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Abstract: In this research, we have proposed and investigated a time-delayed free boundary problem
concerning tumor growth in the presence of almost periodic nutrient supply with angiogenesis. This
study primarily focused on examining the impact of almost periodic nutrient supply, angiogenesis,
and time delay on tumor growth dynamics. We analyzed the existence, uniqueness, and exponential
stability of almost periodic solutions. Furthermore, we established conditions for the disappearance of
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1. Introduction

Delay differential equations (DDEs), or functional differential equations, arise in models
representing biological phenomena when considering the time-delays occurring in these phenomena.
Mathematical modeling using such DDEs is widely applied for analysis and predictions in various
areas of life sciences, including population dynamics, epidemiology, immunology, tumor growth,
physiology, and neural networks. The memory or time-delays in these models are associated with
the duration of hidden processes such as life cycle stages, the time between cell infection and new
virus production, the infection period, the time between cell division and new cell production, and the
immune period [3,6,10,15,17,18,20,23–25]. Reference [17] covers important topics related to DDEs
including numerical methods, stability analysis, inverse problems, parameter estimation, sensitivity
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analysis, optimal control, and time-delayed biological systems. In this paper, we investigate a free
boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply.
The mathematical model describing the tumor growth process considers cell division and death along
with external almost periodic nutrient supply. Compared to the apoptosis process of tumor cells, the
proliferation process exhibits a time delay. In the model, two unknown functions σ(r, t) and R(t)
represent nutrient concentration and tumor radius, respectively. The mathematical model is given by:

c
∂σ

∂t
=

1
r2

∂

∂r

(
r2∂σ

∂r

)
− Γσ, 0 < r < R(t), t > 0, (1.1)

∂σ

∂r
+ α (σ − ψ(t)) = 0, r = R(t), t > 0, (1.2)

d
dt

(
4πR3(t)

3

)
= 4π

(∫ R(t−τ)

0
sσ(r, t − τ)r2dr −

∫ R(t)

0
sσ̃r2dr

)
, t > 0, (1.3)

where Γσ represents the consumption rate of nutrients, and α is a constant denoting the density of blood
vessels. The external concentration of nutrients is denoted by ψ(t), while τ represents the time delay.
Equation (1.3) originates from the law of conservation of mass. The term 4π

∫ R(t−τ)

0
sσ(r, t − τ)r2dr

corresponds to the volume increase induced by cell proliferation, where sσ denotes the proliferation
rate. On the other hand, 4π

∫ R(t)

0
sσ̃r2dr accounts for the volume decrease caused by natural death,

assuming a natural death rate of sσ̃. Additionally, we consider that c = Td/Tg ≈
1minute

1day � 1, which
represents the ratio between the nutrient diffusion timescale and tumor growth timescale (see [10, 11]
for further details). In this study, we will discuss the aforementioned model with respect to its initial
condition given in Eq (1.4):

R(t) = ϕ(t), − τ ≤ t ≤ 0. (1.4)

The proposed model is based on the framework presented in [12] with two modifications. First, we
consider the provision of external nutrients as an almost periodic function, which is a more realistic
assumption compared to the constant nutrient supply assumed in [12]. Second, we incorporate the
impact of time delay in tumor cell proliferation, as observed in [3]. It is important to analyze the
stability of tumor growth models with time-delay terms, and several methods such as Lyapunov
exponents, the comparison principle, and stability theorems have been proposed by scholars (see
for instance [6, 10, 14, 18, 22]). In particular, reference [6] investigates a special case where α = ∞

and ψ is a positive constant using functional differential equations theory to establish existence,
uniqueness, and asymptotic stability of steady-state solutions. Furthermore, researchers have also
studied bifurcation phenomena in mathematical models for tumor growth with time-delay terms (e.g.,
[15, 16, 24, 26]), which are crucial for understanding tumor development mechanisms and predicting
future trends. By considering almost periodic functions instead of exact periodicity due to their
robustness under perturbations, our model provides a more realistic representation of actual tumor
growth dynamics. This paper focuses on investigating the impact of almost periodic nutrient supply
along with angiogenesis and time delay.

Several studies have investigated mathematical models for tumor growth in angiogenesis, including
those by Friedman and Lam [12], Ye et al. [25], and Zhou et al. [26]. However, these studies assumed
a constant provision of external nutrients. In this paper, we consider the external concentration of
nutrients as a bounded almost periodic function and also incorporate time delays in tumor cell division.
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While our previous work [25] also considered angiogenesis and time delays, it assumed a constant
concentration of external nutrients. While we have previously proven the asymptotic stability of
constant steady-state solutions [25], this paper investigates the case where the provision of external
nutrients is almost periodic and establishes the existence, uniqueness, and stability of almost periodic
solutions using a different methodology.

Noticing that c � 1, this paper focuses on the limiting case where c = 0. By employing spatial
scale transformation, we can assume Γ = 1. Consequently, Eq (1.1) simplifies to the following form:

1
r2

∂

∂r

(
r2∂σ

∂r

)
= σ, 0 < r < R(t), t > 0. (1.5)

Using the solution of (1.5), (1.2) is given by

σ(r, t) =
α

α + Rp(R)
l(r)
l(R)

ψ(t), (1.6)

where

p(x) =
x coth x − 1

x2 , l(x) =
sinh x

x
.

