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Abstract: This research investigated the fixed-time (FXT) synchronization of fractional-order fuzzy
cellular neural networks (FCNNs) with delays and interactions based on an enhanced FXT stability
theorem. By conceiving proper Lyapunov functions and applying inequality techniques, several
sufficient conditions were obtained to vouch for the fixed-time synchronization (FXTS) of the discussed
systems through two categories of control schemes. Moreover, in terms of another FXT stability
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distinctions between them were pointed out. Two examples were delivered at length to demonstrate
the conclusions.
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1. Introduction

Cellular neural networks (CNN) were first presented in 1988 by Chua and Yang [1], which have
gained widespread attention because of their many applications. Fuzzy mathematics was originally
established by Zadeh, while Wu and Yang [2, 3] incorporated fuzzy operators into the structure of
CNNs and introduced fuzzy cellular neural networks (FCNNs). Among conventional CNNs, FCNNs
possess improved competence in pattern classification and image encryption [4–7]. In 1998, the authors
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in [8] first proposed fractional-order CNNs and investigated their dynamical behaviors in the case of
chaos and bifurcation. Owing to the infinite memory and hereditary properties of fractional derivatives,
various practical applications can be simulated with greater accuracy by fractional-order CNNs.
Therefore, concerning the merits of FCNNs and fractional-order CNNs, the fractional-order FCNNs
have been studied by many researchers, and several useful conclusions have been obtained [9–15].

The dynamic behavior of nonlinear systems [16,17] is characterized by their stability. Similarly, the
synchronization between systems is identical to the stabilization of their corresponding error systems.
Among the previous literature discussed on the stability of nonlinear systems, there have been plenty
of references to asymptotic stabilization and exponential stabilization [9, 10, 18–24]. Varying from
infinite-time stabilization such as asymptotic stabilization, finite-time stability [11, 13, 14, 25, 26] is
more appropriate for practical applications, as it can ensure that a system reaches a stable circumstance
on a finite horizon. However, the settling time (ST) of a system depends on its initial values; therefore,
the initial values must be known. But obtaining the initial values for any arbitrary system in engineering
can be challenging, if not unattainable.

To overcome this drawback, the FXT stability theory was proposed [27]. The FXT stability
indicates that the system is not only stable in a restricted time, but the ST estimation is foreign to
the initial conditions. Based on these advantages, some scholars have studied this issue and obtained
sufficient conditions to judge the FXT stability for dynamical systems [28–34]. However, the yielded
estimating formula of the ST is not unique because of the variety of research methods and theoretical
analyses. However, under the extant FXT stability theorems, several articles have been published on
FXT stability or nonlinear system synchronization [35–37]. In [15], the FXTS of delayed fractional-
order memristor-based FCNNs was studied by employing a feedback control. The authors in [38]
enforced a sliding mode control scheme and discussed the FXTS of fractional-order memristive
BAM neural networks. An innovative state-feedback control scheme was used in [39] to study the
FXT stabilization of fractional-order memristive complex-valued BAM neural networks that included
uncertain parameters and delays.

To achieve FXTS between drive-response systems, it is necessary to rely on the control schemes.
Universal control schemes include state feedback control, adaptive control [38, 40–42], and impulsive
control [43]. Among them, the application of adaptive control in the study of nonlinear systems is
widespread, because it is robust and can automatically adjust parameters in terms of updated laws. The
global asymptotical and exponential synchronization problems of chaotic fractional-order FCNNs were
studied using a novel adaptive control scheme in [22]. The authors in [44] obtained the FXTS criteria
of fuzzy stochastic CNNs with discrete and distributed delays using state feedback and adaptive control
individually. In [45], two types of controllers were used to attain the FXTS of stochastic memristor-
based neural networks involving state feedback and adaptive control.

Meanwhile, time delay is a factor that exists in actual systems and cannot be ignored. It can change
the stable state of the system and culminate in intricate dynamical behaviors such as bifurcation
and oscillation. Consequently, it is more reasonable to study nonlinear systems with time delays.
In addition, interactions between two networks are inevitable. Authors in [46] introduced a model
that included two coupled networks with interactions and investigated two synchronizations of the
discussed model through adaptive control. Subsequently, a fuzzy neural network model with fractional-
order involving interaction was proposed in [20], and its global asymptotic synchronization criteria
were obtained.
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To the best of our knowledge, few studies have considered the FXTS of fractional-order FCNNs
with delays and interactions. Motivated by the aforementioned analysis, we have focused on the FXTS
of fractional-order FCNNs with delays and interactions under state feedback control and adaptive
control. The main contributions of this study are as follows:

(1) The model discussed in this study integrates fractional calculus, fuzzy operators, time delays,
and interaction terms. Among the literature on FXTS, few of them involved the model used in this
study. For example, [9–15] considered fractional calculus, fuzzy operators, and time delays, but
didn’t consider interaction terms or FXTS; [20, 46] considered fractional calculus, fuzzy operators,
and interaction terms but didn’t consider time delays and FXTS.

(2) Control strategies based on state feedback and adaptive control are presented to vouch for the
FXTS of the proposed system. With an upgraded FXT stability theorem, by constructing Lyapunov
functions, the criteria with the upper-bounding estimation of the ST are acquired to guarantee the FXTS
of the discussed system.

