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Abstract: Simplicial decomposition (SD) of variational inequalities experiences the long-tail 

convergence property. That is, the equilibrium solution rapidly progresses at first but then tails off, 

making only a tiny amount of progress per column generation iteration, which is a drawback of SD-

VI. In the context of Dantzig-Wolfe of LP, it is reported that the more proposals are used to initialize 

the algorithm, the faster the solution can be found by reducing the number of decomposition steps. 

Therefore, I proposed to solve multiple nonlinear column generation (mNCG) subproblems in each 

SD-VI iteration (SD-VI-mNCG) instead of solving only one subproblem as in SD-VI. Generating 

multiple column generation subproblem solutions in each SD-VI iteration enabled the corresponding 

convex hull to be rapidly enlarged. Consequently, the number of SD-VI iterations could be greatly 

reduced. A transportation network equilibrium problem was used to study the performance of the SD-

VI-mNCG. 
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1. Introduction 

Column generation (CG) is a method to solve large-scale mathematical programming problems 

such as optimization models and variational inequalities (VI) involving a vast number of variables. 

These models can be found in multi-cloud systems, multi-commodity economic equilibrium models, 

and transportation models. These models would become too large to be solved due to the rise of big 
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data. For example, large-scale VI problems can be easily found in stochastic VI settings with large-

scale scenario analysis. Even a well-established VI solver (PATH) has been found to terminate when 

attempting to solve a large-scale VI problem due to a lack of memory [1]. Using column generation 

algorithms, such large-scale problems can be decomposed into smaller subproblems to be solved on 

several computers. Another motivation for using CG is to improve model development and 

maintenance efficiency by joining separately well-developed submodels when a converged solution is 

needed. Other research groups, such as Murphy et al. [2], have made similar observations. These 

smaller submodels can even reside on different computers connected by a network. On top of 

improving model development and maintenance, CG may improve computational efficiency. For 

example, Chung [3] reported that some computational instances of CG were faster than the reference 

method, the PATH solver. Chung [3] also reported that the PATH solver terminated when attempting 

to solve a large-scale VI problem because of insufficient memory. 

However, CG has a major drawback which is the long-tail convergence property, called long-tail 

effect. CG involves solving a subproblem and a master problem iteratively. An example of CG is 

simplicial decomposition (SD) method. Simplicial decomposition was recently employed and 

modified for different application aspects, such as Bettiol et al. [4], Uciński [5], Guignard and 

Ahlatcioglu [6], and Delle Site [7]. For the multiple subproblems aspect, see Morabit et al. [8]. It is 

assumed that there are efficient solution methods to solve the subproblem and the master problem. 

However, it is well known that the SD converge rapidly at first but subsequently slowly, with a long 

tail of near-optimal solutions. As the final optimality gap cannot be closed, this long-tail convergence 

resulting in poor computational performance becomes a drawback. Other drawbacks are dual 

oscillations and primal degeneracy, and alternative dual optimal solutions in optimization models. In 

my experience, CG methods for VI problems inherit this long-tail convergence property. That is, CG-

VI is likely to approach the equilibrium solution rapidly at first but then tail off, making only a tiny 

amount of progress per CG iteration. Consequently, the time savings afforded by the rapid initial 

convergence tend to be offset by the tailing off. I develop a new method to alleviate the long-tail effect 

of CG-VI in the current paper. 

1.1. Literature review of the methods of resolving the tailing-off effect 

1.1.1. Existing methods of resolving the tailing-off effect for LP 

Implementation enhancement: Nazareth [9] used a set of LP problem examples consisting of a 

few constraints and variables to identify the numerical difficulties that can generally occur when 

applying the DW method. Nazareth showed that even when stable techniques, such as the stable 

refactorization of the corresponding basis matrix, are used, the columns of the computed master 

program can differ substantially from those of the true one. Later, Nazareth [10] noted that because 

changes in primal and dual variables are applied iteratively, a certain amount of “cleaning up” is to be 

expected. According to Ho [11] explanation of long-tail convergence, implicit error bounds may imply 

a tolerance for convergence below which further apparent improvements should be considered as noise. 

However, Lübbecke and Desrosiers [12] remarked that tailing off also occurs when columns are 

computed exactly, e.g., through the use of combinatorial algorithms. 

Column dropping: One may anticipate that dropping columns from the master problem will 

improve computational efficiency. Dantzig [13] proposed some methods for deciding how long 
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proposals should be kept in the master problem, such as deleting all non-basic proposals immediately 

(apart from those just generated). Indeed, it is not entirely clear when to delete proposals from the 

master problem. Beale et al. [14] reported that when using Dantzig’s [13] above-mentioned methods, 

for a problem with 450 constraints, the DW method performed marginally better than the simplex 

method. For NLP, Murphy [15] provided two conditions under which columns may be dropped from 

the restricted master problem. However, O’Neill’s [16] computational results revealed virtually no 

differences in the measures of computational efficiency when all columns were retained and when only 

basic columns were retained. 

Stabilized column generation methods: Another approach is to use stabilized column 

generation methods to ensure that the dual variable values of the linking constraints smoothly converge 

to their respective optima without vehement oscillation. From the literature, three stabilization 

techniques of optimization models can be found. These techniques are the proximity of a stability 

center, smoothing techniques, and centralized prizes for stabilizing the iterative dual solutions from 

the master problems. There are some well-known stabilization principles, such as the Boxtep method 

developed by Marsten et al. [17]. These stabilization methods are widely used in branch-and-bound 

algorithms for mixed integer programs. It should be noted that these techniques rely on solving dual 

master optimization problems. It would become a big challenge when one tries to use the dual master 

VI problems. 

1.1.2. Existing methods of resolving the tailing-off effect for VI 

To resolve the tailing-off problem afflicting simplicial decomposition of VI (SD-VI), Larsson and 

Patriksson [18] considered the use of subproblem column generations of nonlinear simplicial 

decomposition (NSD) to reduce the number of decomposition iterations. The generalized NSD method 

is obtained from the restricted simplicial decomposition method by replacing the linear column 

generation subproblem with a nonlinear column generation (NCG) subproblem. Generating columns 

based on the NCG subproblem requires fewer columns to describe an optimal solution, resulting in 

fewer decomposition iterations. There are three kinds of NSD column generation subproblems 

addressed by adopting Newton’s method, the diagonalized Newton algorithm, and the projection 

method. 

Chung et al. [19] extended the application of the DW procedure from linear programming (LP) 

to VI problems. The master problem and the subproblems of the decomposed VI are VIs. To shorten 

the computation time, Chung and Fuller [20] derived an approximation method to solve the 

subproblem VIs. Chung [3] integrated the results of Çelebi and Fuller [1] and Chung and Fuller [20] 

to develop an approximation method to solve DW-VI, in which both master VI and subproblem VI can 

be solved approximately as DW for LP. Chung [21] derived a truncated DW-VI method, in which the 

subproblem VI was approximately solved by one iteration of DW. Although they did not discuss the 

tailing-off effect, their computational results showed that the tailing-off effect for VI was alleviated. 

In recent years, in the context of optimization problems, some research works concentrated on 

using machine learning to predict the stabilization technique for column generation and the patterns of 

different existing columns for re-optimization, see Morabit et al. [22] and Kraul et al. [23]. Although 

these approaches do not focus on column generation, their results can help to overcome the tailing-off 

effect in the re-optimization processes. 
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1.2. Approaches and contributions 

In the context of Dantzig-Wolfe of LP, Dirickx and Jennergren [24] reported that, in general, the 

more proposals are used to initialize the algorithm, the faster the solution can be found. Therefore, in 

the current paper, I propose to solve multiple column generation subproblems in each SD-VI iteration 

instead of solving only one subproblem. By solving multiple column generation subproblems in each 

SD-VI iteration, I obtain two advantages, as follows: (1) Different columns will be generated and 

stored in the master problem to improve the representativeness of the corresponding convex hull. (2) 

Generating multiple column generation subproblem solutions in each SD-VI iteration will enable the 

corresponding convex hull to be rapidly enlarged. Consequently, the number of SD-VI iterations can 

be greatly reduced. The idea of generating multiple columns at a given iteration is not a new strategy 

in nonlinear programming, see Morabit et al. [8]. In short, I propose a new method, simplicial 

decomposition with multiple subproblems for VI, that solves multiple column generation subproblem 

in each SD-VI iteration to reduce the number of decomposition steps and thereby ease the tailing-off 

effect. One of the challenges of the new method is how to derive “multiple” subproblems. According 

to my knowledge, there is no research on solving multiple subproblems in SD-VI. It is a research gap 

in the literature. Moreover, the proposed method can also apply to NLP since the VI framework 

includes NLP. 

While employing multiple subproblems (multiple column generation) in SD of optimization 

models, convergence properties and theories may be easily derived based on the existing results of the 

monotonic convergence properties. However, the convergence property of the SD-VI is non-monotone. 

Hence, the convergence properties and theories of multiple column generation of SD-VI is derived, 

and empirical tests are given. 

In brief, the main contribution of the current paper is to derive a new method, simplicial 

decomposition with multiple subproblems for VI. The major challenges are (1) to derive “multiple 

subproblems” in SD-VI in the Subsection 3.2 and (2) to prove the convergence of the new method. 

Section 2 provides the background of the VI problems, SD-VI methods, and SD of NLP with 

nonlinear column generation (NCG). Section 3 derives SD-VI with NCG (SD-VI-NCG) and with 

multiple NCGs (SD-VI-mNCG). SD-VI-NCG and SD-VI-mNCG are SD with one subproblem and 

multiple subproblems for VI, respectively. Convergence properties of the SD-VI-NCG and SD-VI-

mNCG are also included. Section 4 is used to report computational performance of SD-NLP-mNCG, 

SD-VI-mNCG, and their re-optimization processes. Section 5 provides the conclusion with further 

research topics. 

