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Abstract: Reliable prediction of traffic accidents is crucial for the identification of potential hazards
in advance, formulation of effective preventative measures, and reduction of accident incidence.
Existing neural network-based models generally suffer from a limited field of perception and poor
long-term dependency capturing abilities, which severely restrict their performance. To address the
inherent shortcomings of current traffic prediction models, we propose the Traffic Transformer for
multidimensional, multi-step traffic accident prediction. Initially, raw datasets chronicling sporadic
traffic accidents are transformed into multivariate, regularly sampled sequences that are amenable
to sequential modeling through a temporal discretization process. Subsequently, Traffic Transformer
captures and learns the hidden relationships between any elements of the input sequence, constructing
accurate prediction for multiple forthcoming intervals of traffic accidents. Our proposed Traffic
Transformer employs the sophisticated multi-head attention mechanism in lieu of the widely used
recurrent architecture. This significant shift enhances the model’s ability to capture long-range
dependencies within time series data. Moreover, it facilitates a more flexible and comprehensive
learning of diverse hidden patterns within the sequences. It also offers the versatility of convenient
extension and transference to other diverse time series forecasting tasks, demonstrating robust potential
for further development in this field. Extensive comparative experiments conducted on a real-world
dataset from Qatar demonstrate that our proposed Traffic Transformer model significantly outperforms
existing mainstream time series forecasting models across all evaluation metrics and forecast horizons.
Notably, its Mean Absolute Percentage Error reaches a minimal value of only 4.43%, which is
substantially lower than the error rates observed in other models. This remarkable performance
underscores the Traffic Transformer’s state-of-the-art level of in predictive accuracy.
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1. Introduction

With the accelerated pace of global urbanization, the scale of transportation networks continues
to expand, and their structures are becoming increasingly intricate. A primary consequence of this
development is the escalating number of traffic accidents [1]. These accidents not only result in
considerable casualties and economic damages [2], they also impede urban transportation efficiency
and degrade the quality of residents’ lives [3]. According to World Health Organization statistics,
approximately 1 million individuals experience traffic accidents each year, positioning them as one of
the predominant causes of death globally [4]. Concurrently, tens of millions sustain varied degrees of
injuries, with many facing enduring disabilities.

In light of this context, traffic accident prediction has emerged as a salient research topic that
intersects transportation studies, statistics, and data science. By assessing and forecasting the risks of
traffic accidents at specified times or locations under certain conditions, one can obtain a foundational
basis for informed decisions in traffic safety management [5]. In the short term, accurate and reliable
accident prediction can offer timely alerts for drivers and pedestrians, mitigating accident risks.
They also allow governmental and relevant agencies to pre-emptively allocate resources, ensuring
effective traffic planning and administration. In the long run, such predictions offer invaluable data
support for urban transportation planning, infrastructure investments, and public transit strategies,
helping stakeholders and policymakers to shape a safer, more efficient, and sustainable urban transit
environment.

Transportation data, typically sourced from intelligent transportation system (ITS) [6] sensors or
collected by professionals at fixed intervals, possesses distinct time-series characteristics. Time-series
forecasting [7], a cornerstone of statistics and data science, seeks to discern patterns in historical
data and predict future trends and fluctuations. Incorporating time-series forecasting techniques
into traffic accident prediction allows researchers to capture cyclical, seasonal, and trend variations
more accurately. However, traffic accidents, influenced by multifaceted external factors like traffic
volumes, weather conditions, and societal activities, possess a strong stochastic and uncertain nature.
Traditional process-based machine learning techniques struggle to meet the growing stakeholder
demand for predictive reliability and precision. With the progression of artificial intelligence and rapid
advancements in computational power, data-driven machine learning methods, exemplified by artificial
neural networks (ANNSs) [8], dominate the realm of time-series forecasting. These models, independent
of specialist expertise, showcase robust generalization capabilities and exceptional accuracy, finding
extensive applications in financial systems and the energy sector. Within the transportation domain,
ANN-based models have also seen preliminary adoption.

