ≥ 𝐺(𝑥𝑀

𝑘)
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) . Since 𝛼𝑖+1 > 𝛼𝑖 for all 𝑗 , I have

𝐺(𝑥𝑀
𝑘)
𝑇
𝑥𝑆 𝑖+1
𝑘 +

𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘) ≥ 𝐺(𝑥𝑀
𝑘)
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 −

𝑥𝑀
𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) . That is 𝑧𝑖+1
𝑘 ≥ 𝑧𝑖

𝑘 . Adding (−𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑀
𝑘)) in both sides, I have

𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘) +
𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘) ≥ 𝐺(𝑥𝑀
𝑘)
𝑇
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) +
𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 −

𝑥𝑀
𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) . It implies 𝐶𝐺𝑖+1
𝑘 +

𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘) ≥ 𝐶𝐺𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) . When 𝑥𝑀
𝑘 solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑖+1

𝑘 , 𝑥𝑀
𝑘 = 𝑥𝑆 𝑖+1

𝑘 and
𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 −

𝑥𝑀
𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘) = 0. Then, 𝐶𝐺𝑖+1
𝑘 ≥ 𝐶𝐺𝑖

𝑘 +
𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘) ≥ 𝐶𝐺𝑖
𝑘.

With Theorem 4, the stopping condition can be defined by 𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘)
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘) . In

addition, it should be noted that the SD-VI-mNCG can be easily reduced to SD-NLP-mNCG for

nonlinear programming by replacing the Master − VI𝑚𝑁𝐶𝐺
𝑘 (𝐺, 𝐾𝑚𝑁𝐶𝐺

𝑘) with Master −

NLP𝑘 (𝐺,𝐾𝑚𝑁𝐶𝐺
𝑘

) in the Subsection 2.3.

14628

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

4. Empirical results of SD with multiple NCG

In my implementation, the test models, the column generation algorithms, and the reference

algorithm without column generation are coded into GAMS programs, executed on a PC with Intel

Processor (12th Gen Core i7-12700, 2100 Mhz, 12 Core(s), 20 Logical Processors and 16 GB RAM.

The reference algorithm is a relaxation algorithm [29] by which the test models are solved so that I can

have reference results for evaluating the accuracy and speed of the column generation algorithms. The

master problem is also solved by the same relaxation algorithm. Each iteration of the relaxation

algorithm is a nonlinear programming (NLP) calculation. For all models solved by SD-VI method, in

the first subproblem at step 𝑘 = 1, the initial values of 𝐺(𝑥𝑀
1) and 𝛼𝑗 are arbitrarily set to 10 and 0,

respectively, which produces first proposals that ignore the nonlinear column generation component.

In the relaxation method for the reference calculations, the first NLP also has the initial values of all

𝑥𝑀 are set to 10.

For all column generation calculations, I set the convergence tolerance 𝜀 = 0.000001, except

where noted. The relaxation iterations of the restricted master problems and the reference method, and

all subproblems, except subproblems with 𝛼𝑗 = 0, are solved by CONOPT 3 called from GAMS. The

subproblems with 𝛼𝑗 = 0 are linear programs that are solved by CPLEX. It should be noted that the

SD-VI-mNCG with 𝛼𝑗 = 0 reduces to the SD-VI method of [26]. The SD-VI-mNCG with one NCG

and 𝛼𝑗 = 0.5 reduces to the SD-VI-NCG method of [28].

In the calculations, many similar optimization problems are solved repeatedly: The subproblem,

a sequence of optimization problems related to the restricted master problem, and another related to

the reference algorithm; except for the first time, each time an optimization calculation is done, it is

started from the last solution in order to reduce computation time. This process is not used in the

multiple column generation method since I assume that each nonlinear column generation subproblem

is implemented in a server individually and all these subproblems are solved in parallel.

To summarize, even if a column generation algorithm takes more time than no column generation

algorithm (the relaxation algorithm), there can be an advantage to a column generation approach, in

model development. However, if column generation takes a very large amount of time, then such an

advantage might not be worthwhile. Therefore, I am interested in tests that measure the time of column

generation, compared with no column generation, and in variants of multiple column generation

algorithms that may run in shorter times.

4.1. A simple example (NEW)

An example is Example 2 of Nagurney and Dhanda [30], a VI problem of a multiproduct

multipollutant oligopolistic market model (MMOM-VI) with ambient-based pollution permits and

transaction costs. In this model, 𝑚 firms or sources of pollution, 𝑟 pollutants emitted by the firms, and

𝑛 receptor points exist. I also let 𝑒𝑖
𝑡 be the amount of pollutant 𝑡 emitted by firm 𝑖, 𝑙𝑖𝑗

𝑡 be the number

of licenses for pollutant 𝑡 at receptor point 𝑗 held by firm 𝑖, 𝑙𝑖𝑗
𝑡0 be the initial allocation of licenses made

by a regulatory agency and 𝑝𝑗
𝑡 be the price of the licenses for pollutant 𝑡 that affects receptor point 𝑗.

The cost of purchasing licenses for specific pollutant 𝑡 that affects receptor point 𝑗 for source 𝑖 is

given by ∑ 𝑝𝑗
𝑡∗(𝑙𝑖𝑗

𝑡 − 𝑙𝑖𝑗
𝑡0)𝑛

𝑗=1 , where 𝑝𝑗
𝑡∗ is the market clearing price determined by the VI.

