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Abstract: This paper studies a stochastic two-species Schoener’s competitive model with Lévy jumps
by the mean-reverting Ornstein–Uhlenbeck process. First, the biological implication of introducing
the Ornstein–Uhlenbeck process is illustrated. After that, we show the existence and uniqueness
of the global solution. Moment estimates for the global solution of the stochastic model are then
given. Moreover, by constructing the Lyapunov function and applying Itô’s formula and Chebyshev’s
inequality, it is found that the model is stochastic and ultimately bounded. In addition, we give
sufficient conditions for the extinction of species. Finally, numerical simulations are employed to
demonstrate the analytical results.
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1. Introduction

As a common form of ecosystem, competition relationship has been widely applied in many fields
in recent years, and many scholars have conducted detailed research on the competition relationship
between populations [1]. In 2005, Zhen et al. [2] studied a class of two-dimensional non-autonomous
competitive Lotka-Volterra systems with pulses. In 2012, Liu et al. [3] investigated the quasi-periodic
solution of a Lotka-Volterra competitive system with quasi-periodic perturbations. In 2014, Liu
et al. [4] studied stochastic logistic models with Lévy noise and obtained necessary and sufficient
conditions for stochastic persistence and extinction. The Lotka-Volterra competition model is widely
employed to study a variety of systems, including prey-predator dynamics in ecological interaction
[5–7]. However, its linearization poses limitations to modeling the dynamics of certain species [8, 9],
for which more complex approaches are required. In 1974, a more practical competitive system was
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proposed and discussed by Schoener [10], as follows : dx (t) = x (t)
[
−r1 − β1x (t) − α1y (t) + ξ1

x(t)+δ1

]
dt,

dy (t) = y (t)
[
−r2 − β2x (t) − α2y (t) + ξ2

y(t)+δ2

]
dt,

(1.1)

where x (t) and y (t) reflect the population density at time t, r1 and r2 represent the death rates of the
population, β1 and α2 represent the intra-specific competition rates, and β2 and α1 represent the inter-
specific competition rates. All parameters in system (1.1) are assumed to be positive constants. In
recent years, more and more scholars have studied Schoener’s competition model and achieved many
results. In 2008, Wu et al. [11] studied a class of discrete Schoener’s competition models with time
delay, and obtained sufficient conditions to ensure the durability of the model and the global attraction
of the model’s positive solution. In 2012, LV et al. [8] investigated the dynamics of Schoener’s
competition model for two stochastic populations. In 2016, Li et al. [10] obtained some sufficient
conditions for the persistence of uniformly asymptotically stable positive almost periodic solutions for
a class of pulsed Schoener competition model with pure-delays.

However, in the natural world, population systems are inevitably affected by environmental
noise. Therefore, considering only deterministic models can be very flawed. Many parameters in
ecological dynamics should fluctuate around some average values. Mao et al. [12] demonstrated
that even small amounts of ambient noise can have a large impact on species populations, which
means that stochastic population models can provide additional authenticity compared to deterministic
population models. Therefore, it is generally assumed that environmental noise primarily affects
the fundamental parameters of the model in order to study the dynamic properties of ecosystems
in different environments [13]. Based on the fact that population death rates are easily affected
by environmental fluctuations, we assume r1 and r2 in Schoener’s competition model are two
random variables. Currently, there are two common methods for simulating small disturbances
in the environment. The most common method is to introduce Gaussian linear white noise into
the deterministic model [14–17]. Another method is to incorporate the mean-reverting Ornstein-
Uhlenbeck process to simulate environmental perturbations [18–20], which has been demonstrated
to be a practical and biologically meaningful method.

First, we assume that the death rate is linearly correlated with Gaussian white noise in the random
environment. That is to say,

ri (t) =
−
ri +
σidBi (t)

dt
, i = 1, 2,

where
−
ri represents the long-time average levels of ri (t). Bi (t) denotes two independent standard

Brownian motions defined on a complete probability space
{
Ω,F , {Ft}t≥0 , P

}
with a filtration {Ft}t≥0

satisfying the usual conditions [12]. For any time interval [0, t], we can obtain that

⟨ri (t)⟩ :=
1
t

∫ t

0
ri (s) ds =

−
ri +
σiBi (t)

t
∼ N

(
−
ri,
σ2

i

t

)
, i = 1, 2,

where ⟨ri (t)⟩ is the time average of ri (t), and N (·, ·) denotes the one-dimensional normal distribution.
From the above formula, it is easy to see that the variance of ⟨ri (t)⟩ is σ

2
i

t , which tends to infinity
as t → 0+. This means that the mean value of the perturbation parameter will be more variable in
a small amount of time. In practice, however, ri (t) should likewise fluctuate little over a small time

AIMS Mathematics Volume 9, Issue 5, 12239–12258.



12241

interval. Thus, the use of Gaussian linear white noise to simulate small disturbances in the environment
is unreasonable.

