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1. Introduction

Mosquitoes are among the most dangerous active vectors of several diseases such as dengue, Zika,
and malaria [43]. It is endemic in more than 100 countries, particularly in tropical and subtropical
regions, and manifests in various forms, ranging from asymptomatic cases to severe illnesses [33].
The majority of dengue cases, approximately 75%, present as dengue fever (DF), characterized by
symptoms such as high fever, severe headache, joint and muscle pain, and a rash. In certain cases,
dengue fever can advance to more severe conditions such as dengue hemorrhagic fever (DHF) and
dengue shock syndrome (DSS), leading to manifestations of bleeding, organ failure, and a significant
risk of mortality if immediate treatment is not provided [47]. Diagnosing dengue is challenging due to
similarities in symptoms with other febrile illnesses and the need for specialized laboratory testing.
Effective control strategies require integrated approaches that combine vector control measures,
public awareness, early case detection, and a strengthened healthcare system for surveillance and
response [15,45]. Researchers have employed and developed mathematical models with various
objectives to comprehend the intricacies of dengue fever, as documented in
references [4, 16-18, 35, 37,38, 40]. In the works [1, 2, 10, 46, 48], the authors focused on optimal
control strategies for the spread of dengue fever to identify effective measures to mitigate the
transmission of the disease. The aforementioned dengue fever models are expressed in the form of
ordinary integer-order derivatives, which depict the dynamics of dengue infection. However, these
models have limitations as they do not incorporate information about memory and learning
mechanisms. Moreover, exploring the dynamics between two distinct points using models based on
integer-order derivatives can be challenging. Researchers have proposed various alternative models in
fractional orders to address these concerns. These alternative models aim to overcome the limitations
of the traditional models by incorporating memory and learning mechanisms, and by facilitating the
exploration of dynamics between different points.

Atangana and Baleanu have made significant contributions to fractional calculus by introducing
operators based on fractional integrals and derivatives that utilize the Mittag-Leffler function [13].
The utilization of fractional order has proven valuable in studying complex phenomena and has been
applied in various research areas, including disease modeling [6, 14,22, 26, 28, 30, 34,36,41]. These
studies collectively demonstrate the versatility and effectiveness of fractional calculus in elucidating
the dynamics and mechanisms of infectious diseases, paving the way for improved disease
understanding, control, and prevention strategies. Some studies have investigated recent mathematical
models of dengue fever incorporating fractional order and contributed to the understanding of the
dynamics and complexities of dengue infection [5, 19,23,27]. The transmission dynamics of dengue
infection investigated by considering vaccination, treatment, and reinfection using the
Atangana-Baleanu operator have been studied by Jan et al. [29]. Through their analysis, the
researchers observed that the control parameters, including the index of memory, biting rate,
transmission probability, and recruitment rate of mosquitoes, can be manipulated to reduce the
infection intensity [24]. Moreover, in another study [25], the authors demonstrated that manipulating
the index of memory within the system can effectively control the reproduction number and the
endemic level of dengue infection.

Recently, Atangana [11] introduced novel fractal-fractional differential and integral operators,
combining power law, exponential decay law, and generalized Mittag-Leffler law with fractal
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derivatives to address nonlocal natural problems exhibiting fractal behavior [7-9]. In the literature,
there are a few studies of the dengue model in the context of the fractal and fractional operator. For
example, Khan et al. [31] studied the dynamics of dengue infection using fractal-fractional operators
and real statistical data to gain a deeper understanding of the complex dynamics of dengue
transmission by incorporating fractal and fractional approaches into the modeling framework.
Fatmawati et al. [20] studied the dengue model with the fractal-fractional Caputo—Fabrizio operator.
The harmonic mean type plays a significant role in the mathematical modeling of diseases by
facilitating the calculation of incidence rates, capturing transmission dynamics, evaluating control
measures, aiding parameter estimation, and enabling sensitivity analysis. Its inclusion enhances the
accuracy and robustness of disease models, contributing to a better understanding of disease dynamics
and informing public health interventions. There are some researchers studying the harmonic mean
type incidence rate in modeling some diseases such as the smoking model [44], hepatitis B virus
model [49], and the leishmania epidemic model [32].

Inspired by the studies above, our objective is to extend the works [1, 2, 21] and construct a
deterministic compartmental model involving harmonic mean type incidence rate. Our focus is on
examining the effects of personal protection measures and insecticide campaigns (including adulticide
and larvicide) to prevent and control the transmission of dengue fever. This work presents several
novel aspects that contribute to the understanding of dengue disease dynamics. To begin, it introduces
an innovative eight-compartmental (¢, ¢,)-fractal-fractional model (FFM) that allows for a more
detailed representation of the disease transmission process. Furthermore, the incorporation of a
harmonic mean type incidence rate for both human and mosquito populations provides a realistic
depiction of the reciprocal relationship between infected individuals, enhancing the accuracy of the
model. Additionally, the utilization of generalized Mittag-Lefler fractal-fractional derivatives offer a
comprehensive framework for describing the complex dynamics of dengue disease. Finally, the
exploration of the impact of awareness campaigns on dengue transmission dynamics provides
valuable insights into the effectiveness of such interventions in controlling the spread of the disease.

The remainder of this paper is structured as follows: Section 2 provides an introduction to our
model, offering a description of its fractal fractional nature. In Section 3, we introduce the definitions
and important lemmas related to the fractal fractional operator. Section 4 focuses on identifying an
invariant region and analyzing the positivity and boundedness of the model. We also examine the
equilibrium points and calculate the basic reproduction number, denoted as R,. Additionally, the
Lipschitz property and stability of the model are discussed in this section. Section 5 is dedicated to
establishing sufficient conditions for the existence and uniqueness of solutions. In Section 6, we
present a numerical scheme for solving the model, outlining the methodology and algorithms
employed in the numerical analysis. The numerical results and corresponding discussions are
presented in Section 7. Finally, the last section concludes the paper with some final remarks,
summarizing the key contributions of our work and highlighting potential avenues for future research.