2. Background 

The class of the VI problems I will study can be described as follows. 𝑉𝐼(𝐺, 𝐾): Find a vector 

𝑥∗ ∈ 𝐾 ⊆ 𝑅𝑛  such that 𝐺(𝑥∗)𝑇(𝑥 − 𝑥∗) ≥ 0 ∀𝑥 ∈ 𝐾 , where G is given continuous mapping from 

𝐾 𝑡𝑜 𝑅𝑛, superscript T denotes the transpose, and all vectors are considered to be column vectors. K is 

a nonempty, closed, and convex set. Applications of 𝑉𝐼(𝐺, 𝐾) can be found in user equilibrium traffic 

assignment problems and energy equilibrium problems. For large-scale VI, see Murphy et al. [2]. 

Harker and Pang [25] provided standard conditions for the existence and uniqueness of solutions to 

this class of VI problems. There are different methods of solving 𝑉𝐼(𝐺, 𝐾), such as PIES-like methods 

or Newtonian methods. 
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2.1. Column generation of VI methods (CG-VI) 

There are two popular column generation of VI methods, simplicial decomposition of VI (see 

Lawphongpanich and Hearn [26]) and Dantzig-Wolfe of VI (see Fuller and Chung [27]). Since the my 

results are derived from simplicial decomposition of VI (SD-VI), a brief description of SD-VI is given 

below. Moreover, multiple subproblems are generated from SD with nonlinear column generation 

(NCG) of nonlinear programming (Larsson et al. [28]), NCG is given in this subsection. 

2.2. Simplicial decomposition of VI (SD-VI) 

Lawphongpanich and Hearn [26] presented a type of simplicial decomposition of VI method for 

the user equilibrium traffic assignment problem, in which 𝐾 is a closed convex set of feasible flow 

patterns, and 𝐺  is a cost mapping. The following SD-VI is not exactly the one presented in 

Lawphongpanich and Hearn [26]. The major differences are that there is no pre-set convergence 

sequence (𝜀𝑘) for convergent of their SD-VI and no column dropping consideration for improving the 

computational performance of the master-VI problems. It is because my results of employing multiple 

subproblems do not require the pre-set convergence sequence and column dropping procedure. 

Note that SD-VI consists of linear programming subproblem, 𝑆𝑢𝑏 − 𝐿𝑃𝑘, and an equilibrium 

master problem, Master − VI𝑘, where superscript 𝑘 represents the iteration number of CG-VI. 𝑆𝑢𝑏 −

𝐿𝑃𝑘 is defined as follows: 

𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌 ), 𝑲): find 𝑥𝑆

𝑘 ∈ 𝐾, such that 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥 − 𝑥𝑆

𝑘) ≥ 0 ∀𝑥 ∈ 𝐾, 

where 𝑥𝑀
𝑘  equals the solution of master problem (Master − VIk), described below. 

The feasible set for the master problem at iteration 𝑘 is restricted to all convex combinations of 

the 𝑘  proposals (solutions of the subproblem). Let 𝑋𝑘  be the 𝑛 × 𝑘  matrix whose columns are the 

solutions 𝑥𝑆
𝑖   of the subproblems solved at iterations 𝑖 = 1,… , 𝑘 ; i.e., 𝑋𝑘 = [𝑥𝑆

1, 𝑥𝑆
2, … , 𝑥𝑆

𝑘] . The 

weights on the proposals in the convex combination are contained in the vector 𝜆 ∈ 𝑅𝑘. The feasible 

set for the master problem is defined as 

Λ𝑘 = {𝜆 ∈ 𝑅𝑘| 𝑒𝑘𝑇𝜆 = 1, 𝜆 ≥ 0}, 

where 𝑒𝑘 ∈ 𝑅𝑘 is a vector with 1 for every entry. The master problem at iteration 𝑘 is defined as 

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒌(𝑮, 𝜦𝒌): find 𝜆𝑘 ∈ Λ𝑘, such that 𝐺(𝑋𝑘𝜆𝑘)𝑇(𝑋𝑘𝜆 − 𝑋𝑘𝜆𝑘) ≥ 0 ∀ 𝜆 ∈ Λ𝑘. 

Alternatively, let 𝑐𝑜𝑛𝑣(𝑋𝑘) represent the set of all convex combinations of the columns of 𝑋𝑘. 

Then, I have the following alternative master problem at iteration k, defined as 

Master − VI𝑘(𝐺, K𝑘): find 𝑥𝑀
𝑘 ∈ 𝐾𝑘, such that 𝐺(𝑥𝑀

𝑘 )
𝑇
(𝑥 − 𝑥𝑀

𝑘 ) ≥ 0 ∀ 𝑥 ∈ 𝐾𝑘 = {𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑋𝑘)}. 

With the convergence gap, 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ), for the stopping condition, I can define 

the standard SD-VI algorithm as follows: 

[SD-VI] 

Step 0: Set 𝑘 = 0. Choose 𝜀 > 0, 𝑥𝑀
1 ∈ 𝐾, and 𝑋0 is a null matrix. 

Step 1: Increment 𝑘 ← 𝑘 + 1. 

Solve 𝑆𝑢𝑏 − 𝐿𝑃𝑘(𝐺(𝑥𝑀
𝑘 ), 𝐾) and place the solution 𝑥𝑆

𝑘 in the matrix 𝑋𝑘 = [𝑋𝑘−1, 𝑥𝑆
𝑘]. 
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If 𝑘 = 1 then go to Step 2; if 𝐶𝐺𝑘 ≥ −𝜀 then STOP; else go to Step 2. 

Step 2: Solve Master − VI𝑘(𝐺, 𝐾𝑘). Record 𝐺(𝑥𝑀
𝑘 ). Go to Step 1. 

In the next subsection, I describe the result of Larsson et al. [28] concerning how the nonlinear 

column generation (NCG) is employed in the context of SD of NLP. Based on their results, I first 

derive a SD of VI with NCG, then I derive a SD of VI with multiple NCG. 

2.3. Simplical decomposition of NLP with nonlinear column generation (NCG) 

According to Larsson et al. [28], SD of NLP with NCG (SD-NLP-NCG) is the combination of 

the SD principle and the nonlinear search direction finding subproblem of a primal descent algorithm 

for NLP, not VI. 

NLP: 𝑀𝑖𝑛𝑥∈𝐾  ∫ 𝐺(𝑥)𝑑𝑥. 

For NLP, the master problem and the subproblem of SD are shown below: 

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑵𝑳𝑷𝒌(𝑮,𝑲𝒌): 𝑀𝑖𝑛𝑥∈𝑐𝑜𝑛𝑣(𝑋𝑘)  ∫ 𝐺(𝑥)𝑑𝑥. 

𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌 ), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀

𝑘 )
𝑇
𝑥. 

For NCG, the above subproblem, 𝑆𝑢𝑏 − 𝐿𝑃𝑘, becomes the combination of the SD principle and 

the nonlinear search direction finding subproblem of a primal descent algorithm for NLP. Larsson 

et al. [28]  modified the subproblem by adding a continuous regularization function, 𝜑(𝑥, 𝑥): 𝐾 ×

𝐾 ⟼ 𝑅, with the following properties: 

(1) 𝜑(⋅, 𝑦) is strictly convex and continuously differentiable on 𝐾 for every 𝑦 ∈ 𝐾; 

(2) ∇𝑥𝜑(𝑥, 𝑦) = 0 holds if and only if 𝑥 = 𝑦. 

Then, given an iterate 𝑥𝑀
𝑘 , the subproblem of SD-NLP-NCG becomes an NLP. 

𝑺𝒖𝒃𝑵𝑪𝑮 −𝑵𝑳𝑷
𝒌(𝑮(𝒙𝑴

𝒌 ), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥 + 𝜑(𝑥, 𝑥𝑀

𝑘 ). 

It is noted that the solution of 𝑆𝑢𝑏𝑁𝐶𝐺 − 𝑁𝐿𝑃
𝑘, 𝑥𝑆

𝑘, is unique due to the compactness of 𝐾 and 

the strict convexity of 𝜑(⋅, 𝑦). Moreover, 𝑥𝑀
𝑘−1 is optimal in NLP if and only if 𝑥𝑀

𝑘−1 solves 𝑆𝑢𝑏𝑁𝐶𝐺 −
𝑁𝐿𝑃𝑘, that is, 𝑥𝑆

𝑘 = 𝑥𝑀
𝑘−1. In the numerical experiments of Larsson et al. [28], the function 𝜑 had the 

form: 

𝜑(𝑥, 𝑦) =
1

2
(𝑥 − 𝑦)𝑇𝑄(𝑦)(𝑥 − 𝑦), 

where 𝑄(𝑦)  is a positive definite and symmetric matrix for every 𝑦  in 𝐾 . Three matrixes were 

proposed: 𝑄(𝑦) ≡ 𝛾𝐼, 𝛾 > 0, 𝑄(𝑦) = 𝛻𝐺(𝑥𝑀
𝑘 ), and 𝑄(𝑦) = diag 𝛻𝐺(𝑥𝑀

𝑘 ). 

3. Simplicial decomposition of VI and NCG 

Based on the results of Larrsson et al. [28], I first define the method of SD-VI with a NCG (SD-

VI-NCG), then SD-VI with multiple NCG (SD-VI-mNCG). 
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3.1. Simplicial decomposition of VI with NCG (SD-VI-NCG) 

To derive a SD-VI with NCG, the 𝑺𝒖𝒃 − 𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌 ), 𝑲) of SD-VI is replaced with 𝑺𝒖𝒃𝑵𝑪𝑮 −

𝑵𝑳𝑷𝒌(𝑮(𝒙𝑴
𝒌 ), 𝑲). Then, I can define the standard SD-VI-NCG algorithm as follows: 

[SD-VI-NCG] 

Step 0: Set 𝑘 = 0. Choose 𝜀 > 0, 𝑥𝑀
1 ∈ 𝐾, and 𝑋0 is a null matrix. 