(3) According to another FXT stability theorem, we infer the different upper-bounding estimating
formulas for the ST and point out the distinctions between them. Essentially, the main conclusions can
be generalized to the case of unbounded interaction functions between drive and response systems.

The remainder of this paper is organized in the following manner. In Section 2, the model of
fraction-order FCNNs with delays and interactions is proposed, and mathematical preliminaries are
presented which will be used to prove the main theorems. In Section 3, state feedback and adaptive
control strategies are applied to obtain FXTS criteria. In Section 4, two examples of the simulated
results explicate the effectiveness of these outcomes. The final section concludes the study and
proposes future work.

Notation: Throughout this study, all fractional-order derivatives are based on the definition of the
Caputo fractional differential operator CDα

t0,t. R and Rn represent the set of real numbers and the n-
dimensional Euclidean space, respectively. Let R+ = [0,+∞), and Z+ be the set of positive integers.
C1 (R+,R) is the space of continuous and differentiable functions from R+ into R. The notation sign(·)
denotes a sign function.

2. Preliminaries

The fractional-order FCNNs with delays and interactions are portrayed by

CDα
0,txi(t) = − cixi(t) +

∑
j∈Ξ

ai j f j(x j(t)) +
∑
j∈Ξ

bi j f j(x j(t − ς))

+
∧
j∈Ξ

αi j f j(x j(t − ς)) +
∨
j∈Ξ

βi j f j(x j(t − ς)) + ε
∑
j∈Ξ

di jh j(y j(t)) + Ii, (2.1)

CDα
0,tyi(t) = − ciyi(t) +

∑
j∈Ξ

ai j f j(y j(t)) +
∑
j∈Ξ

bi j f j(y j(t − ς))

+
∧
j∈Ξ

αi j f j(y j(t − ς)) +
∨
j∈Ξ

βi j f j(y j(t − ς)) + ε
∑
j∈Ξ

d̄i jh j(x j(t)) + Ii + ui(t). (2.2)

Models (2.1) and (2.2) are drive-response systems, where 0 < α < 1, t ≥ 0, ς(ς > 0) is the
transmission delay, and ε is the strength of the outer interaction. In the drive and response systems,
xi(t) and yi(t) represent the ith unit state variables at time t. The passive decay rate is indicated by
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ci(ci > 0). Feedback templates (fuzzy feedback templates) include elements ai j and bi j (αi j and βi j).
The structures of these interactions are di j and d̄i j. Fuzzy AND and fuzzy OR are indicated by

∧
and∨

. A bias is indicated by Ii and the control input is denoted by ui(t), of the ith neuron. In the jth
neuron, f j(·) ( f j(0) = 0) represents the activation function. The two networks interact with the function
h j(·) (h j(0) = 0), i, j ∈ Ξ = {1, 2, . . . , n}, n indicates the number of neurons.

Remark 2.1. Systems (2.1) and (2.2) include interactions, fuzzy OR, and fuzzy AND operations. The
complexity and uncertainty can be better described in mathematical modeling, and coupled strengths
change dynamically.

The initial values of (2.1) and (2.2) are given like this:

xi(t) = ψi(t), t ∈ [−ς, 0], (2.3)
yi(t) = ϕi(t), t ∈ [−ς, 0]. (2.4)

Assume xi(t) and yi(t) are arbitrary solutions of (2.1) with (2.3) and (2.2) with (2.4), respectively.
Let $i(t) = yi(t) − xi(t), i ∈ Ξ. Then the error system is illustrated as follows:

CDα
0,t$i(t) = − ci$i(t) +

∑
j∈Ξ

ai j f j($ j(t)) +
∑
j∈Ξ

bi j f j($ j(t − ς)) +
∧
j∈Ξ

αi jF j($ j(t − ς))

+
∨
j∈Ξ

βi jF j($ j(t − ς)) + ε
∑
j∈Ξ

d̄i jh j(x j(t)) − ε
∑
j∈Ξ

di jh j(y j(t)) + ui(t), (2.5)

where

f j($ j(t)) = f j(y j(t)) − f j(x j(t)),∧
j∈Ξ

αi jF j($ j(t − ς)) =
∧
j∈Ξ

αi j f j(y j(t − ς)) −
∧
j∈Ξ

αi j f j(x j(t − ς)),∨
j∈Ξ

βi jF j($ j(t − ς)) =
∨
j∈Ξ

βi j f j(y j(t − ς)) −
∨
j∈Ξ

βi j f j(x j(t − ς)).

Definition 2.1. [47] With fractional-order α > 0, the Riemann-Liouville fractional integral of function
g(x) is defined as follows:

x0 Iαx g(x) =
1

Γ(α)

x∫
x0

(x − s)α−1g(s)ds,

where Γ(·) represents the Gamma function and is provided by Γ(t) =
∫ ∞

0
µt−1e−µdµ.

Definition 2.2. [47] With fractional-order α > 0, the Caputo derivative of function g(x) is defined as
follows:

CDα
x0,xg(x) =

1
Γ(n − α)

x∫
x0

(x − s)n−α−1g(n)(s)ds,

where n − 1 < α < n ∈ Z+.
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In order to keep things simple, we refer to

CDα
t0,tg(t) = Dα

t g(t),

where t0 is the initial time. In this paper, let t0 = 0.

Lemma 2.1. [48] Let W(t) ∈ C1 (R+,R). Then

Dα
t |W(t)| ≤ sign(W(t))Dα

t W(t), 0 < α ≤ 1.