Each firm 𝑖 in the oligopoly is faced with cost 𝑓𝑖 for producing the vector of quantities 𝑞𝑖, where

𝑓𝑖 = 𝑓𝑖(𝑞𝑖) = ∑ [𝑐𝑖𝑑𝑞𝑖𝑑 +
𝛽𝑖𝑑

𝛽𝑖𝑑+1
𝐾𝑖𝑑
−1/𝛽𝑖𝑑𝑞𝑖𝑑

(𝛽𝑖𝑑+1)/𝛽𝑖𝑑]𝑠
𝑑=1 ,

14629

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

and 𝑞𝑖𝑑= the quantity of product 𝑑 produced by firm 𝑖.

Each firm i in the region is also faced with joint-cost 𝑔𝑖 , where 𝑔𝑖 = 𝑔𝑖(𝑒𝑖 , 𝑞𝑖) =

∑ [𝑔1𝑖𝑡(𝑒𝑖
𝑡)2 + 𝑔2𝑖𝑡𝑒𝑖

𝑡 + 𝑔4𝑖𝑡]
𝑟
𝑡=1 + ∑ 𝑔3𝑖𝑡

𝑠
𝑑=1 𝑞𝑖𝑑.

The transaction cost function employed by firm 𝑖 for pollutant t at receptor point 𝑗 was of the

form 𝑐𝑖𝑗
𝑡 = 𝑐𝑖𝑗

𝑡 (𝑙𝑖𝑗
𝑡) = ∅1𝑖𝑗𝑡(𝑙𝑖𝑗

𝑡)
2
+ ∅2𝑖𝑗𝑡𝑙𝑖𝑗

𝑡 + 𝛼𝑖𝑗𝑡.

The firms are oligopolistic in their product markets, and they affect the prices of the outputs. The

price of product 𝑑 is denoted by 𝜌𝑑 = 𝜌𝑑(∑ 𝑞𝑖𝑑
𝑚
𝑖=1).

Then, I can have the MMOM-VI model shown below.

MMOM-VI: Find (𝑞𝑖𝑑
∗ , 𝑒𝑖

t∗, 𝑙𝑖𝑗
t∗) ∈ 𝐾𝑞,𝑒,𝑙 such that

∑∑[
𝜕𝑓𝑖(𝑞𝑖

∗)

𝜕𝑞𝑖𝑑
+
𝜕𝑔𝑖(𝑒𝑖

∗, 𝑞𝑖
∗)

𝜕𝑞𝑖𝑑
−
𝜕𝜌𝑑(∑ 𝑞𝑖𝑑

∗𝑚
𝑖=1)

𝜕𝑞𝑖𝑑
𝑞𝑖𝑑
∗ − 𝜌𝑑 (∑𝑞𝑖𝑑

∗

𝑚

𝑖=1

)]

𝑠

𝑑=1

𝑚

𝑖=1

× [𝑞𝑖𝑑 − 𝑞𝑖𝑑
∗]

+∑ ∑
𝜕𝑔𝑖(𝑒𝑖

∗,𝑞𝑖
∗)

𝜕𝑒𝑖
𝑡 × [𝑒𝑖

𝑡 − 𝑒𝑖
t∗]𝑟

𝑡=1
𝑚
𝑖=1 +∑ ∑ ∑

𝑐𝑖𝑗
𝑡 (𝑙𝑖𝑗

𝑡∗)

𝜕𝑙𝑖𝑗
𝑡 × [𝑙𝑖𝑗

𝑡 − 𝑙𝑖𝑗
𝑡∗]𝑛

𝑗=1
𝑟
𝑡=1

𝑚
𝑖=1 ≥ 0,

∀(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡) ∈ 𝐾𝑞,𝑒,𝑙 = {(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡)|,

𝑙𝑖𝑗
𝑡 − ℎ𝑖𝑗

𝑡 𝑒𝑖
𝑡 ≥ 0 ∀𝑗, 𝑡,

∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1 − ∑ 𝑙𝑖𝑗
𝑡𝑚

𝑖=1 ≥ 0 (𝑝𝑗
𝑡) ∀𝑗, 𝑡,

(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡) ≥ 0 ∀𝑑, 𝑗, 𝑡},

where ∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1 is the environmental quality standard, and ℎ𝑖𝑗
𝑡 denotes the contribution of one unit of

emission by source 𝑖 to the average pollutant concentration of type 𝑡 at receptor point 𝑗 . All the

parameters and the reference results can be found in the online appendix of [30]. For convenience,

they are given in the Appendix of the current paper.

Similarly, I adopt 𝑄(𝑥𝑀) = diag 𝛻𝐺(𝑥𝑀). That is, let 𝑥𝑀 = (𝑞𝑖𝑑𝑀, 𝑒𝑖𝑀
𝑡 , 𝑙𝑖𝑗𝑀

𝑡), and I have

𝑄(𝑞𝑖𝑑𝑀, 𝑒𝑖𝑀
𝑡 , 𝑙𝑖𝑗𝑀

𝑡) =

(

 ∑∑[

1

𝛽𝑖𝑑
𝐾
𝑖𝑑

−
1
𝛽𝑖𝑑𝑞

𝑖𝑑𝑀

(
1
𝛽𝑖𝑑

−1)

− 𝜌𝑑
1
1.1𝑞𝑖𝑑𝑀 (

2.1

(1.1)2
) (∑𝑞𝑖𝑑𝑀

𝑚

𝑖=1

)

−3.2
1.1

+
2

1.1
𝜌𝑑

1
1.1
(∑𝑞𝑖𝑑𝑀

𝑚

𝑖=1

)

−2.1
1.1

]

𝑠

𝑑=1

𝑚

𝑖=1

,

∑∑2 ∗ 𝑔1𝑖𝑡

𝑟

𝑡=1

𝑚

𝑖=1

,

∑∑∑2 ∗ ∅1𝑖𝑗𝑡

𝑛

𝑗=1

𝑟

𝑡=1

𝑚

𝑖=1

,
)

which is added to the subproblem and the 𝑲 = 𝐾𝑞,𝑒,𝑙.