In [9], an ANN-based model was utilized to predict the number of traffic accidents on the Erzurum
highway in Turkey. This model considered several factors that influence traffic accidents, such as the
weather conditions, date, road conditions, and traffic volume. Experimental analysis also revealed the
significance of these factors and the number of traffic accidents. On the other hand, Alkheder et al. [10]
introduced an ANN-based model for classification of the severity of traffic accidents. By modeling 48
attributes collected from accident sites, this model could categorize accidents into four distinct severity
levels. Tests on a traffic accident dataset from Abu Dhabi city showed that the classification accuracy of
the ANN model increased by almost 25% relative to the traditional ordered probit model. It was clear
that, owing to its powerful nonlinear processing capability, the ANN exhibited superior performance
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on both regression and classification tasks compared to traditional models. However, there were
some limitations in the extensive use of basic ANNs across various domains. For example, as the
network depth increased, deep neural networks often encountered the vanishing/exploding gradient
problem. Additionally, the large number of parameters could significantly increase the computational
costs. Notably, basic ANNs tend to struggle with handling time-series inputs, which meant, for traffic
datasets with temporal data, they might not effectively capture the underlying relationships in the time
dimension, limiting the model’s efficacy. The field of neural networks is rapidly evolving, with new
architectures continuously being proposed to address these challenges. convolutional neural network
(CNNs) [11] and long short-term memory (LSTM) networks [12], two of the most prominent variants
of ANNSs, have become the cornerstone models in the domain of intelligent transportation. In [13], a
traffic accident severity prediction model named TASP-CNN was introduced. Innovatively, this model
transformed the feature data of traffic accidents into grayscale images by using the feature matrix
to gray image algorithm. By leveraging the powerful image feature extraction capability of CNNs,
the model was able to comprehensively learn the intricate abstract hidden relationships within traffic
accident data. Through tests on a dataset encompassing eight years of traffic accident data recorded in
Leeds, UK, the authors demonstrated that their proposed model significantly outperformed traditional
models. In the study presented in [14], a data-driven multi-feature traffic flow prediction model, termed
ME-CNN, was proposed based on CNNs. This model integrated a variety of self-features that influence
traffic flow. Depending on their temporal scale, these features were further divided into short-term
and long-term attributes, and they were mapped onto a two-dimensional spatio-temporal matrix. The
CNN excelled in extracting high-order spatio-temporal abstract features from this matrix. Once these
features were merged with multiple external attributes, a prediction was obtained. Experimental results
from [14] suggested that the MF-CNN, endowed with multi-feature fusion capabilities, surpassed the
vanilla CNN and other baseline models, recording a performance boost of over 20% on several traffic
datasets. As compared to the CNN, the LSTM possessed the ability to selectively remember contextual
information in input sequences, thus, they are currently the most frequently utilized neural network
models in the domain of time series prediction, including traffic accident forecasting. Zhang et al. [15]
proposed an LSTM and the gradient boosting regression tree (GBRT) based model LSTM-GBRT,
for traffic accident trend prediction. The integration strategy employed by GBRTSs could alleviate,
to some extent, the subpar performance of LSTM in the area of predicting inflection points in data,
thus endowing the proposed model with enhanced fitting capabilities. In order to fully leverage the
respective advantages of CNNs and LSTM, and to compensate for their limitations, various scholars
have attempted to combine the CNN and LSTM to achieve superior model performance. Both [16]
and [17] employed the hybrid CNN-LSTM model for traffic prediction and demonstrated through
multiple experiments that the efficacy of the hybrid model significantly surpassed that of a single
model. Advancing beyond the LSTM framework, gate recurrent units (GRUs) have emerged as a
variant that simplifies and integrates the original gated units of LSTM networks. This adaptation
preserves the strong time series forecasting ability of LSTM while significantly reducing the model’s
parameters. As a result, the GRU has become one of the most successful derivatives of LSTM,
being widely utilized in time series forecasting. Jin et al. [18] developed an air quality prediction
method based on a GRU network, establishing an interpretable multivariate data filtering structure to
extract crucial information from various external variables that impact air quality prediction, as well
as optimizing feature selection via an embedded self-filtering layer within the network. Subsequently,
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an enhanced variational Bayesian GRU network was employed for multidimensional, multi-step time
series forecasting. Shi et al. [19] tackled non-stationary time series by proposing a forecasting method
that integrates data decomposition with parallel deep networks. This method initially segments the
input non-stationary series into several groups, each further decomposed into cyclical, trend, and
residual components. A GRU network is employed for to predict each component, with the predictions
finally merged by using covariance intersection fusion. Moreover, Jin et al. [20] combined graph neural
networks [21] with GRUs to propose the Bayesian graph gate recurrent network, a model capable of
accurately modeling spatiotemporal features within the input vector and enhancing the performance
of time series forecasting models from multiple dimensions, offering additional insights for current
research.

Building upon the foundational work of CNNs and LSTM, which have laid the groundwork
for neural network applications in traffic accident prediction, the advent of the Transformer
architecture [22] represents a significant leap forward. This state-of-the-art model introduces a
paradigm shift through its unique self-attention mechanism, setting a new benchmark for handling
the intricacies of sequential data in the predictive modeling domain. Initially conceived to address
the limitations of recurrent neural network (RNN) algorithms like LSTM in sequence-to-sequence
(Seq2Seq) tasks [23], particularly in machine translation within the domain of natural language
processing (NLP) [24], the Transformer architecture has gained favor among researchers for its
unique self-attention mechanism. This mechanism effectively captures long-term dependencies within
sequential inputs and allows for parallel processing, thereby enhancing efficiency. Consequently, the
Transformer’s influence has progressively extended beyond its original scope to penetrate diverse
fields, including computer vision (CV) [25] and time series forecasting [26]. Dosovitskiy et al. [27]
proposed a novel adaptation of the Transformer for image processing: the Vision Transformer (ViT).
Aimed at transferring the quintessential Transformer architecture to the field of CV with minimal
modifications, ViT ingeniously reconfigured the model’s input stage. It dissects the input images
into fixed-size patches and reconstituts these sub-patches into a linear embedding sequence through
the use of a trainable linear projection, supplemented with positional encodings to encapsulate
spatial information. Consequently, an image is effectively transformed into a sequence, which is
then processed by the Transformer in a sequential manner. Meanwhile, Yin et al [28] advanced a
Transformer-based model for rainfall-runoff forecasting, dubbed RR-Former. Upholding the integrity
of the standard Transformer architecture, this model deftly sequenced historical hydrological and
meteorological data as input to the Transformer, thereby enabling precise runoff forecasting. Zheng
et al. [29] proposed a traffic prediction model based on graph CNN (GCN) and Transformer, referred
to as virtual dynamic GCN and Transformer with gate and attention mechanisms (VDGCNeT). This
model initially constructs a virtual dynamic road graph, and then models the spatio-temporal data in
road datasets by using a GCN and Transformer. It integrates temporal and spatial features through a
gating mechanism. Experiments demonstrated that the VDGCNeT achieves up to 96.77% accuracy on
the PEMS-BAY road dataset, setting a new benchmark in the industry.