Step 1: Increment 𝑘 ← 𝑘 + 1. 

Solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀
𝑘 ), 𝐾) and place the solution 𝑥𝑆

𝑘 in the matrix 𝑋𝑘 = [𝑋𝑘−1, 𝑥𝑆
𝑘]. 

If 𝑘 = 1 then go to Step 2; if 𝐶𝐺𝑘 ≥ −𝜀 then STOP; else go to Step 2. 

Step 2: Solve 𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒌(𝑮,𝑲𝒌). Record 𝐺(𝑥𝑀
𝑘 ). Go to Step 1. 

Noted that if I use 𝐺̃(𝑥; 𝑥𝑀
𝑘 ) =  𝐺(𝑥𝑀

𝑘 ) + 𝑄(𝑥𝑀
𝑘 )(𝑥 − 𝑥𝑀

𝑘 ), the subproblem is equal to the one in 

SD-NLP-NCG, 𝑺𝒖𝒃𝑵𝑪𝑮 −𝑵𝑳𝑷
𝒌(𝑮(𝒙𝑴

𝒌 ), 𝑲). That is, 

𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥 +

1

2
(𝑥 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥 − 𝑥𝑀
𝑘 ). 

3.1.1. Convergence of SD-VI-NCG 

With the assumption of 𝐺̃(𝑥; 𝑥𝑀
𝑘 )  is strictly monotone in 𝑥  and 𝐺̃(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘 ) = 𝐺(𝑥𝑀

𝑘 ) , I can 

extend the results of Chung and Fuller [20] to have the following properties. 

Theorem 1a. 𝜆𝑘  solves 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑘(𝐺, Λ𝑘)  iff there exist 𝜆𝑘 ∈ 𝑅+
𝑘   and 𝜃𝑘 ∈ 𝑅  such that the 

following relations hold: 

𝑋𝑘
𝑇
𝐺(𝑋𝑘𝜆𝑘) + 𝑒𝑘𝜃𝑘 = 0, 

𝑒𝑘𝜆𝑘 − 1 = 0, 

𝜆𝑘
𝑇
(𝑋𝑘

𝑇
𝐺(𝑋𝑘𝜆𝑘) + 𝑒𝑘𝜃𝑘) = 0. 

Proof. This is a standard result for VI problems. See, e.g., Proposition 2.2 in Harker and Pang [25]. 

Theorem 2a. Given the property 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘 ). If 𝑥𝑀
𝑘  solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘 ), 𝐾), then 

𝑥𝑀
𝑘  solves 𝑉𝐼(𝐺, 𝐾). 

Proof. Ref. new Theorem 4 in Chung and Fuller [20]. 

Suppose that 𝑥𝑀
𝑘 = 𝑋𝑘𝜆𝑘  solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘 ), 𝐾) . It follows that 𝐺̃(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 )
𝑇
(𝑥 −

𝑥𝑀
𝑘 ) ≥ 0 ∀𝑥 ∈ 𝐾. As 𝐺̃(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘 ) = 𝐺(𝑥𝑀

𝑘 ), I have 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥 − 𝑥𝑀

𝑘 ) ≥ 0 ∀𝑥 ∈ 𝐾 and I may conclude 

that 𝑥𝑀
𝑘  solves 𝑉𝐼(𝐺, 𝐾). 

Theorem 3a. Assume that 𝐺̃(𝑥; 𝜉𝑘) is strictly monotone in 𝑥. Given the property 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘 ). 

If 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ) ≥ 0, then 𝑥𝑀
𝑘−1 solves 𝑉𝐼(𝐺, 𝐾). 

Proof. Ref. new Theorem 6(a) of Chung and Fuller [20]. 

We shall show that if 𝑥𝑀
𝑘  does not solve 𝑉𝐼(𝐺, 𝐾), then 𝐶𝐺𝑘 < 0. By Theorem 2a, 𝑥𝑀

𝑘 ≠ 𝑥𝑆
𝑘, and 

since 𝐺̃(𝑥𝑀
𝑘 ; 𝜉𝑘) = 𝐺(𝑥𝑀

𝑘 ) , strict monotonicity of 𝐺̃(𝑥; 𝜉𝑘)  implies that (𝐺(𝑥𝑀
𝑘 ) −

𝐺̃(𝑥𝑆
𝑘; 𝜉𝑘))

𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆

𝑘) > 0 . Since 𝑥𝑆
𝑘  solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑘(𝐺̃(𝑥; 𝑥𝑀

𝑘 ), 𝐾) , it follows that 
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𝐺̃(𝑥𝑆
𝑘; 𝜉𝑘)

𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆

𝑘) ≥ 0. Adding this last inequality to the strict inequality and multiply by -1 yields 

𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ) < 0. 

Theorem 4. Either 𝐶𝐺𝑘 ≥ 0 at a finite iteration number 𝑘, or 𝐶𝐺𝑘 < 0 for all iterations 𝑘. In the latter 

case, any infinite subsequence of {(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘)}
𝑘=1

∞
 has at least one limit point, and if 𝐺 is continuous then 

𝑙𝑖𝑚𝑘→∞𝐶𝐺
𝑘 = 0. 

Proof. Ref. new Theorem 8 of Chung and Fuller [20]. 

Suppose that 𝐶𝐺𝑘 = 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ) < 0  for all 𝑘  and suppose, contrary to my desired 

conclusion, that there exists an 𝜀 > 0  and infinite set of iteration numbers, 𝒯 , such that 

𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ) < −𝜀  for all 𝑘 ∈ 𝒯 . For any 𝑘  and 𝑟  with 𝑟 > 𝑘 , 𝑥𝑆
𝑘  is one of the proposals 

available to 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑟(𝐺, Λ𝑟); thus, I may use the complementarity conditions in Theorem 1 to 

derive an inequality. I do this by examining the dual feasibility constraint in 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑟(𝐺, Λ𝑟) 
associated with the primal variable 𝜆𝑘

𝑟   which is the weight associate with the proposal 𝑥𝑆
𝑘 : 

𝑥𝑆
𝑘𝑇𝐺(𝑥𝑀

𝑟 ) + 𝜃𝑟 ≥ 0. I may eliminate the variable 𝜃𝑟 using the complementarity slackness condition 

∑ (𝑥𝑆
𝑖𝑇𝐺(𝑥𝑀

𝑟 ) + 𝜃𝑟)
𝑇
𝜆𝑖
𝑟 = 0𝑟

𝑖=1  , and using the constraint ∑ 𝜆𝑖
𝑟 = 1𝑟

𝑖=1  , and the fact that 𝑥𝑀
𝑟 =

∑ 𝜆𝑖
𝑟𝑥𝑆
𝑖𝑟

𝑖=1  : 𝜃𝑟 = −𝑥𝑀
𝑟 𝑇𝐺(𝑥𝑀

𝑟 ) . This allow us to rewrite the constraint associated with 

𝜆𝑘
𝑟 : 𝐺(𝑥𝑀

𝑟 )𝑇(𝑥𝑆
𝑘+1 − 𝑥𝑀

𝑟 ) ≥ 0, for all 𝑘 and 𝑟 with 𝑟 > 𝑘. Subtracting this from the strict inequality 

derived earlier, yields 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆
𝑘 − 𝑥𝑀

𝑘 ) − 𝐺(𝑥𝑀
𝑟 )𝑇(𝑥𝑆

𝑘 − 𝑥𝑀
𝑟 ) < −𝜀 , for all 𝑘, 𝑟 ∈ 𝒯  with 𝑟 > 𝑘 . 

Note that continuity of 𝐺 makes the left of the inequality continuous in (𝑥𝑀, 𝑥𝑆). By the property that 

any infinite subsequence {(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘)}
𝑘=1

∞
 has at least one limit point, there exists a subset 𝒯̂ ⊂ 𝒯 such 

that lim𝑘→∞,𝑘∈𝒯̂(𝑥𝑀
𝑘 , 𝑥𝑆

𝑘) = (𝑥̂𝑀, 𝑥̂𝑆), a limit point. Finally, I let 𝑟 → ∞ through values 𝑟 ∈ 𝒯̂, in the 

inequality, and then let 𝑘 → ∞  through values 𝑘 ∈ 𝒯̂  (this order of limits ensures that 𝑟 > 𝑘 

throughout the limiting process) to derive the contradiction 0 = 𝐺(𝑥̂𝑀)
𝑇(𝑥̂𝑆 − 𝑥̂𝑀) − 𝐺(𝑥̂𝑀)

𝑇(𝑥̂𝑆 −
𝑥̂𝑀) < −𝜀 < 0. That is, 𝐶𝐺𝑘 < 0, contradicting the assumption that 𝐶𝐺𝑘 ≥ 0. 

After deriving a SD-VI-NCG, I derive SD-VI with multiple NCG (SD-VI-mNCG) in the next 

subsection. 

3.2. Simplicial decomposition of VI with multiple NCG (SD-VI-mNCG) 

For having multiple NCGs, I introduce a parameter, 𝛼𝑗, to the additional component of SD-VI 

subproblem approximation. Then, I define the 𝑗𝑡ℎ subproblem approximation mapping: 

𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗) =  𝐺(𝑥𝑀

𝑘 ) + 𝛼𝑗𝑄(𝑥𝑀
𝑘 )(𝑥 − 𝑥𝑀

𝑘 ). 

The corresponding subproblem of SD-VI-mNCG: 

𝑺𝒖𝒃̃ − 𝑵𝑳𝑷𝒋
𝒌(𝑮̃𝒋(𝒙; 𝒙𝑴

𝒌 ; 𝜶𝒋), 𝑲): 𝑀𝑖𝑛𝑥∈𝐾 𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥 +

𝛼𝑗

2
(𝑥 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥 − 𝑥𝑀
𝑘 ). 