Substituting (1.6) into (1.3), we obtian

R′(t) = sR(t)
[

αψ(t − τ)
α + R(t − τ)p(R(t − τ))

R3(t − τ)p(R(t − τ))
R3(t)

−
σ̃

3

]
, (1.7)

where p(x) =
x coth x − 1

x2 . Denoting x = R3, after rescaling coefficients of ψ(t), σ̃ as follows

ψ̂ = sψ , ˆ̃σ = sσ̃,

and dropping the hat notation, Eq (1.7) takes the form

x′(t) = 3αψ(t − τ)F(x(t − τ)) − σ̃x(t), (1.8)

where

F(x) =
xp( 3
√

x)
α + 3
√

xp( 3
√

x)
.

Accordingly,

x0(t) = ϕ3(t), − τ ≤ t ≤ 0. (1.9)

The remaining part of the paper is arranged as follows. In Section 2, some preliminaries are given.
In Section 3, we prove the existence and uniqueness of the almost periodic solution to Eq (1.8).
Section 4 is devoted to the stability of the unique positive almost periodic solution. In the last section,
computer simulations and conclusions are given.
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2. Preliminaries

Let
q(x) = xp(x) =

x coth x − 1
x

, k(x) = x3 p(x), g(x) =
p(x)

α + q(x)
, G(x) = x3g(x)

and
D(x) =

p(x)
p(θx)

, S (x) =
θp(θx)(α + xp(x))
p(x)(α + θxp(θx))

=
α + q(x)

αD(x)/θ + q(x)
,

where α and θ are positive constants.
Lemma 2.1. (1) p′(x) < 0 for x > 0, limx→0+ p(x) = 1/3, limx→∞ p(x) = 0.

(2) q′(x) > 0 for x ≥ 0. limx→0 q(x) = 0, limx→∞ q(x) = 1, and q′(0) = 1/3.
(3) k′(x) > 0 and k′′(x) > 0 for x > 0.
(4)

(
x3g(x)

)′
> 0 and

(
x3g(x)

)′′
> 0 for x > 0.

(5) For any θ ∈ (0, 1), D′(x) < 0 for x > 0 and limx→0+ D(x) = 1, limx→∞ D(x) = θ.

(6) S ′(x) > 0 for x > 0. Moreover, for any θ ∈ (0, 1), limx→0+ S (x) = θ, limx→∞ S (x) = 1.
(7) F′′(x) < 0 for x > 0.

Proof. For the proof of (1) and (2), please see Lemmas 2.1 and 2.2 in [12]. For the proof of (3), please
see [6]. Now, we prove (4)–(7).

(3) The fact that k′(x) = (x3 p(x))′ > 0 for x > 0 can be found in [6]. Next, we aim to prove that
k′′(x) > 0 for x > 0. Since

(x3 p(x))′ = 2x coth x −
x2

sinh2 x
− 1,

it follows that, by noticing cosh2 x − sinh2 x = 1,

(x3 p(x))′′ =
2 cosh x sinh2 x + 2x2 cosh x − 4x sinh x

sinh3 x

=
2 sinh x(cosh x sinh x − x) + 2x(x cosh x − sinh x)

sinh3 x
> 0.

This result is derived from the facts:

cosh x sinh x − x > 0, x cosh x − sinh x > 0,

for x > 0.
(4) From [23], noticing k′(x) > 0, it is known that:

(x3g(x))′ =

(
k(x)

α + q(x)

)′
=

k′(x)α + k′(x)q(x) − q′(x)k(x)
(α + q(x))2

=
αk′(x)

(α + q(x))2 +

(
k(x)
q(x)

)′ ( q(x)
α + q(x)

)2

=
αk′(x)

(α + q(x))2 + 2x
(

q(x)
α + q(x)

)2

> 0.
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Then,

(x3g(x))′′ =

(
k(x)

α + q(x)

)′′
=

(
αk′(x)

(α + q(x))2

)′
+

(
2x

q2(x)
(α + q(x))2

)′
= α

k′′(x)(α + q(x)) − 2q′(x)k′(x)
(α + q(x))3 +

2q(x)(q(x) + 2xq′(x))
(α + q(x))3 .

By utilizing equation

q(x) + 2xq′(x) = xp(x) + 2x(p(x) + xp′(x)) = xp(x) + 2xq′(x) > 0, (2.1)

for x > 0, we can deduce that (x3g(x))′′ > 0 for x > 0.

(5) For 0 < θ < 1, from [21], we know that D′(x) =

(
p(x)
p(θx)

)′
< 0 for any x > 0. From [5], we know

that
p′(x)
p′(θx)

is strictly monotone increasing if 0 < θ < 1, and

lim
x→0+

p′(x)
p′(θx)

=
1
θ
, lim

x→∞

p′(x)
p′(θx)

= θ2.

Noting (1), it follows that

lim
x→0+

p(x)
p(θx)

= 1, lim
x→∞

p(x)
p(θx)

= lim
x→∞

p′(x)
θp′(θx)

= θ.

Thus, limx→0+ D(x) = 1 and limx→∞ D(x) = θ follows.