The impressive performance of the Transformer across various domains and application
scenarios [30] has illuminated its substantial potential and practical value for traffic accident prediction.
Nevertheless, the application of the Transformer in this area remains insufficiently explored. To address
this gap, we introduce a Transformer-based model for traffic accident forecasting, namely, the Traffic
Transformer. This model has been designed to capture historical traffic accident data and harness the
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Transformer’s formidable sequence modeling capabilities to accurately predict traffic accidents over
multiple future short-term periods. The contributions and innovations of this work are detailed as
follows:

(1) We innovatively adopt the Transformer architecture, incorporating the Seq2Seq framework, to
supplant commonly utilized neural network algorithms such as CNNs and LSTM in traffic accident
prediction. Additionally, we employ a temporal discretization approach to transform irregularly
intervaled raw datasets of traffic accidents into regularly sampled time series, thereby constructing
serialized inputs that complements the Transformer model.

(2) Owing to the exceptional ability of the proposed Traffic Transformer to capture long-term
dependencies, the model is capable of multi-step forecasting and exhibits temporal robustness across
various forecast horizons.

(3) We conducted training and testing on a traffic accident dataset collected by Qatar’s ITS and
the police force; it is a valuable real-world dataset encompassing a diverse array of traffic data under
various weather and road conditions in both urban and rural settings. This dataset has allowed the
proposed model to thoroughly learn the underlying patterns of traffic accident occurrences across
different conditions.

The remainder of this paper is organized as follows: Section 2 elucidates the motivation,
architecture, and principles underpinning the Traffic Transformer; Section 3 details the specific
implementation nuances of our model; Section 4 presents the experimental setup along with a
comprehensive discussion of the results and their analysis; and Section 5 concludes the paper with
a summary and an outlook on future research directions.

2. Transformer-based traffic prediction model: An in-depth analysis of the architecture

2.1. From the CNN/LSTM to the Transformer

As seminal models in neural network research, CNN- and LSTM-based have become dominant
forces in hot-button artificial intelligence domains such as CV, NLP, and time series forecasting. These
architectures are the most frequently employed backbone networks in contemporary traffic forecasting
models. The structure of a CNN, depicted in Figure 1(a), mimics the human visual system’s approach
to observing the external world; particularly, it is capable of accurately recognizing the layered
structure of input data to extract specific features. The remarkable capabilities of CNNs are largely
due to two key characteristics: weight sharing and sparse connectivity [31]. Unlike fully connected
neural networks, CNNs utilize convolutional filters that move across the feature map at a defined stride,
sharing filter weights across the entire feature map and thereby significantly reducing the model’s
parameter count. Additionally, each neuron in a CNN layer is connected only to a subset of neurons
in the previous layer, which ensures focus on local features. Through the stacking of multiple layers,
CNNs s can gradually learn more complex and global features; this is achieved via a hierarchical learning
mechanism that gives CNNs a superior feature extraction capacity compared to fully connected neural
networks. The LSTM network structure, shown in Figure 1(b), consists of a unit known as a cell. This
cell contains three gate structures: the forget gate, input gate, and output gate. The cooperative action
of these gates allows the LSTM to selectively remember and forget information, thereby effectively
avoiding the issues of gradient vanishing and explosion that are common in traditional RNNs [32].
Therefore, LSTM can model longer input sequences and extract sequential abstract information, which
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is an ability that has led to their extensive application in sequence modeling. Their flexible memory
capacity makes them particularly well-suited for tasks that require maintaining sequential information
over long durations.
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(a) The process of convolution operations in a CNN. (b) The internal structure of a basic LSTM unit.

Figure 1. Two widely used neural networks: CNN and LSTM.

In light of its commendable attributes, CNNs nonetheless possess considerable limitations in terms
of its operational paradigm. The mechanism of feature extraction in CNNs is predicated on the
convolutional traversal of kernels over the spatial extent of feature maps, which confines the receptive
scope. To effectively navigate and assimilate long-term dependencies within sequential data, the
architecture necessitates a linear superposition of numerous strata, culminating in a proliferation of
parameters. This architectural profundity may precipitate a regression in network performance known
as degradation. Conversely, LSTM networks equipped with intricate gated units demonstrate superior
proficiency in deciphering dependencies that span greater temporal expanses than those within the
purview of a CNN. Nevertheless, constrained by its intrinsic design as a recurrent architecture, each
LSTM cell is compelled to sequentially await the computational outputs of its antecedent, thereby
constraining the potential for parallel data processing. Such a sequential dependency introduces
pronounced inefficiencies in the context of large-scale traffic data analytics. Moreover, despite the
LSTM network’s advanced capability to model long-term dependencies as compared to RNNs and
CNN, it is not immune to diminished performance when tasked with the processing of extensive
sequential inputs, revealing a persistent challenge in the modeling of expansive temporal sequences.