Lemma 2.2. [2] Let x j(t) and z j(t) be two state variables of system (2.5). Then the following
inequalities hold: ∣∣∣∣∣∣∣∧j∈Ξ ai jg j(x j(t)) −

∧
j∈Ξ

ai jg j(z j(t))

∣∣∣∣∣∣∣ ≤∑
j∈Ξ

∣∣∣ai j

∣∣∣ ∣∣∣g j(x j(t)) − g j(z j(t))
∣∣∣ ,

∣∣∣∣∣∣∣∨j∈Ξ bi jg j(x j(t)) −
∨
j∈Ξ

bi jg j(z j(t))

∣∣∣∣∣∣∣ ≤∑
j∈Ξ

∣∣∣bi j

∣∣∣ ∣∣∣g j(x j(t)) − g j(z j(t))
∣∣∣ .

Lemma 2.3. [49] Let ai ≥ 0, 0 < q < 1, p > 1. Then we have

aq
1 + aq

2 + · · · + aq
K ≥ (a1 + a2 + · · · + aK))q ,

ap
i + ap

2 + · · · + ap
K ≥K1−p (a1 + a2 + · · · + aK))p .

Lemma 2.4. [29] Suppose W(·) : Rn → R+ is a continuous radially unbounded function (CRUF)
under the following conditions:

(1) W($(t)) = 0 if and only if $(t) = 0;
(2) In system (2.5), any solution $(t) is satisfied by:

Ẇ($(t)) ≤ −aWq(($(t))) − bW p(($(t))) − cW($(t)),

where a, b, c > 0, 0 < q < 1, p > 1.
Thus, it is FXT stable at the origin of system (2.5), and the ST estimating formula T 1

max is

T 1
max =

p − q
c(p − 1)(1 − q)

ln
(
1 +

c
a

(a
b

) 1−q
p−q

)
.

Remark 2.2. Lemma 2.4 is superior to the FXT stability theorem of [28] in the estimation of ST.
In [28], ST T 2

max = 1
c(1−q) ln

(
1 + c

a

)
+ 1

c(p−1) ln
(
1 + c

b

)
. When a = b, T 1

max = T 2
max, otherwise T 2

max > T 1
max,

(see [29]).

Lemma 2.5. [33] Let W(·) : Rn → R+ be a CRUF, under the following conditions:
(1) W($(t)) = 0 if and only if $(t) = 0.
(2) In system (2.5), any solution $(t) is satisfied by:

Ẇ($(t)) ≤ −aWq(($(t))) − bW p(($(t))) − c.

(3) If $(t) = 0, Ẇ($(t)) ≤ 0.
Thus, it is FXT stable at the origin of system (2.5), and the ST estimating formula T 3

max is

T 3
max =

1

a
1
q (1 − q)

[
(a

1
q + c

1
q )1−q − c

1−q
q

]
+

2p−1

b
1
p (p − 1)

(
b

1
p + c

1
p
)1−p

.
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Remark 2.3. If c = 0, T 3
max = 1

a(1−q) + 1
b(p−1) .

Assumption 2.1. Let the activation functions fi(x) and interaction functions hi(x) be Lipschitz
continuous, that is, there exist constants Fi,Hi > 0, which makes

| fi(x) − fi(y)| ≤Fi |x − y| ,

|hi(x) − hi(y)| ≤Hi |x − y| , ∀i ∈ Ξ.

Assumption 2.2. The interaction functions hi(x) are bounded. This means that there exists a positive
constant Mi, which makes

|hi(x)| ≤ Mi, ∀i ∈ Ξ.

3. Main results

In this section, we present some FXTS criteria for fractional-order FCNNs with delays and
interactions based on the state feedback and adaptive control.

3.1. Feedback control

The state feedback controller ui(t) is designed as follows:

ui(t) = − ηi$i(t) − sign($i(t))
[
ρi + γi|$i(t − ς)| + k1(Dα−1

t |$i(t)|)q

+ k2(Dα−1
t |$i(t)|)p + k3D

α−1
t |$i(t)|

]
, (3.1)

where k1, k2, k3 > 0, 0 < q < 1, p > 1, and ηi, ρi, and γi are all positive constants.

Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold. If the error system (2.5) is controlled by control
law (3.1) with 

ci + ηi −
∑
j∈Ξ

(
|a ji|Fi + εt jiHi

)
≥ 0,

t ji = min
{
|d ji|, |d̄ ji|

}
,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0,∑

i∈Ξ

(
ρi −

∑
j∈Ξ

ε |d̄i j − di j|M j
)
≥ 0, ∀i ∈ Ξ,

(3.2)

then systems (2.1) and (2.2) are FXTS. In addition, ST T 1
max is estimated by

T 1
max =

p − q
k3(p − 1)(1 − q)

ln

1 +
k3

k1

(
k1

k2n1−p

) 1−q
p−q

 .
Proof. The chosen Lyapunov function is depicted by

V($(t)) =
∑
i∈Ξ

Dα−1
t |$i(t)|.
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This together with the error system (2.5) implies that

V̇($(t)) = Dα
t

(
D1−α

t V(t)
)

= Dα
t

D1−α
t

∑
i∈Ξ

Dα−1
t |$i(t)|


= Dα

t

∑
i∈Ξ

D1−α
t

(
Dα−1

t |$i(t)|
)