2. Description of the model
Here, we investigate a dengue model that incorporates the harmonic mean type incidence rate to

accurately describe the evolutionary dynamics of the disease within the framework of fractal fractional
derivatives. The model can be expressed as follows:
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FPMLDOaS () = © —2b,By (%) - @S (),
LS
FEMLDEE () = 2b,By (ﬁ) - (u+@EQ),

FMLDSPIW) = HE© - (v + @)10),
FRMLDESR () = YL - RO,

FFMLDgMPZA(L) = g (1 - %) SyW+E,O+L @)= (ua +@wa) A,

FFML 1y¢1.42 _ _ 21 S, (v _
Dg Y Sv (L) - ,UAA (L) bvﬂv (I[ (L) + Sv (L)) vav (L) >
FFML ¢1.92 _ 2IW S, () _
Dy™”E, (0 = bvﬁv(—ﬂ ) +5. (L)) (uy + @) E, (1),
FEMLDESL, () = By () - @1 (). @1

with the initial conditions

S0) > 0, EW©) >0, I(0) >0, R(0) > 0,
AO) > 0, S,(0)>0, E,(0) >0, I,0) >0, (2.2)

where © = @P,(1) and ""MEDE¥ s the (¢, ¢,)-fractal-fractional derivation operator equipped with
the fractional order ¢; and fractal order ¢, such that ¢1,¢, € (0,1]. At time ¢, the total human
population P,(¢), is divided into four distinct epidemiological classes, susceptible individuals S(t),
exposed individuals E(:), infectious individuals I(¢) and recovered individuals R(¢), then,
Pu(t) = S() + E() + I(t) + R(¢). Similarly, at time ¢, the total female mosquito population P,(¢) is
divided into three compartments, susceptible mosquitoes S,(t), exposed mosquitoes E,(t) and
infectious mosquitoes I,(¢), then, P,(¢) = S,(t) + E,(t) + I,(). In model (2.1), the total size of the
aquatic mosquito population represented by the epidemiological state A(¢). It is assumed that A(¢) is
proportional to the total human population Pj,(¢), with a constant of proportionality denoted as k
see [3,39]. Therefore, the relationship between A(¢) and P, (¢) can be expressed as A(t) = kP,(¢). The
constant k determines the scaling factor or the ratio between the aquatic mosquito population and the
human population. It captures the relationship between the two populations within the model
framework. By incorporating this relationship, the model considers the dependence of the mosquito
population on the availability of suitable aquatic habitats provided by the human population. This
assumption recognizes the role of human activities and environmental factors in creating breeding
sites for mosquitoes and influencing their population dynamics. Similarly, P,(¢) = mP,(¢) for some
constant m see [3,39]. The parameter © is the recruitment rate of humans. The mosquitoes bite the
susceptible humans, and they are infected at the rate of 25,8y (Hﬂ(fglss(ﬁ)), where b, is the rate at which
mosquitoes bite humans and Sy is the probability of dengue fever transmission from infectious
mosquitoes to susceptible humans. The infected humans after being bitten by the sand fly infect the
sandflies at the rate b,3, (ﬁgﬂii‘(&) , where b, is the rate at which mosquitoes bite humans and g, is the
probability of dengue fever transmission from infectious humans to susceptible mosquitoes. The
remainder of the parameters in the model are defined as follows:
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e y: The rate at which humans recover from dengue fever.

° wl‘ The average lifespan of humans.

e 1: The rate at which exposed humans progress to the infectious stage of dengue fever.
. The rate at which exposed mosquitoes progress to the infectious stage of dengue fever.
mlv: The average lifespan of female mosquitoes.

w,: The natural mortality rate of mosquito larvae.

wp: The rate at which female mosquitoes lay eggs (per capita oviposition rate).

s The rate at which mosquito larvae mature into female mosquitoes.

e k: The number of larvae per human.

e K: The maximum capacity of larvae per capita.

e m: The number of female mosquitoes per human.

The parameters used in the model play a crucial role in capturing the dynamics of disease
transmission and population growth of both humans and mosquitoes. These parameters represent
various biological and epidemiological factors that influence the spread and progression of dengue
fever. By incorporating these factors into the model, we can thoroughly explore the interactions
between human and mosquito populations, considering important factors such as mosquito feeding
preferences, the effectiveness of control measures, and human mobility patterns.

3. Preliminaries

In this section, we present the necessary definitions and fundamental auxiliary results that are
crucial for comprehending the fractal-fractional derivatives and integrals in the Caputo sense with the
generalized Mittag-Leffler kernel. Let = [0,T] Cc R, and & = C (j X Ri,l&) be a Banach space
with the following norm

14l IS,E, LR, A, S, E,, Ll

max {ISOI+ [E@] + I + RO + [A@] + Sy @] + [Ey(0] + LW},

where (S,E, LR, A, S,,E,,I,) € &

Definition 3.1. [11] Let (0,T),T > 0 be an open interval, and let U(¢) be a differentiable function in
(0,T). If U is fractal differentiable on (0, T) with order ¢,, then the fractal-fractional derivative of a
function U of order ¢, in Caputo sense with the generalized Mittag-Leffler kernel is given by

M(p1) d ' —
FFMLN$1.92 _ Y
Dy U@ = =g ds” ), U(s)E,, o (t— 95" \ds,

where M(¢1) = 1—¢; + %Sﬁll).

Definition 3.2. [11] If U(v) is a continuous function in (0, T), then the fractal-fractional integral of U
with order ¢, is defined by

(1 — e 10 L 2

‘ 1l W <P1—1U ds.
M(gr) Mgy J, & T s

FFMLIgl»QDzU(L) —
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4. Fundamental characteristics of the model (2.1)

Identifying the invariant region and analyzing solution positivity in the dengue model is essential
for comprehending and capturing dengue transmission dynamics in populations. The invariant region
represents a subset of the state space where the solutions remain confined, offering valuable
information about the boundaries within which the variables can vary. This analysis helps determine
the feasible range of values for the variables and provides insights into the system’s long-term
behavior. Furthermore, studying the positivity of solutions is crucial for ensuring the biological
plausibility of the model. It ensures that variables such as the number of susceptible, infected, or
recovered individuals remain positive over time, reflecting the realistic dynamics of dengue
transmission.

4.1. Positivity and boundedness of the model

The analysis of positivity and boundedness ensures the model’s validity, feasibility of solutions,
and stability of disease dynamics. Our analysis will focus on the variables S,E,I,R,S,,E,,I,. These
dynamics will be examined within a viable region denoted as G, which ensures the model’s suitability
for both human and mosquito populations. Through the application of theorems, we will establish
the boundedness and positivity of solutions for the FFM (2.1) within the region G. This ensures that
the model’s predictions remain within realistic and biologically plausible ranges. We consider G =
G, x G, C R* xR%, where

Gy = {SELR)eR;S+E+I+R<N},
G, = {(A.S,.E,.L)eRLA<KN; A+S,+E, +1, <mN}. (4.1)
Theorem 4.1. The region G is positively invariant concerning the FFM (2.1).

Proof. The fractal fractional derivative of the total human population in the model (2.1) at time ¢ is
represented by the following term

FFMLDgMPZPh(L) FFMLD?"”S (L) +FFML DgI,QDzE (L) +FFML Dgl,tpzl[ (L) _I_FFML ngsz(L)

212 (1) 28% (1) )
= 0-|b, _— S@) - b, — 11,
[ P H((L (L>+S(L>)2)+w] ©=bp H((L orsp) Y
2]1‘2) (1) 282 (v) )
b,, — 1S b, — I
ol H((HV(LHS(L))Z) 0 +bf H((MHS@))Z ©

—(u+DDEWQ+UEW) - (y+ @)1 +yI() — @R ()
= 0-wCW-EW-TO-RQW)
= 0O -—@P,). 4.2)

Thus, we have
FEMEDER 2P, (1) = O — @Py(0).