In response to the inherent limitations observed within extant traffic prediction models, we propose
the Traffic Transformer, a bespoke framework that has been meticulously engineered for the prediction
of traffic accidents. Figure 2 delineates the composite structure of the Traffic Transformer. At the input
juncture of the Traffic Transformer, a temporal discretization technique transmutes the multivariate,
irregularly intervaled data of raw traffic accidents into a structured sampling of temporal sequences
that are amenable to sequence forecasting. This transformation is further enhanced by input embedding
and positional encoding, which collectively procure representational vectors for each constituent of the
input sequence. The matrix composed of these vectors constitutes the input to the Traffic Transformer.
Given the quintessential nature of traffic accident prediction as a time series forecasting problem, the
Traffic Transformer employs the Seq2Seq architecture, which comprises an encoder and a decoder.
The encoder is tasked with transfiguring the time series data into fixed-size context vectors that are
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instrumental in the learning and capturing of the covert interconnections among input sequences. The
decoder, in turn, incrementally constructs the entire output sequence by generating predictions for
subsequent temporal elements, drawing on the context vectors obtained from the encoder and the output
of the preceding temporal step. Both the encoder and the decoder are constituted by a series of identical
layers, each layer featuring a multi-head attention mechanism, concomitant residual connections [33],
layer normalization [34], and a fully connected layer. The cornerstone of the Traffic Transformer
is the self-attention mechanism, which allows the model to discern correlations between any two
elements within the input sequence, and thus, obtain the long-term dependencies across arbitrary
intervals. The assemblage of self-attention heads, termed multi-head attention, allows the model
to concurrently concentrate on disparate sequence positions and thus learn the inherent associations
within sequence information from a multiplicity of perspectives. It is noteworthy that the multi-head
attention mechanism within the encoder and decoder blocks of the Traffic Transformer are not entirely
identical. As is discernible from Figure 2, the first instance of multi-head attention module in each
decoder layer employs a masking operation to ensure that sequence modeling is contingent solely on
known observations, thereby preventing information leakage. Following each multi-head attention,
residual connections and layer normalization are applied. Layer normalization stabilizes the gradients
by normalizing the outputs from the multi-head attention or the feed-forward layers, thus reducing
variability across the outputs of different layers and accelerating the training process. The application
of residual connections, which constitutes a staple technique in neural networks, creates a direct
pathway between the input and output, effectively preventing the problems of vanishing/exploding
gradients and network degradation in a deep network. Each encoder and decoder layer also includes
a fully connected feedforward network with an activation function, consequently introducing non-
linearity and enhancing the model’s capability for parallel processing. Conclusively, the decoder’s
output is passed through a linear transformation to allow the Traffic Transformer to generate the final
traffic accident predictions.
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Figure 2. The overall architecture of the Traffic Transformer.
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The Traffic Transformer framework that we propose is notable for its innovative replacement
of recurrent and convolutional structures, which are commonly found in LSTM and CNNs, with
a self-attention mechanism. This pivotal shift allows for the establishment of direct correlations
between any two elements in the input sequence, which enables the consideration of the model to
consider the entire sequence when evaluating each element. Consequently, the Traffic Transformer
possesses a global receptive field, which ensures the effective capture of long-term dependencies across
sequences of any length without information loss and thereby fundamentally addresses the inherent
shortcomings associated with CNNs and LSTM. Moreover, the Traffic Transformer is endowed with
the capability of parallel processing and facilitates an enhancement of model interpretability through
the visualization of attention weights, elucidating the rationale behind the model’s predictive outcomes.
These advantages confer upon the Traffic Transformer a distinct superiority over existing mainstream
models in the domain of traffic accident prediction. The ensuing sections of this chapter will delve into
a comprehensive exposition of the individual modules constituting the Traffic Transformer.

2.2. Self-atttention: The soul of the Transformer

The self-attention mechanism represents the cornerstone of the Transformer architecture and
signifies a milestone advancement in the field of sequence modeling. It transcends the inherent
limitations associated with traditional sequential data processing approaches. For instance, neural
network algorithms based on recurrent architecture, such as LSTM, process sequences incrementally,
which often impairs their ability to capture long-term dependencies. Self-attention has fundamentally
addressed this issue by modeling without the constraints of a limited context window. It eschews the
conventional paradigms of analyzing elements in isolation or through restricted proximal interactions.
Instead, it models the entire input sequence, evaluating and expressing the significance of the
interrelation between any two positional elements in the sequence through the implementation of a
weighting scheme. This spectrum-wide analytical capacity endows the Transformer with a global
receptive field that is superior to those CNNs and LSTM networks, which enables the recognition of
relevant patterns across the full extent of the sequence, unfettered by immediate context.