We now consider the second method, which is to introduce the Ornstein-Uhlenbeck process into the
deterministic model. On account of this approach, one has

dr1 (t) = ω1

(
−
r1 − r1

)
dt + σ1dB1 (t) ,

dr2 (t) = ω2

(
−
r2 − r2

)
dt + σ2dB2 (t) ,

(1.2)

where ωi > 0 and σi > 0 are the speed of reversion and the intensity of volatility, respectively. By
performing a stochastic integral operation on Equation (1.2), we can get the following unique explicit
solutions:

ri (t) =
−
ri +

[
ri (0) −

−
ri

]
e−ωit + σi

∫ t

0
e−ωi(t−s)dBi (s) , i = 1, 2, (1.3)

where ri (0) is the initial value of the Ornstein–Uhlenbeck process ri (t). For any time interval [0, t], we
have

⟨ri (t)⟩ :=
1
t

∫ t

0
ri (s) ds = r̄i +

1
t

∫ t

0

σi

ωi

(
1 − eωi(s−t)

)
dBi (s) ∼ N

(
r̄i,
σ2

i t
3
+ O

(
t2
))
,

and as the time interval t → 0+, it is clear that E [⟨ri (t)⟩] = r̄i and Var [⟨ri (t)⟩] = 0, which is consistent
with the fact that the perturbation of the death rate in a small time interval is also small. Therefore, it is
more reasonable to introduce the Ornstein-Uhlenbeck process to perturb the parameters ri(t), i = 1, 2,
than Gaussian white noise [20, 21].

Based on the above analysis, we decided to introduce the Ornstein-Uhlenbeck process into the
studied model. By combining system (1.1) and system (1.2), we can obtain a stochastic model of the
following form: 

dx (t) = x (t)
[
−r1 (t) − β1x (t) − α1y (t) + ξ1

x(t)+δ1

]
dt,

dy (t) = y (t)
[
−r2 (t) − β2x (t) − α2y (t) + ξ2

y(t)+δ2

]
dt,

dr1 (t) = ω1 [r̄1 − r1 (t)] dt + σ1dB1 (t) ,
dr2 (t) = ω2 [r̄2 − r2 (t)] dt + σ2dB2 (t) .

(1.4)

However, in addition to small perturbations in the environment, population dynamics can be subject
to sudden and violent environmental shocks, such as avalanches, earthquakes, and tsunamis. It is
important to note that these environmental shocks may cause sharp jumps in the population size so
that previously continuous solution trajectories are no longer continuous. However, this phenomenon
cannot be described by Brownian motion, so stochastic differential equations with Lévy jumps are
often used to simulate sudden random perturbations that occur in the environment [22, 23]. In 2014,
Liu et al. [24] studied the Lotka-Volterra stochastic model disturbed by Lévy noise and established the
necessary and sufficient conditions for persistence in the mean and extinction of each population. In
2018, Qiu and Deng [1] studied the optimal acquisition problem of randomly competing Lotka-Volterra
models under the influence of time delay. Inspired by the above, this paper adds Lévy jumps to system
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(1.4) to simulate sudden environmental disturbances in nature. It takes the form
dx (t) = x (t−)

[
−r1 (t−) − β1x (t−) − α1y (t−) + ξ1

x(t−)+δ1

]
dt +

∫
Y

x (t−) γ1 (µ) N (dt, dµ),
dy (t) = y (t−)

[
−r2 (t−) − β2x (t−) − α2y (t−) + ξ2

y(t−)+δ2

]
dt +

∫
Y

y (t−) γ2 (µ) N (dt, dµ),
dr1 (t) = ω1 [r̄1 − r1 (t)] dt + σ1dB1 (t) ,
dr2 (t) = ω2 [r̄2 − r2 (t)] dt + σ2dB2 (t) ,

(1.5)

where x (t−), y (t−), and r (t−) represent the left limit at t, N (·, ·) is a Poisson counting measure
with characteristic measure λ on a measurable subset Y of (0,+∞) with λ (Y) < ∞, and N (·, ·)
is independent of Brownian motion B (·). Define the compensating random measure as Ñ, then
N (dt, dµ) = Ñ (dt, dµ) + λ (dµ) dt. γ (·) represents the disturbance intensity of Lévy jump noise to
the population.

The model established in this paper is an improvement on the classical Schoener’s competition
model. First, system (1.5) uses the mean-reverting Ornstein-Uhlenbeck process to simulate small
perturbations in the environment, which is more reasonable than assuming that population parameters
are linearly distributed in Gaussian white noise. In addition, considering that species in the real world
are often affected by sudden random perturbations, we also introduced Lévy jumps into the model.
Therefore, this model takes into account both small environmental disturbances and sudden violent
disturbances, which can better simulate some random phenomena in nature.

The rest of the paper is organized as follows. Section 2 gives some necessary lemmas and
assumptions. Section 3 shows several dynamical properties of system (1.5), including the existence
and uniqueness of global solutions, moment estimate, and stochastic ultimate boundness. In addition,
we obtain sufficient conditions for species extinction. In Section 4, we carry out some numerical
simulations to verify the theoretical results. Finally, we give some conclusions in Section 5.

Remark 1. The model studied in this paper perturbs the parameter ri , where ri represents the death
rate of the population. Due to the characteristics of the Ornstein-Uhlenbeck process, the death rate
can be taken as any real number in the model. However, it is well known that negative death rates are
biologically implausible. For this phenomenon, we have the following explanation:

First, the positive or negative death rate does not affect the proof of the theorem, so even if the death
rate may be negative, it does not affect the results obtained in this paper. Moreover, since the theorem
is true for any value of death rate, it is also true for non-negative death rate. It is worth noting that
the negative death rate is only a theoretical value, and we still assume that it is positive in practice and
numerical simulation, that is, we mainly use the part of ri ≥ 0, i = 1, 2.