Further, it follows

®
limP,(¢) < — = N.
1—00 w
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Hence, P,(?) is bounded within the region G, by %. Similarly, we prove that P, (¢) is bounded within
the region G,. Thus, the solution trajectory of the dengue model (2.1) remains bounded within a specific
region over time, and it demonstrates the positive invariance of that region. This means that all solutions
starting within that region will stay within it for all future time points. Hence, we gain confidence
in the model’s ability to accurately represent the real-world dynamics of dengue transmission. This
information can be valuable for assessing the effectiveness of control strategies and predicting the
impact of interventions designed to reduce the burden of dengue. O

Theorem 4.2. Under the given assumption set of nonnegative initial conditions (2.2), the region G is
invariant positively for the model (2.1).

Proof. LetU = (S,E, LR, A, S,,E,, I)", where T is transposition. Let

O ey b
= v D —— w,
! "o +s0)?
2S% (L
Yis = bfu (%) )
(I @ +S W)
W = b ( 211% () )
Mo rsor)
257 (0
\P63 = bv,Bv (—2) )
T +S, W)
212
\P66 = [bvﬁv (%) + wv] )
IW+S,0)
212 (¢
Y = Dbp, (%)
I +S,0)
A
Ws¢ = ¥s7=¥sz= WB(l - T())
Now, we can write the model (2.1) in matrix form as follows
FFMLDgl#’zU — gU + gl’
where
-¥Y, 0 0 0 0 0 0 Y5
Yy — (,Ll + w) 0 0 0 0 0 ‘“P]g
0 u -(y+w) -w 0 0 0 0
G = 0 0 vy 0 0 0 0 0
| o 0 0 0 —(uatwms) Ws Vs, Wsg |
0 0 —\P63 0 MA _‘1’66 0 0
0 0 Yes3 0 0 Vi -— (/,tv + TD'V) 0
0 0 0 0 0 0 My —(@,)
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and

Gi=

eNolNeNoNoNeNoN6)

Observing that G is the Metzler matrix and G; > 0, we can conclude that the model (2.1) is positively
invariant within the region G. This means that once the system enters the region G, the solutions of
the model (2.1) will remain within G for all future time points. Additionally, the positivity of solutions
is guaranteed, ensuring that all variables within the model maintain nonnegative values throughout the
entire simulation. O

4.2. Equilibrium points

Equilibrium points and the basic reproduction number (BRN) are essential in studying and
managing infectious diseases. Equilibrium points represent stable states that provide insights into the
long-term behavior of the disease and its potential for persistence or elimination. The BRN, denoted
as Ry, quantifies the transmission potential of a disease, helping assess its severity and spread.
Incorporating these concepts into mathematical models enables researchers and public health officials
to make informed decisions and develop effective strategies for controlling disease transmission. This
includes interventions such as vaccination campaigns, quarantine measures, and behavior change
programs aimed at minimizing the impact of infectious diseases on populations.

Theorem 4.3. For the given G defined in (4.1), let

O = WM
" @, (Us + @a)’

where @,, represents the net reproduction number of mosquitoes. In this context, it can be stated that
the FFM (2.1) has, at most, two disease-free equilibrium points as follows:

(1) Trivial Equilibrium ¢; = (2,0,0,0,0,0,0,0).
(2) Biologically realistic disease-free equilibrium points

0 1 1
0 = (—,0,0,0,(1 _ —)K, Ha (1 _ —)K,0,0).
w S{)m wV KJWl

Proof. To obtain the disease-free equilibrium point of the model (2.1), we set the variables representing
the populations PA(¢) and Pv(¢) equal to zero. This equilibrium point represents a state where the disease
is not present, and all populations are in a healthy state. Thus, we have

212 (1)
I () + S V)

25% (1)

— 11, =0, 473
a <L>+S(L>>2) © 3

®—[bv,3H( )+w:|S(L)_bvﬁH(
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21 ()

28% (1)

bBy | — s +bBy|—" 1, 0) - E () =0, 4.4
BH((L O+ S(z))z) W+ ﬁ”((ﬂv O+ sa»z) W=+ =B @4
UHE(W) —(y+@)]1() =0, 4.5)
yI(t) — @R () = 0, 4.6)
A@)
wp (1 - 7) SyO+E, () +1,@) = (ua + @) A =0, 4.7)
212 (1) ) ( 252 (1) )
AW-|bs—=Y  Nim|s,0-bp—2 1) =o, 48
Hh [ g ((1[ s PO P o s o) Y (45
212 (1) ) ( 252 (1) )
vv—Sv bvv—I[ — Wy va :O, 4.9
P ((1[ o+sor) VP To s o) @ T W B0 @9
and
wE, () ==L, (1) =0. (4.10)
From (4.6), we have
R = LI(). 4.11)
w
Also, from (4.5), we have
EQ) =250, 4.12)
Now, by (4.3), we have
NOEION
bvﬁH (m) =0 -wS (L) (413)
Similarly, from (4.4), we have
20, (1) S
bBu (ﬁ) — (u+ D) EQ). (4.14)
By (4.13) and (4.14), we get
sp=2_Wrg . (4.15)
w w
Put (4.12) in (4.15), we have
s=2_ Wrabta), . (4.16)
w w
Therefore, we obtain
R'() = LI'(), 4.17)
w
s = 2_Wroo+r@L (4.18)
w o
BEQ = 25Xy, (4.19)
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Similarly, by (4.7), we get

A
@ (1 _ 1?)) SO +By 0 +1,0) = (un + T AW,

From (4.8), we get
Ha

S, () = AQ).
21(1)
[b B (Hu>+sv<t>) + WV]
From (4.9), we get
(Ts)
E, () = ——2078 ().
“ (uy + @) ©

Put (4.20) in (4.21), and we obtain
20()S, ()
by (H(t)+s <t>)'“A

E, (1) =
L (o + @) [ B (em) + wV]

AQ.

From (4.10), we get
Lw=2E©.
wy

Put (4.22) in (4.23), and we obtain
2IVSy @)
Hib,B, (H(L>+sv(t) ) Ha

L=
L @, (U, + @,) [bvﬁv (]I([)zfgz(t)) + wv]

AQ).

Consequently, we have

A
wB(l_T(L))(S W+EO+L ) =Ws+a)AQ,

Ha

[b By (I[@ilg)u)) + WV]

21(0)S, (1)
B, () = bvm(“”*gv(;’ﬂ) L.
(o + @) [ By (JI(L)+§)([>) + wV]

Sy (1) =

AQ@,

and

2IVSy @)
/’lvbvﬁv (]I(L)+S © ) HA

L=
L w, (/Jv + wv) [ Vﬁ" (]I(L)ngi(t)) + wv]

AQ).