Within the Transformer, self-attention is facilitated through the sophisticated interplay of query
(Q), key (K), and value (V) matrices. Each input token is projected into these matrices via the
linear transformation matrices Wy, Wi and Wy, fulfilling the following distinct functional purposes:
Q captures each token’s unique inquiry regarding other elements; K serves as the token’s identifier,
providing a contextual anchor; V holds the substantive content of each token, readying it for contextual
weighting. In order to calculate the attention scores between elements within a sequence, the model
executes a dot product operation between the row vectors of Q and K. A scaling mechanism is
also employed to prevent excessively large dot product values. This necessitates the division of the
dot product by the square root of the vector dimension d; within Q and K. A subsequent softmax
operation ensures that these scores are proportionally distributed, summing to one. The normalized
attention scores then determine the weighting of V, yielding an output that integrates these weighted
contributions and compelling the model to prioritize the most significant portions of the input from a
global informational perspective. The modeling process of self-attention can be formalized as follows:

Attention(Q, K, V) = softmax(QKT) V. 2.1
b b Vd—k . .
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For the prediction of traffic accidents, to accurately forecast across multiple future time periods,
multi-variate long sequences, which often embed complex high-order abstract hidden relations, are
utilized as inputs for the model. As the essence of the Traffic Transformer, the self-attention mechanism
is precisely poised to effectively capture both short-term and long-term dependencies among any two
elements in the sequence, which yields more precise and reliable multi-step predictions.

2.3. Diversifying attention with multiple heads

While the self-attention mechanism is capable of capturing the hidden relationships between any
two elements within an input sequence from a global perspective, in essence, a single self-attention
module possesses only a univocal viewpoint. However, complex input sequences may embody diverse
patterns, and consequently, self-attention could potentially overlook the subtleties and intricacies
embedded within the sequences. The Traffic Transformer model integrates the multi-head attention
mechanism, allowing the architecture to not only observe data from a single standpoint but also to
concurrently maintain multiple independent perspectives, thus attending to different segments of the
input sequence to discern the potential diversity of connections among sequence elements.

Figure 3 delineates the structure of multi-head attention, which reveals that it consists of several
self-attention units. Fundamentally, multi-head attention splits each attention head, and these newly
derived heads function in a manner that is conceptually similar to the basic self-attention mechanism by
upholding their independent sets of query, key, and value matrices. These matrices are critical as they
dictate the relationships that are identified by each head within the data. By allocating distinct matrices
to each head, the model ensures that different heads can potentially concentrate on various patterns and
relationships within the sequence. This approach yields a rich array of perspectives on the input data.
After these multiple heads process the data, a crucial integration step ensues. The outputs from each
head, infused with their unique perspectives, are concatenated. This amalgamated output embodies the
insights from all of the different attention heads, providing a multidimensional view of the sequence.
Nonetheless, to guarantee that this collective output is effectively assimilable by subsequent layers, it
undergoes a linear transformation for re-projection. This transformation aligns the diverse insights into
a unified format, priming it for further processing.

The application of multi-head attention within the Traffic Transformer allows the model to compute
the diversified dependencies within the input sequence in parallel during a single time step, significantly
bolstering the model’s representational capabilities. In our traffic accident prediction scenario, multi-
head attention is particularly good at handling complex time-series data with multiple dependencies.
For instance, seemingly sporadic traffic incidents on a city’s roads are influenced by a myriad of
factors e.g., the time of day, current events, weather conditions, and even subtle elements such as
the start or end times of schools. A singular attention mechanism might predominantly focus on the
most conspicuous patterns, such as traffic volume. In contrast, multi-head attention allows the model
to comprehend multiple simultaneous influences, like the collective impact of rush hour, a sudden
downpour, and a local event causing a detour. This capability renders it especially powerful for the
analysis of data in the real world, which is influenced by a multitude of factors; thus, the attention
module is the most accurate and reliable learning mechanism within the Traffic Transformer.
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2.4. Constructing inputs for the Traffic Transformer model

Using the dataset employed in this study as a case in point, owing to the stochastic nature of traffic
accidents, the raw traffic data set constitutes a multivariate irregularly intervaled dataset chronicling
the time of accidents, weather conditions, and regional information, which cannot be directly fed
into the Traffic Transformer for prediction. We employ a temporal discretization approach, initially
transforming the raw dataset into a regular sampling time series with each interval spanning one hour.
This endows the traffic accident data with temporal characteristics. Subsequently, we applied feature
engineering to the transformed dataset to extract and generate additional novel features that better
encapsulate the essence of the traffic accident prediction problem, which helps the model with learning
and forecasting. Specifically, we performed a rolling calculation of the maximum, mean, sum, and
exponential weighted moving average over multivariate features across a defined historical time span.
These generated features were incorporated into the dataset to assist the model in more effectively
capturing trends and cyclical patterns within the time series. Moreover, we employed a sliding window
technique to construct input features and label values for multi-step forecasting. The size of the sliding
window can be adjusted according to different forecast horizons, enhancing the model’s efficiency in
data utilization. We also applied min-max normalization to the dataset to normalize data of different
dimensions on the same scale for processing. This approach significantly improved the convergence
speed and performance of the model.

The multivariate time-series input sequences, having undergone data preprocessing and feature
engineering, require transformation into vector matrices via input embedding and positional encoding
to facilitate the multi-head attention computations within the encoder. Input embeddings convert each
element of the input sequence into fixed-length vectors in a high-dimensional space, and these vectors
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are enriched with semantic information acquired during the model training process. The employment
of input embeddings offers an efficient representational format wherein the vectors’ distances and
directions reflect the associations and similarities among the original elements, allowing the model
to adaptively learn and capture the latent relationships between elements.