=
∑
i∈Ξ

Dα
t |$i(t)|

≤
∑
i∈Ξ

sign ($i(t)) Dα
t $i(t). (3.3)

Replacing Dα
t $i(t) with Eqs (2.5) and (3.1), we have

V̇($(t)) ≤
∑
i∈Ξ

sign($i(t))
[
− ci$i(t) +

∑
j∈Ξ

ai j f j($ j(t)) +
∑
j∈Ξ

bi j f j($ j(t − ς)) +
∧
j∈Ξ

αi jF j($ j(t − ς))

+
∨
j∈Ξ

βi jF j($ j(t − ς)) + ε
∑
j∈Ξ

d̄i jh j(x j(t)) − ε
∑
j∈Ξ

di jh j(y j(t)) − ηi$i(t) − sign($i(t))ρi

− sign($i(t))(γi|$i(t − ς)| + k1(Dα−1
t |$i(t)|)q + k2(Dα−1

t |$i(t)|)p + k3(Dα−1
t |$i(t)|))

]
=

∑
i∈Ξ

(−ci − ηi)|$i(t)| +
∑
i∈Ξ

sign($i(t))
[∑

j∈Ξ

ai j f j($ j(t)) +
∑
j∈Ξ

bi j f j($ j(t − ς))

+
∧
j∈Ξ

αi jF j($ j(t − ς)) +
∨
j∈Ξ

βi jF j($ j(t − ς)) + ε
∑
j∈Ξ

d̄i jh j(x j(t)) − ε
∑
j∈Ξ

di jh j(y j(t))
]

−
∑
i∈Ξ

[ρi + γi|$i(t − ς)| + k1(Dα−1
t |$i(t)|)q + k2(Dα−1

t |$i(t)|)p + k3D
α−1
t |$i(t)|]

≤ −
∑
i∈Ξ

(ci + ηi)|$i(t)| +
∑
i, j∈Ξ

[|ai j|| f j($ j(t))| + |bi j|| f j($ j(t − ς))| + ε|d̄i jh j(x j(t)) − di jh j(y j(t))|]

+
∑
i∈Ξ

[|
∧
j∈Ξ

αi jF j($ j(t − ς))| + |
∨
j∈Ξ

βi jF j($ j(t − ς))|] −
∑
i∈Ξ

[ρi + γi|$i(t − ς)|

+ k1(Dα−1
t |$i(t)|)q + k2(Dα−1

t |$i(t)|)p + k3D
α−1
t |$i(t)|]. (3.4)

Based on Assumption 2.1 and Lemma 2.2, one has

| f j($ j(t))| ≤ F j|$ j(t)|,
| f j($ j(t − ς))| ≤ F j|$ j(t − ς)|,
|h j(x j(t)) − h j(y j(t))| ≤ H j|$ j(t)|,

|
∧
j∈Ξ

αi jF j($ j(t − ς))| ≤
∑
j∈Ξ

|αi j|| f j(y j(t − ς)) − f j(x j(t − ς))| ≤
∑
j∈Ξ

|αi j|F j|$ j(t − ς)|,

|
∨
j∈Ξ

βi jF j($ j(t − ς))| ≤
∑
j∈Ξ

|βi j|| f j(y j(t − ς)) − f j(x j(t − ς))| ≤
∑
j∈Ξ

|βi j|F j|$ j(t − ς)|.
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Therefore,

V̇($(t)) ≤
∑
i∈Ξ

(−ci − ηi)|$i(t)| +
∑
i, j∈Ξ

[
|ai j|F j|$ j(t)| + |bi j|F j|$ j(t − ς)|

]
+

∑
i, j∈Ξ

[|αi j|F j|$ j(t − ς)|

+ |βi j|F j|$ j(t − ς)| + ε |d̄i jh j(x j(t)) − di jh j(y j(t))|] −
∑
i∈Ξ

[ρi + γi|$i(t − ς)|

+ k1(Dα−1
t |$i(t)|)q + k2(Dα−1

t |$i(t)|)p + k3D
α−1
t |$i(t)|]. (3.5)

Since∑
i, j∈Ξ

|d̄i jh j(x j(t)) − di jh j(y j(t))| ≤
∑
i, j∈Ξ

[
|d̄i jh j(x j(t)) − d̄i jh j(y j(t))| + |d̄i jh j(y j(t)) − di jh j(y j(t))|

]
≤

∑
i, j∈Ξ

[
|d̄i j|H j|$ j(t)| + |d̄i j − di j|M j

]
, (3.6)∑

i, j∈Ξ

|d̄i jh j(x j(t)) − di jh j(y j(t))| ≤
∑
i, j∈Ξ

[
|d̄i jh j(x j(t)) − di jh j(x j(t))| + |di jh j(x j(t)) − di jh j(y j(t))|

]
≤

∑
i, j∈Ξ

[
|d̄i j − di j|M j + |di j|H j|$ j(t)|

]
. (3.7)

According to Eqs (3.6) and (3.7), we have∑
i, j∈Ξ

|d̄i jh j(x j(t)) − di jh j(y j(t))| ≤
∑
i, j∈Ξ

[
|d̄i j − di j|M j + ti jH j|$ j(t)|

]
, (3.8)

where ti j = min
{
|di j|, |d̄i j|

}
.