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

To compute the disease-free equilibrium points without disease, we putI = I, = 0 in Eqs (4.24)-(4.27),

then Eq (4.24) becomes

o140

X )(WV)A()— (s + @) AQ).

(4.28)
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By solving Eq (4.28), we get A (1) = 0 or

AI?)) (‘ﬂ) ~ (up + @) = 0. (4.29)

wy

wWpR (1 -
The solution of Eq (4.29) in terms of A is given as follows

(1 _M)K:A@_
WBHA

Therefore, we have
1
AQ = (1 - —)K, if om>1.

m

The crucial aspect is to utilize the threshold ¢,, as a means of controlling mosquito presence and
ensuring that the model (2.1) precisely accommodates two disease-free equilibrium points. Now, if
A=1, =1 =0, we deduced from Eqs (4.17)—(4.19) and (4.24)—-(4.27) that S, = E, = R = 0 and
S (1) = €. Hence, trivial equilibrium ¢; is obtained as

w

G
{ = (—,0,0,0,0,0,0,0).
w

Since ,, > land A = A" = (1 - Xol) K, then from Eqs (4.17)—(4.19) and (4.24)-(4.27), we get
®
S = —,
w
E'(w) = 0,
R'w = 0,
o = 0,
. 1
A1) = ( - —)K
Pm
1
SO “A(l - —)K,
w, Om
E/0) = 0,
L = 0.

Thus, the biologically realistic disease-free equilibrium points ¢, presented by

1 1
0 = (9,0,0,0,(1 - —)K, Ha (1 - —)K,0,0).
w Som wv KL)"H

4.3. Basic reproduction number Ry.

To obtain Ry, we employ the next-generation matrix method. We define U = (E,ILE,, I,) as the set

of compartments representing the infected individuals. Thus, we have
FPMLDE B () = byBy (28958) - (w+ @) E ),
FEMEDE 1) = lE(W) - (y + @) L),
FPMLDY R, ) = b, (T575) = (s + B0 EL ).
FFMLD{S]I’W]IV (1) = /"lVEV ) = (@), ().
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The above model can be written as
FFMLDgMPZU :7: _ (V,

where # and V are the infection matrix and the transition matrix, respectively, defined as follows:

2L,()SW)
b.Bu (I[V(L)+S(L>)
0
F = ION >
bvﬁv( 0) V(L))

I(0)+S,(1)
0

and
w+@)EQ
(y + @) (1) — uE ()
(uy + @) E, ()
(@)1, () = wE, ()

VY=

The expressions for the Jacobian matrices F and V, which correspond to # and V, respectively, are as
follows:

0 0 0 2b,By
Fe 0 0 0 0 ,
0 2bp6, 0 0
0 0 0 0
and
(u + @) 0 0 0
Ve —u (y + @) 0 0
0 0 w, +@,) 0
O O —Hy (wv)
Thus
#l—m (1) 0 0
u
vl = | Woote) yiw 0 0
0 0 1 0
A
0 0 wro)@,) @,

Therefore, using the fact that R = « (F V“), we obtain R for the model (2.1)

R = 4b,Bub, Bty
0 ([J+w)('y+w)(,uv+wv)(wv)'

The behavior of R against of its various parameters is shown in Figures 1 and 2. We have used the
numerical value of Table 1.
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Figure 2. Behavior of R, using 3D profile.

Table 1. Numerical values of parameters.

Parameter Value Parameter Value
® 3247700 Bu 0.31890
% 0.54116 L 74 % 52
u 0.12899 b, 0.66272
My 0.00396 B 0.29294
w, % WA 0.20174
wpg 3.01766 Ua 0.08056
K 3 m 4

4.4. Lipschitz property
In this subsection, we shall establish the Lipschitz property of F; (¢, U(1)),i = 1,2, ...., 8 where

_ LS

Pl (L, U(L)) = @ - Zb‘,ﬁH (m) — ’ZD'S (L) .
_ LOSO

PZ (La U(L)) - 2bVﬁH (I[v (L) + S (L)) (l'l + W) E (L) 9
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FGUQ) = 1BO)-(+@)10),
FUW) = Y10 -oRO),

B UW) = @y (1 - %) SO+ By 0+ 1, 0) = (s + T AW,
2L() S, (v)

Fo,U@W) = wA@-bp v(m

) - vav (L) s

3 2I() S, (v)
F7(,,U@) = b, (m) -, +@)E, ),
Fg(,,UW) = wE, () - 1. (4.30)

Theorem 4.4. Let S,E, LR, A, S,.E,,1,S,E,LLR,A,S,,E,.T, € &, and

ISII = IE%XIS(L)I,IIEII =Igf17XIE(L)I,
i = I%XIJI(L)I,IIRII=I§§}XIR(L)I,
Al = %%XIA(L)I,IISVII=r}§}XISV(L)I,
BN = maxiB, @], LI = max L)

Then, the functions F; (¢, U(t)),i = 1,2, ....,8 defined by (4.30) are Lipschitz with Lipschitz constant
Ly =max? {Lg} >0, such that

2b,Br®
L = ( gH +w'),LF2:(/J+w),
£F3 = (')’+w),~£ﬂ~‘4 = o,
Q]
Le = ?(B + (ua + @a),
w
2b,5,0
L]Fé = (i+wv),£lﬁ‘7:(ﬂv+wv),
w
LFS = wy.

Proof. For Fy, let S,g € &, then

Fi (1, S0) = F (150

_ L LW Ve, =
= [@ - 2b,By (m)g(t) - @S (L)] - [@ - 2b,By (m)s (t) — @S (L)] ‘
IL, @i
|2 S-§
- ( PrL oI+ 80l W)H” 9
e
w

Put Ly = (% + w) > 0. Thus, we get

[F: @ 50) - i (1 50)|| < £= s -5
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Similarly, we can get the following

P2 . B@) - B (L B)| < L= [E-F],
s @ 10) - B3 (2T0)|| < £ -1,
[Fs @ R» - By (F)| < e[ -],
s (a0 - Fs (L 20)| < L, |4 -E].
Fe @5, - Fs (LS.0)|| < Ls, |50 -5
7 @ By - s (L B0)|| < £s||E -,
and
[Fs 10 - B (T < £5
Let
L]F:nialx{&pi}>0.
Thus, the function F(:, U()) satisfied the Lipschitz condition with Lipschitz constant £z > 0. O