2. Materials and methods

Due to the need of subsequent proofs, several lemmas and assumptions will be given in this section.

Lemma 2.1. (Chebyshev inequality) If c > 0, p > 0, X ∈ Lp, we have

P {ω : |X (ω) | ≥ c|} ≤ c−pE [|X|p] ,

where Lp represents the set of random variables that take values on Rn and E [|X|p] < ∞.
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Lemma 2.2. Let M (t) be a local martingale with initial value M (0) = 0. If lim
t→∞
ρM (t) < ∞, then

lim
t→∞

M (t)
t
= 0,

where

ρM (t) =
∫ t

0

d ⟨M,M⟩ (s)
(1 + s)2 , t ≥ 0.

Assumption 2.1. For any i ∈ {1, 2}, there is always a constant c that makes the following true:

(1)
∫

Y

(
| ln (1 + γi (µ)) | ∨ | ln (1 + γi (µ)) |2

)
λ (µ) < c.

(2)
∫

Y
|γi (µ) |λ (dµ) < c.

(3)
∫

Y
| (1 + γi (µ))q

− 1|λ (dµ) < c.

(2.1)

3. Results

3.1. Existence and uniqueness of global solution

Theorem 3.1. For any initial value condition

(x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2
+ × R2,

system (1.5) has a unique solution (x (t) , y (t) , r1 (t) , r2 (t)) on t ≥ 0, and it will remain in R2
+ × R2 with

probability one.

Proof. For t ≥ 0, and for any initial value (x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2
+ × R2, it is easy to prove

that the equation coefficients in system (1.5) satisfy local Lipschitz conditions. Therefore, system (1.5)
has a unique local solution (x (t) , y (t) , r1 (t) , r2 (t)) ∈ R2

+ × R2 on t ∈ [0, τe), where τe is the explosion
time [12].

To prove that the model has a global positive solution, we only need to show that τe = ∞ a.s.. By
defining a necessary set Hn0 = (−n0, n0) × (−n0, n0) × (−n0, n0) × (−n0, n0), we can always determine a
sufficiently large integer n0 such that (ln x (0) , ln y (0) , r1 (0) , r2 (0)) ∈ Hn0 . For any integer n ≥ n0, we
define a stopping time set τn by

τn = in f {t ∈ [0, τe) | ln x (t) < (−n, n) , or ln y (t) < (−n, n) , or r1 (t) <
(−n, n) , or r2 (t) < (−n, n)}.

(3.1)

Obviously, τn is monotonically increasing as n increases. For convenience, let τ∞ = limn→∞ τn and
in f∅ = ∞, which implies τ∞ ≤ τe a.s.. To prove Theorem 3.1, it suffices to verify τ∞ = ∞ a.s..
Consider the contradiction, i.e., τ∞ < ∞ a.s.. Then there are constants T > 0 and ε ∈ (0, 1) to make
P {τ∞ ≤ T } > ε. Hence, there is a positive number n1 ≥ n0 such that

P {τn ≤ T } ≥ ε,∀n ≥ n1. (3.2)
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For any t ≤ τn, by the inequality x − 1 ≥ ln x (x > 0), a non-negative C2-function
V (x (t) , y (t) , r1 (t) , r2 (t)) is constructed as follows:

V (x, y, r1, r2) = x (t) − 1 − ln x (t) + y (t) − 1 − ln y (t) +
r4

1 (t)
4
+

r4
2 (t)
4
. (3.3)

Applying the Itô formula yields,

dV =LVdt + r3
1 (t)σ1dB1 (t) + r3

2 (t)σ2dB2 (t)

+

∫
Y

(
x (t) γ1 (µ) − ln (1 + γ1 (µ))

)
Ñ (dt, dµ)

+

∫
Y

(
y (t) γ2 (µ) − ln (1 + γ2 (µ))

)
Ñ (dt, dµ),

(3.4)

where

LV = − x (t) r1 (t) − β1x2 (t) − α1x (t) y (t) +
ξ1x (t)

x (t) + δ1
+ r1 (t) + β1x (t)

+ α1y (t) −
ξ1

x (t) + δ1
− y (t) r2 (t) − β2y (t) x (t) − α2y2 (t) +

ξ2y (t)
y (t) + δ2

+ r2 (t) + β2x (t) + α2y (t) −
ξ2

y (t) + δ2
+ ω1r3

1 (t) (r̄1 − r1 (t))

+ ω2r3
2 (t) (r̄2 − r2 (t)) +

3
2
σ2

1r2
1 (t) +

3
2
σ2

2r2
2 (t)

+

∫
Y

(x (t) γ1 (µ) − ln (1 + γ1 (µ))) λ (dµ)

+

∫
Y

(y (t) γ2 (µ) − ln (1 + γ2 (µ))) λ (dµ).