Assuming that I have 𝐽 subproblems, then, for each SD iteration, I have 𝐽 subproblem proposals, 

(𝑥𝑆1
𝑘 , … , 𝑥𝑆𝑗

𝑘 , … , 𝑥𝑆𝐽
𝑘 ) . For the 𝑗𝑡ℎ  subproblem, the proposal, 𝑥𝑆𝑗

𝑘  , is stored in the matrix 𝑋𝑆𝑗
𝑘 =

[𝑋𝑆𝑗
𝑘−1, 𝑥𝑆𝑗

𝑘 ] = [𝑥𝑆𝑗
1 , 𝑥𝑆𝑗

2 , … , 𝑥𝑆𝑗
𝑘 ]. Then, let 𝑋𝑚𝑁𝐶𝐺

𝑘 = [𝑋𝑆1
𝑘 , … , 𝑋𝑆𝑗

𝑘 , … , 𝑋𝑆𝐽
𝑘 ]. 

The feasible set for the master problem at iteration 𝑘 is restricted to all convex combinations of 

the 𝑘 proposals (solutions of all subproblems). Let 𝑋𝑚𝑁𝐶𝐺
𝑘  be the 𝑛 × (𝑘 × 𝑗) matrix whose columns 
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are solutions 𝑥𝑆𝑗
𝑖  of all subproblems solved at iterations 𝑖 = 1,… , 𝑘. The weights on the proposals in 

the convex combination are contained in the vector 𝜆𝑗
𝑘 ∈ 𝑅𝑘×𝑗. The feasible set for the master problem 

is defined as Λ𝑚𝑁𝐶𝐺
𝑘 = {𝜆𝑗

𝑘 ∈ 𝑅𝑘×𝑗| (𝑒𝑘×𝑗)
𝑇
𝜆𝑗
𝑘 = 1, 𝜆𝑗

𝑘 ≥ 0} , where 𝑒𝑘×𝑗 ∈ 𝑅𝑘×𝑗  is a vector with 1 

for every entry. The master problem at iteration 𝑘 is defined as 

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒎𝑵𝑪𝑮
𝒌 (𝑮, 𝜦𝒎𝑵𝑪𝑮

𝒌 ): Find 𝜆𝑗
𝑘 ∈ Λ𝑚𝑁𝐶𝐺

𝑘 , such that 𝐺(𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘)
𝑇
(𝑋𝑚𝑁𝐶𝐺

𝑘 𝜆 −

𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘) ≥ 0 ∀ 𝜆𝑗
𝑘 ∈ Λ𝑚𝑁𝐶𝐺

𝑘 . 

Alternatively, let 𝑐𝑜𝑛𝑣(𝑋𝑘) represent the set of all convex combinations of the columns of 𝑋𝑘. 

Then, I have the following alternative master problem at iteration k, defined as 

𝑴𝒂𝒔𝒕𝒆𝒓 − 𝑽𝑰𝒎𝑵𝑪𝑮
𝒌 (𝑮,𝑲𝒎𝑵𝑪𝑮

𝒌 ): Find 𝑥𝑀
𝑘 ∈ 𝐾𝑚𝑁𝐶𝐺

𝑘 , such that 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥 − 𝑥𝑀

𝑘 ) ≥ 0 ∀ 𝑥 ∈ 𝐾𝑚𝑁𝐶𝐺
𝑘 =

{𝑥 ∈ 𝑐𝑜𝑛𝑣(𝑋𝑚𝑁𝐶𝐺
𝑘 )}. 

Since I have 𝐽 subproblems, I can have 𝐽 convergence gaps for the stopping condition, according 

to Theorems 3 and 4, 𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ) for all 𝑗. 

We first state the algorithm of SD-VI-mNCG and then the corresponding new theorems about the 

convergence and the stopping conditions. 

[SD-VI-mNCG] 

Step 0: Set 𝑘 = 0 . Choose 𝜀 > 0 , 𝛼𝑗 >  𝛼𝑗−1 > ⋯ > 𝛼1 > 0, 𝑥𝑀
1 ∈ 𝐾 , and 𝑋𝑖

0  is a null matrix 

i=1,… , 𝑗. 
Step 1: Increment 𝑘 ← 𝑘 + 1. 

Solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘 ; 𝛼𝑗), 𝐾)  for all 𝑗 , and place the solution 𝑥𝑆𝑖
𝑘   in the matrix 

[𝑋𝑆𝑖
𝑘−1, 𝑥𝑆𝑖

𝑘 ], 𝑖 = 1,… , 𝑗;  and update 𝑋𝑚𝑁𝐶𝐺
𝑘 = [𝑋𝑆1

𝑘 , … , 𝑋𝑆𝑗
𝑘 ] . If 𝑘 = 1  then go to Step 2; else if 

𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ) ≥ −𝜀 then STOP; else go to Step 2. 

Step 2: Solve Master − VI𝑚𝑁𝐶𝐺
𝑘 (𝐺, 𝐾𝑚𝑁𝐶𝐺

𝑘 ). Record 𝐺(𝑥𝑀
𝑘 ). Go to Step 1. 

3.2.1. The computational sequence of SD-VI-mNCG 

The SD-VI-mNCG algorithm first solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃1
1  with 𝛼1 = 0 , to generate a column 

proposal (𝑥𝑆𝑗
1 )  for all 𝑗  to be placed in the matrix 𝑋𝑚𝑁𝐶𝐺

1   of 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺
1   to enlarge the set 

Λ𝑚𝑁𝐶𝐺
1 . 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺

1  is solved to obtain a new 𝑥𝑀
1  for new 𝐺(𝑥𝑀

1 ) and 𝑄(𝑥𝑀
1 ). The algorithm 

proceeds with 𝑘 = 𝑘 + 1, and the new column proposals from 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘 is added to the matrix 𝑋𝑆𝑗

𝑘  

for all 𝑗 and update 𝑋𝑚𝑁𝐶𝐺
𝑘  which 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑚𝑁𝐶𝐺

𝑘  uses to define its convex combinations, and the 

next solution of the 𝑀𝑎𝑠𝑡𝑒𝑟 − 𝑉𝐼𝑘  produces a new 𝐺(𝑥𝑀
𝑘 )  and 𝑄(𝑥𝑀

𝑘 )  for 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘 . The 

algorithm proceeds in this manner until the stopping criterion is satisfied (see Theorem 5 in the 

following subsection). 

3.2.2. Convergence of SD-VI-mNCG 

Theorem 1b. 𝜆𝑗
𝑘 solves Master − VI𝑚𝑁𝐶𝐺

𝑘 (𝐺, Λ𝑚𝑁𝐶𝐺
𝑘 ) iff there exist 𝜆𝑗

𝑘 ∈ 𝑅+
𝑘×𝑗

 and 𝜃𝑗
𝑘 ∈ 𝑅 such that 

all of the following relations hold: 

𝑋𝑚𝑁𝐶𝐺
𝑘 𝑇

𝐺(𝑋𝑚𝑁𝐶𝐺
𝑘 𝜆𝑗

𝑘) + 𝑒𝑘×𝑗𝜃𝑗
𝑘 = 0, 
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𝑒𝑘×𝑗𝜆𝑗
𝑘 − 1 = 0, 

𝜆𝑗
𝑘𝑇 (𝑋𝑚𝑁𝐶𝐺

𝑘 𝑇
𝐺(𝑋𝑚𝑁𝐶𝐺

𝑘 𝜆𝑗
𝑘) + 𝑒𝑘×𝑗𝜃𝑗

𝑘) = 0. 

Theorem 2b. Given the property 𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘 ) . If 𝑥𝑀

𝑘   solves any one of 𝐽  subproblem: 

𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘 ; 𝛼𝑗), 𝐾), then 𝑥𝑀
𝑘  solves 𝑉𝐼(𝐺, 𝐾). 

Proof. Ref. new Theorem 4 in Chung and Fuller [20]. 

Suppose that 𝑥𝑀
𝑘   solves the 𝑗𝑡ℎ  subproblem, 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗

𝑘 . It follows that 𝐺̃(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗)
𝑇
(𝑥 −

𝑥𝑀
𝑘 ) ≥ 0 ∀𝑥 ∈ 𝐾 . As 𝐺̃𝑗(𝑥𝑀

𝑘 , 𝑥𝑀
𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀

𝑘 ) , I have 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥 − 𝑥𝑀

𝑘 ) ≥ 0 ∀𝑥 ∈ 𝐾  and I may 

conclude that 𝑥𝑀
𝑘  solves 𝑉𝐼(𝐺, 𝐾). 

Theorem 3b. Assume that 𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗)  is strictly monotone in 𝑥 . Given the property 

𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘 ). If any 𝐶𝐺𝑗

𝑘 = 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ) ≥ 0, then 𝑥𝑀
𝑘  solves 𝑉𝐼(𝐺, 𝐾). 

Proof. Ref. new Theorem 6(a) of Chung and Fuller [20]. 

We shall show that if 𝑥𝑀
𝑘  does not solve 𝑉𝐼(𝐺, 𝐾), then 𝐶𝐺𝑘 < 0. By Theorem 2b, 𝑥𝑀

𝑘 ≠ 𝑥𝑆𝑗
𝑘 , and 

since 𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗) = 𝐺(𝑥𝑀
𝑘 ) , strict monotonicity of 𝐺̃𝑗(𝑥𝑀

𝑘 ; 𝑥𝑀
𝑘 ; 𝛼𝑗)  implies that (𝐺(𝑥𝑀

𝑘 ) −

𝐺̃𝑗(𝑥𝑀
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗))
𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆𝑗

𝑘+1) > 0. Since 𝑥𝑆𝑗
𝑘  solves 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗

𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑗), 𝐾), it follows that 

𝐺̃𝑗(𝑥𝑆𝑗
𝑘 ; 𝑥𝑀

𝑘 ; 𝛼𝑗)
𝑇
(𝑥𝑀
𝑘 − 𝑥𝑆𝑗

𝑘 ) ≥ 0. Adding this last inequality to the strict inequality and multiplying 

by -1 yields 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ) = 𝐶𝐺𝑗
𝑘 < 0. 