4.5. Stability analysis

Understanding and managing the dynamics of dengue transmission requires an analysis of
stability. This analysis provides insights for controlling epidemics, forecasting outbreaks, optimizing
control measures, evaluating robustness, and validating models. Examining the stability properties
can enhance our understanding of the disease’s behavior and make informed choices to limit its
spread. The model analysis revealed the presence of two disease-free equilibria, trivial equilibrium,
and biologically realistic disease-free equilibrium, along with one endemic equilibrium point. The
trivial equilibrium point represents a state where there is no active or dynamic interaction between the
components of the system, resulting in a lack of interesting dynamics. In this section, we will discuss
the stability of biologically realistic disease-free equilibrium. By the same technique used in
works [1,2,21], we conclude that the biologically realistic disease-free equilibrium is locally and
globally asymptotically stable. In the following, we discuss stability of the model in Ulam sense.
Before that, we introduce the definitions and an auxiliary lemma that assists in the analysis. Here, we
reformulated the (¢, ¢2)-FFM (2.1) of dengue as follows

ABRDE'S (1) = @7 'Fy (1, U()),
ABRDE'E (1) = o217 'F (1, U(0)
ABRDET (1) = @217 'F5 (1, U()
ABRDER (1) = @27 'Fy (1, U()),
ABRDEA (1) = ¢2#7'Fs (1, U(),
ABRDPLS, (1) = 0217 'Fe (1, U(1))
ABRDE'E, (1) = @277 'F7 (1, D),
ABRDIT, (1) = 07 'Fs (1, U())

(4.31)
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where F; (¢, U(t)),i = 1,2,...,8, as defined in (4.30). The model (4.31) is restructured as a compact
initial value problem in the following form:

(4.32)

ABRDEU (1) = ot”7'F (1, UQ),
U0) =T, >0,

where

SW.EW.I®,RO,AW0,S O,E 0,LW",
Uy = (S(0),E(0),1(0),R(0),A(0),S, (0),E, (0),L,(0)",

U
U0)

and
Fi (,, UQ)

F (¢, U(1))
IF3 (¢, U(1))
Fy (¢, UQ))
Fs (¢, U(1))
Fe (¢, U(1))
F7 (¢, UQ))
Fg (¢, U(1))

The equivalent integral equation of (4.32) is given as

F(,TUG)) =

(1 — !
M(p1)

P21 " 1 gt
_— s (= )P E (s, U(s)) ds.
M(pDI(e1) Jo
Definition 4.5. The (g1, p2)-FFM (2.1) of dengue is considered Ulam-Hyers stable if there exists a
positive constant I such that for any € > 0 and any solution U € & of the (¢1,¢,)-FFM (2.1) of
dengue satisfying the inequality

UG = Uy+ F(,U())

‘FFMLDgMPzﬁ(L) — F(, ﬁ(L))' <e, (4.33)

there exists a unique solution U € & of the (¢1, v2)-FFM (2.1) of dengue such that

H@ - UH < Me,
where _

§(L) , €1
EEi (L) gﬁz &
’I[\(L) EUE3 &3
= R () Ny &4

U = — . 9}2 = & =
® AQ) Ms € &s
Sy (1) M 2
E, () iy &
Lo Wy &
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In other words, if the difference between the fractal-fractional derivative of ﬁ(t) and the corresponding
SJunction (1, U(v)) is small (within €), then there exists another solution U that is close to U (within Me)
and satisfies the same model.

Remark 4.6. The function U € & is a solution of the inequality
FEMLp#L2T () — B, UR)| < e,

if and only if there exist a small perturbation w € & and w(t) = (w(1), wa(1), wz(1), wa(L), ws(), we(0)!
such that for each « € J, we have |w(t)| < € and

FFMLDgl,wz@(L) = F(,, UQ)) + w(0).

Lemma 4.7. Let ¢, € (0,1). For any € = max{ey, &, &3, &4, 5,8} > 0, let U € & be a solution that
satisfies (4.33), then U satisfies the following integral inequalities

= (- FGUW) @1 (C s i T

lU(L) (UO+ M) +M(<,01)F(<,01) i s — ) E(s, U(s))ds)
g[soz(l —e <pz<plB(901,soz)T“’2+“”“]

- M(p1) M) '

Proof. Let U be a solution that satisfies (4.33), then by Remark 4.6, U satisfies the following system
FEML#L2T () = (e, U) + wie).
Thus, we have

@2(1 — @) ' F(1, U)) , 22— o0l wi

s e M(g1) M(g1)
& t ¢2_1 _ "DI_IF @ d
Mgy J, & 797 Fs. Dlsnds

P21

L 10l WA R | ds.
MgoTign Jo & 4797 wiwds

By Remark 4.6 and [w(1)| < &, we get

~ @(1 — o) 'F(, U()) 0201

U)—-10

‘ © [ ot M(g1) Mot Jo
8[902(1 — )T N 9029013(901,902)””""_1]

B M(g1) M(p) '

[ s271 (L — §)P 7RG, ﬁ(s))ds)

O

Theorem 4.8. Let F(¢, U(t)) be a function satisfying the Lipschitz condition with Lipschitz constant
Lr > 0, then the (@1, v2)-FFM (2.1) of dengue will be Ulam-Hyers stable provided that

A= [802(1 —)T#! N 0201 By, o) T# 41!
M) M(p1)

:|.£]p< 1.
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13911

Proof. Let € = max{ey, &, €3, &4, 5,8} > 0 and U € & be a solution of the (¢1,2)-FFM (2.1) of
dengue satisfying (4.33) and let U € & be a unique solution of (¢, ¢,)-FFM (2.1) of dengue. Thus, we
have

1 - w1
V() = U, + o(1 =i ) F(. UQ) + P21

M) M(e)I'(¢1) Jo
Via the triangle inequality, and by Lemma 4.7, we have

L s 1 — )27 R(s, U(s))ds.

©2(1 = @™t
M)

L s27 (L= )P R, ﬁ(s))ds)

'ﬁ(t) - U(L)' < F(i, U())

U - (UO +

P21
M(e)'(¢1) Jo
+902(1 — !
M(p1)
21
M(e)I'(¢1) Jo
8[902(1 — o) T#! N sozsolB(sal,soz)T”*“‘”‘l]
M(ep1) M(p1)
[902(1 — o)) T#! N 0201 B(p1, ) T4~
M(ep1) M(p1)

[F. D) - F, Uw)|

. S¢2_1(L _ S)a,al—l ‘F(S, ﬁ(s)) — F(s, U(S))' ds

IA

|&lo-o]. @

It implies

[¢2(1—¢1)T“’2_1 0201 B(1,02)TF27417] ]
M(py) M(p1)

_ [saz(l—wm-l 0201 B(p1,02)T#2+17] ] L '

M(p1) M(p1) F

oo <

Let

[¢2(1—¢1)T“’2_' 0201 B(p1,p2)T¥2+17! ]
M(py) M(p1)

1 — [s@z(l—sal)T”‘1 @201 Bp1,p2)T#2+417! ] Vs

M(pr) M(pr) F

Mm = > 0.