Placing Eq (3.8) into (3.5), one obtains

V̇($(t)) ≤
∑
i∈Ξ

(−ci − ηi)|$i(t)| +
∑
i, j∈Ξ

[
|ai j|F j|$ j(t)| + |bi j|F j|$ j(t − ς)|

]
+

∑
i, j∈Ξ

[
|αi j|F j|$ j(t − ς)|

+ |βi j|F j|$ j(t − ς)| + εti jH j|$ j(t)|
]
+ ε

∑
i, j∈Ξ

|d̄i j − di j|M j −
∑
i∈Ξ

[
ρi + γi|$i(t − ς)|

+ k1(Dα−1
t |$i(t)|)q] − k2

∑
i∈Ξ

[
(Dα−1

t |$i(t)|)p + k3D
α−1
t |$i(t)|

]
= −

∑
i∈Ξ

[
ci + ηi −

∑
j∈Ξ

(
|a ji|Fi + εt jiHi

) ]
|$i(t)| −

∑
i∈Ξ

γi|$i(t − ς)| +
∑
i, j∈Ξ

Fi(|b ji| + |α ji|

+ |β ji|)|$i(t − ς)| −
∑
i∈Ξ

(
ρi − ε

∑
j∈Ξ

|d̄i j − di j|M j
)

−
∑
i∈Ξ

[
k1(Dα−1

t |$i(t)|)q + k2(Dα−1
t |$i(t)|)p + k3D

α−1
t |$i(t)|

]
≤ −

∑
i∈Ξ

[
k1(Dα−1

t |$i(t)|)q + k2(Dα−1
t |$i(t)|)p + k3D

α−1
t |$i(t)|

]
. (3.9)

From Lemma 2.3, we derive that∑
i∈Ξ

(Dα−1
t |$i(t)|)q ≥ (

∑
i∈Ξ

Dα−1
t |$i(t)|)q,
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i∈Ξ

(Dα−1
t |$i(t)|)p ≥ n1−p(

∑
i∈Ξ

Dα−1
t |$i(t)|)p.

Then

V̇($(t)) ≤ −k1(
∑
i∈Ξ

Dα−1
t |$i(t)|)q − k2n1−p(

∑
i∈Ξ

Dα−1
t |$i(t)|)p − k3

∑
i∈Ξ

Dα−1
t |$i(t)|

= −k1Vq($(t)) − k2n1−pV p($(t)) − k3V($(t)). (3.10)

By Lemma 2.4, systems (2.1) and (2.2) are FXTS within

T 1
max =

p − q
k3(p − 1)(1 − q)

ln

1 +
k3

k1

(
k1

k2n1−p

) 1−q
p−q

 .
From Lemma 2.5, we yield the next corollary.

Corollary 3.1. Suppose Assumptions 2.1 and 2.2 hold. If

ci + ηi −
∑
j∈Ξ

(
|a ji|Fi + εt jiHi

)
≥ 0,

t ji = min
{
|d ji|, |d̄ ji|

}
,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0,

λ1 =
∑
i∈Ξ

(
ρi −

∑
j∈Ξ

ε |d̄i j − di j|M j
)
≥ 0, ∀i ∈ Ξ,

(3.11)

then the control scheme is as follows:

ui(t) = −ηi$i(t) − sign($i(t))
[
ρi + γi|$i(t − ς)| + k1(Dα−1

t |$i(t)|)q + k2(Dα−1
t |$i(t)|)p], (3.12)

and the systems (2.1) and (2.2) are FXTS. Moreover, the ST T 3
max is

T 3
max =


1

k
1
q

1 (1 − q)

[
(k

1
q

1 + λ
1
q

1 )1−q − λ
1−q

q

1

]
+

2p−1

k
1
p

2 n
1−p

p (p − 1)

(
k

1
p

2 n
1−p

p + λ
1
p

1

)1−p

, λ1 > 0,

1
k1(1 − q)

+
1

k2n1−p(p − 1)
, λ1 = 0.

Remark 3.1. From Theorem 3.1 and Corollary 3.1, we obtain that the FXTS between drive-
response systems (2.1) and (2.2) can be reached under the control of (3.1) or (3.12). However,
there are still some differences. Compared with the control scheme (3.1), fewer parameters are
needed in the controller (3.12), which can help strengthen its enforceability. However, the ST of
Theorem 3.1 is irrelevant to the system parameters, whereas the ST is related to the system parameters
in Corollary 3.1. From this perspective, control strategy (3.1) is more practical.

If the interaction functions hi are unbounded, the following is the design of the state feedback
controller:

ui(t) = − ηi$i(t) − ε
∑
j∈Ξ

(d̄i j − di j)h j(x j(t)) − sign($i(t))
[
γi|$i(t − ς)| + k1(Dα−1

t |$i(t)|)q

+ k2(Dα−1
t |$i(t)|)p + k3D

α−1
t |$i(t)|

]
. (3.13)
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Corollary 3.2. Suppose Assumption 2.1 holds. If
ci + ηi −

∑
j∈Ξ

(
|a ji|Fi + ε |d ji|Hi

)
≥ 0,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0, ∀i ∈ Ξ.

(3.14)

Then, under control scheme (3.13), systems (2.1) and (2.2) are FXTS. Moreover, the ST is equal to T 1
max

in Theorem 3.1.