(6) For 0 < θ < 1, from [21], we know that D′(x) =

(
p(x)
p(θx)

)′
> 0 for any x > 0. By direct

computation, one can get

S ′(x) =

(
α + q(x)

αD(x)/θ + q(x)

)′
=

αq′(x)(D(x)/θ − 1) − αD′(x)(α + q(x))/θ
(αD(x)/θ + q(x))2

> 0,

where the facts D(x) > θ, q′(x) > 0, and D′(x) < 0 have been used. For θ ∈ (0, 1), the facts that
limx→0+ S (x) = θ, limx→∞ S (x) = 1 follow from (5).

(7) Direct computation yields

F′′(x) =
1

9y2

[
4g′(y) + yg′′(y)

]
|y= 3√x,

and
4g′(y) + yg′′(y) =

J(y)
(α + q(x))3 ,
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where
J(y) = α2[4p′(y) + yp′′(y)] + α[−4p2(y) + y2 p′′(y)p(y) − 2y2(p′(y))2] + V(y),

and
V(y) = −4p2q − 2yp(y)q(y)p′(y) + 2yp2q′(y).

From [20], we know that 4p′(y) + yp′′(y) < 0. Since

−4p2(y) + y2 p′′(y)p(y) − 2y2(p′(y))2 = yp(yp′′ + 2p′) − 2p(yp′ + p) − 2(p2 + y2(p′)2) < 0

and

V(y) = −4p2q + 2yp(q′p − p′q)
= −4p2q + 2yp3

= p2(−4q + 2yp)
= −2yp3 < 0,

it follows that J(y) < 0 for y > 0. Thus 4g′(y) + yg′′(y) < 0, then F′′(x) < 0 follows. This completes
the proof.

To discuss the existence and uniqueness of almost periodic solutions, let’s recall some basic
introductions about the symbols and results of almost periodic functions (see [2, 4, 9, 13, 19] for
more details).
Definition 2.2. (see [4, 9]) A function g ∈ C(R) is called almost periodic if for all ε > 0, there exists
l(ε) > 0 such that any interval I of length l(ε) contains a number A with the property that

sup
t∈R
|g(t + A) − g(t)| < ε.

The space of all the almost periodic functions is denoted by CAP(R).
Recall that AP(X) is a Banach space with the sup norm.

Definition 2.3. (see [9]) Let M(·) be an n × n continuous matrix defined on R. The linear system

Y ′(t) = M(t)Y(t), (2.2)

is said to admit an exponential dichotomy on R if there exists positive constants k, ω and a projection
P such that

‖Y(t)PY−1(−s)‖ ≤ ke−ω(t−s), t ≥ s,

‖Y(t)(I − P)Y−1(−s)‖ ≤ ke−ω(s−t), t ≤ s,

for a fundamental solution matrix Y(t) of (2.2).
Lemma 2.4. (see [9]) If the linear system (2.2) admits an exponential dichotomy with a projection P,
then the almost periodic system

Y ′(t) = M(t)Y(t) + g(t),

has a unique almost periodic solution Y(t) given by

Y(t) =

∫ t

−∞

Y(t)PY−1(s)g(s)ds −
∫ +∞

t
Y(t)(I − P)Y−1(s)g(s)ds.
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Theorem 2.5. (see [7–9]) Suppose that P is a normal and solid cone of a real Banach space X. Let P0

be the interior of P. Suppose further that the operator A from P0 to P0 is a nondecreasing operator.
Assume that there exists a function φ : (0, 1) × P0 → (0,+∞) such that for any ϑ ∈ (0, 1) and x ∈ P0,
then the following holds

(1) φ(ϑ, x) > ϑ.
(2) φ(ϑ, ·) is nondecreasing in P0.
(3) A(ϑx) ≥ φ(ϑ, x)A(x).
Assume further that there exists z ∈ P0 such that A(z) ≥ z. Then A has a unique fixed point x∗ in P0.

Moreover, for any initial x0 ∈ P0, the iterative sequence defined by

xn = A(xn−1), n ∈ N, (2.3)

satisfies
‖xn − x∗‖ → 0 (n→ ∞). (2.4)

3. The existence and uniqueness of the almost periodic solution

Rewrite the problems (1.8) and (1.9) in the following form:

x(t) = x0(0)e−σ̃t + 3α
∫ t

0
ψ(s − τ)e−σ̃(t−s)F(x(s − τ))ds.

Then, by the method of steps, the problems (1.8) and (1.9) have a unique solution x(t) which exists for
all t ≥ 0. From Lemma 2.1, it follows that F(x) ≥ 0 for all x ≥ 0. Then, by Theorem 1.1 in [1], it is
easy to get get that the solution to problems (1.8) and (1.9) is nonnegative.

For the remainder of the paper, we always assume that ψ(t) is a positive almost periodic function
and denote

ψ∗ = sup
t∈R

ψ(t), ψ∗ = inf
t∈R

ψ(t).

