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Abstract: In this paper, we investigate the numerical solution of the Brusselator system using a
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1. Introduction

In this paper we focus on the numerical discretization of the non-linear Brusselator system, which
describes oscillatory chemical behavior in autocatalytic reactions . The Brusselator equations read as:

oU 1
— =UV-2U+-AU, (x,y)eQ, t>0,
ot 4
(1.1)
1% 1
e U—U2V+ZAV, (x,y)€Q, t>0,

where x € Q, time ¢ > 0, and U and V are the concentrations of the chemical species (the system is also
valid to model biological species). Throughout this paper Q C R? is a bounded domain with a regular
boundary.

For its importance in biological or chemical processes we consider solving system (1.1) numerically
using the meshless method of Generalized Finite Differences. Recently, several numerical methods
have been used for solving reaction-diffusion Brusselator system. For instance, in [1] authors used the
dual-reciprocity boundary element method (DRBEM) for the numerical solution. Also, a method of


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2024644

13212

lines implemented as a meshless method based on spatial trial spaces spanned by the Newton basis
functions have been applied in [2]. A non-standard finite difference method has been applied in [3],
weighted residual methods have been used in [4] and the polynomial based differential quadrature
method has been considered in [5] for solving the Brusselator system.

By the flexibility of our method due to the easy choice of the clouds of points and the steps of
time and space, we derive a discretization of the system by means of the Generalized Finite Difference
Method (GFDM) and we prove the convergence of the discrete solution to the analytical one. Several
numerical examples on the applications of this meshless method over regular and irregular domains are
presented in order to illustrate our results. Very recently, a high order accuracy of time discretization
technique has been combined with the generalized finite difference method (see [6] and [7]).

The paper is organized as follows: In Section 2 we recall the analytical foundations of the GFDM
and obtain the explicit formulas of the spatial derivatives. Section 3 is devoted to the analytical study
of the explicit GFD scheme where we prove the main result of this section, enclosed in Theorem 3.1.
In Section 4 we present several numerical examples over regular and irregular domains which show
the applicability of the method. Finally, some conclusions are obtained in Section 5.

2. GFDM: Explicit formulae

The aim of this section is to obtain explicit linear expressions for the approximation of partial
derivatives in the points (nodes) of the domain. First of all, an irregular grid or cloud of nodes is
generated in the domain. For each one of the nodes of the domain, a star is defined as a set of selected
nodes Xy, X1, - - - , Xy, Where X is denominated central node of star. In order to select the other nodes of
star different criteria can be used, see [8,9].

Let xo = (x9, o) be the central node and h; = x; — xo, k; = y; — yo, where (x;, y;) are the coordinates
of the i node of the star. Let us put Uy = U(Xo) and U; = U(x;), then by the Taylor series expansion,
fori=1,..., s, we have

U, . oU, U, 50U, 82U,
U = Uy + 1, 20 4 1220 4 (h2 Y. 2h,-k,-—) 2.1
0T gy TRy oz iy oxay) " .1
Let us call .
CiT = {h;, ki, }i, Ii, hik;} (2.2)
2’2

and the spatial derivatives
Ouy Ouy 0*uy uy 6°
Dy’ = (20 A Tl Tl T, 23)
ox 0Oy 0x*> 0y* 0x0y
If in (2.1) we don’t consider the higher than second-order terms, we may obtain a second-order
approximation of U;, which we shall denote by ;. We may then define:

B(u) = Z[(uo —u,-)+hi% +ki%b;()+ »
(9 Uuo 621/!0 02u0 .
~(h—— + k'—— + 2h;k; 202,
( o TR kg T
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where ¢; = ¢(h;, k;) are positive symmetrical weighting functions which decrease in magnitude as the
distance to the center increases. Some weighting functions such as potentials or exponentials can be
used (see [10] for more details).

In order to minimize the error, the norm function given by (2.4) is minimized with respect to the
partial derivatives and the following linear system is obtained:

A(h;, k;, 90i)D5 = b(hi, ki, $i, U, u;). (2.5)

By solving (2.5), the partial derivatives can be obtained as a function of the values (ug, u;, h;, k;, ¢;).

Remark 2.1. Matrix A defined in (2.5) is a positive definite matrix (see [10] for a complete proof) and

. . . . . . 2 2
the approximation of the spatial derivatives is of second order O(h;, k7).

If in accordance with [10] we define

AT =00", (2.6)
then
Ds=00"b @7
and (2.7) can be rewritten as
Ds = -u,00" ) plei+ 00" > wglc; (2.8)
i=1 i=1
or
Ds = 00" d(u — uol), (2.9)
where 1 = {1,1,---, 1}7. Thus, spatial derivatives using GFD as in [11] are approximated by

Ou(xg, nAt)  8*u(xp, nAt) "N n 2 2
ax2 + 6y2 = —Mol, + Z mi;u; + O(h k: ), (210)

2™
i=1

Finally, time derivative is approximated as follows

ou _ u(Xo, (n + 1)A1) — u(Xo, nAt)
E(XO, nAt) = A + O(AD).