3.2. Adaptive control

However, the control gain ηi of the state feedback control (3.1) is not easy to determine, so we carry
out an adaptive control strategy to tackle the FXTS between systems (2.1) and (2.2). The adaptive
control scheme ui(t) is expressed as

ui(t) = − ηi(t)$i(t) − sign($i(t))
[
ρi + γi|$i(t − ς)| + k1(Dα−1

t |$i(t)|)
q+1

2

+ k2(Dα−1
t |$i(t)|)

p+1
2 + k3D

α−1
t |$i(t)|

]
. (3.15)

The updated law is given as

η̇i(t) =
1
2
|$i(t)| −

1
2

sign(ηi(t) − η1)
[
k1|ηi(t) − η1|

q + k2|ηi(t) − η1|
p + k3|ηi(t) − η1|

]
, (3.16)

where η1 is a constant to be determined, and the other parameters have the same meanings as those in
controller (3.1).

Theorem 3.2. Suppose Assumptions 2.1 and 2.2 hold. If the error system (2.5) is controlled by control
law (3.15) with 

ci + η1 −
∑
j∈Ξ

(
|a ji|Fi + εt jiHi

)
≥ 0,

t ji = min
{
|d ji|, |d̄ ji|

}
,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0,∑

i∈Ξ

(
ρi −

∑
j∈Ξ

ε |d̄i j − di j|M j
)
≥ 0, ∀i ∈ Ξ,

(3.17)

thus, systems (2.1) and (2.2) are FXTS. In addition, ST T̄ 1
max is estimated by

T̄ 1
max =

2(p − q)
k3(p − 1)(1 − q)

ln

1 +
k3

k1

( k1

k2(2n)
1−p

2

) 1−q
p−q

 .
Proof. The chosen Lyapunov function is depicted by

V($(t)) =
∑
i∈Ξ

[
Dα−1

t |$i(t)| +
(
ηi(t) − η1

)2]
.
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According to the analysis of Theorem 3.1,

V̇($(t)) ≤
∑
i∈Ξ

[
sign($i(t))Dα

t $i(t) + 2
(
ηi(t) − η1

)
η̇i(t)

]
≤ −

∑
i∈Ξ

[
ci + η1 −

∑
j∈Ξ

(
|a ji|Fi + εt jiHi

) ]
|$i(t)|

+
∑
i∈Ξ

[(
ηi(t) − η1

)
|$i(t)| − 2

(
ηi(t) − η1

)
η̇i(t)

]
−

∑
i∈Ξ

[
γi −

∑
j∈Ξ

Fi(|b ji| + |α ji| + |β ji|)
]
|$i(t − ς)|

−
∑
i∈Ξ

[(
ρi − ε

∑
j∈Ξ

|d̄i j − di j|M j
)

+ k1(Dα−1
t |$i(t)|)

q+1
2

+ k2(Dα−1
t |$i(t)|)

p+1
2 + k3D

α−1
t |$i(t)|

]
. (3.18)

In terms of Eq (3.17), one obtains

V̇($(t)) ≤ −
∑
i∈Ξ

[(
ηi(t) − η1

)
|$i(t)| − 2ηi(t)η̇i(t)

]
−

∑
i∈Ξ

[
k1(Dα−1

t |$i(t)|)
q+1

2 + k3D
α−1
t |$i(t)|

−
∑
i∈Ξ

k2(Dα−1
t |$i(t)|)

p+1
2 − 2η1η̇i(t)

]
= −

∑
i∈Ξ

[
k1(Dα−1

t |$i(t)|)
q+1

2 + k3D
α−1
t |$i(t)|

]
−

∑
i∈Ξ

[
k1|ηi(t) − η1|

q+1 + k3|ηi(t) − η1|
2]

−
∑
i∈Ξ

[
k2(Dα−1

t |$i(t)|)
p+1

2 + k2|ηi(t) − η1|
p+1]

= −
∑
i∈Ξ

{
k1

[
(Dα−1

t |$i(t)|)
q+1

2 + |ηi(t) − η1|
q+1] + k2

[
(Dα−1

t |$i(t)|)
p+1

2 + |ηi(t) − η1|
p+1]

− k3

∑
i∈Ξ

[
Dα−1

t |$i(t)| +
(
ηi(t) − η1

)2]}
. (3.19)

From Lemma 2.3, we derive that∑
i∈Ξ

[
(Dα−1

t |$i(t)|)
q+1

2 + |ηi(t) − η1|
q+1] ≥∑

i∈Ξ

[
Dα−1

t |$i(t)| +
(
ηi(t) − η1

)2] q+1
2

≥
[∑

i∈Ξ

Dα−1
t |$i(t)| +

(
ηi(t) − η1

)2] q+1
2 ,∑

i∈Ξ

[
(Dα−1

t |$i(t)|)
p+1

2 + |ηi(t) − η1|
p+1] ≥2

1−p
2

∑
i∈Ξ

[
Dα−1

t |$i(t)| +
(
ηi(t) − η1

)2] p+1
2

≥(2n)
1−p

2
[∑

i∈Ξ

Dα−1
t |$i(t)| +

(
ηi(t) − η1

)2] p+1
2 .