(3.5)

Combined with Assumption 2.1, it is easy to know that there exists an upper bound K such that

LV ≤|r1 (t) | (1 + x (t)) +
ξ1x (t)

x (t) + δ1
+ (β1 + β2) x (t) + |r2 (t) | (1 + y (t))

+
ξ2y (t)

y (t) + δ2
+ (α1 + α2) y (t) + ω1r̄1r3

1 (t) + ω2r̄2r3
2 (t) +

3
2
σ2

1r2
1 (t)

+
3
2
σ2

2r2
2 (t) − β1x2 (t) − α2y2 (t) − (α1 + β2) x (t) y (t) + x (t)

∫
Y
γ1 (µ) λ (dµ)

+ y (t)
∫

Y
γ2 (µ) λ (dµ) −

ξ1
x (t) + δ1

−
ξ2

y (t) + δ2
− ω1r4

1 (t) − ω2r4
2 (t) + 2c

≤K,

thus
dV ≤Kdt + r3

1 (t)σ1dB1 (t) + r3
2 (t)σ2dB2 (t)

+

∫
Y

(
x (t) γ1 (µ) − ln (1 + γ1 (µ))

)
Ñ (dt, dµ)

+

∫
Y

(
y (t) γ2 (µ) − ln (1 + γ2 (µ))

)
Ñ (dt, dµ).

(3.6)
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Integrating the inequality from 0 to τn∧T and then taking the expectation on both sides of inequality
(3.7), we have

E
[
V (x (τn ∧ T ) , y (τn ∧ T ) , r1 (τn ∧ T ) , r2 (τn ∧ T ))

]
≤ V (x (0) , y (0) , r1 (0) , r2 (0)) + KT. (3.7)

For all n1 ≥ n0, let Ωn = {τn ≤ T }. Then we have P (Ωn) ≥ ε. Note that, for any ω ∈ Ωn, x, y, r1, and r2

equals either −n or n, so there is

V (x (τn, ω) , y (τn, ω) , r1 (τn, ω) , r2 (τn, ω)) ≥ min
{
e−n − 1 + n, en − 1 − n

}
.

According to the inequality 3.7, it can be derived that

V (x (0) , y (0) , r1 (0) , r2 (0)) + KT ≥ E
[
1Ωn(ω)V (x (τn) , y (τn) , r1 (τn) , r2 (τn))

]
≥ εmin

{
e−n − 1 + n, en − 1 − n

}
,

(3.8)

where 1Ωn(ω) represents the index function. As n → ∞, we have ∞ > V (x (0) , y (0) , r1 (0) , r2 (0)) +
KT ≥ ∞, which leads to a contradiction. Therefore, we have τ∞ = ∞ a.s.. This completes the proof of
Theorem 3.1.

3.2. Moment estimation

In this section, we will provide a moment estimate for the global solution mentioned above.

Theorem 3.2. For any initial value (x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2
+ × R2, the solution

(x (t) , y (t) , r1 (t) , r2 (t)) of system (1.5) has the property

E
[
|x (t) , y (t) |q

]
≤ K (q) (3.9)

for any q > 0, where K (q) is a continuous function with respect to q. That is to say, the qth moment of
the solution x (t) , y (t) is bounded.

Proof. For any q ≥ 2, we define a non-negative C2-function

V1 (x (t) , y (t) , r1 (t) , r2 (t)) : R2
+ × R2

by

V1 (x (t) , y (t) , r1 (t) , r2 (t)) =
xq (t)

q
+

yq (t)
q
+

r2q
1 (t)
2q
+

r2q
2 (t)
2q
.

Applying the generalized Itô formula, we obtain

dV1 =LV1dt + r2q−1
1 (t)σ1dB1 (t) + r2q−1

2 (t)σ2dB2 (t)

+
xq (t)

q

∫
Y

((1 + γ1 (µ))q
− 1) Ñ (dt, dµ)

+
yq (t)

q

∫
Y

((1 + γ2 (µ))q
− 1) Ñ (dt, dµ).

(3.10)
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To simplify the notation, the subsequent proof process replaces x (t), y (t), ri (t), and γi (µ) with x, y, ri,
and γi, respectively. So, we have

LV1 = − xqr1 − β1xq+1 − α1xqy +
ξ1xq

x + δ1
− yqr2 − β2xyq − α2yq+1

+
ξ2yq

y + δ2
+ ω1r2q−1

1 (r̄1 − r1) + ω2r2q−1
2 (r̄2 − r2) +

2q − 1
2
σ2

1r2q−2
1

+
2q − 1

2
σ2

2r2q−2
2 +

xq

q

∫
Y

((1 + γ1)q
− 1) λ (dµ)

+
yq

q

∫
Y

((1 + γ2)q
− 1) λ (dµ).