Theorem 5. Let 𝛼𝑗 > 𝛼𝑗−1 > ⋯ > 𝛼1 > 0 and let 𝑧𝑗
𝑘 be the optimal value of objective function of the 

subproblem 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘. Then 𝑧𝑗

𝑘 ≥ 𝑧𝑗−1
𝑘 ≥ ⋯ ≥ 𝑧1

𝑘, and 𝐶𝐺𝑗
𝑘 ≥ 𝐶𝐺𝑗−1

𝑘 ≥ ⋯ ≥ 𝐶𝐺1
𝑘, where 𝐶𝐺𝑗

𝑘 =

𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ). 

Proof. For any subproblem 𝑖 , let 𝑥𝑆 𝑖
𝑘   solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑖

𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀
𝑘 ; 𝛼𝑖), 𝐾) , and let 𝑧𝑖

𝑘(𝑥𝑆𝑖
𝑘 )  be the 

corresponding objective value. That is, 𝑧𝑖
𝑘 = 𝐺(𝑥𝑀

𝑘 )
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ).  As 

𝑥𝑆 𝑖+1
𝑘  is another feasible solution, it follows that 𝐺(𝑥𝑀

𝑘 )
𝑇
𝑥𝑆 𝑖+1
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖+1
𝑘 −

𝑥𝑀
𝑘 ) ≥ 𝐺(𝑥𝑀

𝑘 )
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) . Since 𝛼𝑖+1 > 𝛼𝑖  for all 𝑗 , I have 

𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥𝑆 𝑖+1
𝑘 +

𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 ) ≥ 𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥𝑆 𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 −

𝑥𝑀
𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) . That is 𝑧𝑖+1
𝑘 ≥ 𝑧𝑖

𝑘 . Adding (−𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑀
𝑘 ))  in both sides, I have 

𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 ) +
𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 ) ≥ 𝐺(𝑥𝑀
𝑘 )
𝑇
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) +
𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 −

𝑥𝑀
𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) . It implies 𝐶𝐺𝑖+1
𝑘 +

𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 ) ≥ 𝐶𝐺𝑖
𝑘 +

𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) . When 𝑥𝑀
𝑘   solve 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑖+1

𝑘  , 𝑥𝑀
𝑘 = 𝑥𝑆 𝑖+1

𝑘   and 
𝛼𝑖+1

2
(𝑥𝑆 𝑖+1
𝑘 −

𝑥𝑀
𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖+1
𝑘 − 𝑥𝑀

𝑘 ) = 0. Then, 𝐶𝐺𝑖+1
𝑘 ≥ 𝐶𝐺𝑖

𝑘 +
𝛼𝑖

2
(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥𝑆 𝑖
𝑘 − 𝑥𝑀

𝑘 ) ≥ 𝐶𝐺𝑖
𝑘. 

With Theorem 4, the stopping condition can be defined by 𝐶𝐺𝑗
𝑘 = 𝐺(𝑥𝑀

𝑘 )
𝑇
(𝑥𝑆𝑗
𝑘 − 𝑥𝑀

𝑘 ) . In 

addition, it should be noted that the SD-VI-mNCG can be easily reduced to SD-NLP-mNCG for 

nonlinear programming by replacing the Master − VI𝑚𝑁𝐶𝐺
𝑘 (𝐺, 𝐾𝑚𝑁𝐶𝐺

𝑘 )  with Master −

NLP𝑘 (𝐺,𝐾𝑚𝑁𝐶𝐺
𝑘

) in the Subsection 2.3. 
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4. Empirical results of SD with multiple NCG 

In my implementation, the test models, the column generation algorithms, and the reference 

algorithm without column generation are coded into GAMS programs, executed on a PC with Intel 

Processor (12th Gen Core i7-12700, 2100 Mhz, 12 Core(s), 20 Logical Processors and 16 GB RAM. 

The reference algorithm is a relaxation algorithm [29] by which the test models are solved so that I can 

have reference results for evaluating the accuracy and speed of the column generation algorithms. The 

master problem is also solved by the same relaxation algorithm. Each iteration of the relaxation 

algorithm is a nonlinear programming (NLP) calculation. For all models solved by SD-VI method, in 

the first subproblem at step 𝑘 = 1, the initial values of 𝐺(𝑥𝑀
1 ) and 𝛼𝑗 are arbitrarily set to 10 and 0, 

respectively, which produces first proposals that ignore the nonlinear column generation component. 

In the relaxation method for the reference calculations, the first NLP also has the initial values of all 

𝑥𝑀 are set to 10. 

For all column generation calculations, I set the convergence tolerance 𝜀 = 0.000001, except 

where noted. The relaxation iterations of the restricted master problems and the reference method, and 

all subproblems, except subproblems with 𝛼𝑗 = 0, are solved by CONOPT 3 called from GAMS. The 

subproblems with 𝛼𝑗 = 0 are linear programs that are solved by CPLEX. It should be noted that the 

SD-VI-mNCG with 𝛼𝑗 = 0 reduces to the SD-VI method of [26]. The SD-VI-mNCG with one NCG 

and 𝛼𝑗 = 0.5 reduces to the SD-VI-NCG method of [28]. 

In the calculations, many similar optimization problems are solved repeatedly: The subproblem, 

a sequence of optimization problems related to the restricted master problem, and another related to 

the reference algorithm; except for the first time, each time an optimization calculation is done, it is 

started from the last solution in order to reduce computation time. This process is not used in the 

multiple column generation method since I assume that each nonlinear column generation subproblem 

is implemented in a server individually and all these subproblems are solved in parallel. 

To summarize, even if a column generation algorithm takes more time than no column generation 

algorithm (the relaxation algorithm), there can be an advantage to a column generation approach, in 

model development. However, if column generation takes a very large amount of time, then such an 

advantage might not be worthwhile. Therefore, I am interested in tests that measure the time of column 

generation, compared with no column generation, and in variants of multiple column generation 

algorithms that may run in shorter times. 

4.1. A simple example (NEW) 

An example is Example 2 of Nagurney and Dhanda [30], a VI problem of a multiproduct 

multipollutant oligopolistic market model (MMOM-VI) with ambient-based pollution permits and 

transaction costs. In this model, 𝑚 firms or sources of pollution, 𝑟 pollutants emitted by the firms, and 

𝑛 receptor points exist. I also let 𝑒𝑖
𝑡 be the amount of pollutant 𝑡 emitted by firm 𝑖, 𝑙𝑖𝑗

𝑡  be the number 

of licenses for pollutant 𝑡 at receptor point 𝑗 held by firm 𝑖, 𝑙𝑖𝑗
𝑡0 be the initial allocation of licenses made 

by a regulatory agency and 𝑝𝑗
𝑡 be the price of the licenses for pollutant 𝑡 that affects receptor point 𝑗. 

The cost of purchasing licenses for specific pollutant 𝑡 that affects receptor point 𝑗 for source 𝑖 is 

given by ∑ 𝑝𝑗
𝑡∗(𝑙𝑖𝑗

𝑡 − 𝑙𝑖𝑗
𝑡0)𝑛

𝑗=1 , where 𝑝𝑗
𝑡∗ is the market clearing price determined by the VI. 

Each firm 𝑖 in the oligopoly is faced with cost 𝑓𝑖 for producing the vector of quantities 𝑞𝑖, where 

𝑓𝑖 = 𝑓𝑖(𝑞𝑖) = ∑ [𝑐𝑖𝑑𝑞𝑖𝑑 +
𝛽𝑖𝑑

𝛽𝑖𝑑+1
𝐾𝑖𝑑
−1/𝛽𝑖𝑑𝑞𝑖𝑑

(𝛽𝑖𝑑+1)/𝛽𝑖𝑑]𝑠
𝑑=1 , 
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and 𝑞𝑖𝑑= the quantity of product 𝑑 produced by firm 𝑖. 

Each firm i in the region is also faced with joint-cost 𝑔𝑖 , where 𝑔𝑖 = 𝑔𝑖(𝑒𝑖 , 𝑞𝑖) =

∑ [𝑔1𝑖𝑡(𝑒𝑖
𝑡)2 + 𝑔2𝑖𝑡𝑒𝑖

𝑡 + 𝑔4𝑖𝑡]
𝑟
𝑡=1 + ∑ 𝑔3𝑖𝑡

𝑠
𝑑=1 𝑞𝑖𝑑. 

The transaction cost function employed by firm 𝑖 for pollutant t at receptor point 𝑗 was of the 

form 𝑐𝑖𝑗
𝑡 = 𝑐𝑖𝑗

𝑡 (𝑙𝑖𝑗
𝑡 ) = ∅1𝑖𝑗𝑡(𝑙𝑖𝑗

𝑡 )
2
+ ∅2𝑖𝑗𝑡𝑙𝑖𝑗

𝑡 + 𝛼𝑖𝑗𝑡. 

The firms are oligopolistic in their product markets, and they affect the prices of the outputs. The 

price of product 𝑑 is denoted by 𝜌𝑑 = 𝜌𝑑(∑ 𝑞𝑖𝑑
𝑚
𝑖=1 ). 

Then, I can have the MMOM-VI model shown below. 