By Definition 2.3 and Lemma 2.4, it is not hard to get:
Lemma 3.1. There exists a nonnegative almost periodic solution to Eq (1.8) given by

x(t) = 3α
∫ t

−∞

ψ(s − τ)F(x(s − τ))e−σ̃(t−s)ds, t ∈ R. (3.1)

Actually, Eq (1.8) is equivalent to (3.1) in the sense of nonnegative almost periodic solutions, i.e.,
every nonnegative almost periodic solution of Eq (1.8) is also a nonnegative almost periodic solution
of (3.1), and vice versa.
Theorem 3.2. (1) If ψ∗ > σ̃, there exists one unique positive almost periodic solution x∗ to Eq (1.8).
Moreover, for any initial value function x0 ∈ CAP(R) with positive infimum, the iterative sequence

xk(t) = 3α
∫ t

−∞

ψ(s − τ) f (xk−1(s − τ))e−σ̃(t−s)ds, k = 1, 2, 3... (3.2)
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satisfies
‖xk − x∗‖ → 0, k → ∞. (3.3)

(2) If ψ∗ < σ̃, then Eq (1.8) has exactly one unique almost periodic solution which equals zero.
Moreover, for any nonnegative initial value function x0 ∈ CAP(R), the iterative sequence

xk(t) = 3α
∫ t

−∞

ψ(s − τ)F(xk−1(s − τ))e−σ̃(t−s)ds, k = 1, 2, 3... (3.4)

satisfies
‖xk‖ → 0, k → ∞. (3.5)

Proof. (1). Let
P = {x ∈ CAP(R) : x(t) ≥ 0, t ∈ R}.

Then, P is a normal and solid cone in CAP(R) and its interior

P0 = {x ∈ CAP(R) : ∃ε > 0, such that x(t) > ε, t ∈ R}.

Define an operator A on P0 in the following way:

A(x)(t) = 3α
∫ t

−∞

ψ(s − τ)F(x(s − τ))e−σ̃(t−s)ds. (3.6)

The fact
F′(x) =

1
y2 G′(y)|y= 3√x > 0, (3.7)

implies that F is monotone increasing for x > 0. It follows that A is a nondecreasing operator.
Next, let us prove that A is from P0 to P0. Since

lim
x→0

g( 3√x) = lim
x→0

p( 3
√

x)
α + q( 3

√
x)

=
1

3α
,

and ψ∗ > σ̃, noticing g is decreasing (see Lemma 2.1), there exists ε > 0 such that

g( 3√ε) =
p( 3
√
ε)

α + q( 3
√
ε)
>

σ̃

3αψ∗
,

which implies

3αg( 3√ε)
ψ∗
σ̃
> 1.

If x0 ∈ P0, there exists ε0 > 0 such that x0(t) ≥ ε0 for all t ∈ R. It follows that

A(x0)(t) ≥ 3α
∫ t

−∞

ψ∗F(ε0)e−σ̃(t−s)ds

= 3α
ψ∗
σ̃
ε0g(ε0)
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> 3α
ψ∗
σ̃
ε0g( 3
√
ε0)

> ε0,

for all t ∈ R, which means that A(x0) ∈ P0. And for ε2 ∈ (0, ε1), we obtain

A(ε2)(t) ≥ 3α
∫ t

−∞

ψ∗F(ε2)e−σ̃(t−s)ds

= 3
ψ∗
σ̃
ε2g( 3
√
ε2)

> 3
ψ∗
σ̃
ε2g( 3
√
ε1)

> ε2.

It is easy to get that
F(ϑx) = ζ(ϑ, x)F(x),

for all 0 < ϑ < 1 and x ∈ (0,+∞), where ζ(ϑ, x) =
√
ϑS (y)|θ=√ϑ,y=

√
x. Let

φ(ϑ, x) = ζ(ϑ, inf
t∈R

x(t)), x ∈ P0.

By Lemma 2.1 (6), one can get that ζ(ϑ, .) is strictly monotone increasing in (0,+∞) and
limx→0 ζ(ϑ, x) = ϑ, which implies ζ(ϑ, x) > ϑ for ϑ ∈ (0, 1) and x ∈ (0,+∞). Therefore,

φ(ϑ, x) > ϑ, ϑ ∈ (0, 1), x ∈ P0.

Also, by the fact that ζ(ϑ, ·) is strictly monotone increasing in (0,+∞), one can get that φ(ϑ, ·) is
nondecreasing in P0. It follows that

A(ϑx)(t) = 3α
∫ t

−∞

ψ(s − τ)F(ϑx(s − τ))e−σ̃(t−s)ds

= 3α
∫ t

−∞

ψ(s − τ)x(s − τ)g( 3
√

x(s − τ))ζ(ϑ, x(t − τ))e−σ̃(t−s)ds

≥ 3α
∫ t

−∞

ψ(s − τ)x(s − τ)g( 3
√

x(s − τ))φ(ϑ, x)e−σ̃(t−s)ds

≥ 3αφ(ϑ, x)
∫ t

−∞

ψ(s − τ)x(s − τ)g( 3
√

x(s − τ))e−σ̃(t−s)ds

= φ(ϑ, x)A(x)(t).

By Theorem 2.5 (see (2.3) and (2.4)), Eq (3.1) has exactly one positive almost periodic solution
x∗ ∈ P0. Then, by Lemma 2.4, x∗ is just the unique almost periodic solution with a positive infimum to
Eq (1.8). Moreover, (3.2) and (3.3) follow from (2.3) and (2.4).