Thus, we have
|0 - U < e

Hence, the (¢, ¢,)-FFM (2.1) of dengue is Ulam-Hyers stable. m|
5. Properties of the solution

This section focuses on investigating the existence and uniqueness of the solution for the (¢, ¢)-
FFM (2.1) of dengue through the application of the fixed-point technique.

5.1. Existence of the solution

The existence of solutions for (¢, ¢,)-FFM (2.1) of dengue fever is vital for ensuring mathematical
consistency, making accurate predictions, estimating model parameters, validating the model against
data, obtaining robust results, and enhancing our understanding of disease dynamics. They provide a
solid foundation for reliable modeling and decision-making processes in the context of dengue fever
control and management.

AIMS Mathematics Volume 9, Issue 6, 13894—-13926.
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Theorem 5.1. [42] (Schauder’s fixed-point theorem) Suppose we have a Banach space X and a
nonempty, compact, convex subset Q C X. If A : Q — Q is a continuous mapping, and A(Q) is a
relatively compact subset of X, then, we can conclude that the mapping A has at least one fixed point
in Q.

For analysis of the existence and uniqueness, the following assumptions must be satisfied:
(H;) : The function F : J X & — R is continuous such that

[FCG, UW)I < s + U@ 78, O, 7 > 0.

Theorem 5.2. Under the hypotheses (H,), the (@1, p2)-FFM (2.1) of dengue has a solution, provided

that

Uyl + (1 — ) T#! N ¢2901B(¢1,502)T9"2+“’“1]9 <1
F .
M) M(p1)

Proof. Define an operator A : & — & by

@2(1 — ) 'F(, U() L P '
M(p1) M(e)I'(¢1) Jo

Letk, = {U € & : ||U]|| < r} be a closed ball with

(AU) (1) = Uy + s = 5)P 1 R(s, U(s))ds.

[902(1—901)”2“ 0201 B(p1 ) TH2H17! ]

,> M(pr) M(pr) F

T @a(l—p)T¥27! gomB(w],wz)Ter'] '
1 |U°|+[ Migr) Mg1) Ok

To apply the Schauder’s fixed-point theorem, we need proof of the following steps:
Step (1): AU(t) € k,. For U € k, with hypotheses (H;), we have

@a(1 — )
M(ep1)

L s = §)2 7 R(s, U(s))) ds}

[|IAT]| IEE}X {|Uo| + IF(e, U()]
P21
M(e)I'(¢1) Jo

— ¢l p2t+p1-1
< U+ [9”2(1 eT7"! | r1Blor,e)T ]HF
Mg1) Mig1)
[902(1 —o)T#"! N 902¢1B(901,<P2)T“02+‘”1_1]n )
F
Mig1) Mg1)
< r

This proves that AU(¢) € k,.
Step (2): A is relatively compact (i.e., continuous, uniform bounded, and equicontinuous).
Case 1: A is continuous. Since U(¢) is continuous, then A (U(¢)) is continuous.
Case 2: A is uniformly bounded on k,. Let U(¢) € k,, then, we have

max P21

g M(eDI'(e1) Jo

201 By, ) T# 9!
M(p1)

AUl 27 0 = )77 [F(s, U(s))l ds

[6% + U]l g ]
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201 By, ) T#H41 !
M(p1)

[0z + rmg] .

Hence, A is uniformly bounded on k,.
Case 3: A equicontinuous. Let U(¢) € k, and O < ¢; <1, < T, then, we have

L2

1AU(2) — AUG)Il = max ‘% i 27 (1 — )77 F(s, U(s))ds
—% OL] s (1 = )PV B(s, U(s))ds
< % thz s (1, — )P E(s, U(s))| ds
% 0“ 77 (2 = 977 = (0 — 77| IF(s, U (o)) ds
o 920181 ) [0 + ] (6 — )Pt

M(p1)

It follows that
IAU(t,) — AU()l| = 0, As ¢y — 1.

By the Arzela—Ascoli theorem, A is relatively compact and, hence, completely continuous. Thus,
Theorem 5.1 implies that (¢, ¢,)-FFEM (2.1) of dengue has at least one solution. O

5.2. Uniqueness of the solution

The uniqueness of solutions allows us to make precise predictions about the behavior and evolution
of dengue fever. Having a unique solution ensures that there is a single trajectory that the disease
dynamics will follow, providing clear insights into the spread of the disease and the effectiveness of
control measures. This is crucial for decision-making and planning interventions to mitigate the impact
of dengue fever. In this subsection, we shall establish the uniqueness of the solution for (¢, ¢;)-
FFM (2.1) of dengue. Before that, we investigate the Lipschitz property for the functions F(¢, U())
defined in (4.30).

Theorem 5.3. Assume that the function F(1,U(¢)) satisfies the Lipschitz condition with Lipschitz
constant Lg > 0. If

(1 — )T#! L pe1BleLe)T prter-l
M(g1) M(p1)

then the (@1, p2)-FFM (2.1) of dengue has a unique solution.

Lr <1, (5.1)

Proof. Define the operator A : & — &E by

(1 — ) 'F(, U(0)
M(p1)

L s227H = )27 R (s, U(s))ds.

AD) @ = To+

P21
M(e)I'(¢1) Jo
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13914

LetU;,0, e &Eand € 7, then

(1 — !

< b ol _
IAU; + AUz|| < max Moy) [F(e, Ui (1) — F@, G2 ()]
P21 " e -1
+max ————— s — )P |E(s, Uy (s)) — F(s, Uy(s))| ds
<l MeDT(g1) Jo 1 ’
@21 = )T
< U,-U
< M) Lz |[U; = Uy
@201 By, ) T#9 !
U, -0
Migy) LUy — Uyl
1- T¥21 B(gy, ) T#2#171
@2(1 — 1) | p01Bo1, ) LollU; = sl
M(p1) M(p1)
Due to (5.1), A is contraction. Thus, (¢, ¢2)-FFM (2.1) of dengue has a unique solution. O

6. Numerical scheme via the Newton polynomial method

In this section, we present a numerical scheme for the solutions of the (¢, ¢,)-FFM (2.1) of dengue,
as introduced by Atangana in [11, 12]. To facilitate this, we will obtain the compact form of the initial
value problem (4.32). Thus, we have

_ (1 = D201 Yool e
U@l -0y = —M(gol) F(,U@)) + —M((,O])F((p]) s — )P T F (s, U(s)) ds.
Let F (1, U() = 01”7 'F (1, U(1)) , then, we get
(1 —¢1)= f 15
U@ -Up = F@,U _ YR (s, U(s)) d 6.1
(W —-To M) . UW) + M(<,01)F(901) (t—9) (s, U(s)) ds. (6.1)