MMOM-VI: Find (𝑞𝑖𝑑
∗ , 𝑒𝑖

t∗, 𝑙𝑖𝑗
t∗) ∈ 𝐾𝑞,𝑒,𝑙 such that 

∑∑[
𝜕𝑓𝑖(𝑞𝑖

∗)

𝜕𝑞𝑖𝑑
+
𝜕𝑔𝑖(𝑒𝑖

∗, 𝑞𝑖
∗)

𝜕𝑞𝑖𝑑
−
𝜕𝜌𝑑(∑ 𝑞𝑖𝑑

∗𝑚
𝑖=1 )

𝜕𝑞𝑖𝑑
𝑞𝑖𝑑
∗ − 𝜌𝑑 (∑𝑞𝑖𝑑

∗

𝑚

𝑖=1

)]

𝑠

𝑑=1

𝑚

𝑖=1

× [𝑞𝑖𝑑 − 𝑞𝑖𝑑
∗ ] 

+∑ ∑
𝜕𝑔𝑖(𝑒𝑖

∗,𝑞𝑖
∗)

𝜕𝑒𝑖
𝑡 × [𝑒𝑖

𝑡 − 𝑒𝑖
t∗]𝑟

𝑡=1
𝑚
𝑖=1 +∑ ∑ ∑

𝑐𝑖𝑗
𝑡 (𝑙𝑖𝑗

𝑡∗)

𝜕𝑙𝑖𝑗
𝑡 × [𝑙𝑖𝑗

𝑡 − 𝑙𝑖𝑗
𝑡∗]𝑛

𝑗=1
𝑟
𝑡=1

𝑚
𝑖=1 ≥ 0, 

∀(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡 ) ∈ 𝐾𝑞,𝑒,𝑙 = {(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡 )|, 

𝑙𝑖𝑗
𝑡 − ℎ𝑖𝑗

𝑡 𝑒𝑖
𝑡 ≥ 0         ∀𝑗, 𝑡, 

∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1 − ∑ 𝑙𝑖𝑗
𝑡𝑚

𝑖=1 ≥ 0          (𝑝𝑗
𝑡)             ∀𝑗, 𝑡, 

(𝑞𝑖𝑑, 𝑒𝑖
𝑡 , 𝑙𝑖𝑗

𝑡 ) ≥ 0     ∀𝑑, 𝑗, 𝑡}, 

where ∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1  is the environmental quality standard, and ℎ𝑖𝑗
𝑡  denotes the contribution of one unit of 

emission by source 𝑖  to the average pollutant concentration of type 𝑡  at receptor point 𝑗 . All the 

parameters and the reference results can be found in the online appendix of [30]. For convenience, 

they are given in the Appendix of the current paper. 

Similarly, I adopt 𝑄(𝑥𝑀) = diag 𝛻𝐺(𝑥𝑀). That is, let 𝑥𝑀 = (𝑞𝑖𝑑𝑀, 𝑒𝑖𝑀
𝑡 , 𝑙𝑖𝑗𝑀

𝑡 ), and I have 

𝑄(𝑞𝑖𝑑𝑀, 𝑒𝑖𝑀
𝑡 , 𝑙𝑖𝑗𝑀

𝑡 ) = 

(

 
 
 
 
 
 
 ∑∑[

1

𝛽𝑖𝑑
𝐾
𝑖𝑑

−
1
𝛽𝑖𝑑𝑞

𝑖𝑑𝑀

(
1
𝛽𝑖𝑑

−1)

− 𝜌𝑑
1
1.1𝑞𝑖𝑑𝑀 (

2.1

(1.1)2
) (∑𝑞𝑖𝑑𝑀

𝑚

𝑖=1

)

−3.2
1.1

+
2

1.1
𝜌𝑑

1
1.1
(∑𝑞𝑖𝑑𝑀

𝑚

𝑖=1

)

−2.1
1.1

]

𝑠

𝑑=1

𝑚

𝑖=1

,

∑∑2 ∗ 𝑔1𝑖𝑡

𝑟

𝑡=1

𝑚

𝑖=1

,

∑∑∑2 ∗ ∅1𝑖𝑗𝑡

𝑛

𝑗=1

𝑟

𝑡=1

𝑚

𝑖=1

,
)

 
 
 
 
 
 
 

 

which is added to the subproblem and the 𝑲 = 𝐾𝑞,𝑒,𝑙. 

Table 1 summarises the performance of SD-VI-NCG(x) and SD-VI-mNCG of MMOM-VI, in 

which the first column provides the names of the models. Ref_method is the reference method, which 

is the relaxation algorithm. SD-VI-NCG(α/2) is the method of simplicial decomposition with one 

NCG of α/2. For instance, SD-VI-NCG(0.5) is the SD-VI-NCG with α/2 = 0.5. The last two rows of 

Table 1 present the performance of SD-VI-mNCG. I use m=3, 5 to represent how many NCG 



14630 

AIMS Mathematics  Volume 9, Issue 6, 14618–14639. 

subproblems are used. For example, SD-VI-3NCG(0.1, 0.3, 0.5) consists of three subproblems with 

α/2 = 0.1, 0.3, and 0.5. It is interesting that all two SD-VI-mNCG methods use the smallest number 

of decomposition steps, 7. However, there is no conclusive result in terms of computational 

performance. The last column of Table 1 shows the stopping condition mentioned in Theorem 5 that 

the SD-VI was terminated by the subproblem with the largest value of α/2. 

Table 1. Performance of SD-VI-NCG(x) and SD-VI-mNCG of MMOM-VI. 

Methods Dstep Time(M) Time(S)* Time(T) Stopped by NCG 

Ref_method    0.222  

SD-VI [26] 16 1.484 0.032 1.516 n.a. 

SD-VI-NCG(0.1) 10 0.808 0.125 0.933 n.a. 

SD-VI-NCG(0.3) 8 0.482 0.063 0.545 n.a. 

SD-VI-NCG(0.5) [28] 10 0.424 0.110 0.534 n.a. 

SD-VI-3NCG(0.1,0.3,0.5) 7 0.499 0.095 0.594 NCG(0.5) 

SD-VI-5NCG(0.1,…,0.5) 7 0.531 0.096 0.627 NCG(0.5) 

* It is considered that all subproblems are solved in parallel, and the greatest iterative solution time of a subproblem is used to calculate 

the total solution time of subproblems. Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution 

time of subproblem in second; Time(T) = solution time of the method in second; Stopped by NCG = the SD-VI terminated by the 

subproblem with the corresponding value of α/2. 

4.2. The test model (was 4.1) 

Since the SD method is usually used for solving transportation network equilibrium problems, I 

use this kind of problems to develop test model. A large-scale real transportation network equilibrium 

problem is used1. The network of this problem represents the extra-urban area of the city of Arezzo 

(Italy). It consists of 213 nodes, 598 arcs and 2423 O/D pairs. The form of the link (𝑖, 𝑗) cost functions 

is asymmetric: 

𝐺(𝑥𝑖𝑗) = 𝑎 ∗ 𝑓𝑖𝑗 + 𝑏 ∗ 𝑓𝑖𝑗 ∗ (
𝑥𝑖𝑗+𝑑∗𝑥𝑗𝑖

𝑐𝑖𝑗
)
𝑝

, 

where 

𝐺(𝑥𝑖𝑗) = Link travel time (𝑖, 𝑗), from node 𝑖 to 𝑗, 

𝑓𝑖𝑗 = free flow time of the link (𝑖, 𝑗), 

𝑐𝑖𝑗 = capacity of the link (𝑖, 𝑗), 

𝑑 = 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.5, 

𝑎, 𝑏, 𝑝 = constant. 

The objective function of the subproblem, 𝑆𝑢𝑏̃ − 𝑁𝐿𝑃𝑗
𝑘(𝐺̃𝑗(𝑥; 𝑥𝑀

𝑘−1; 𝛼𝑗), 𝐾), is 

𝐺(𝑥𝑀
𝑘 )
𝑇
𝑥 +

𝛼𝑗

2
(𝑥 − 𝑥𝑀

𝑘 )
𝑇
𝑄(𝑥𝑀

𝑘 )(𝑥 − 𝑥𝑀
𝑘 ), 

 
1 https://pages.di.unipi.it/passacantando/test_networks.html. 
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where I adopt 𝑄(𝑥𝑀
𝑘 ) = diag 𝛻𝐺(𝑥𝑀

𝑘 ). That is, 

𝑄(𝑥𝑀
𝑘 ) =

𝑏∗𝑓𝑖𝑗∗𝑝

𝑐
∗ (

𝑥𝑀,𝑖𝑗
𝑘 +𝑑∗𝑥𝑀,𝑗𝑖

𝑘

𝑐
)
𝑝−1

, 

with different 𝛼𝑗, I can have different nonlinear column generation subproblems. 

We first provide the computational performance results of SD-NLP with multiple NCG, and then 

the results of SD-VI with multiple NCG. For having SD-NLP test model, I set the asymmetric factor 

d=0. 

4.3. Performance of SD with multiple NCG for NLP (was 4.2) 

In this subsection, I report the solution time of simplicial decomposition with one NCG 

subproblem of NLP. Table 2 summarises the computational performance of SD-NLP-NCG, in which 

the first column provides the names of the models. SD-NLP-NCG(α/2) is the method of simplicial 

decomposition with one NCG of α/2. For instance, SD-NLP-NCG(0.5) is the SD-NLP-NCG with 

α/2 = 0.5 . Hence, SD-NLP-NCG(0) is the simple SD-NLP with LP subproblem, and SD-NLP-

NSD(0.5) is the one in Larsson et al. [28]. From Table 2, the empirical result shows that the 

decomposition steps taken by SD-NLP is 87, which is expected and much higher than any SD-NLP-

NCG methods with α/2 = 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0. The range of the decomposition steps is 8 

to 22.  The SD-NLP-NCG with α/2 =0.4 provides the best performance in terms of the number of 

decomposition steps, 8. However, there is no clear relationship between the number of decomposition 

steps and the total solution time while changing the value of α. On the other hand, the fastest method 

is SD-NLP-NCG(0) because its subproblem is an LP solved by CPLEX, which is one of the fastest LP 

solvers. It is noted that SD-NLP-NCG(0) is a simple SD-NLP, and it takes more time to solve its master 

NLP problem comparing with other methods with different values of α . It implies that SD-NLP-

NCG(0) may not be the fastest if a larger model incurs a larger number of generated columns in the 

master problem. 