(2). By Lemma 3.1, Eq (1.8) has a nonnegative almost periodic solution

x(t) = 3α
∫ t

−∞

ψ(s − τ)F(x(s − τ))e−σ̃(t−s)ds, t ∈ R. (3.8)
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Define operator A : CAP(R)→ CAP(R) as follows:

A(x)(t) = 3α
∫ t

−∞

ψ(s − τ)F(x(s − τ))e−σ̃(t−s)ds. (3.9)

Next, we show that A is a contraction operator. For any x, y ∈ CAP(R),

‖A(x)(t) − A(y)(t)‖ = 3α‖
∫ t

−∞

ψ(s − τ)[F(x(s − τ)) − F(y(s − τ))]e−σ̃(t−s)ds‖

≤ 3α
∫ t

−∞

ψ∗|F′(ξ(t))|e−σ̃(t−s)ds‖x − y‖,

where ξ(t) lies between x(t) and y(t). For any x > 0, since

F′(x) =
1

3y2 G′(y)|y= 3√x > 0,

and g′( 3
√

x) < 0, it follows that |F′(x)| ≤ g( 3
√

x) ≤ 1/3. Then,

|A(x)(t) − A(y)(t)| ≤
ψ∗

σ̃
‖x − y‖,

which implies that A is a contraction operator since ψ∗ < σ̃. Therefore, Eq (1.8) has exactly
one nonnegative almost periodic solution x(t). If we define p(0) = 1/3, then p is continuous on
R. Therefore, zero is also an almost periodic solution of Eq (1.8). By the uniqueness, we have
x(t) ≡ 0. Since

‖xk(t)‖ = 3α

∥∥∥∥∥∥
∫ t

−∞

ψ(s − τ) f (xk−1(s − τ))e−σ̃(t−s)ds

∥∥∥∥∥∥
≤
ψ∗

σ̃
‖xk−1‖

≤

(
ψ∗

σ̃

)2

‖xk−2‖

≤ · · ·

≤

(
ψ∗

σ̃

)k

‖x0‖,

and
ψ∗

σ̃
< 1, we can get ‖xk‖ → 0, k → ∞. This completes the proof of Theorem 3.2.

Remark. Theorem 3.2 (2) implies that if ψ∗ < σ̃, Eq (1.8) has no positive almost periodic solution.

4. Exponential stability of the unique positive almost periodic solution

Lemma 4.1. Assume that the function F(x, y) is defined on R+ × R+ and continuously differentiable.

Suppose
∂F
∂y

> 0 for (x, y) ∈ R+ × R+. For any T > 0, if z1, z2 ∈ C[−τ,T ) ∩ C1(0,T ) satisfy the

following inequalities:
z1
′(t) ≥ F(z1(t), z1(t − τ)) for t > 0, (4.1)
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z2
′(t) ≤ F(z2(t), z2(t − τ)) for t > 0, (4.2)

z1(t) ≥ z2(t) for − τ ≤ t ≤ 0, (4.3)

then, z1(t) ≥ z2(t) for t ≥ −τ.
Proof. Please see Lemma 3.1 in [6].
Lemma 4.2. Consider the following problem

x′(t) = F(x(t), x(t − τ)) for t > 0, (4.4)

x(t) = x0(t) for − τ ≤ t ≤ 0. (4.5)

Assume that the function F is defined on R+ ×R+ and continuously differentiable. Suppose
∂F
∂y

> 0 for

(x, y) ∈ R+ × R+. Let xs be a positive solution of equation F(x, x) = 0 such that

(x − xs)F(x, x) < 0 for x , xs.

If x(t) is the solution of the problem of (4.4), (4.5), and x0(t) ∈ C[−τ, 0] for −τ ≤ t ≤ 0, then,

lim
t→∞

x(t) = xs.

Proof. Please see Lemma 3.4 in [6].
By Eq (1.7), we can get

3αψ∗F(x(t − τ)) − σ̃x(t) ≤ x′(t) ≤ 3αψ∗F(x(t − τ)) − σ̃x(t).

Consider the following two initial value problems

z′(t) =3αψ∗F(z(t − τ)) − σ̃z(t), (4.6)
z0(t) =ϕ(t), − τ ≤ t ≤ 0, (4.7)

and

y′(t) =3αψ∗F(y(t − τ)) − σ̃y(t), (4.8)
y0(t) =ϕ(t), − τ ≤ t ≤ 0. (4.9)

Define
F1(x, y) = 3αψ∗F(y) − σ̃x, F2(x, y) = 3αψ∗F(y) − σ̃x.

From (3.7), we know that F1 and F2 are monotone increasing in y. Since ψ∗ > σ̃, by Lemma 2.1, one
can get

0 <
αp(x)
α + q(x)

=
αG(x)

x3 = αg(x) < 1/3,

for all x > 0. Then, when ψ∗ > σ̃ (i.e., 0 <
σ̃

3ψ∗
<

σ̃

3ψ∗
<

1
3

), it follows that the equations

F1(x, x) = 3αxψ∗[g( 3√x) −
σ̃

3ψ∗
] = 0
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and
F2(x, x) = 3αxψ∗[g( 3√x) −

σ̃

3ψ∗
] = 0,

have a unique positive constant solution x1 and x2, respectively, and x1 < x2, where the fact that
g′(x) < 0 for x > 0 is used.
Lemma 4.3. If ψ∗ > σ̃, then the following assertion holds:

x1 = lim
t→∞

z(t) ≤ x = lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) = x̄ ≤ lim
t→∞

y(t) = x2.