By discretizing the Eq (6.1) at ¢ = ¢,,,; = (m + 1)h, where h represents the time step size, we obtain the
following discrete equations:

( 901) ()01 Lm+1 =
Ultme1) = U = E (n, Ultm)) + —————— (tms1 = )7 F (5, U(s)) ds.
T Mg M(eDT(e) "
If we approximate the above integral, it can be expressed as follows:
( 901) ln+1 =
U(ms1) — Uy = Fm Ulw) + ———— (tme1 — )P F (s, U(s)) ds. (6.2)
T M M(smr(gol) Z] w

Now, we approximate the functions F(, U(e)) on [y, t,41] through the interpolation polynomial with
h =1t,,1 —t, as follows:
— FLm_,ULm_ —FLm_,ULm_
Zu(9) = Flpoa, Uity + oD F o2 B
+ F (Lm, U(Lm)) - ZF (Lm—l ’ U(Lm—l )) + F (Lm—2a U(Lm—Z))
2h?

(s =tm2) (s —tm1).  (6.3)
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Put (6.3) in (6.2), and we get

Ulgma) Uy = (M( f‘))wm,Uum»

Ln+1

M(smr(gol) Zf et = 77 [F (02, Ult-2)

+P (tn-1, U(ty-1)) ; F (ty-2, U(t-2)) (5= 12)
F (s, U(t) = 2F (b1, Utye1)) + F (a2, Ulty2))
+
2K
X (8 = ty—2) (s — ty—1)]ds.

It implies that

Ulwe) =Up = SZPVF(, UG

M(p1)
ln+1 3 1S
M(901)F(901) Z [ (tmrr = 97 F (12, Ultn-2)) ds
.\ anH F (Ln—l’ U(Ln—l)) ; F (Ln—2a U(Ln—Z)) (S _ Ln—2) (Lm+1 _ S)Qﬁl—lds
- f " F (s U() = 2 (et Uta1) + F (a2, Ult))
; 2h?

X (5 = 112) (5 = o) (ter = )7 ds|.
Consequently, we have

Ulter) - Uy = (M( “‘l’;)F(m,U(Lm»

ln+1

+mz (20 l2) . (tme1 — $) "' ds

P (tn-1, Ut 1)) P (ty—2, U(t,— 2)) Ln+ 1

(5 = tae2) (tms1 — $)'7'ds
M(<p1)l"(<p1) Z h 2
" Z F (Ln’ U(Ln)) ZF (Ln 1» U(Ln 1)) + F (Ln 25 U(Ln 2))
M (901 )F(901) 2h?
ln+1
Xf (5 = t4=2) (8 = Luet) (bms1 — $)7' 7' ds. (6.4)
Now, we compute the above three integrals separately, and we get
L+ h(pl
(tne1 = )P ds = — [(m—n+ 1) = (m —n)*'], (6.5)
1

tn
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ln+1 h‘Pl+1
f (s = ty) (b1 — )P Mds = —— [((m+1-n)"(m—-n+3+2¢)
tn e1(p1 +1)
—m-n+ 1" (m-n+3+3¢))], (6.6)
and
f ) (5= ) (e — 977 B+ 1= [2m - n)?
S —1,2) (S —t—1) (pge1 — )1 ds = m+1-n m-—n
in ? bl 1 (o1 + 1) (g1 +2)

+ By + 10) (m — n) + 207 + 9, + 12
—(m=n)*' |2(m = n)* + (Sg; + 10) (m — n)
+ 607 + 18¢p; + 12]}. 6.7)

Put (6.5)-(6.7) in (6.4), and we get

Ulme) =Up = SV U

M(p1)

(’plh‘ﬁl mo | |
+M(‘101)r(§01 + 1) ; F(L”_z’ U(LH—Z)) [(m -n+ 1)"0 — (m _ n)(,o ]

N @1h?
M(p)I'(pr +2
[(m+1-n)f"(m-—n+3+2¢)—(m—-—n+1)*"(m—n+3+3¢))]
+ p1h?!
2M (el (g1 + 3

{on+1=n)? [2(m=n) + Bgr + 10) (m = n) + 20} + 9, + 12|
—(m=n)® [2(m = n)’ + (51 + 10) (m — n) + 647 + 18¢; + 12]}. (6.8)

3 D Pl V) = F b2, U2)
n=1

5 D F TG = 2 oty D)) + F 2, Ulan-2)
n=1

Now, replace F(, U(1)) = ¢t**'F (1, U(1)) in the above equation, and we have

(1 — @)™

Ultyps1)) - Uy = ——————F (1, U(y,,
(tms1) — Uy M) (tm> Ultm))
p1p2h”! S

L
M(pDT(p + 1) £

F (th—2, U(ty-2)) N1 (m, n, 1)

L1217 N -1 -1
F (e, ) = F(._ B
Mg (¢ +2) ; [Ln—l (tn=1,Utn=1)) = 25 F (132, Uty 2))] N (1, 1)

P1p2h#!
2M (o) (@1 + 3)

2 F (12, Ula)) | N3 (mom, 1), (6.9)

m

B 0 U)) = 2677 F (1, Utn)
n=1

where
Ni(m,n, @) =(m—-n+ 1) — (m—n)*"",
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No(mn,o))=m+1-n)f" m-n+3+2p)—-(m—n+1)""(m-—n+3+3¢),

and
N (m.n,@) = (m+1=n)|20m—n)* +GBp; +10) (m - n) + 267 + 9 + 12|
—(m = )" |2(m = n)* + (51 + 10) (m — n) + 67 + 18¢; + 12|

Based on (4.30) and the numerical scheme obtained in (6.9), the numerical solutions of the (¢1, ¢,)-
FFM (2.1) of dengue are given by

1 - -1
S(mer) = S0 = %Pl (o Ultn)

Spl(pzh‘%’l m
M) (¢r + 1) Z 3 Fit (b2, Ulta2)) Ny (m,n, 1)

p1p2h*!
M(e)I'(¢1 +2)

P1p2h”!
2M (eI (1 + 3)

+3"F1 (-2, Ut 2»] N3 (m,n,@1), (6.10)

m

Z |23 ) ety Ur1)) = 875" (o2, Un-2) | N2 G, 1)

n=

Z |67 By (1 U)) = 2621 (e, Ul)

1 - -1
Elime) ~Eo = %R (o Ult))

()01()02th m
M) (@1 + 1) Z 3 Fa (6, Ulta2)) Ny (m, n, 1)

h¥! m
M(SD(’T])?E% +2) ; <P2 le (tn=1, U(ty-1)) = Fz (2, U(t,,- 2))] No (m, 1, 1)
P1p2h”!

|47 Fa (1 U) = 267" o (a1, Ultam))
2M(e)I (1 + 3) ;

+23 s (a2, Ulta ) | N (mm, 1),

1 — -1
Kom) =T = %I& (o Ult))

m

901(,02]1"01 -1
F n— ’U n— N ,n,
M(901)F(¢1+1);L"—2 3 (tn2s Uln2)) N1 (1, 01)

p1p2h*!
M(p)I'(¢1 +2)

h#! i
ZM(:jll;’if(‘pl + 3) Z I:L;fz_IIF‘B (l«n, U(Ln)) - 2L5311F3 (Ln—] s U(Ln—l))
n=1

Z (£33 Fs (et Ut 1) = 23" Fs (o, Ut ) | N (.1, 1)
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+25 B3 (o, Ultn2)| N3 (m,m 1),

(1 - 901)()021'111

Rtme1) =Ry = T‘P)E (tm> Um))
!