Table 1 summarises the performance of SD-VI-NCG(x) and SD-VI-mNCG of MMOM-VI, in

which the first column provides the names of the models. Ref_method is the reference method, which

is the relaxation algorithm. SD-VI-NCG(α/2) is the method of simplicial decomposition with one

NCG of α/2. For instance, SD-VI-NCG(0.5) is the SD-VI-NCG with α/2 = 0.5. The last two rows of

Table 1 present the performance of SD-VI-mNCG. I use m=3, 5 to represent how many NCG

14630

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

subproblems are used. For example, SD-VI-3NCG(0.1, 0.3, 0.5) consists of three subproblems with

α/2 = 0.1, 0.3, and 0.5. It is interesting that all two SD-VI-mNCG methods use the smallest number

of decomposition steps, 7. However, there is no conclusive result in terms of computational

performance. The last column of Table 1 shows the stopping condition mentioned in Theorem 5 that

the SD-VI was terminated by the subproblem with the largest value of α/2.

Table 1. Performance of SD-VI-NCG(x) and SD-VI-mNCG of MMOM-VI.

Methods Dstep Time(M) Time(S)* Time(T) Stopped by NCG

Ref_method 0.222

SD-VI [26] 16 1.484 0.032 1.516 n.a.

SD-VI-NCG(0.1) 10 0.808 0.125 0.933 n.a.

SD-VI-NCG(0.3) 8 0.482 0.063 0.545 n.a.

SD-VI-NCG(0.5) [28] 10 0.424 0.110 0.534 n.a.

SD-VI-3NCG(0.1,0.3,0.5) 7 0.499 0.095 0.594 NCG(0.5)

SD-VI-5NCG(0.1,…,0.5) 7 0.531 0.096 0.627 NCG(0.5)

* It is considered that all subproblems are solved in parallel, and the greatest iterative solution time of a subproblem is used to calculate

the total solution time of subproblems. Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution

time of subproblem in second; Time(T) = solution time of the method in second; Stopped by NCG = the SD-VI terminated by the

subproblem with the corresponding value of α/2.

4.2. The test model (was 4.1)

Since the SD method is usually used for solving transportation network equilibrium problems, I

use this kind of problems to develop test model. A large-scale real transportation network equilibrium

problem is used1. The network of this problem represents the extra-urban area of the city of Arezzo

(Italy). It consists of 213 nodes, 598 arcs and 2423 O/D pairs. The form of the link (𝑖, 𝑗) cost functions

is asymmetric:

𝐺(𝑥𝑖𝑗) = 𝑎 ∗ 𝑓𝑖𝑗 + 𝑏 ∗ 𝑓𝑖𝑗 ∗ (
𝑥𝑖𝑗+𝑑∗𝑥𝑗𝑖

𝑐𝑖𝑗
)
𝑝

,

where

𝐺(𝑥𝑖𝑗) = Link travel time (𝑖, 𝑗), from node 𝑖 to 𝑗,

𝑓𝑖𝑗 = free flow time of the link (𝑖, 𝑗),

𝑐𝑖𝑗 = capacity of the link (𝑖, 𝑗),

𝑑 = 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.5,

𝑎, 𝑏, 𝑝 = constant.

The objective function of the subproblem, 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘−1; 𝛼𝑗), 𝐾), is

𝐺(𝑥𝑀
𝑘)
𝑇
𝑥 +

𝛼𝑗

2
(𝑥 − 𝑥𝑀

𝑘)
𝑇
𝑄(𝑥𝑀

𝑘)(𝑥 − 𝑥𝑀
𝑘),

1 https://pages.di.unipi.it/passacantando/test_networks.html.

14631

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

where I adopt 𝑄(𝑥𝑀
𝑘) = diag 𝛻𝐺(𝑥𝑀

𝑘). That is,

𝑄(𝑥𝑀
𝑘) =

𝑏∗𝑓𝑖𝑗∗𝑝

𝑐
∗ (

𝑥𝑀,𝑖𝑗
𝑘 +𝑑∗𝑥𝑀,𝑗𝑖

𝑘

𝑐
)
𝑝−1

,

with different 𝛼𝑗, I can have different nonlinear column generation subproblems.

We first provide the computational performance results of SD-NLP with multiple NCG, and then

the results of SD-VI with multiple NCG. For having SD-NLP test model, I set the asymmetric factor

d=0.

4.3. Performance of SD with multiple NCG for NLP (was 4.2)

In this subsection, I report the solution time of simplicial decomposition with one NCG

subproblem of NLP. Table 2 summarises the computational performance of SD-NLP-NCG, in which

the first column provides the names of the models. SD-NLP-NCG(α/2) is the method of simplicial

decomposition with one NCG of α/2. For instance, SD-NLP-NCG(0.5) is the SD-NLP-NCG with

α/2 = 0.5 . Hence, SD-NLP-NCG(0) is the simple SD-NLP with LP subproblem, and SD-NLP-

NSD(0.5) is the one in Larsson et al. [28]. From Table 2, the empirical result shows that the

decomposition steps taken by SD-NLP is 87, which is expected and much higher than any SD-NLP-

NCG methods with α/2 = 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0. The range of the decomposition steps is 8

to 22. The SD-NLP-NCG with α/2 =0.4 provides the best performance in terms of the number of

decomposition steps, 8. However, there is no clear relationship between the number of decomposition

steps and the total solution time while changing the value of α. On the other hand, the fastest method

is SD-NLP-NCG(0) because its subproblem is an LP solved by CPLEX, which is one of the fastest LP

solvers. It is noted that SD-NLP-NCG(0) is a simple SD-NLP, and it takes more time to solve its master

NLP problem comparing with other methods with different values of α . It implies that SD-NLP-

NCG(0) may not be the fastest if a larger model incurs a larger number of generated columns in the

master problem.