Moreover, there exists T > 0 such that

x(t) > x1/2 > 0, (4.10)

for t > T.
Proof. Since g′(x) < 0, we have (x − x1)F(x, x) < 0 for x , x1. By Lemma 4.2, for any nonnegative
initial value function x0(t), one can get

lim
t→∞

z(t) = x1, (4.11)

where x(t) is the solution of (4.6) and (4.7). Similarly, it is easy to get that for any nonnegative initial
value function x0(t), one can get

lim
t→∞

y(t) = x2, (4.12)

where y(t) is the solution of (4.8) and (4.9). Using Lemmas 4.1 and 4.2, one can get

x1 = lim
t→∞

z(t) ≤ x = lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) = x̄ ≤ lim
t→∞

y(t) = x2.

Thus, (4.10) follows. This completes the proof.
The solution to Eq (1.8) is related to α. Denote x(t) = x(t, α). Assume α1 ≤ α2. Consider the

following two problems

y′1(t) =3α1ψ(t)F(y1(t − τ)) − σ̃y1(t), (4.13)
y1(t) =ϕ(t), − τ ≤ t ≤ 0 (4.14)

and

y′2(t) =3α2ψ(t)F(y2(t − τ)) − σ̃y2(t), (4.15)
y2(t) =ϕ(t), − τ ≤ t ≤ 0. (4.16)

By Lemma 4.1, it is easy to get that x(t, α1) ≤ x(t, α2). Then,
Lemma 4.4. The solution to Eq (1.8) is monotone increasing in α.

Theorem 4.5. (I) If ψ∗ > σ̃ and σ̃ − ψ∗(
σ̃

ψ∗
+ 3A0) > 0 hold, where A0 = 1/3 3

√
x1g′( 3

√
x1), then there

exists τ0 > 0 such that for all τ ∈ (0, τ0), the unique almost periodic positive solution to Eq (1.8) is
exponentially stable.

(II) If ψ∗ < σ̃, then there exists τ1 > 0 such that for all τ ∈ (0, τ1), every solution to Eq (1.8)
exponentially asymptotically tends to 0.
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Remark. By selecting appropriate parameters, the condition σ̃−ψ∗(
σ̃

ψ∗
+ 3A0) > 0 in Theorem 4.5 (I)

can be satisfied. Actually, let

l(y) = σ̃

(
1
y
−

1
ψ∗

)
+

3A0

ψ∗
.

Then, l′(y) < 0 and limy→0+ l(y) = +∞. By Lemmas 2.1 (1) and (3), g is decreasing, thus A0 < 0. Then

l(ψ∗) =
3A0

ψ∗
< 0. Thus, there exists a positive constant l0 such that l(y) < 0 for l0 < y < ψ∗. Since

σ̃ − ψ∗(
σ̃

ψ∗
+ 3A0) > 0⇔ σ̃

(
1
ψ∗
−

1
ψ∗

)
+

3A0

ψ∗
< 0,

the conditions in Theorem 4.5 (I) will be satisfied if we choose the almost function ψ(t) satisfying
ψ∗ ∈ (l0, ψ

∗) and σ̃ satisfying σ̃ < ψ∗.

Proof. (I) Since σ̃ − ψ∗(
σ̃

ψ∗
+ 3A0) > 0, due to the sign preserving property of continuous functions,

there exists η > 0 which is small enough such that

σ̃ − ψ∗
(
σ̃

ψ∗
+ 3(A0 + η)

)
> 0.

Let

ϑ(τ) = σ̃ − ψ∗
(
σ̃

ψ∗
+ 3(A0 + η)

)
eσ̃τ,

where A0 =
1
3

3
√

x1g′( 3
√

x1) < 0. Then

ϑ(0) = σ̃ − ψ∗
(
σ̃

ψ∗
+ 3(A0 + η)

)
> 0, (4.17)

which implies that there exists a constant τ0 > 0 such that

θ(τ) >
θ(0)

2
> 0,

for all τ ∈ (0, τ0).
Let x(t) be an arbitrary solution of (1.8) and x∗(t) is the unique almost periodic solution

of (1.8). Then,

x(t) = x0e−σ̃t + 3α
∫ t

0
e−σ̃(t−s)ψ(s − τ)F(x(s − τ))ds,

and

x(t) = x0e−σ̃t + 3α
∫ t

0
e−σ̃(t−s)ψ(s − τ)F(x∗(s − τ))ds,

for all t ≥ 0. Then we can get

x(t) − x∗(t) = (x0(0) − x∗0(0))e−σ̃t + 3α
∫ t

0
e−σ̃(t−s)ψ(s − τ) (F(x(s − τ)) − F(x∗(s − τ))) ds.
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It follows that

|x(t) − x∗(t)| ≤ (x0(0) − x∗0(0))e−σ̃t + 3α
∫ t

0
e−σ̃(t−s)ψ(s − τ)|F(x(s − τ)) − F(x∗(s − τ))|ds.

Because of the continuity of F′, for any η > 0, there exists δ > 0 such that when |z(t) − x1| < δ,
there holds

|F′(z(t)) − F′(x1)| < η. (4.18)

Since limt→∞ z(t) = x2, for the above δ, there exists T > τ > 0 such that when t > T − τ, there holds

|z(t) − x1| < δ.