P1p2h”! o IIF' U N
M@ + 1) Z 4 (ty—2, U(ty—2)) Ny (m, n, 1)

L1:2h”! N 902 1 -1

1 Fa (6a=1, Ut-1) = 25 Fa (g2, Uty—2)) | N2 (m, m, 1)

M(p)I'(p1 +2) ; ]

P1p2h?!

‘pz IF n’U n 2902 IP n— ,U n—
+2M(<P1)F(901+3); 4 (tn, Uln)) = 2 4 (tu-1, U(ty-1))

+523 By (12, Uta-2) | N (mom, 1)

(1 - oot

Alp) — Ay = ————————F<(,,, Uty
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7. Numerical presentations and discussion

Here we use the following initial values for compartments:
(So, Eo, Iy, Ro, Ay, Sy0, Evo, Lp) = (3247543, 120, 37,0,9743100, 12990600, 100, 100),

and the other nomenclature values are given in Table 1.

7.1. Case-1

Here we plot the numerical results for various compartments in Figure 3 using different fractals
fractional orders. In the first case we present the numerical plots for various compartments using the
fractals fractional order values in the interval [0.75, 1.0].

The population dynamics of susceptible individuals and susceptible mosquitoes decline at different
rates. This suggests that the factors influencing the decline of susceptible individuals may differ from
those affecting mosquito populations. It could be due to variations in factors such as vector control
measures, population density, or environmental conditions. The population of exposed individuals
and mosquitoes initially increases and then decreases, following a similar pattern. This means a
relationship between the exposure of individuals and the corresponding exposure or maturation of
mosquitoes. It could reflect the interplay between human-mosquito interactions and the disease’s
incubation period. The population of infected individuals shows an upward trend as the infection
spreads within society. Similarly, the population of infectious mosquitoes also increases. This
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indicates that the transmission of the disease is ongoing and the number of infected individuals and
infectious mosquitoes is growing. It highlights the compulsory of implementing effective control
measures to curtail disease transmission. The population of recovered individuals grows as they
overcome the infection. This means that individuals who have been infected with the disease are
gradually recovering and developing immunity. The increasing population of recovered individuals
contributes to reducing the susceptible population and can have implications for herd immunity and
disease control. The information indicates that variations in the fractal fractional order correspond to
variations in the behavior of epidemiological states. This confirms the fractal fractional operator used
in our work provides a better understanding of the dynamics and characteristics of the disease.

(10,1.0) | -

- 0.85)
- - (0.95,0.95)
(1.0,1.0)

Suscoptible mosaquito

timo t (Days)

Figure 3. Numerical solutions of susceptible individuals, exposed individuals, infected
individuals, recovered individuals, epidemiological state, susceptible mosquitoes, exposed
mosquitoes, and infected mosquitoes at various fractional order ¢; and fractal order ¢,
(¢1,¢1) = (0.75,0.75), (0.85, 0.85), (0.95,0.95), (1.0, 1.0)
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7.2. Case-Il

Here we plot the numerical results for various compartments in Figure 4 using small different
fractals fractional orders. In first case we present the numerical plots for various compartments using
the fractals fractional order values in the interval (0, 0.65].

e (035, 0.35)
—-- (0.450.45)
- - (055055
(©5,065)

E)
time t (Days)

El
timo t (Days)

- - (055055)
(065, 065)

E)
time t (Days)

E)
time t (Days)

% 00 20

E) B 00 2 E)
time 1 (Days) time t (Days)

Figure 4. Numerical solutions of susceptible individuals, exposed individuals, infected
individuals, recovered individuals, epidemiological state, susceptible mosquitoes, exposed
mosquitoes, and infected mosquitoes at various fractional order ¢; and fractal order ¢,,
(¢1, 1) = (0.35,0.35),(0.45,0.45), (0.55, 0.55), (0.65, 0.65)

Both sensitive humans and susceptible mosquito populations are declining in distinct proportions.
Similarly, the number of exposed people and mosquitoes increases initially before declining in the
same situation. As the sickness continues to spread throughout society, the number of affected people
is initially rising. Similarly, the number of mosquitoes carrying infectious diseases is rising. After
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becoming immune to the pathogen, the population that has recovered is growing. Additionally, the
behavior of the epidemiological state varies on various fractional orders of fractals. Also, we noted
that the basic reproduction number’s most sensitive parameter is b,, representing the rate of disease
transmission from infected individuals to susceptible individuals. Conversely, the parameter w,,
denoting the natural mortality rate of vectors, is the least sensitive.

8. Conclusions

This paper presents a compartmental model for dengue fever disease, utilizing a harmonic mean
type incidence rate. The analysis employs nonsingular, fractal fractional differential operators. The
fundamental analysis includes the equilibrium points and the basic reproductive number.
Additionally, results related to the stability theory are derived. The qualitative analysis investigates
the existence and uniqueness of the solution for the model using a fixed-point approach. Furthermore,
a numerical scheme based on the Newton polynomial method is developed for the dengue model. By
utilizing numerical values for initial data and model parameters, various graphical presentations are
provided to investigate the transmission dynamics for different fractal fractional order values. The
results obtained contribute to the understanding of dengue transmission dynamics and have broader
implications for the application of fractal-fractional derivatives in various mathematical and practical
contexts. The information mentioned in the numerical presentations and discussion section indicates
that variations in the fractal fractional order correspond to variations in the behavior of
epidemiological states. This confirms the fractal fractional operator used in our work provides a better
understanding of the dynamics and characteristics of the disease. Furthermore, if Ry < 1, we
conclude that the biologically realistic disease-free equilibrium is locally and globally asymptotically
stable. Simulations on the application of insecticides (larvicide and adulticide), were made. The
adulticide was the most effective control, from the fact that with a low percentage of insecticide, the
basic reproduction number is kept below unit and the infected number of humans was smaller. We
aim in future work to present some studies in depth that describe the dengue model, with optimal
control strategies of the outcomes.
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