3. GFD scheme and convergence

Let us consider a bounded domain Q C R2. Then, the GFD scheme for system (1.1) is:

n+l _

u up, 1 -

OTtO = () Vi — 2ull + 7 | ~mou + Zl mad] | + O(AL B2, kD),

yr+l g 1 s (31)
% = ull — (ul)* V) + 1 —moug + ; mp} | + O(AL, b2, k),

AIMS Mathematics Volume 9, Issue 5, 13211-13223.



13214

Thus,

N

2, mi

At i=
Wt = [1 —2Ar - 20 Ar| @y v + IT + O(AL 1}, k),
S (3.2)
Z mv!
P At
= A = W)+ S |+ | 1= |+ O LD,

In order to prove the main result of the paper concerning the conditional convergence of the GFD
scheme for solving system (1.1), we need the following basic results:

Lemma 3.1. Let A € M,,(R). If there exists some matrix norm such that ||A|| < 1, then

lim A = 0.

k— o0
Lemma 3.2. Assuming A € M,,(R), then the following are equivalent:

(i) lim A* =0,

k—oo

(ii) p(A) <1,
where p(-) stands for the spectral radius.
Our main result with respect to the proposed numerical scheme is as stated below

Theorem 3.1. Let (U, V) be the exact solution to system (1.1). Then, the GFD explicit scheme given
by (3.2) is convergent if the following holds:

1
At < . (3.3)

- my _ \,n n n
L+ vO(uO+U0)

Proof.

Notice that, since U,V are the exact solution of system (1.1), they also solve the discrete
equation (3.2). Let us denote by U! the exact U-solution at time n and node i (respetively V). We
take the difference between (3.2) and the same expression for the exact solution. We call it} = u! — U?
(similarly for ¥') and notice the following relations:

(us)’ ve — (URY* Vit =
(W) vy — (U vl + (U v = (U’ Vi = (3.4)

iy (g + UG) v + 5 (U3)”
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Then,

TARERTH [1 — 2At —

N
E mu;

i=1
4

+ At

moAt

+ At (UL + O(AL, h

+O(At, 12, k),

— Atvg (ug + Ug)

1 -

2 k2)

12

moAt
4

—+

- At(Up)?

Let us call &z = max{|i!|} (similarly for V). Then, we write (3.5) as

ﬁn+1 —

\7"+1 — Atﬁn

u

1 -2Ar -

moAt

+ A" (U + O(AL, B2, KP),

+ 9|1 -

Let us rewrite (3.6) as

where

( an+1 ) C
T
vl Ar H

1= vp (uy + UZ)

C :‘1—2At—

= |i-

Consider the matrix
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1 —vg (ug + Up)

moAt
4

— At (Ug)

moAt

moAt

Ci

At “1 v (u + )

— At (U)

— Atvj (uy + Up)

|

— Atvg (ug + Up)

|

+ At

at(vz)

G,

N

+ At

+ At

N

> mi

i=1

+O(AL 12, k),

|

A
> mi

i=1

D lmil

i=1

at(uz)

&)

<t K
S =
~——

+

(3.5)

(3.6)

(3.7)

(3.8)
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Let us consider the matrix norm N () = maxi:],z{zj:] |la;;|}. From their definition it is clear that
Ni) = C; + At (UL (3.9)
Then,

)
> mi

moAt i=1

<1-At — At (U, (3.10)

— Atvg (ug + Up)

Ci+At(UY <1= '1 —2A1 —

inequality (3.10) is equivalent to

s

> imi
i= At
1+ A +Ar(Ug)2<1—2Ar—m°T—Awg(ug+Ug),
) 3.11)
. D mi
t i=
1-2A1 = 020 ARl + U < 1 = At=— — Ar (URY?
and inequalities (3.11) are equivalent to
1
At < )
L+ 20— v (ug + Up)
s (3.12)
D imi
i:14 + (U + v+ UNY < 1+ %

Applying Lemma 3.1, we have that lim;_,., U = 0. Now, by Lemma 3.2, this is equivalent to
p(A) < 1, that is, the greatest absolute value of all eigenvalues of matrix 2 is bounded by 1, which
implies the convergence of the explicit scheme under the condition (3.3). O

4. Results

In this section we illustrate the application of the GFDM for solving the rection-diffusion
Brusselator system given by (1.1). We test the method using the regular and irregular clouds of points
of Figure 1.

In all the cases considered, the errors has been calculated according to the norms

NI

Z (sol(i) - exac(i))2
L=\2 7 (4.1)

lo = max|sol(i) — exac(i)|

AIMS Mathematics Volume 9, Issue 5, 13211-13223.