Thus, there exists T > 0 such that when t > T −τ, (4.18) holds. It follows that for t > T −τ, there holds

F′(z(t)) ≤ F′(x1) + η. (4.19)

Let u(t) = |x(t) − x∗(t)|eσ̃t. We can get for t > T ,

u(t) ≤ M̃ + 3α
∫ t

T
eσ̃sψ(s − τ)|F′(ξ)|.|x(s − τ) − x∗(s − τ)|ds,

where ξ = ϑx(t − τ) + (1 − ϑ)x∗(t − τ), ϑ ∈ (0, 1), and

M̃ = |x0(0) − x∗0(0)| + 3α
∫ T

0
eσ̃sψ(s − τ)|F′(ξ)|.|x(s − τ) − x∗(s − τ)|ds.

By the fact that
|F′(ξ)| = g( 3

√
ξ) + 1/3 3

√
ξg′( 3

√
ξ) < g( 3

√
ξ) < 1/3,

we have

M̃ = |x0(0) − x∗0(0)| + 3α
∫ T

0
eσ̃sψ(s − τ)|F′(ξ)|.|x(s − τ) − x∗(s − τ)|ds

≤ |x0(0) − x∗0(0)| + α

∫ T

0
eσ̃sψ(s − τ).|x(s − τ) − x∗(s − τ)|ds =: M.

It follows that

u(t) ≤ M + 3α
∫ t

T
eσ̃sψ(s − τ)|F′(ξ)|.|x(s − τ) − x∗(s − τ)|ds,

for t > T. Notice that z(t) is a solution of (4.6) and (4.7), then by Lemma 4.1, one can get

ξ = ϑx(t − τ) + (1 − ϑ)x∗(t − τ) ≥ z(t − τ).

Since F′′(x) < 0 for all x > 0, then there exists T > 0 such that for t > T ,

u(t) ≤ M + 3α
∫ t

T
eσ̃sψ(s − τ)|F′(ξ)|.|x(s − τ) − x∗(s − τ)|ds

≤ M + 3α
∫ t

T
eσ̃sψ(s − τ)F′(z(s − τ)).|x(s − τ) − x∗(s − τ)|ds
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≤ M + 3α
∫ t

T
eσ̃sψ(s − τ)(F′(x1) + η)|x(s − τ) − x∗(s − τ)|ds

≤ M + 3α
∫ t

T
eσ̃sψ∗

(
σ̃

3αψ∗
+ A0 + η

)
u(s − τ)ds

≤ M + 3α
∫ t

0
eσ̃τψ∗

(
σ̃

3αψ∗
+ A0 + η

)
u(s)ds

≤ M + 3α
∫ t−τ

−τ

eσ̃τψ∗
(
σ̃

3αψ∗
+ A0 + η

)
u(s)ds

= M + 3α
∫ 0

−τ

eσ̃τψ∗
(
σ̃

3αψ∗
+ A0 + η

)
u(s)ds + 3α

∫ t−τ

0
eσ̃τψ∗

(
σ̃

3αψ∗
+ A0 + η

)
u(s)ds

≤ M1 + α

∫ t

0
eσ̃τψ∗

(
σ̃

αψ∗
+ 3(A0 + η)

)
u(s)ds

= M1 +

∫ t

0
eσ̃τ

(
ψ∗σ̃

ψ∗
+ 3αψ∗(A0 + η)

)
u(s)ds,

where

M = |x0(0) − x∗0(0)| + α

∫ T

0
eσ̃sψ(s − τ)|x(s − τ) − x∗(s − τ)|ds,

and M1 = M + 3α
∫ 0

−τ
eσ̃τψ∗( σ̃

3αψ∗ + A0 + η)u(s)ds and Lemma 2.1 has been used. By the Gronwall
inequality, one can get

u(t) ≤ M1eκt,

where κ = eσ̃τψ∗( σ̃
ψ∗

+ 3(A0 + η)). It follows that

|x(t) − x∗(t)| ≤ M1e(κ−σ̃)t = M1e−(σ̃−κ)t ≤ M1e−γt,

where

γ = σ̃ − ψ∗
(
σ̃

ψ∗
+ 3(A0 + η)

)
eσ̃τ > 0,

for τ ∈ (0, τ0) and η is sufficiently small, which means x∗(t) is exponentially stable. The proof of
Theorem 4.5 (I) is complete.

(II) Let
L(τ) = σ̃ − ψ∗eσ̃τ.

Then L(0) = σ̃ − ψ∗ > 0, thus there exists τ1 > 0 such that L(τ) > 0 for any τ ∈ (0, τ1). Let
v(t) = |x(t)|eσ̃t. We can get

v(t) ≤ C + 3
∫ t

0
eσ̃sψ(s − τ)|x(s − τ)|g( 3

√
x(s − τ))|ds

≤ C +

∫ t

0
eσ̃sψ∗|x(s − τ)|ds

≤ C +

∫ t−τ

−τ

eσ̃τψ∗v(s)ds
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= C +

∫ 0

−τ

eσ̃τψ∗v(s)ds +

∫ t−τ

0
eσ̃τψ∗v(s)ds

≤ C1 +

∫ t

0
eσ̃τψ∗v(s)ds,

where C = x0(0),C1 = C +
∫ 0

−τ
eσ̃τψ∗v(s)ds. By the Gronwall inequality, one can get

u(t) ≤ C1eκt.