Therefore,

V̇($(t)) ≤ − k1
[∑

i∈Ξ

Dα−1
t |$i(t)| +

(
ηi(t) − η1

)2] q+1
2 − k2(2n)

1−p
2
[∑

i∈Ξ

Dα−1
t |$i(t)| +

(
ηi(t) − η1

)2] p+1
2
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− k3
[∑

i∈Ξ

Dα−1
t |$i(t)| +

(
ηi(t) − η1

)2]
= − k1V

q+1
2 ($(t)) − k2(2n)

1−p
2 V

p+1
2 ($(t)) − k3V($(t)). (3.20)

By Lemma 2.4, systems (2.1) and (2.2) are FXT synchronizations within

T̄ 1
max =

2(p − q)
k3(p − 1)(1 − q)

ln

1 +
k3

k1

( k1

k2(2n)
1−p

2

) 1−q
p−q

 . (3.21)

From Lemma 2.5, we yield the next corollary.

Corollary 3.3. Suppose Assumptions 2.1 and 2.2 hold. If

ci + η1 −
∑
j∈Ξ

(
|a ji|Fi + εt jiHi

)
≥ 0,

t ji = min
{
|d ji|, |d̄ ji|

}
,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0,

λ1 =
∑
i∈Ξ

(
ρi −

∑
j∈Ξ

ε |d̄i j − di j|M j
)
≥ 0, ∀i ∈ Ξ,

(3.22)

then the design of the control scheme is

ui(t) = − ηi(t)$i(t) − sign($i(t))
[
ρi + γi|$i(t − ς)| + k1(Dα−1

t |$i(t)|)
q+1

2 + k2(Dα−1
t |$i(t)|)

p+1
2
]
, (3.23)

where η̇i(t) = 1
2 |$i(t)| − 1

2 sign(ηi(t)− η1)
[
k1|ηi(t)− η1|

q + k2|ηi(t)− η1|
p], and systems (2.1) and (2.2) are

FXTS. Moreover, ST T̄ 3
max is

T̄ 3
max =


241

k
2

q+1

1 (1 − q)
+

2
p+1

2 42

k
2

p+1

2 (2n)
1−p
p+1 (p − 1)

, λ1 > 0,

2
k1(1 − q)

+
2

k2(2n)
1−p

2 (p − 1)
, λ1 = 0,

where 41 = (k
2

q+1

1 + λ
2

q+1

1 )
1−q

2 − λ
1−q
q+1

1 ,42 =

[
k

2
p+1

2 (2n)
1−p
p+1 + λ

2
p+1

1

] 1−p
2

.

If the interaction functions hi are unbounded, the design of the adaptive controller follows:

ui(t) = − ηi(t)$i(t) − ε
∑
j∈Ξ

(d̄i j − di j)h j(x j(t)) − sign($i(t))
[
γi|$i(t − ς)|

+ k1(Dα−1
t |$i(t)|)

q+1
2 + k2(Dα−1

t |$i(t)|)
p+1

2 + k3D
α−1
t |$i(t)|

]
, (3.24)

where η̇i(t) = 1
2 |$i(t)| − 1

2 sign(ηi(t) − η1)
[
k1|ηi(t) − η1|

q + k2|ηi(t) − η1|
p + k3|ηi(t) − η1|

]
.

Corollary 3.4. Suppose Assumption 2.1 holds. If
ci + η1 −

∑
j∈Ξ

(
|a ji|Fi + ε |d ji|Hi

)
≥ 0,

γi −
∑
j∈Ξ

Fi

(
|b ji| + |α ji| + |β ji|

)
≥ 0, ∀i ∈ Ξ,

(3.25)

then, under control scheme (3.24), systems (2.1) and (2.2) are FXTS. Moreover, ST is equal to T̄ 1
max in

Theorem 3.2.
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4. Numerical examples

The following section illustrates the derived theorems and corollaries with two examples.

Example 4.1. The 2-dimensional fractional-order FCNNs with delays and interactions are described
by

Dα
t xi(t) = − cixi(t) +

∑
j=1,2

[ai j f j(x j(t)) + bi j f j(x j(t − ς)) + εdi jh j(y j(t))]

+
∧
j=1,2

αi j f j(x j(t − ς)) +
∨
j=1,2

βi j f j(x j(t − ς)) + Ii, (4.1)

Dα
t yi(t) = − ciyi(t) +

∑
j=1,2

[ai j f j(y j(t)) + bi j f j(y j(t − ς)) + εd̄i jh j(x j(t))]

+
∧
j=1,2

αi j f j(y j(t − ς)) +
∨
j=1,2

βi j f j(y j(t − ς)) + Ii + ui(t), (4.2)

where α = 0.95, ε = 1, ς = 0.1, f (·) = h(·) = tanh(·), and t ≥ 0, (c1, c2) = (2, 1), (I1, I2) =

(1,−1), (a11, a12, a21, a22) = (0.5, 0.3, 0.6, 0.4), (b11, b12, b21, b22) = (−0.2, 0.1, 0.1,−0.3), (α11, α12, α21,
α22) = (0.6, 0.4, 0.5, 0.2), (β11, β12, β21, β22) = (0.1, 0.3, 0.5, 0.3), (d11, d12, d21, d22) = (1, 2, 2, 1),
d̄i j = 1, i, j = 1, 2.

To guarantee FXTS between systems (4.1) and (4.2), we apply the state-feedback control strategy
as follows 

u1(t) = − 1.5$1(t) − sign($1(t))
[
1 + 2|$1(t − ς)| + (D−0.05

t |$1(t)|)0.2

+ (D−0.05
t |$1(t)|)1.8 + 2D−0.05

t |$1(t)|
]
,

u2(t) = − 2$2(t) − sign($2(t))
[
1 + 1.8|$2(t − ς)| + (D−0.05

t |$2(t)|)0.2

+ (D−0.05
t |$2(t)|)1.8 + 2D−0.05

t |$2(t)|
]
.