(3.11)

Taking the mathematical expectation of eηtV1, we obtain

E
(
eηtV1 (x (t) , y (t) , r1 (t) , r2 (t))

)
= E (V1 (x (0) , y (0) , r1 (0) , r2 (0)))

+

∫ t

0
E

[
L (eηsV1 (x (s) , y (s) , r1 (s) , r2 (s)))

]
ds,

(3.12)

where η = q min {ω1, ω2}. Noting that

L
[
eηtV1 (x, y, r1, r2)

]
=ηeηtV1 (x, y, r1, r2) + eηtLV1 (x, y, r1, r2)

=eηt
{
η

q
xq +

η

q
yq − xqr1 − β1xq+1 − α1xqy +

ξ1xq

x + δ1
− yqr2 − β2xyq − α2yq+1

+
ξ2yq

y + δ2
−

(
ω1 −

η

2q

)
r2q

1 −

(
ω2 −

η

2q

)
r2q

2 + ω1r2q−1
1 r̄1 + ω2r2q−1

2 r̄2

+
2q − 1

2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 +

xq

q

∫
Y

((1 + γ1)q
− 1) λ (dµ)

+
yq

q

∫
Y

((1 + γ2)q
− 1) λ (dµ)

}
(3.13)

≤eηt
{
ω1xq + ω2yq + |r1|xq + |r2|yq +

ξ1xq

x + δ1
+
ξ2yq

y + δ2
+ ω1r2q−1

1 r̄1 + ω2r2q−1
2 r̄2

+
2q − 1

2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 − β1xq+1 − α2yq+1 − α1xqy − β2xyq

−
ω1

2
r2q

1 −
ω2

2
r2q

2 +
xq

q

∫
Y

((1 + γ1)q
− 1) λ (dµ) +

yq

q

∫
Y

((1 + γ2)q
− 1) λ (dµ)

}
≤k (q) eηt,
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where
k (q) =sup(x,y,r1,r2)∈R2

+×R2

{
ω1xq + ω2yq + |r1|xq + |r2|yq +

ξ1xq

x + δ1
+
ξ2yq

y + δ2

+ ω1r2q−1
1 r̄1 + ω2r2q−1

2 r̄2 +
2q − 1

2
σ2

1r2q−2
1 +

2q − 1
2
σ2

2r2q−2
2 − β1xq+1

− α2yq+1 − α1xqy − β2xyq −
ω1

2
r2q

1 −
ω2

2
r2q

2

+
xq

q

∫
Y

((1 + γ1)q
− 1) λ (dµ) +

yq

q

∫
Y

((1 + γ2)q
− 1) λ (dµ)

}
<∞.

Combining formula (3.12) and formula (3.13), we obtain

E
(
eηtV1 (x (t) , y (t) , r1 (t) , r2 (t))

)
≤ E (V1 (x (0) , y (0) , r1 (0) , r2 (0))) +

k (q)
(
eηt − 1

)
η

,
(3.14)

and then we have

lim sup
t→∞

E
[
|x (t) , y (t) |q

]
≤ q lim sup

t→∞
E

[
V1 (x (t) , y (t) , r1 (t) , r2 (t))

]
≤ lim

t→∞

E
[
V1 (x (0) , y (0) , r1 (0) , r2 (0))

]
eηt

+ lim
t→∞

k (q)
(
eηt − 1

)
ηeηt

= 0 +
k (q)
η
=

k (q)
η

a.s..

(3.15)

The continuity of x (t) , y (t) on t ∈ [0,∞) along with this implies that there exists a constant K (q)
such that

E
[
|x (t) , y (t) |q

]
≤ K (q) , ∀t ≥ 0, q ≥ 2.

By applying Hölder’s inequality, we can conclude that, for any q ∈ (0, 2),

E
(
|x (t) , y (t) |q

)
≤

(
E (|x (t) , y (t) |)2

) q
2
≤ (K (2))

q
2 .

This completes the proof of Theorem 3.2.

3.3. Stochastic ultimate boundedness

First, the definition of stochastic ultimate boundedness is given.

Definition 3.1. The solution of system (1.5) is said to be stochastic and ultimately bounded,
if for any ε ∈ (0, 1), there is a positive number H (= H (ε)) such that for any initial value
(x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2

+ × R2, the solution of the model satisfies

lim sup
t→∞

P
{ √

x2 (s) + y2 (s) ≤ H
}
≥ 1 − ε.

Theorem 3.3. The solutions of system (1.5) are stochastic and ultimately bounded.
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Proof. According to Theorem 3.2, the solution of system (1.5) is moment bounded. Let q = 0.5, then
there is a positive number K0 such that for any initial value (x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2

+ × R2, the
solution of system (1.5) satisfies

lim sup
t→∞

E
(
x2 (s) + y2 (s)

) 1
2
≤ K0.

According to the Lemma 2.1: P {|x (t) | > H} ≤ E|x(t)|
H , by setting H = K0/ε, we can get

lim sup
t→∞

P
{ √

x2 (s) + y2 (s) > H
}
≤ ε,

then
lim sup

t→∞
P

{ √
x2 (s) + y2 (s) ≤ H

}
≥ 1 − ε.

This completes the proof of Theorem 3.3.

3.4. Population extinction

Theorem 3.4. For any initial value (x (0) , y (0) , r1 (0) , r2 (0)) ∈ R2
+ × R2, the solution

(x (t) , y (t) , r1 (t) , r2 (t)) of system (1.5) has the property that

lim sup
t→∞

ln x (t)
t
≤ lim sup

t→∞

1
t

∫ t

0

(
−r1 +

ξ1
δ1
+

∫
Y

ln (1 + γ1) λ (dµ)
)

ds,

lim sup
t→∞

ln x (t)
t
≤ lim sup

t→∞

1
t

∫ t

0

(
−r2 +

ξ2
δ2
+

∫
Y

ln (1 + γ2) λ (dµ)
)

ds.