However, the Traffic Transformer eschews a recurrent architecture that is similar to LSTM in
favor of parallel global information modeling, which inherently lacks the capacity to utilize the
sequential order of input elements, which is a critical facet in time-series forecasting. To impart
the Traffic Transformer with essential sequential recognition capability in the absence of inherent
order perception, positional encoding is integrated after the input embedding, thereby providing the
model with the positional context of input elements within the overall sequence. The introduction
of positional encoding circumvents the need for architectural modifications and instead endows the
Traffic Transformer with sequence recognition by infusing additional information into the model input.
Utilizing sinusoidal functions for positional encoding conveys the precise location of each sequence
element without distorting the original data. These encodings, derived from periodic mathematical
functions, can suitably represent cyclic patterns in the data and ensure distinct positional discernibility
within longer sequences. The formulation for positional embedding is as follows:

PE (o5 = sin (pos/ 100007/ ), (2.2)

PE (pos2is1) = €05 (pos/ 1000074t (2.3)

where pos denotes the position of an element within the overall sequence, while d represents the
number of dimensions of the positional encoding. Subsequently, positional encodings are added to
the input embeddings, ensuring that each element’s vector representation encompasses not only its
inherent semantic information but also its positional information within the sequence. As such, when
these embedded vectors are fed into the self-attention modules of the subsequent encoders or decoders,
the model can process the sequence based on this information, capturing the complex dependencies
between the elements. This amalgamation of word embeddings and positional encodings constitute
one of the key reasons why the Traffic Transformer model can demonstrate robust performance in
traffic accident prediction.

3. Implementation details

In the architecture of our proposed Traffic Transformer, we employ the rectified linear unit
(ReLLU) [35] activation function within the fully connected neural networks of each encoder and
decoder layer to perform non-linear transformations; its formula can be expressed as follows:

x, if x>0,
ReLU(x) = ) (3.1
0, ifx<0.

Compared to traditional activation functions such as Sigmoid, the ReLU activation function is
computationally more efficient as it simply thresholds the inputs. Additionally, with a constant gradient
in the positive interval, the ReL.U mitigates the issue of vanishing gradients, rendering it the most
prevalently utilized activation function in neural networks.
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The primary application of the Traffic Transformer is traffic accident forecasting, which falls within
the domain of time series forecasting. Consequently, the mean absolute error (MAE) is employed as
the loss function to evaluate performance, with the formula given as follows:

1 n
MAE:_ i_Aia 3.2
n;w 9l 3.2)

where n represents the number of samples and y; and J; denote the actual and predicted values for the
ith instance, respectively. The primary function of the MAE is to calculate the average of the absolute
differences between predicted values and true values. Its advantage lies in the equal weighting of all
prediction errors. However, constructing datasets for time series forecasting often results in missing
values due to sensor malfunctions or human errors. To address this, we have adapted the MAE to create
the masked-MAE. The masked-MAE disregards and masks out missing data points when calculating
the loss, assessing the model’s performance solely on available data. Traditional linear or polynomial
interpolation methods require the assumption that missing values are uniform and regular. In contrast,
the Masked-MAE does not rely on such strong assumptions, which enables a more flexible handling
of data with random missing values and thus enhances the performance of the model.

In the evaluation of model performance, not only is the MAE utilized as a loss function, but two
commonly employed metrics in time series forecasting, i.e., the mean squared error (MSE) and mean
absolute percentage error (MAPE), are also adopted to provide a more comprehensive assessment of
the model’s efficacy. The formulas for these metrics are expressed as follows:

1 < .
MSE =~ > (i =3, (3.3)
n i=1
1O |y =P
MAPE = - %' y—y‘ % 100%. (3.4)
n Yi

i=1
These equations serve to quantify the deviation of the model’s predictions from the actual observed
values, with the MSE providing a measure of the variance and squaring the prediction errors; this
consequently penalizes larger errors more severely. Alternatively, the MAPE offers an insight into
the relative error by comparing the absolute percentage difference between predicted and actual
values. These three evaluation metrics each possess unique characteristics, enabling a comprehensive
assessment of time-series forecasting models from multiple perspectives. Consequently, they are the
preferred metrics in the field of traffic forecasting due to their ability to holistically evaluate model
performance.

To verify the multi-step forecasting ability of the proposed Traffic Transformer, we have utilized
multivariate historical data from the preceding 12 steps to predict traffic accident data for the
subsequent 1, 3, and 6 steps. To expedite the convergence of the model, we have adoptd the adaptive
moment estimation (Adam) optimizer [36], which combines the momentum from gradient descent
with RMSprop, with an initial learning rate set at 0.005 and a weight decay configured to 1 x 1074,
Within the Traffic Transformer, we have determined through extensive testing that an optimal balance
between performance and efficiency is achieved with two layers in both the encoder and decoder, and
four attention heads in the multi-head attention module. If computational resources are abundant, an
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increment in the number of layers for both the encoder and decoder is feasible, which, albeit at the
cost of increased computational demand, would yield a substantial improvement in performance. The
construction of the Traffic Transformer and the comparative models for the experimental section were
realized by using Pytorch 1.10.2+cull3 and Python 3.7, with the experiments being conducted on
hardware comprising an Intel I7-12700F CPU and NVIDIA RTX 3070 GPU.