(4.3)

Obviously, Assumptions 2.1 and 2.2 hold with Fi = Hi = Mi = 1, i = 1, 2. It is easily verified
that condition (3.2) is satisfied. Therefore, according to Theorem 3.1, the FXTS between systems (4.1)
and (4.2) can be reached under controller (4.3) with T 1

max ≈ 1.61. Choosing the initial values x1(t) =

20, x2(t) = −12, y1(t) = −16, y2(t) = 9, t ∈ [−0.1, 0], Figures 1 and 2 indicate the trajectories of
systems (4.1) and (4.2) without external input and under control (4.3), respectively. Moreover, the
error trajectories between systems (4.1) and (4.2) with multiple sets of initial values are exhibited in
Figure 3.

Figure 1. The trajectories of systems (4.1) and (4.2) without external input.
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Figure 2. The trajectories of systems (4.1) and (4.2) under control scheme (4.3).

Figure 3. The error trajectories of systems (4.1) and (4.2) under control scheme (4.3) with
multiple sets of initial values.

From Corollary 3.1, systems (4.1) and (4.2) can also reach FXTS using the following control scheme
with T 3

max ≈ 3.43 (see Figure 4):
u1(t) = − 1.5$1(t) − sign($1(t))

[
1 + 2|$1(t − ς)| + (D−0.05

t |$1(t)|)0.2 + (D−0.05
t |$1(t)|)1.8],

u2(t) = − 2$2(t) − sign($2(t))
[
1 + 1.8|$2(t − ς)| + (D−0.05

t |$2(t)|)0.2 + (D−0.05
t |$2(t)|)1.8]. (4.4)

Figure 4. The trajectories of systems (4.1) and (4.2) under control scheme (4.4).

Example 4.2. Consider the same systems (4.1) and (4.2) with the following adaptive controller
u1(t) = − η1(t)$1(t) − sign($1(t))

[
1 + 2|$1(t − ς)| + 2(D−0.05

t |$1(t)|)0.6

+ 2(D−0.05
t |$1(t)|)1.4 + 3D−0.05

t |$1(t)|
]
,

u2(t) = − η2(t)$2(t) − sign($2(t))
[
1 + 1.8|$2(t − ς)| + 2(D−0.05

t |$2(t)|)0.6

+ 2(D−0.05
t |$2(t)|)1.4 + 3D−0.05

t |$2(t)|
]
,

(4.5)

where ηi(t) is the adaptive regulated feedback gain, and the updated law is

η̇i(t) =
1
2
|$i(t)| −

1
2

sign(ηi(t) − 1.8)
[
2|ηi(t) − 1.8|0.2 + 2|ηi(t) − 1.8|1.8 + 3|ηi(t) − 1.8|

]
, i = 1, 2. (4.6)
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According to Theorem 3.2, systems (4.1) and (4.2) can realize FXTS under the adaptive control
strategy (4.5) with T̄ 1

max ≈ 1.40 (see Figure 5). Figure 6 shows the error trajectories for different initial
values.

Figure 5. The trajectories of systems (4.1) and (4.2) under control scheme (4.5).

Figure 6. The error trajectories of systems (4.1) and (4.2) under control scheme (4.5) with
multiple sets of initial values.

In Corollary 3.3, the FXTS of systems (4.1) and (4.2) can be realized through adaptive
controller (4.7) with T̄ 3

max ≈ 3.43 (see Figure 7):
u1(t) = − η1(t)$1(t) − sign($1(t))

[
1 + 2|$1(t − ς)| + 2(D−0.05

t |$1(t)|)0.6 + 2(D−0.05
t |$1(t)|)1.4],

u2(t) = − η2(t)$2(t) − sign($2(t))
[
1 + 1.8|$2(t − ς)| + 2(D−0.05

t |$2(t)|)0.6 + 2(D−0.05
t |$2(t)|)1.4],

(4.7)

where the updated law is

η̇i(t) =
1
2
|$i(t)| −

1
2

sign(ηi(t) − 1.8)
[
2|ηi(t) − 1.8|0.2 + 2|ηi(t) − 1.8|1.8

]
, i = 1, 2. (4.8)

Figure 7. The trajectories of systems (4.1) and (4.2) under control scheme (4.6).
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5. Conclusions

In this study, we investigated the FXTS of fractional-order FCNNs with delays and interactions.
Two different control strategies, adaptive and state-feedback controllers, were devised to perform
the FXTS. Based on the bounded interaction functions and Lipschitz continuous activation functions,
some innovative and productive criteria with ST estimations were acquired to reach the FXTS of the
discussed systems. In addition, according to another FXT stability theorem, we deduced the different
upper bound estimation formulas for ST and pointed out the distinctions between them. Finally, two
numerical examples were presented to corroborate the practicability of the aforementioned theorems
and corollaries.

The Lipschitz continuity of the activation functions and interaction functions was essential for the
results of this study. However, this condition was not always satisfied in practice. Therefore, our future
work will pay attention to the FXTS of fractional-order FCNNs with delays, interactions, discontinuous
activation functions, and discontinuous interaction functions.
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