Table 2. Computational performance of SD-NLP-NCG and SD-NLP-mNCG.

Method Dstep Time(M) Time(S) Time(T)

Ref_method 84.797

SD-NLP [26] 87 2.129 17.359 19.488

SD-NLP-NCG(0.1) 18 0.454 107.488 107.942

SD-NLP-NCG(0.2) 11 0.154 203.720 203.874

SD-NLP-NCG(0.3) 10 0.190 267.908 268.098

SD-NLP-NCG(0.4) 8 0.140 198.733 198.873

SD-NLP-NCG(0.5) [28] 9 0.172 222.281 222.453

SD-NLP-NCG(1.0) 22 0.356 276.747 277.103

SD-NLP-3NCG(0.1,0.3,0.5) 6 0.125 182.187 182.312

SD-NLP-5NCG(0.1,…,0.5) 6 0.467 229.782 230.249

SD-NLP-10NCG(0.1,…,1.0) 6 0.156 891.548 891.704

* Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution time of subproblem in second;

Time(T) = solution time of the method in second.

The last three rows of Table 2 present the performance of SD-NLP-mNCG. I use m=3, 5, and 10

to represent how many NCG subproblems are used. For example, SD-NLP-3NCG(0.1, 0.3, 0.5)

14632

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

consists of three subproblems with α/2 = 0.1, 0.3, and 0.5. All three SD-NLP-mNCG methods use

fewer decomposition steps, as expected, than SD-NLP-NCG. It is interesting that all three SD-NLP-

mNCG methods use 6 decomposition steps, which may imply that computational performance of SD-

NLP-mNCG does not rely on the number of subproblems.

4.4. Performance of SD with multiple NCG for VI (was 4.3)

In this subsection, I report the solution time of simplicial decomposition of VI with one NCG

subproblem, which is similar to the one in Larsson et al. [28]. Table 3 summarizes the computational

performance of SD-VI-NCG(x). This empirical result shows that the SD-VI-NSD with α/2 =0.3

provides the best performance in terms of the number of decomposition steps, 13. It is expected that

the number of decomposition steps of SD-VI-NSD(α/2) is much smaller than that of SD-VI, 152, as

discussed in Larsson et al. [28]. Like the SD-NLP-NCG results, there is no clear relationship between

the number of decomposition steps and the total solution time while changing the value of α. On the

other hand, the fastest method is SD-VI because its subproblem is an LP solved by CPLEX. It is noted

that SD-VI takes more time to solve its master VI problem. It implies that SD-VI may not be the fastest

if a larger model incurs a larger number of generated columns in the master problem.

Table 3. Computational performance of SD-VI-NCG(x).

Method Dstep Time(M) Time(S) Time(T)

Ref_method 117.517

SD-VI [26] 152 46.419 30.422 76.841

SD-VI-NCG(0.1) 23 5.307 259.453 264.760

SD-VI-NCG(0.2) 15 3.656 236.845 240.501

SD-VI-NCG(0.3) 13 3.266 358.343 361.609

SD-VI-NCG(0.4) 16 2.094 261.173 263.267

SD-VI-NCG(0.5) [28] 17 0.705 298.846 299.551

SD-VI-NCG(1.0) 37 1.051 316.221 317.272

* Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution time of subproblem in second;

Time(T) = solution time of the method in second.

Table 4 reports the solution time of simplicial decomposition with multiple NCG subproblems

(SD-VI-mNCG). That is, in each iteration of the SD-VI, there are a number of NCG subproblems with

different values of α/2. I first use three NCG subproblems for my test model. Table 4 summarises the

computational performance of SD-VI-3NCG with nine sets of α/2 . For example, SD-VI-3NCG

(0.1,0.2,0.3) consists of three subproblems with α/2 = 0.1, 0.2, and 0.3. As expected, on average, SD-

VI-3NCG uses fewer decomposition steps than SD-VI-NSD. The range of decomposition steps of SD-

VI-3NCG is 11 to 13, while SD-VI-NCG is 13 to 23 shown in Table 3. Moreover, it is observed that

the number of decomposition steps exploited in SD-VI-3NCG is more stable. I further use five NCG

subproblems, with α/2 = 0.1, 0.2, 0.3, 0.4, and 0.5, (SD-VI-5NCG(0.1,…,0.5)), the resulting

decomposition steps is 13, in the range of 11–13. 11 decomposition steps are also used in ten NCG

subproblems with α/2 = 0.1,0.2,…, and 1.0, (SD-VI-5NCG(0.1,…,0.5)).

14633

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

Table 4. Computational performance of SD-VI-mNCG, m=3, 5, and 10.