13217

where sol(i) is the GFD solution in node i, exac(i) is the exact value of the solution at node i, and N/
is the number of nodes of the domain Q.

For all the numerical results shown in the following sections, we choose At as stated, which is to
say, the condition of convergence is chosen as the minimum value computated using formulaes Eq (3.3)
for each star of the domain €. Notice that, therefore, each Ar may vary from one cloud of points to
another since its value depends on the star of nodes. We choose Ar = 0.001, fulfilling the assumption
made in Theorem 3.1. The distance criterion has been used, the number of nodes per star is 8 plus the
central node and the weighting function is the inverse of the distance squared, ¢(d;) = d]_? with d; being

the distance from node i to the central node of the star.

We present two cases with different boundary conditions: Dirichlet and Neumann.

Case 1: Dirichlet boundary conditions

We consider for this first case the clouds of points 1 and 2 of Figure 1.

oU 1
E:UZV—2U+ZAU, (x,y)€Q, t>0,

v 1

— =U-U*V+-AV, (x,) €Q, t>0, (4.2)
ot 4

U(x,y,0) = e V(x,y,0) = ™, (x,y) € Q.

By a direct check, the exact solution is (the Dirichlet boundary conditions are chosen so that the
equation is fulfilled):

Ux,y,1) = e (7)) V(x, y, 1) = e(1+7) (4.3)

Table 1 shows the error norms in the clouds of points.

Table 1. Error norms /, and [, for case 1 in clouds of nodes of the Figure 1.
Cloud of nodes L(U) l(U) L(V) [(V)

Cloud 1 6.7004 x 1075 1.7156 x 10> 8.7630 x 10> 1.7048 x 10~
Cloud 2 2.6218 x 107*  5.4143 x 107*  4.6584 x 107 1.4191 x 10~*

Figures 2 and 3 show the plots of the analytical, (U, V), and approximate, (u, v), solutions of case 1
in the clouds of points 1 and 2.

AIMS Mathematics Volume 9, Issue 5, 13211-13223.
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Figure 1. Clouds of points used

Approximate solution

Analytical solution

Approximate solution

Analytical solution

Figure 2. Analytical and approximate solutions of case 1 in the cloud of points 1.
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Approximate solution

Analytical solution

Approximate solution

Analytical solution

Figure 3. Analytical and approximate solutions of case 1 in the cloud of points 2.

Convergence test

In order to perform a convergence test, we use the clouds of points of Figure 4: 5 (347 nodes), 6

(491 nodes) and 7 (573 nodes). The values of the [,(U) and [,(V) errors, and At are collected in Table 2.

Table 2. Error norms /, and At for case 1 in clouds of nodes of Figure 4.

At
0.001 s
0.001 s
0.001 s

L(V)

3.0255 x 107

L(U)

2.7430 x 107

Cloud of nodes

Cloud 5
Cloud 6
Cloud 7

1.9572 x 1074

1.6243 x 107

1.5702 x 1074

1.1902 x 10~*

We plot in Figure 5 the /,(U) and (V) error norms, respectively, for 7 = 15, At = 0.001 s and

three clouds of points in Figure 4.
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491 573

Number of nodes

347

Figure 5. Case 1 on clouds of points 5, 6, and 7 of Figure 5, [, error norms U and V versus

number of nodes.
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Case 2: Neumann boundary conditions
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Table 3 shows the error norms in the clouds of points.

Table 3. Error norms /, and [, for case 2 in clouds of nodes of the Figure 1.

Cloud of nodes

lo(V)

3.4847 x 1073

L(V)

6.1822 x 1074

l(U)

1.5345 x 107

L(U)
2.8835%x 1073

Cloud 3

1.4582x 107 5.8804 x 107* 4.0817 x 1073

2.3402 x 10~

Cloud 4

Figures 4 and 5 show the plots of the analytical, (U, V), and approximate, (u, v), solutions of case 2

in the clouds of points 3 and 4.

Approximate solution

Analytical solution

Approximate solution

Analytical solution

05 02

Figure 6. Analytical and approximate solutions of case 2 in the cloud of points 3.
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Analytical solution Approximate solution

Figure 7. Analytical and approximate solutions of case 2 in the cloud of points 5.

5. Conclusions

We have studied the convergence and obtained the discretization of system (1.1) using a
Generalized Finite Difference Method explicit scheme and the order of convergence of the method is
shown. The conditional convergence has been obtained for the numerical scheme. We have presented
several numerical cases over different domains. The main advantages of the method are its flexibility
in discretizing irregular and complex domains and the simplicity in calculations, saving time and
computational resources. As a future line of research, there is the possibility of implementing
space-time methods, such as STCM, and comparing them with the current method.
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