It follows that
|x(t)| ≤ C1e(κ−σ̃)t = C1e−(σ̃−κ)t ≤ C1e−(σ̃−ψ∗eσ̃τ)t,

for τ ∈ (0, τ1), which means x∗(t) is exponentially stable since σ̃−ψ∗eσ̃τ > 0. This completes the proof.

5. Computer simulations

In this section, the results of computer simulations are presented. By using MATLAB R2016a, we
present some examples of solutions of Eq (1.8) for different parameter values (see Figures 1–6). The
model parameter values used in the simulations are given with the figures’ captions.

Let ψ(t) = 5 +
1
2

[cos(t) + sin(
√

2t)]. Then ψ∗ = 6, ψ∗ = 4. Assume α = 1, τ = 0.1, and σ̃ = 1. The
solution to

g( 3√x) =
σ̃

3ψ∗α
=

1
6

is x ≈ 10.16. It follows that
A0 =

1
3

3√xg′( 3√x) ≈ −0.339.

γ = σ̃ − ψ∗(
σ̃

αψ∗
+ 3A0)eσ̃τ ≈ 0.166 > 0.

The conditions of Theorem 4.5 (I) are satisfied.
Let ψ(t) = 5 + cos(t) + sin(

√
2t). Then ψ∗ = 7, ψ∗ = 3. Assume α = 1, τ = 1, and σ̃ = 20. Then

σ̃ − ψ∗eσ̃τ = 20 − 7 ∗ e > 0.

The conditions of Theorem 4.5 (II) are satisfied.
Let ψ(t) = 5 + cos(t) + sin(

√
2t). Then ψ∗ = 7, ψ∗ = 3. Assume α = 1, τ = 2, and σ̃ = 1. The

solution to
g( 3√x) =

σ̃

3ψ∗α
=

1
9
,

is x ≈ 56.0247. It follows that
A0 =

1
3

3√xg′( 3√x) ≈ −0.0297.

γ = σ̃ − ψ∗(
σ̃

αψ∗
+ 3A0)eσ̃τ ≈ −11.6326 < 0.

The conditions of Theorem 4.5 (I) are not satisfied. Assume α = 1, τ = 2, and σ̃ = 10. Then

σ̃ − ψ∗eσ̃τ = 10 − 7 ∗ e2 < 0.
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So these parameter values do not meet the conditions of Theorem 4.5 (II).
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Figure 1. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + 1/2 cos(t) +

1/2 sin(
√

2t), α = 1, σ̃ = 1, τ = 0.1, and x0 = 260, 360, respectively.
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Figure 2. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + cos(t) +

sin(
√

2t), α = 1, σ̃ = 20, τ = 1, and x0 = 3, 1, respectively.
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Figure 3. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + 1
2 [cos(t) +

sin(
√

2t)], σ̃ = 1, τ = 0.1, x0 = 260, and α = 1, 3, 5, respectively.
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Figure 4. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + cos(t) +

sin(
√

2t), σ̃ = 20, τ = 1, x0 = 3, and α = 1, 3, 5, respectively.
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Figure 5. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + cos(t) +

sin(
√

2t), σ̃ = 1, τ = 2, x0 = 260, and α = 1, 3, 5, respectively.
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Figure 6. The corresponding curves of the solutions to Eq (1.8) for ψ(t) = 5 + cos(t) +

sin(
√

2t), σ̃ = 10, τ = 2, x0 = 60, and α = 1, 3, 5, respectively.

In Figure 1, the behavior of the solutions covered by Theorem 4.5 (I) is presented. Numerical
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simulation results indicate that, for certain parameter values satisfying Theorem 4.5 (I) and different
constant initial values, the tumor will asymptotically tend towards an almost periodic solution. Figure 2
illustrates the behavior of the solutions covered by Theorem 4.5 (II). It is observed that, for specific
parameter values and different constant initial values satisfying Theorem 4.5 (II), the tumor will
disappear. In Figures 3 and 4, the behavior of the solutions is presented for varying α representing
blood vessel density. Numerical simulation results demonstrate that when other parameters remain
unchanged, the solution increases with increasing α without affecting its final trend of the solution.

Figures 5 and 6 indicate that even if the conditions of Theorem 4.5 are not met, the solution of the
problem may exponentially asymptotically tend to the unique almost periodic solution or exponentially
asymptotically tend to 0. This indicates that the conditions for exponential asymptotic stability in
Theorem 4.5 are only sufficient conditions.

6. Conclusions

The focus of this study lied in investigating the impact of almost periodic nutrient supply,
angiogenesis, and time delay on tumor growth. Our results demonstrated that an almost periodic
nutrient supply led to a unique almost periodic solution for this problem (refer to Theorem 3.2).
Furthermore, we established that this unique solution was exponentially asymptotically stable under
certain parameter conditions, while the presence of time delay did not affect the final growth trend of the
tumor (see Theorem 4.5). Additionally, when keeping other parameters constant, our findings indicated
that the solution increased with an increase in α, which represents the intensity of angiogenesis;
however, it should be noted that the magnitude of α did not affect the final trend of the solution (refer
to Lemma 4.4 and Theorem 4.5).
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