In particular, if

G1 = lim sup
t→∞

1
t

∫ t

0

(
−r1 +

ξ1
δ1
+

∫
Y

ln (1 + γ1) λ (dµ)
)

ds < 0,

G2 = lim sup
t→∞

1
t

∫ t

0

(
−r2 +

ξ2
δ2
+

∫
Y

ln (1 + γ2) λ (dµ)
)

ds < 0,

then x (t), y (t) are extinct.

Proof. Applying the Itô formula to ln x (t) and ln y (t), it can be obtained that

d ln x (t) =
(
−r1 − β1x − α1y +

ξ1
x + δ1

+

∫
Y

ln (1 + γ1) λ (dµ)
)

dt

+

∫
Y

ln (1 + γ1) Ñ (dt, dµ),
(3.16)

d ln y (t) =
(
−r2 − β2x − α2y +

ξ2
y + δ2

+

∫
Y

ln (1 + γ2) λ (dµ)
)

dt

+

∫
Y

ln (1 + γ2) Ñ (dt, dµ).
(3.17)
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Integrating from 0 to t, we have

ln x (t) = ln x (0) +
∫ t

0

(
−r1 − β1x − α1y +

ξ1
x + δ1

+

∫
Y

ln (1 + γ1) λ (dµ)
)
ds

+

∫ t

0

∫
Y

ln (1 + γ1) Ñ (ds, dµ),
(3.18)

ln y (t) = ln y (0) +
∫ t

0

(
−r2 − β2x − α2y +

ξ2
y + δ2

+

∫
Y

ln (1 + γ2) λ (dµ)
)
ds

+

∫ t

0

∫
Y

ln (1 + γ2) Ñ (ds, dµ).
(3.19)

According to equalities (3.18) and (3.19) , it can be obtained that

ln x (t) ≤ ln x (0) +
∫ t

0

(
−r1 +

ξ1
δ1
+

∫
Y

ln (1 + γ1) λ (dµ)
)

ds +
∫ t

0

∫
Y

ln (1 + γ1) Ñ (ds, dµ), (3.20)

ln y (t) ≤ ln y (0) +
∫ t

0

(
−r2 +

ξ2
δ2
+

∫
Y

ln (1 + γ2) λ (dµ)
)

ds +
∫ t

0

∫
Y

ln (1 + γ2) Ñ (ds, dµ). (3.21)

Let M̃1 =
∫ t

0

∫
Y

ln (1 + γ1) Ñ (dt, dµ), M̃2 =
∫ t

0

∫
Y

ln (1 + γ2) Ñ (dt, dµ). According to Lemma 2.2, we
have

lim
t→∞

M̃1 (t)
t
= 0, lim

t→∞

M̃2 (t)
t
= 0.

Then,

lim sup
t→∞

ln x (t)
t
≤ lim sup

t→∞

1
t

∫ t

0

(
−r1 +

ξ1
δ1
+

∫
Y

ln (1 + γ1) λ (dµ)
)

ds, (3.22)

lim sup
t→∞

ln y (t)
t
≤ lim sup

t→∞

1
t

∫ t

0

(
−r2 +

ξ2
δ2
+

∫
Y

ln (1 + γ2) λ (dµ)
)

ds. (3.23)

Therefore, when

G1 = lim sup
t→∞

1
t

∫ t

0

(
−r1 +

ξ1
δ1
+

∫
Y

ln (1 + γ1) λ (dµ)
)

ds < 0,

G2 = lim sup
t→∞

1
t

∫ t

0

(
−r2 +

ξ2
δ2
+

∫
Y

ln (1 + γ2) λ (dµ)
)

ds < 0,

it implies lim
t→∞

x (t) = 0, lim
t→∞

y (t) = 0, and then x (t), y (t) are extinct. This completes the proof of
Theorem 3.4.

4. Discussion

In this section, we will verify the theoretical results by numerical simulation examples. First, the
system (1.5) is discretized using the Milstein scheme for higher order discretization [25]. Consider the
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following stochastic Schoener’s competitive model for two populations:
dx (t) = x (t−)

[
−r1 (t−) − β1x (t−) − α1y (t−) + ξ1

x(t−)+δ1

]
dt +

∫
Y

x (t−) γ1 (µ) N (dt, dµ),
dy (t) = y (t−)

[
−r2 (t−) − β2x (t−) − α2y (t−) + ξ2

y(t−)+δ2

]
dt +

∫
Y

y (t−) γ2 (µ) N (dt, dµ),
dr1 (t) = ω1 [r̄1 − r1 (t)] dt + σ1dB1 (t) ,
dr2 (t) = ω2 [r̄2 − r2 (t)] dt + σ2dB2 (t) .

(4.1)

Immediately afterwards, it is necessary to introduce the biological significance of the parameters
related to the process being modeled. Computer simulations can then be performed to gain insights
into the dynamics of the biological system (see Table 1).

Table 1. List of biological parameters.

Parameter Explication

r̄1 Average mortality of species x

r̄2 Average mortality of species y

β1 The intra-specific competition rates of species x

β2 The inter-specific competition rates

α1 The inter-specific competition rates

α2 The intra-specific competition rates of species y

σ1 The intensity of volatility of r1

σ2 The intensity of volatility of r2

Based on the biological significance of the above parameters, and in combination with reference
[8–10, 26], we choose the reasonable values as shown in Table 2.