Methods Dstep Time(M) Time(S)* Time(T) Stopped by NCG

SD-VI-3NCG(0.1,0.2,0.3) 12 2.555 378.484 381.039 NCG(0.3)

SD-VI-3NCG(0.1,0.2,0.4) 12 2.686 383.442 386.108 NCG(0.4)

SD-VI-3NCG(0.1,0.2,0.5) 12 2.461 556.939 559.400 NCG(0.5)

SD-VI-3NCG(0.1,0.3,0.4) 13 2.964 380.704 383.668 NCG(0.4)

SD-VI-3NCG(0.1,0.3,0.5) 12 2.824 506.611 509.435 NCG(0.5)

SD-VI-3NCG(0.1,0.4,0.5) 12 2.487 308.468 310.955 NCG(0.5)

SD-VI-3NCG(0.2,0.3,0.4) 12 2.842 409.687 412.529 NCG(0.4)

SD-VI-3NCG(0.2,0.3,0.5) 11 2.533 448.810 451.343 NCG(0.5)

SD-VI-3NCG(0.2,0.4,0.5) 11 2.584 503.531 506.115 NCG(0.5)

SD-VI-3NCG(0.3,0.4,0.5) 13 2.273 585.607 587.880 NCG(0.5)

SD-VI-5NCG(0.1,…,0.5) 11 2.560 441.654 444.214 NCG(0.5)

SD-VI-10NCG(0.1,…,1.0) 11 2.901 2004.108 2007.009 NCG(1.0)

* It is considered that all subproblems are solved in parallel, and the greatest iterative solution time of a subproblem is used to calculate

the total solution time of subproblems. Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution

time of subproblem in second; Time(T) = solution time of the method in second; Stopped by NCG = the SD-VI terminated by the

subproblem with the corresponding value of α/2.

Remarks on using the CONOPT solver: Solvers, the MINOS and the PATHNLP cannot find

the solution after 8 hours. The CONOPT solver can obtain solutions within an hour in all cases. When

the CONOPT solver generates a “feasible” solution to the subproblem, not an optimal solution, in

particular, in the first few iterations, the corresponding CG cannot be used for the stopping criterion.

In implementing the multiple subproblem cases, there are two phases. The first phase is to allow

a few subproblems to generate infeasible, feasible, or optimal solutions due to the capacity of CONOPT.

When any subproblem generates an infeasible solution in an iteration, I use its previous solution

obtained from the previous iteration to substitute this infeasible solution. By doing so, a set of feasible

solutions can be obtained in each iteration until all subproblems obtain their optimal solutions and

thereafter, which is the second phase and follows my theoretical results.

4.5. Re-optimization performance (was 4.4)

For studying the re-optimization performance of the SD-VI-mNCG, the asymmetric parameter d

of the test model (see Subsection 4.1) is changed to 0.6 from 0.5. There are three approaches, SD-

VI_(0.6), Final_soln(0.5)_(0.6), and All_soln(0.5)_(o.6), to re-optimization analysis of different multi-

subproblem methods.

(1) SD-VI_(0.6): Use the exiting coding of SD-VI-NCG(x), where x=0, 0.1, 0.3, 0.5, and 1.0, with

new d=0.6, as reference result.

(2) Final_soln(0.5)_0.6: Use the previous final solution obtained from d=0.5 as the feasible starting

point to run the re-optimization process for the model with new d=0.6.

(3) All_soln(0.5)_(0.6): Use all previous proposals with d=5 to start the re-optimization process with

new d=0.6.

Table 5 summarizes the computational results. As expected, Approach 3, All_soln(0.5)_(0.6),

used the smallest decomposition steps in all methods. With Approach 3, the decomposition steps of

SD-VI-5NSD is 8, which is smaller than the decomposition steps of SD-VI-NSD(x), ranging from 10

14634

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

to 23.

Table 5. Re-optimization performance of SD-VI-NCG(x) and SD-VI-5NCG.

Method Approach Decomp

Steps

Time

(Master)

Time

(Subproblem)

Time

(Total)

SD-VI [26] SD-VI_(0.6) 149 52.693 30.255 82.948

Final_soln(0.5)_0.6 157 64.549 31.217 95.766

All_soln(0.5)_(0.6) 128 67.091 26.051 93.142

SD-VI-NCG(0.1) SD-VI_(0.6) 33 9.024 241.580 250.604

Final_soln(0.5)_0.6 20 4.066 141.748 145.814

All_soln(0.5)_(0.6) 15 5.008 31.955 36.963

SD-VI-NCG(0.3) SD-VI_(0.6) 18 5.703 309.780 315.483

Final_soln(0.5)_0.6 14 3.455 182.830 186.285

All_soln(0.5)_(0.6) 10 2.635 17.156 19.791

SD-VI-NCG(0.5) [28] SD-VI_(0.6) 24 1.421 272.547 273.968

Final_soln(0.5)_0.6 18 1.845 309.125 311.970

All_soln(0.5)_(0.6) 14 1.350 17.640 18.990

SD-VI-NCG(1.0) SD-VI_(0.6) 50 1.623 391.047 392.670

Final_soln(0.5)_0.6 34 1.190 478.035 479.225

All_soln(0.5)_(0.6) 23 0.713 18.547 19.260

SD-VI-5NCG(0.1,…,0.5) SD-VI_(0.6) 10 1.961 322.283 324.244

Final_soln(0.5)_0.6 13 4.138 439.282 443.420

All_soln(0.5)_(0.6) 8 2.410 18.786 20.786

4.6. A comparison summary of the method SD-VI-mNCG, SD-VI, and SD-VI-NCG

Table 6 summarized the performance of the method SD-VI-mNCG, the SD-VI of

Lawphongpanich and Hearn [26], and the SD-VI-NCG(0.5) of Larsson et al. [28]. In terms of column

generation steps, SD-VI-mNCG is always smaller than SD-VI and SD-NCG. In terms of computational

performance, for the model MMOM, the methods with NCG are faster than the SD-VI. However, SD-

VI is the fastest method for the model Arezzo. As mentioned above, SD-VI takes more time to solve

its master VI problem. It implies that SD-VI may not be the fastest if a larger model incurs a larger

number of generated columns in the master problem. In short, solving multiple subproblems in each

SD step can reduce the number of iterations. There is no conclusive result for the computational

performance. Similar performance results are found in the re-optimization processes.