4. Experimental results and analysis

4.1. Dataset and hyperparameter settings

In this study, we chose to utilize the traffic dataset from Qatar for model training and testing.
Situated on the eastern coast of the Arabian Peninsula, Qatar has an approximate population of 2.68
million. The nation’s traffic accident dataset is particularly advantageous for analysis and predictive
modeling due to its highly modernized transportation infrastructure, the high-quality data collected
by the government, its high geographical concentration, and its relatively small population. These
attributes, combined with Qatar’s unique climate and significant investment in technology, render the
dataset an exemplary choice for traffic accident prediction; this contributes to enhance the precision of
the models and the effectiveness of preventive measures. The dataset chronicles traffic accidents that
occurred in Qatar from July 2018 to August 2019. After excluding samples with missing values, it
contained a total of 332,766 valid records, each detailing the time of the accident, weather conditions,
and area codes. To facilitate predictions across different subareas of Qatar, the country was segmented
into 98 subareas, coded 1-98. For the purposes of experimentation, subareas coded 45, 55, and 56
were randomly selected, containing 6,257, 7,725, and 8,315 samples, respectively. The dataset was
partitioned such that 75% was dedicated to training, while the remaining 25% was utilized for testing.

For the experiments, to thoroughly assess the proposed Traffic Transformer, we introduced two
prevalent models for traffic accident prediction: the LSTM-S2S with a Seq2Seq structure and the
LSTM-S2S-AM, which augments the former with an attention mechanism. Serving as the most widely
utilized neural network architectures for traffic accident prediction, these LSTM-based comparator
models offer significant benchmarking value. Table 1 displays the hyperparameter configurations
employed by the models in the experiments. We conducted comparative analyses on datasets from
various areas within Qatar; also, to ascertain the multi-step forecasting prowess of the models, we
executed tests across different forecast horizons. To ensure fairness and consistency in the experiments,
a uniform forecast horizon of six steps was adopted for predictions across multiple distinct areas.
Furthermore, for the purposes of multi-step forecasting, area 45 was consistently utilized as the dataset.

Table 1. Hyperparameter settings for models used in comparative experiments.

Model Batch Size Epochs Learing Rate Weight Decay
LSTM-S2S 32 50 0.005 1x10™
LSTM-S2S-AM 32 50 0.005 1x 107
Traffic Transformer 32 50 0.005 1 %107
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4.2. Predictive outcomes and analysis of models across different areas in Qatar

Table 2 presents the results of comparative experiments conducted in areas coded 45, 55, and 56,
from which it is readily apparent that despite adopting the same Seq2Seq architecture, the LSTM-
based LSTM-S2S and its attention-augmented counterpart LSTM-S2S-AM lag considerably behind
our proposed Traffic Transformer across multiple evaluation metrics. Regarding the MAE metric, the
Traffic Transformer maintained a marginal error of only 0.26 in area 56, which is its least impressive
performance, marking error reductions of 88% and 84% relative to LSTM-S2S and LSTM-S2S-
AM, respectively. This underscores a pronounced advantage in prediction accuracy, particularly
demonstrating a more robust mean level forecast. The significant enhancement in the MSE metric
further accentuates the robustness of the Traffic Transformer against outliers or noise. Given that the
MSE assigns greater weight to larger errors, the model’s marked superiority in this metric indicates that
the improvement in predictive accuracy is not confined to average levels, but it extends across the entire
error distribution. Lastly, as shown in Figure 4, the MAPE metric reflects the proportion of the model’s
prediction error in relation to actual values, where the Traffic Transformer’s performance is notably
superior in all areas, especially excelling in area 55 with an error rate of only 4.43%. This signifies
that in terms of relative predictive accuracy, the Transformer model captures changes in the data trend
more precisely, which is particularly critical for traffic accident forecasting where accurately grasping
the trend of occurrences is vital for the development of effective prevention and control strategies.

The experimental data compellingly suggest that the proposed Traffic Transformer model
significantly outperforms LSTM models based on the Seq2Seq architecture—both the basic version
and the one enhanced with attention mechanism on the multi-area traffic accident prediction
task in Qatar. The performance disparity is primarily attributed to the unique self-attention
mechanism of the Traffic Transformer, which captures long-term dependencies throughout the input
sequence. In contrast, even the LSTM-S2S-AM model, with its attention mechanism, is limited
in its understanding and modeling of complex spatiotemporal relationships due to its inherent
sequential data processing approach. Furthermore, the Traffic Transformer’s multi-head attention
mechanism captures diverse data characteristics across different representational spaces, offering
a more comprehensive understanding of the intricate dynamics in traffic flow. This significant
improvement in prediction accuracy indicates that multidimensional feature comprehension is crucial
for traffic accident forecasting. Moreover, the architecture of the Traffic Transformer prevents the
occurence of the vanishing gradient problem, a common issue with RNNs on long sequences; this
allows it to learn and predict the time series data for traffic accidents more efficiently. In contrast,
the LSTM network must process each time step sequentially, limiting its efficiency in the process
of capturing temporal dependencies. The Traffic Transformer’s capacity to consider the entire input
sequence at each decoding step allows for a global perspective of information integration, which
provides a richer and more nuanced spatiotemporal context for traffic accident prediction. These factors
combined not only provide a cogent explanation for the superior predictive performance of the Traffic
Transformer, they also highlight the importance of a model’s inherent global understanding capability
and feature capturing precision when addressing complex and variable real-world issues like traffic
accident prediction.
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Table 2. Performance of the model in different areas.