Table 2. Several combinations of biological parameters of system (1.5) in Table 1.

Combinations Value

(A1) [8] r̄1 = 0.15, r̄2 = 0.2, β1 = 0.4, β2 = 0.1, α1 = 0.1, α2 = 0.1, ξ1 = 0.3, ξ2 = 0.2, δ1 = 0.6
δ2 = 0.1, γ1 = −0.5, γ2 = −0.5, ω1 = 0.1, ω2 = 0.1, σ1 = 0.04, σ2 = 0.04

(A2) [9] r̄1 = 0.4, r̄2 = 0.2, β1 = 0.3, β2 = 0.4, α1 = 0.4, α2 = 0.2, ξ1 = 0.65, ξ2 = 0.5, δ1 = 0.65
δ2 = 0.55, γ1 = 0.2, γ2 = 0.2, ω1 = 0.1, ω2 = 0.1, σ1 = 0.05, σ2 = 0.05

(A3) [10] r̄1 = 0.1, r̄2 = 0.3, β1 = 0.3, β2 = 0.0001, α1 = 0.0001, α2 = 0.3, ξ1 = 1, ξ2 = 1, δ1 = 2
δ2 = 2, γ1 = −0.2, γ2 = −0.2, ω1 = 0.1, ω2 = 0.1, σ1 = 0.05, σ2 = 0.05

(A4) r̄1 = 0.35, r̄2 = 0.15, β1 = 0.3, β2 = 0.15, α1 = 0.15, α2 = 0.2, ξ1 = 0.2, ξ2 = 0.1, δ1 = 0.55
δ2 = 0.2, γ1 = −0.3, γ2 = −0.25, ω1 = 0.1, ω2 = 0.1, σ1 = 0.05, σ2 = 0.05

(A5) r̄1 = 0.2, r̄2 = 0.4, β1 = 0.1, β2 = 0.2, α1 = 0.2, α2 = 0.3, ξ1 = 0.2, ξ2 = 0.37, δ1 = 0.3
δ2 = 0.75, γ1 = −0.2, γ2 = −0.4, ω1 = 0.1, ω2 = 0.1, σ1 = 0.05, σ2 = 0.05

(A6) [26] r̄1 = 0.37, r̄2 = 0.37, β1 = 1, β2 = 0.1,α1 = 0.27, α2 = 2, ξ1 = 0.2, ξ2 = 0.1, δ1 = 0.55
δ2 = 0.5, γ1 = −0.3, γ2 = −0.3, ω1 = 0.2, ω2 = 0.1, σ1 = 0.001, σ2 = 0.001

Example 1. Theorem 3.1 is first tested by selecting the combination (A1), (A2), and (A3) in Table 2
as the coefficients of system (1.5). See Figure 1, Figure 2, and Figure 3.
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Figure 1. Coefficient combination (A1).

Figure 2. Coefficient combination (A2).

Figure 3. Coefficient combination (A3).

Remark 2. It can be seen that the death rate ri is perturbed around the given mean value, which reflects
the mean reversion characteristic of the Ornstein-Uhlenbeck process.

Comparing Figure 2 with Figure 1 and Figure 3, one can conclude that the death rate is not
a determining factor in population density, and other factors such as competition intensity and
environmental disturbance also have a great impact on the survival of the population.

On the basis of Theorem 3.1, we next investigate the effect of environmental perturbations on the
population by choosing the parameter combination (A1) and varying the value of the parameter σi, i =
1, 2, in it. Let σi =0.01, 0.08, 0.12, respectively. According to Figure 4, the population becomes more
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unstable as the environmental noise increases, which implies that the environmental perturbation has a
great impact on the survival of the population.

(a) σi=0.01 (b) σi=0.08 (c) σi=0.12

Figure 4. The effect of different σi values on the populations.

In order to verify the existence and uniqueness of the solution of system (1.5) more comprehensively
and clearly, we perform 100 simulations of Theorem 3.1. The solid green lines in (a), (b), (c), and (d)
of Figure 5 represent the average of the 100 simulated paths, and all 100 paths are represented by gray
lines. It can be seen that different coefficient combinations have different solutions, and the solutions
are all existing and unique. Thus, the conclusion of Theorem 3.1 can be verified.

(a) r1 (b) r2

(c) x (d) y

Figure 5. 100 path simulation figures.
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Example 2. Now we will verify the conclusion of Theorem 3.2. We still choose the combination (A1),
(A2), and (A3) in Table 2 as the coefficients of system (1.5). Let q=2, then we have E

[
|x (t) , y (t) |2

]
≤

K (2). It can be seen from Figure 6 that the expected value of the above three coefficient combinations is
less than an upper bound K (q) and this upper limit is not infinite, which indicates that the two-moment
of the population is bounded. See Figure 6.

(a) Coefficient combination (A1) (b) Coefficient combination (A2) (c) Coefficient combination (A3)

Figure 6. Moment estimation.

Example 3. We will now verify the conclusion of Theorem 3.3 by numerical simulation. By Table 2,
We still use combination (A1), (A2) and (A3) for verification. See Figure 7

(a) Coefficient combination (A1) (b) Coefficient combination (A2) (c) Coefficient combination (A3)

Figure 7. Stochastic ultimate boundedness.