Table 6. Comparison of the performance of SD-VI-mNCG, SD-VI, and SD-VI-NCG.

Methods Dstep Time(M) Time(S)* Time(T) Model

SD-VI [26] 16 1.484 0.032 1.516 MMOM

SD-VI-NCG(0.5) 10 0.424 0.110 0.534 MMOM

SD-VI-3NCG(0.1,0.3,0.5) 7 0.499 0.095 0.594 MMOM

SD-NLP [26] 87 2.129 17.359 19.488 Arezzo

SD-NLP-NCG(0.5) [28] 9 0.172 222.281 222.453 Arezzo

SD-NLP-3NCG(0.1,0.3,0.5) 6 0.125 182.187 182.312 Arezzo

SD-VI [26] 152 46.419 30.422 76.841 Arezzo

SD-VI-NCG(0.5) [28] 17 0.705 298.846 299.551 Arezzo

SD-VI-3NCG(0.1,0.3,0.5) 12 2.824 506.611 509.435 Arezzo

14635

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

4.7. Other practical examples

The simple example of a multiproduct multipollutant oligopolistic market model in

Subsection 4.1 and the application of transportation network equilibrium problems in Subsection 4.2

are practical examples of directly applying the SD-VI-mNCG to the problem. Indeed, the SD-VI-

mNCG can be used in some combined methods that solve part of the problems. For example, Sharma

et al. [31] developed a method combining the simplicial decomposition, gauss-seidel, and the

augmented Lagrangian to solve the coordination problem of the optimal power and traffic flows with

EVs. Wang et al. [32] employed SD in their combined method to have a parallel decentralized solution

for multi-regional unit commitment with convex AC power flow constraints. It should be noted that

the constraint sets of SD-VI-mNCG can be convex constraint sets. In addition, the SD-VI-mNCG can

also be employed to solve stochastic transportation problems [28].

5. Conclusions and further research

In this paper, I derive a simplicial decomposition with multiple nonlinear column generation

subproblems, which can be applied to nonlinear programming and variational inequalities. I provide

convergence properties and derive new stopping condition.

From the computational performance, I generally conclude that for solution methods, simplicial

decomposition of variational inequalities with multiple nonlinear column generation subproblems

(SD-VI-mNCG), can perform better than the simplicial decomposition of variational inequalities (SD-

VI) and the SD-VI with a nonlinear column generation subproblem (SD-VI-NCG) in terms of

decomposition steps. The number of column generation steps is greatly reduced, and the long-tail

convergence property of SD-VI is alleviated. The same conclusion can be applied to nonlinear

programming.

Concerning the selection of the number of subproblems, m, the empirical results show that 3 to 5

is fine.

Concerning the selection of the values αj, I use (αj/2)= 1/2 as the reference value by which the

subproblem becomes diagonalized Newton algorithm. This approach may be beneficial in other

column generation schemes, like Dantzig-Wolfe decomposition of VI, which is one of further research

directions. Moreover, employing SD-VI-mNCG for different kind of VI problems, like large-scale

energy equilibrium problems, can be another research direction.

On the other hand, since there is no conclusive result for the computational performance, it is

worthwhile to consider the computational performance as one of the further research topics. For

instance, I may not need to wait for all subproblems to be solved to move on to the next SD step. The

calculation framework can be one master problem to m subproblems until one of the subproblems

solves the VI problem.

Use of AI tools declaration

The author declares that they have not used Artificial Intelligence (AI) tools in the creation of this

article.

14636

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

Acknowledgments

Financial support for William Chung’s work came from the Research Grants Council of Hong

Kong S.A.R., China (CityU 11500022).

Conflict of interest

The author declares no conflicts of interest.

References

1. E. Çelebi, J. David Fuller, Master problem approximations in Dantzig-Wolfe decomposition of

variational inequality problems with applications to two energy market models, Comput. Oper.

Res., 40 (2013), 2724–2739. https://doi.org/10.1016/j.cor.2013.05.012

2. F. Murphy, A. Pierru, Y. Smeers, A tutorial on building policy models as mixed-complementarity

problems, Interfaces, 46 (2016), 465–481. https://doi.org/10.1287/inte.2016.0842

3. W. Chung, Approximate Dantzig-Wolfe decomposition to solve a class of variational inequality

problems with an illustrative application to electricity market models, Expert Syst. Appl., 118

(2019), 140–151. https://doi.org/10.1016/j.eswa.2018.09.043

4. E. Bettiol, L. Létocart, F. Rinaldi, E. Traversi, A conjugate direction based simplicial

decomposition framework for solving a specific class of dense convex quadratic programs,

Comput. Optim. Appl., 75 (2020), 321–360. https://doi.org/10.1007/s10589-019-00151-4

5. D. Uciński, Construction of constrained experimental designs on finite spaces for a modified E-

optimality criterion, Int. J. Appl. Math. Comp., 30 (2020), 659–677.

https://doi.org/10.34768/amcs-2020-0049

6. M. Guignard, A. Ahlatcioglu, The convex hull heuristic for nonlinear integer programming

problems with linear constraints and application to quadratic 0–1 problems, J. Heuristics, 27

(2021), 251–265. https://doi.org/10.1007/s10732-019-09433-w

7. P. Delle Site, Pricing of connected and autonomous vehicles in mixed-traffic networks, Transport.

Res. Rec., 2675 (2021), 178–192. https://doi.org/10.1177/0361198120985850

8. M. Morabit, G. Desaulniers, A. Lodi, Machine-learning-based column selection for column

generation, Transport. Sci., 55 (2021), 815–831. https://doi.org/10.1287/trsc.2021.1045