Table 2. Computational performance of SD-NLP-NCG and SD-NLP-mNCG. 

Method  Dstep Time(M) Time(S) Time(T) 

Ref_method    84.797 

SD-NLP [26] 87 2.129 17.359 19.488 

SD-NLP-NCG(0.1) 18 0.454 107.488 107.942 

SD-NLP-NCG(0.2) 11 0.154 203.720 203.874 

SD-NLP-NCG(0.3) 10 0.190 267.908 268.098 

SD-NLP-NCG(0.4) 8 0.140 198.733 198.873 

SD-NLP-NCG(0.5) [28] 9 0.172 222.281 222.453 

SD-NLP-NCG(1.0) 22 0.356 276.747 277.103 

SD-NLP-3NCG(0.1,0.3,0.5) 6 0.125 182.187 182.312 

SD-NLP-5NCG(0.1,…,0.5) 6 0.467 229.782 230.249 

SD-NLP-10NCG(0.1,…,1.0) 6 0.156 891.548 891.704 

* Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution time of subproblem in second; 

Time(T) = solution time of the method in second. 

The last three rows of Table 2 present the performance of SD-NLP-mNCG. I use m=3, 5, and 10 

to represent how many NCG subproblems are used. For example, SD-NLP-3NCG(0.1, 0.3, 0.5) 
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consists of three subproblems with α/2 = 0.1, 0.3, and 0.5. All three SD-NLP-mNCG methods use 

fewer decomposition steps, as expected, than SD-NLP-NCG. It is interesting that all three SD-NLP-

mNCG methods use 6 decomposition steps, which may imply that computational performance of SD-

NLP-mNCG does not rely on the number of subproblems. 

4.4. Performance of SD with multiple NCG for VI (was 4.3) 

In this subsection, I report the solution time of simplicial decomposition of VI with one NCG 

subproblem, which is similar to the one in Larsson et al. [28]. Table 3 summarizes the computational 

performance of SD-VI-NCG(x). This empirical result shows that the SD-VI-NSD with α/2 =0.3 

provides the best performance in terms of the number of decomposition steps, 13. It is expected that 

the number of decomposition steps of SD-VI-NSD(α/2) is much smaller than that of SD-VI, 152, as 

discussed in Larsson et al. [28]. Like the SD-NLP-NCG results, there is no clear relationship between 

the number of decomposition steps and the total solution time while changing the value of α. On the 

other hand, the fastest method is SD-VI because its subproblem is an LP solved by CPLEX. It is noted 

that SD-VI takes more time to solve its master VI problem. It implies that SD-VI may not be the fastest 

if a larger model incurs a larger number of generated columns in the master problem. 

Table 3. Computational performance of SD-VI-NCG(x). 

Method  Dstep Time(M) Time(S) Time(T) 

Ref_method    117.517 

SD-VI [26] 152 46.419 30.422 76.841 

SD-VI-NCG(0.1) 23 5.307 259.453 264.760 

SD-VI-NCG(0.2) 15 3.656 236.845 240.501 

SD-VI-NCG(0.3) 13 3.266 358.343 361.609 

SD-VI-NCG(0.4) 16 2.094 261.173 263.267 

SD-VI-NCG(0.5) [28] 17 0.705 298.846 299.551 

SD-VI-NCG(1.0) 37 1.051 316.221 317.272 

* Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution time of subproblem in second; 

Time(T) = solution time of the method in second. 

Table 4 reports the solution time of simplicial decomposition with multiple NCG subproblems 

(SD-VI-mNCG). That is, in each iteration of the SD-VI, there are a number of NCG subproblems with 

different values of α/2. I first use three NCG subproblems for my test model. Table 4 summarises the 

computational performance of SD-VI-3NCG with nine sets of α/2 . For example, SD-VI-3NCG 

(0.1,0.2,0.3) consists of three subproblems with α/2 = 0.1, 0.2, and 0.3. As expected, on average, SD-

VI-3NCG uses fewer decomposition steps than SD-VI-NSD. The range of decomposition steps of SD-

VI-3NCG is 11 to 13, while SD-VI-NCG is 13 to 23 shown in Table 3. Moreover, it is observed that 

the number of decomposition steps exploited in SD-VI-3NCG is more stable. I further use five NCG 

subproblems, with α/2  = 0.1, 0.2, 0.3, 0.4, and 0.5, (SD-VI-5NCG(0.1,…,0.5)), the resulting 

decomposition steps is 13, in the range of 11–13. 11 decomposition steps are also used in ten NCG 

subproblems with α/2 = 0.1,0.2,…, and 1.0, (SD-VI-5NCG(0.1,…,0.5)). 

 

 

 



14633 

AIMS Mathematics  Volume 9, Issue 6, 14618–14639. 

Table 4. Computational performance of SD-VI-mNCG, m=3, 5, and 10. 

Methods Dstep Time(M) Time(S)* Time(T) Stopped by NCG 

SD-VI-3NCG(0.1,0.2,0.3) 12 2.555 378.484 381.039 NCG(0.3) 

SD-VI-3NCG(0.1,0.2,0.4) 12 2.686 383.442 386.108 NCG(0.4) 

SD-VI-3NCG(0.1,0.2,0.5) 12 2.461 556.939 559.400 NCG(0.5) 

SD-VI-3NCG(0.1,0.3,0.4) 13 2.964 380.704 383.668 NCG(0.4) 

SD-VI-3NCG(0.1,0.3,0.5) 12 2.824 506.611 509.435 NCG(0.5) 

SD-VI-3NCG(0.1,0.4,0.5) 12 2.487 308.468 310.955 NCG(0.5) 

SD-VI-3NCG(0.2,0.3,0.4) 12 2.842 409.687 412.529 NCG(0.4) 

SD-VI-3NCG(0.2,0.3,0.5) 11 2.533 448.810 451.343 NCG(0.5) 

SD-VI-3NCG(0.2,0.4,0.5) 11 2.584 503.531 506.115 NCG(0.5) 

SD-VI-3NCG(0.3,0.4,0.5) 13 2.273 585.607 587.880 NCG(0.5) 

SD-VI-5NCG(0.1,…,0.5) 11 2.560 441.654 444.214 NCG(0.5) 

SD-VI-10NCG(0.1,…,1.0) 11 2.901 2004.108 2007.009 NCG(1.0) 

* It is considered that all subproblems are solved in parallel, and the greatest iterative solution time of a subproblem is used to calculate 

the total solution time of subproblems. Dstep = decomposition step; Time(M) = solution time of Master-VI in second; Time(S) = solution 

time of subproblem in second; Time(T) = solution time of the method in second; Stopped by NCG = the SD-VI terminated by the 

subproblem with the corresponding value of α/2. 

Remarks on using the CONOPT solver: Solvers, the MINOS and the PATHNLP cannot find 

the solution after 8 hours. The CONOPT solver can obtain solutions within an hour in all cases. When 

the CONOPT solver generates a “feasible” solution to the subproblem, not an optimal solution, in 

particular, in the first few iterations, the corresponding CG cannot be used for the stopping criterion. 

In implementing the multiple subproblem cases, there are two phases. The first phase is to allow 

a few subproblems to generate infeasible, feasible, or optimal solutions due to the capacity of CONOPT. 

When any subproblem generates an infeasible solution in an iteration, I use its previous solution 

obtained from the previous iteration to substitute this infeasible solution. By doing so, a set of feasible 

solutions can be obtained in each iteration until all subproblems obtain their optimal solutions and 

thereafter, which is the second phase and follows my theoretical results. 

4.5. Re-optimization performance (was 4.4) 

For studying the re-optimization performance of the SD-VI-mNCG, the asymmetric parameter d 

of the test model (see Subsection 4.1) is changed to 0.6 from 0.5. There are three approaches, SD-

VI_(0.6), Final_soln(0.5)_(0.6), and All_soln(0.5)_(o.6), to re-optimization analysis of different multi-

subproblem methods. 

(1) SD-VI_(0.6): Use the exiting coding of SD-VI-NCG(x), where x=0, 0.1, 0.3, 0.5, and 1.0, with 

new d=0.6, as reference result. 

(2) Final_soln(0.5)_0.6: Use the previous final solution obtained from d=0.5 as the feasible starting 

point to run the re-optimization process for the model with new d=0.6. 

(3) All_soln(0.5)_(0.6): Use all previous proposals with d=5 to start the re-optimization process with 

new d=0.6. 

Table 5 summarizes the computational results. As expected, Approach 3, All_soln(0.5)_(0.6), 

used the smallest decomposition steps in all methods. With Approach 3, the decomposition steps of 

SD-VI-5NSD is 8, which is smaller than the decomposition steps of SD-VI-NSD(x), ranging from 10 
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to 23. 

Table 5. Re-optimization performance of SD-VI-NCG(x) and SD-VI-5NCG. 