Remark 3. From the biological point of view, since the environmental resources are limited, no
biological population can grow indefinitely, so we hope that the system solution is ultimately bounded.
It can be seen from Figure 7 that, with the increase of time t, the probability P

{ √
x2 (s) + y2 (s) ≤ H

}
is

gradually stable and greater than a constant, which means lim supt→∞ P
{ √

x2 (s) + y2 (s) ≤ H
}
≥ 1− ε.

Therefore, the above simulation verifies the stochastic ultimate boundedness.

In order to further verify the conclusions of Theorem 3.2 and Theorem 3.3, we choose 100 paths
for simulation as in Theorem 3.1. The left figure is the simulation result of Theorem 3.2, and the right
figure is the simulation result of Theorem 3.3. See Figure 8.
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Figure 8. 100 path simulation figures.

Example 4. We now verify the conclusion of Theorem 3.4 in terms of parameter combinations (A4),
(A5), and (A6).

In Figure 9 (a), we choose combination (A4) as the biological parameter values of system (1.5).
Direct calculations shows that G1 = −0.343 < 0, it is easy to see that the parameters satisfy the
condition of Theorem 3.4, and x is extinct. Figure 9 (a) confirms these.

In Figure 9 (b), we choose combination (A5) as the biological parameter values of system (1.5).
Direct calculations shows that G2 = −0.417 < 0, it is easy to see that the parameters satisfy the
condition of Theorem 3.4, and y is extinct. Figure 9 (b) confirms these.

In Figure 9 (c), we choose combination (A6) as the biological parameter values of system (1.5).
Direct calculations shows that G1 = −0.343 < 0 and G2 = −0.527 < 0, it is easy to see that the
parameters satisfy the condition of Theorem 3.4, and all the species tend to be extinct. Figure 9 (c)
confirms these.

(a) x goes to extinction (b) y goes to extinction (c) x and y go to extinction

Figure 9. Population extinction.

Now explore the effect of different G values on the population.
In Figure 10, we select parameter combination (A4) and change the value of γ1 in it. Let γ1 =

−0.2,−0.3,−0.4, respectively. It can be seen that, as the value of G1 decreases, the extinction time of
population x is advanced. It can also be seen that, when the jump noise coefficient γ1 < 0, then the
smaller γ1 is, the greater the negative impact on the population.

In Figure 11, we select parameter combination (A5) and change the value of r̄2 in it. Let r̄2 =

0.36, 0.4, 0.46, respectively. It can be seen that, as the value of G2 decreases, the extinction time of
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population y is advanced. It can also be seen that the death rate accelerates population extinction,
which is consistent with the phenomenon in nature.

(a) γ1 = −0.2, G1 = −0.210 (b) γ1 = −0.3, G1 = −0.343 (c) γ1 = −0.4, G1 = −0.497

Figure 10. Effect of G1 on population x.

(a) r̄2 = 0.36, G2 = −0.377 (b) r̄2 = 0.4, G2 = −0.417 (c) r̄2 = 0.46, G2 = −0.477

Figure 11. Effect of G2 on population y.

5. Conclusions

In this paper, we first introduce a stochastic two-species Schoener’s competitive model. Moreover,
since populations in nature are often subject by sudden random perturbations, we introduced Lévy
jumps to model this phenomenon. Previous research endeavors have traditionally employed white
noise or telegraph noise to simulate environmental perturbations. Nonetheless, E.Allen [27] has
identified certain conceptual and practical limitations of linear functions of Gaussian white noise.
In addition, the role of the Ornstein-Uhlenbeck process in population dynamics models has received
relatively little attention. It has been theoretically demonstrated that the mean-reverting Ornstein-
Uhlenbeck process offers more stable environmental variability than linear and nonlinear perturbations.
Therefore, we incorporate the Ornstein-Uhlenbeck process into the deterministic system, thereby
obtaining a stochastic two-species Schoener’s competitive model with Ornstein-Uhlenbeck process.
It should be noted that the relevant dynamical properties of system (1.5) with the introduction of the
Ornstein-Uhlenbeck process are changed. For example, the existence and uniqueness of the global
positive solution studied in the traditional model becomes the existence and uniqueness of the global
solution after adding the Ornstein-Uhlenbeck process. The Lyapunov functions used in the proofs of
other properties (moment boundedness, extinction) are also different.
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To the best of our ability, we prove the existence and uniqueness of the global solution, moment
estimation, stochastic ultimate boundedness, and give sufficient conditions for population extinction.
At present, few papers add Lévy jump or the Ornstein-Uhlenbeck process to Schoener’s competitive
model, and research on Schoener’s competitive model mainly focus on periodic solution, stationarity,
and persistence. Therefore, the study of other properties of system (1.5) has certain value.

In fact, our model still has areas for improvement. First, since the model we studied is two-
dimensional, this leads to limitations in simulating the dynamical behaviour of populations in nature.
Therefore, in the future, we will expand the model from two-dimensional to n-dimensional. In addition,
it is well known that, in many natural ecosystems, there is a time lag in the interaction between
populations, but we have not considered the effect of time lag on the model. In the future, we will
utilize the relevant theories and methods of time-lagged generalized differential equations and impulse
differential equations to build the corresponding dynamical models.
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