9. L. Nazareth, Numerical behavior of LP algorithms based upon the decomposition principle,

Linear Algebra Appl., 57 (1984), 181–189. https://doi.org/10.1016/0024-3795(84)90186-1

10. J. Nazareth, Computer solution of linear programs, New York: Oxford University Press, 1987.

11. J. Ho, Convergence behavior of decomposition algorithms for linear programs, Oper. Res. Lett.,

3 (1984), 91–94. https://doi.org/10.1016/0167-6377(84)90048-8

12. M. Lübbecke, J. Desrosiers, Selected topics in column generation, Oper. Res., 53 (2005), 1007–

1023. https://doi.org/10.1287/opre.1050.0234

13. G. Dantzig, Linear programming and extensions, Santa Monica: RAND Corporation, 1963.

https://doi.org/10.7249/R366

14. E. Beale, P. Hughes, R. Small, Experiences in using a decomposition program, Comput. J., 8

(1965), 13–18. https://doi.org/10.1093/comjnl/8.1.13

https://doi.org/10.1016/j.cor.2013.05.012
https://doi.org/10.1287/inte.2016.0842
https://doi.org/10.1016/j.eswa.2018.09.043
https://doi.org/10.1007/s10589-019-00151-4
https://doi.org/10.34768/amcs-2020-0049
https://doi.org/10.1007/s10732-019-09433-w
https://doi.org/10.1177/0361198120985850
https://doi.org/10.1287/trsc.2021.1045
https://doi.org/10.1016/0024-3795(84)90186-1
https://doi.org/10.1016/0167-6377(84)90048-8
https://doi.org/10.1287/opre.1050.0234
https://doi.org/10.7249/R366
https://doi.org/10.1093/comjnl/8.1.13

14637

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

15. F. Murphy, Column dropping procedures for the generalized programming algorithm, Manage.

Sci., 19 (1973), 1310–1321. https://doi.org/10.1287/mnsc.19.11.1310

16. R. O’Neill, Technical note-column dropping in the Dantzig-Wolfe convex programming

algorithm: computational experience, Oper. Res., 25 (1977), 148–155.

https://doi.org/10.1287/opre.25.1.148

17. R. Marsten, W. Hogan, J. Blankenship, The boxstep method for Large-scale optimization, Oper.

Res., 23 (1975), 389–405. https://doi.org/10.1287/opre.23.3.389

18. T. Larsson, M. Patriksson, Simplicial decomposition with disaggregated representation for the

traffic assignment problem, Transport. Sci., 26 (1992), 4–17. https://doi.org/10.1287/trsc.26.1.4

19. W. Chung, J. Fuller, Y. Wu, A new decomposition method for multiregional economic equilibrium

models, Oper. Res., 54 (2006), 643–655. https://doi.org/10.1287/opre.1060.0274

20. W. Chung, J. David Fuller, Subproblem approximation in Dantzig-Wolfe decomposition of

variational inequality models with an application to a multicommodity economic equilibrium

model, Oper. Res., 58 (2010), 1318–1327. https://doi.org/10.1287/opre.1090.0803

21. W. Chung, Truncated Dantzig-Wolfe decomposition for a class of constrained variational

inequality problems, Comput. Econ., in press. https://doi.org/10.1007/s10614-023-10422-2

22. M. Morabit, G. Desaulniers, A. Lodi, Machine-learning-based arc selection for constrained

shortest path problems in column generation, INFORMS Journal on Optimization, 5 (2022), 191–

210. https://doi.org/10.1287/ijoo.2022.0082

23. S. Kraul, M. Seizinger, J. Brunner, Machine learning–supported prediction of dual variables for

the cutting stock problem with an application in stabilized column generation, INFORMS J.

Comput., 35 (2023), 692–709. https://doi.org/10.1287/ijoc.2023.1277

24. Y. Dirickx, L. Jennergren, Systems analysis by multilevel methods, New York: Wiley, 1979.

25. P. Harker, J. Pang, Finite-dimensional variational inequality and nonlinear complementarity

problems: a survey of theory, algorithms and applications, Math. Program., 48 (1990), 161–220.

(1990). https://doi.org/10.1007/BF01582255

26. S. Lawphongpanich, D. Hearn, Simplical decomposition of the asymmetric traffic assignment

problem, Transport. Res. B-Meth., 18 (1984), 123–133. https://doi.org/10.1016/0191-

2615(84)90026-2

27. J. David Fuller, W. Chung, Dantzig-Wolfe decomposition of variational inequalities, Comput.

Econ., 25 (2005), 303–326. https://doi.org/10.1007/s10614-005-2519-x

28. T. Larsson, M. Patriksson, C. Rydergren, Applications of simplicial decomposition with nonlinear

column generation to nonlinear network flows, In: Network optimization, Berlin: Springer, 1997,

346–373. https://doi.org/10.1007/978-3-642-59179-2_17

29. S. Dafermos, Relaxation algorithms for the general asymmetric traffic equilibrium problem,

Transport. Sci., 16 (1982), 231–240. https://doi.org/10.1287/trsc.16.2.231

30. A. Nagurney, K. Dhanda, Marketable pollution permits in oligopolistic markets with transaction

costs, Oper. Res., 48 (2000), 424–435. https://doi.org/10.1287/opre.48.3.424.12429

31. S. Sharma, Q. Li, W. Wei, An enhanced SD-GS-AL algorithm for coordinating the optimal power

and traffic flows with EVs, IEEE Trans. Smart Grid, in press.