Method Approach Decomp 

Steps 

Time 

(Master) 

Time 

(Subproblem) 

Time 

(Total) 

SD-VI [26] SD-VI_(0.6) 149 52.693 30.255 82.948 

Final_soln(0.5)_0.6 157 64.549 31.217 95.766 

All_soln(0.5)_(0.6) 128 67.091 26.051 93.142 

SD-VI-NCG(0.1) SD-VI_(0.6) 33 9.024 241.580 250.604 

Final_soln(0.5)_0.6 20 4.066 141.748 145.814 

All_soln(0.5)_(0.6) 15 5.008 31.955 36.963 

SD-VI-NCG(0.3) SD-VI_(0.6) 18 5.703 309.780 315.483 

Final_soln(0.5)_0.6 14 3.455 182.830 186.285 

All_soln(0.5)_(0.6) 10 2.635 17.156 19.791 

SD-VI-NCG(0.5) [28] SD-VI_(0.6) 24 1.421 272.547 273.968 

Final_soln(0.5)_0.6 18 1.845 309.125 311.970 

All_soln(0.5)_(0.6) 14 1.350 17.640 18.990 

SD-VI-NCG(1.0) SD-VI_(0.6) 50 1.623 391.047 392.670 

Final_soln(0.5)_0.6 34 1.190 478.035 479.225 

All_soln(0.5)_(0.6) 23 0.713 18.547 19.260 

SD-VI-5NCG(0.1,…,0.5) SD-VI_(0.6) 10 1.961 322.283 324.244 

Final_soln(0.5)_0.6 13 4.138 439.282 443.420 

All_soln(0.5)_(0.6) 8 2.410 18.786 20.786 

4.6. A comparison summary of the method SD-VI-mNCG, SD-VI, and SD-VI-NCG 

Table 6 summarized the performance of the method SD-VI-mNCG, the SD-VI of 

Lawphongpanich and Hearn [26], and the SD-VI-NCG(0.5) of Larsson et al. [28]. In terms of column 

generation steps, SD-VI-mNCG is always smaller than SD-VI and SD-NCG. In terms of computational 

performance, for the model MMOM, the methods with NCG are faster than the SD-VI. However, SD-

VI is the fastest method for the model Arezzo. As mentioned above, SD-VI takes more time to solve 

its master VI problem. It implies that SD-VI may not be the fastest if a larger model incurs a larger 

number of generated columns in the master problem. In short, solving multiple subproblems in each 

SD step can reduce the number of iterations. There is no conclusive result for the computational 

performance. Similar performance results are found in the re-optimization processes. 

Table 6. Comparison of the performance of SD-VI-mNCG, SD-VI, and SD-VI-NCG. 

Methods Dstep Time(M) Time(S)* Time(T) Model 

SD-VI [26] 16 1.484 0.032 1.516 MMOM 

SD-VI-NCG(0.5) 10 0.424 0.110 0.534 MMOM 

SD-VI-3NCG(0.1,0.3,0.5) 7 0.499 0.095 0.594 MMOM 

SD-NLP [26] 87 2.129 17.359 19.488 Arezzo 

SD-NLP-NCG(0.5) [28] 9 0.172 222.281 222.453 Arezzo 

SD-NLP-3NCG(0.1,0.3,0.5) 6 0.125 182.187 182.312 Arezzo 

SD-VI [26] 152 46.419 30.422 76.841 Arezzo 

SD-VI-NCG(0.5) [28] 17 0.705 298.846 299.551 Arezzo 

SD-VI-3NCG(0.1,0.3,0.5) 12 2.824 506.611 509.435 Arezzo 
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4.7. Other practical examples 

The simple example of a multiproduct multipollutant oligopolistic market model in 

Subsection 4.1 and the application of transportation network equilibrium problems in Subsection 4.2 

are practical examples of directly applying the SD-VI-mNCG to the problem. Indeed, the SD-VI-

mNCG can be used in some combined methods that solve part of the problems. For example, Sharma 

et al. [31] developed a method combining the simplicial decomposition, gauss-seidel, and the 

augmented Lagrangian to solve the coordination problem of the optimal power and traffic flows with 

EVs. Wang et al. [32] employed SD in their combined method to have a parallel decentralized solution 

for multi-regional unit commitment with convex AC power flow constraints. It should be noted that 

the constraint sets of SD-VI-mNCG can be convex constraint sets. In addition, the SD-VI-mNCG can 

also be employed to solve stochastic transportation problems [28]. 

5. Conclusions and further research 

In this paper, I derive a simplicial decomposition with multiple nonlinear column generation 

subproblems, which can be applied to nonlinear programming and variational inequalities. I provide 

convergence properties and derive new stopping condition. 

From the computational performance, I generally conclude that for solution methods, simplicial 

decomposition of variational inequalities with multiple nonlinear column generation subproblems 

(SD-VI-mNCG), can perform better than the simplicial decomposition of variational inequalities (SD-

VI) and the SD-VI with a nonlinear column generation subproblem (SD-VI-NCG) in terms of 

decomposition steps. The number of column generation steps is greatly reduced, and the long-tail 

convergence property of SD-VI is alleviated. The same conclusion can be applied to nonlinear 

programming. 

Concerning the selection of the number of subproblems, m, the empirical results show that 3 to 5 

is fine. 

Concerning the selection of the values αj, I use (αj/2)= 1/2 as the reference value by which the 

subproblem becomes diagonalized Newton algorithm. This approach may be beneficial in other 

column generation schemes, like Dantzig-Wolfe decomposition of VI, which is one of further research 

directions. Moreover, employing SD-VI-mNCG for different kind of VI problems, like large-scale 

energy equilibrium problems, can be another research direction. 

On the other hand, since there is no conclusive result for the computational performance, it is 

worthwhile to consider the computational performance as one of the further research topics. For 

instance, I may not need to wait for all subproblems to be solved to move on to the next SD step. The 

calculation framework can be one master problem to m subproblems until one of the subproblems 

solves the VI problem. 
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Appendix 

Parameters and reference results of MMOM-VI. 

For cost function, 𝑓𝑖 = 𝑓𝑖(𝑞𝑖) = ∑ [𝑐𝑖𝑑𝑞𝑖𝑑 +
𝛽𝑖𝑑

𝛽𝑖𝑑+1
𝐾𝑖𝑑
−1/𝛽𝑖𝑑𝑞𝑖𝑑

(𝛽𝑖𝑑+1)/𝛽𝑖𝑑]𝑠
𝑑=1 : 

 𝑐𝑖𝑑 𝐾𝑖𝑑 𝛽𝑖𝑑 

 𝑑1 𝑑2 𝑑1 𝑑2 𝑑1 𝑑2 

𝑖1 2 5 5 4 1.2 1.9 

𝑖2 6 7 3 6 1.9 1.8 

𝑖3 4.9 6.4 2 4 2.5 2.1 

For joint-cost function, 𝑔𝑖 = 𝑔𝑖(𝑒𝑖 , 𝑞𝑖) = ∑ [𝑔1𝑖𝑡(𝑒𝑖
𝑡)2 + 𝑔2𝑖𝑡𝑒𝑖

𝑡 + 𝑔4𝑖𝑡]
𝑟
𝑡=1 + ∑ 𝑔3𝑖𝑡

𝑠
𝑑=1 𝑞𝑖𝑑: 

 𝑔1𝑖𝑡 𝑔2𝑖𝑡 𝑔4𝑖𝑡 𝑔3𝑖𝑑 

 𝑡1 𝑡2 𝑡1 𝑡2 𝑡1 𝑡2 𝑑1 𝑑2 

𝑖1 1.4 1.8 -10 -20 10 14 1.5 1.5 

𝑖2 1.4 2.7 -15 -5 5 15 3.5 2.5 

𝑖3 1.7 2.3 -5 -10 6 2 4.1 3.1 

For transaction cost function, 𝑐𝑖𝑗
𝑡 = 𝑐𝑖𝑗

𝑡 (𝑙𝑖𝑗
𝑡 ) = ∅1𝑖𝑗𝑡(𝑙𝑖𝑗

𝑡 )
2
+ ∅2𝑖𝑗𝑡𝑙𝑖𝑗

𝑡 + 𝛼𝑖𝑗𝑡: 

  𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2 

∅1𝑖𝑗𝑡 𝑖1 0.09 0.05 0.05 0.01 

𝑖2 0.03 0.04 0.09 0.05 

𝑖3 0.07 0.04 0.03 0.06 

∅2𝑖𝑗𝑡 𝑖1 -7 -8 -1 -5 

𝑖2 -8 -7 -5 -8 

𝑖3 -5 -1 -8 -3 

𝛼𝑖𝑗𝑡 𝑖1 0.004 0.009 0.005 0.005 

𝑖2 0.002 0.006 0.003 0.006 

𝑖3 0.004 0.007 0.006 0.009 

For the price functions of product 𝑑: 𝜌𝑑 = 𝜌𝑑(∑ 𝑞𝑖𝑑
𝑚
𝑖=1 ), 𝜌𝑑 = 5000. 

For constraints 𝑙𝑖𝑗
𝑡 − ℎ𝑖𝑗

𝑡 𝑒𝑖
𝑡 ≥ 0: 

  𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2 

ℎ𝑖𝑗
𝑡  𝑖1 0.09 0.05 0.05 0.01 

𝑖2 0.03 0.04 0.09 0.05 

𝑖3 0.07 0.04 0.03 0.06 

For ∑ 𝑙0𝑖𝑗
𝑡𝑚

𝑖=1 − ∑ 𝑙𝑖𝑗
𝑡𝑚

𝑖=1 ≥ 0, 𝑙0𝑖𝑗
𝑡 = 3. 
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Reference results are generated by PIES without a decomposition algorithm: 

 𝑒𝑖
𝑡 𝑞𝑖𝑑 𝑙𝑖𝑗

𝑡  

 𝑡1 𝑡2 𝑑1 𝑑2 𝑗1. 𝑡1 𝑗1. 𝑡2 𝑗2. 𝑡1 𝑗2. 𝑡2 

𝑖1 0 1.439 71.768 83.500 0 7.291 0 7.197 

𝑖2 4.815 0.171 55.595 61.952 8.490 1.709 2.407 1.803 

𝑖3 0.304 0 67.514 61.687 0.510 0 6.593 0 
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