Model Area Code MAE MSE MAPE
LSTM-S2S 45 1.09 3.50 50.23%
LSTM-S2S-AM 45 1.09 3.50 50.54%
Traffic Transformer 45 0.14 0.18 7.56 %
LSTM-S2S 55 1.79 5.52 79.56%
LSTM-S2S-AM 55 1.20 4.10 50.38%
Traffic Transformer 55 0.09 0.11 4.43%
LSTM-S2S 56 2.11 10.82 65.38%
LSTM-S2S-AM 56 1.63 8.33 50.62%
Traffic Transformer 56 0.26 0.32 9.61%

Training MAPE: Area 45 Training MAPE: Area 55

sssss

(a) Area45. (b) Area 55.

Training MAPE: Area 56

(c) Area 56.

Figure 4. Trends of MAPE variation during model training across different areas.

4.3. Predictive outcomes and analysis of models over different forecast horizons

The superior performance of the Traffic Transformer across various forecasting intervals is clearly
evidenced by the data in Table 3 and Figure 5. For forecast horizons of 1, 3, and 6 steps, the Traffic
Transformer consistently outperformed LSTM-S2S and LSTM-S2S-AM in terms of the MAE, MSE,
and MAPE metrics. Notably, in the case of MAE and MSE indicators, the Traffic Transformer yielded
values that were an order of magnitude lower than its counterparts, signifying a significant leap in
prediction accuracy. For instance, for a 1-step forecast, the MAE and MSE for LSTM-S2S and LSTM-
S2S-AM were 1.12 and 1.14, and 3.52 and 3.57, respectively, while for the Traffic Transformer, these
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values were markedly lower at 0.24 and 0.33, respectively. The same trend is also evident in longer-
range forecasts; for example, the 6-step forecast results show that, although the MAE and MSE for the
LSTM base model and its attention-augmented version remained constant, the Traffic Transformer still
yielded substantially lower levels of error.

Training MAPE: 1 Step

—— LSTM-S25
07 —— LSTM-S25-AM
) —— TrafficTransformer
0.6

0.5

MAPE

0.4

Epoch

(a) 1 Step.

Training MAPE: 3 Steps

—— LSTM-S2sS

0.8 —— LSTM-S25-AM
—— TrafficTransformer
0.7

0.6

0.5

MAPE

0.4

0.3

Epoch

(b) 3 Steps.

Training MAPE: 6 Steps

—— LSTM-S2S
—— LSTM-S25-AM
—— TrafficTransformer

0.7

0.6

0.5

0.4

MAPE

0.3

0.2

0.1

Epoch
(c) 6 Steps.

Figure 5. Trends of MAPE variation during model training for different forecast horizons.
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Table 3. Performance of models for different forecast horizons.

Model Forecast Horizon =~ MAE MSE MAPE
LSTM-S2S 1 Step 1.12 3.52 51.51%
LSTM-S2S-AM 1 Step 1.14 3.57 52.70%
Traffic Transformer 1 Step 0.24 0.33 9.81%

LSTM-S2S 3 Steps 1.09 3.52 50.56%
LSTM-S2S-AM 3 Steps 1.10 3.50 50.96%
Traffic Transformer 3 Steps 0.14 0.18 6.27 %

LSTM-S2S 6 Steps 1.09 3.50 50.23%
LSTM-S2S-AM 6 Steps 1.09 3.50 50.54%
Traffic Transformer 6 Steps 0.14 0.18 7.56 %

These findings reveal that our proposed model not only has an advantage in single-step forecasting,
but it also sustains a high level of performance for multi-step predictions. This underscores the
benefit of the Traffic Transformer’s self-attention mechanism, which processes all elements in the
input sequence in parallel and captures global dependencies effectively. Moreover, the architecture
of the Traffic Transformer prevents occurences of the potential vanishing gradient problem associated
with RNNs on long sequences, which improves the learning and predicting of time series data for traffic
accidents. In contrast, LSTM-S2S and its attention-enhanced variant show a lack of sensitivity to the
prediction period’s length. Their performance did not vary significantly with different step lengths in
the forecast; this may be attributed to the recursive nature of these models, which caused information
to gradually diminish with the increase in time steps, a phenomenon that is especially pronounced in
multi-step predictions. Additionally, while the attention mechanism slightly improved the performance
of the LSTM-S2S-AM model on some metrics, it did not translate into a marked enhancement in multi-
step predictions. This indicates that despite the attention mechanism’s ability to somewhat bolster the
model’s capacity to seize crucial temporal information, it is still constrained by the inherent limitations
of the LSTM’s recursive characteristics, which do not measure up to the Traffic Transformer’s parallel
processing prowess.

5. Conclusions

Accurate prediction of traffic accidents is vital for urban development and the safeguarding of lives
and property. Therefore, we have proposed the Traffic Transformer for precise multidimensional
and multi-step forecasting of traffic accidents. The Traffic Transformer utilizes an advanced multi-
head attention mechanism, supplanting the conventional recurrent architecture that is prevalent in
mainstream models, to realize the multi-faceted parallel modeling of the global information embedded
in input sequences. Testing on a dataset of traffic accidents from Qatar, the results consistently
demonstrate the superior predictive performance of the Traffic Transformer, as it outperformed existing
models in terms of accuracy and robustness for various forecast horizons and areas. In subsequent
research, emphasis will not only be placed on further enhancing the model’s accuracy, it will also be
on its efficiency, computational cost, and interpretability, with the objective of developing trustworthy,
high-performance traffic accident prediction models.
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