https://doi.org/10.1109/TSG.2024.3358805

https://doi.org/10.1287/mnsc.19.11.1310
https://doi.org/10.1287/opre.25.1.148
https://doi.org/10.1287/opre.23.3.389
https://doi.org/10.1287/trsc.26.1.4
https://doi.org/10.1287/opre.1060.0274
https://doi.org/10.1287/opre.1090.0803
https://doi.org/10.1007/s10614-023-10422-2
https://doi.org/10.1287/ijoo.2022.0082
https://doi.org/10.1287/ijoc.2023.1277
https://doi.org/10.1007/BF01582255
https://doi.org/10.1016/0191-2615(84)90026-2
https://doi.org/10.1016/0191-2615(84)90026-2
https://doi.org/10.1007/s10614-005-2519-x
https://doi.org/10.1007/978-3-642-59179-2_17
https://doi.org/10.1287/trsc.16.2.231
https://doi.org/10.1287/opre.48.3.424.12429
https://doi.org/10.1109/TSG.2024.3358805

14638

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

32. Z. Wang, G. Li, Y. Xiao, S. Tang, M. Teng, A parallel decentralized solution for multi-regional

unit commitment with convex AC power flow constraints, Proceedings of 7th Asia Conference on

Power and Electrical Engineering (ACPEE), 2022, 1364–1373.

https://doi.org/10.1109/ACPEE53904.2022.9783909

Appendix

Parameters and reference results of MMOM-VI.

For cost function, 𝑓𝑖 = 𝑓𝑖(𝑞𝑖) = ∑ [𝑐𝑖𝑑𝑞𝑖𝑑 +
𝛽𝑖𝑑

𝛽𝑖𝑑+1
𝐾𝑖𝑑
−1/𝛽𝑖𝑑𝑞𝑖𝑑

(𝛽𝑖𝑑+1)/𝛽𝑖𝑑]𝑠
𝑑=1 :

 𝑐𝑖𝑑 𝐾𝑖𝑑 𝛽𝑖𝑑

 𝑑1 𝑑2 𝑑1 𝑑2 𝑑1 𝑑2

𝑖1 2 5 5 4 1.2 1.9

𝑖2 6 7 3 6 1.9 1.8

𝑖3 4.9 6.4 2 4 2.5 2.1

For joint-cost function, 𝑔𝑖 = 𝑔𝑖(𝑒𝑖 , 𝑞𝑖) = ∑ [𝑔1𝑖𝑡(𝑒𝑖
𝑡)2 + 𝑔2𝑖𝑡𝑒𝑖

𝑡 + 𝑔4𝑖𝑡]
𝑟
𝑡=1 + ∑ 𝑔3𝑖𝑡

𝑠
𝑑=1 𝑞𝑖𝑑:

 𝑔1𝑖𝑡 𝑔2𝑖𝑡 𝑔4𝑖𝑡 𝑔3𝑖𝑑

 𝑡1 𝑡2 𝑡1 𝑡2 𝑡1 𝑡2 𝑑1 𝑑2

𝑖1 1.4 1.8 -10 -20 10 14 1.5 1.5

𝑖2 1.4 2.7 -15 -5 5 15 3.5 2.5

𝑖3 1.7 2.3 -5 -10 6 2 4.1 3.1

For transaction cost function, 𝑐𝑖𝑗
𝑡 = 𝑐𝑖𝑗

𝑡 (𝑙𝑖𝑗
𝑡) = ∅1𝑖𝑗𝑡(𝑙𝑖𝑗

𝑡)
2
+ ∅2𝑖𝑗𝑡𝑙𝑖𝑗

𝑡 + 𝛼𝑖𝑗𝑡:

 𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2

∅1𝑖𝑗𝑡 𝑖1 0.09 0.05 0.05 0.01

𝑖2 0.03 0.04 0.09 0.05

𝑖3 0.07 0.04 0.03 0.06

∅2𝑖𝑗𝑡 𝑖1 -7 -8 -1 -5

𝑖2 -8 -7 -5 -8

𝑖3 -5 -1 -8 -3

𝛼𝑖𝑗𝑡 𝑖1 0.004 0.009 0.005 0.005

𝑖2 0.002 0.006 0.003 0.006

𝑖3 0.004 0.007 0.006 0.009

For the price functions of product 𝑑: 𝜌𝑑 = 𝜌𝑑(∑ 𝑞𝑖𝑑
𝑚
𝑖=1), 𝜌𝑑 = 5000.

For constraints 𝑙𝑖𝑗
𝑡 − ℎ𝑖𝑗

𝑡 𝑒𝑖
𝑡 ≥ 0:

 𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2

ℎ𝑖𝑗
𝑡 𝑖1 0.09 0.05 0.05 0.01

𝑖2 0.03 0.04 0.09 0.05

𝑖3 0.07 0.04 0.03 0.06

For ∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1 − ∑ 𝑙𝑖𝑗
𝑡𝑚

𝑖=1 ≥ 0, 𝑙0𝑖𝑗
𝑡 = 3.

https://doi.org/10.1109/ACPEE53904.2022.9783909

14639

AIMS Mathematics Volume 9, Issue 6, 14618–14639.

Reference results are generated by PIES without a decomposition algorithm:

 𝑒𝑖
𝑡 𝑞𝑖𝑑 𝑙𝑖𝑗

𝑡

 𝑡1 𝑡2 𝑑1 𝑑2 𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2

𝑖1 0 1.439 71.768 83.500 0 7.291 0 7.197

𝑖2 4.815 0.171 55.595 61.952 8.490 1.709 2.407 1.803

𝑖3 0.304 0 67.514 61.687 0.510 0 6.593 0

© 2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

