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1. Introduction

The fractional Fourier transform (FrFT), a broader version of the traditional Fourier transform (FT),
was introduced seven decades ago by Namias [13]. However, it has only recently gained traction in
fields such as signal processing, optics, and quantum mechanics [3,11,26]. Notably, it can be employed
with real-world data such as one-dimensional signals (e.g., electrocardiogram or ECG data) and two-
dimensional signals like geographical information (e.g., satellite images) [10]. Many scientists defined
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FrFT differently and enriched its theory properties [14]. Specially, in [7], FrFT of real order has been
introduced using the Mittag-Leffler function. This transform plays the same role for the fractional
derivatives as FT plays for the ordinary derivatives and is reduced into the FT, particularly for α “ 1
in the usual sense. FrFT is parameterized by α and effectively rotates a signal by an angle α within
the time-frequency plane. Offering versatility, the FrFT facilitates the transformation of functions into
various intermediate domains lying between time and frequency.

Alongside the FT, cosine (CT) and sine (ST) transforms play crucial roles in signal processing by
expanding functions over cosine and sine basis functions, despite some differences compared to the
FT. The idea of fractionalization of the CT and ST was proposed in [9]. There, authors selected the
real and imaginary components of the FrFT kernel to function as the kernels for the fractional Fourier
cosine transform (FrFCT) and the fractional Fourier sine transform (FrFST), respectively. However,
they acknowledged that their fractional transforms lack index additivity and do not qualify as genuine
fractional versions of CT and ST. In [2], FrFCT and FrFST that are additive on the index and preserve
the similar relationships with the fractional FT were introduced. Their fractional FT corresponds to
a rotation of the Wigner distribution and the ambiguity function. Subsequently, in [16] the discrete
version of the FrFCT and FrFST based on the eigen decomposition of discrete CT and discrete ST
kernels are defined. Since then, FrFST and FrFSTs have significantly evolved, expanded to spaces
of generalized functions [18], and became powerful tools in mathematical analysis, physics, signal
processing, etc. [1, 20, 21].

Distribution theory is a power tool in applied mathematics and the extension of integral transforms
to generalized function spaces is an important subject, especially recently, when new transforms have
been discovered and their connection with the old ones has been established. When studying the
theory of distributions, one quickly learns that distributions do not have point values, which naturally
imposes the idea of incorporating the asymptotic analysis to the field of generalized functions. The
concept of quasi-asymptotics, as introduced in [25], serves to extend classical asymptotic methods
within the framework of Schwartz distributions, finding applications across various fields, particularly
in mathematical physics. There are many results where the asymptotic behavior of distributions is
analyzed true to the behavior of various integral transforms in a form of the Abel and Tauberian type
theorems, see [8, 19, 22, 23] and references therein.

The primary objective of this paper is to employ the FrFCT (FrFST) for a thorough investigation
into the quasi-asymptotic properties of even (odd) distributions. Our study is structured around several
theorems of the Abelian and Tauberian type, utilizing the asymptotic behavior of the FrFCT (FrFST)
to investigate the quasi-asymptotic behavior of even (odd) distributions. The first section introduces
the spaces of even (odd) tempered distributions. Subsequently, the FrFCT and FrFST are introduced
through the FrFT and the Fourier cosine (sine) transform, establishing connections between all three
transforms. The main result, presented in Section 2 with Theorem 2.3, asserts that if an even (odd)
tempered distribution exhibits quasi-asymptotics at zero, then its FrFCT (FrFST) quasi-asymptotically
oscillates at infinity. With an additional boundedness assumption, we demonstrate the converse. The
second result, presented in Theorem 2.10, establishes the boundedness of the FrFCT (FrFST) of a
distribution, assuming the distribution is quasi-asymptotically bounded.
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1.1. Notation and spaces

We employ the standard notation SpRq to denote the space of rapidly decreasing smooth functions
f satisfying the condition:

ρp f qk “ sup
tPR,pďk

p1 ` |t|2
q

k{2
| f ppq

ptq| ă 8, k P N0 “ N Y 0. (1.1)

The dual space of SpRq is the space of tempered distributions, denoted by S1pRq. The subsets SepRq

and SopRq consist of all even and odd functions, respectively, within SpRq.
An example of an element in SepRq is given by e´x2

, as e´x2
P SpRq and is even. Conversely, xex2

belongs to SopRq since, according to [12], if φ is an even differentiable function, then Cφ1 is odd for
any constant C.

An even (odd) tempered distribution is defined as a continuous linear functional on the vector space
SepRq (SopRq). The spaces of such distributions are denoted as S1

epRq and S1
opRq, respectively. It

is noteworthy that S1
epRq and S1

opRq constitute broader classes than S1pRq, and specifically, S1
epRq Ą

S1pRq and S1
opRq Ą S1pRq. Moreover,

S1
epRq X S1

opRq “ S1
pRq.

The FT of a function f P SpRq is defined:

f̂ pξq “ F p f qpξq “
1

?
2π

ż

R
f pxqe´ixξdx. (1.2)

The map f Ñ f̂ is a continuous bijection from SpRq to SpRq, and can be extended by duality to S1pRq.
For an even function f , the Fourier cosine transform (FCT) is given by

f̂cpξq “ F c
p f qpξq “

c

2
π

ż 8

0
f ptq cosptξqdt, ξ P R,

and for an odd function f , the Fourier sine transform (FST) is given by

f̂spξq “ F s
p f qpξq “

c

2
π

ż 8

0
f ptq sinptξqdt, ξ P R.

If ϕ P SepRqpSopRqq, then F cpϕq P SepRqpF spϕq P SopRqq. The mapping F cpF sq is a continuous
isomorphism from SepRqpSopRqq to SepRqpSopRqq [5].

The development of the FrFCT and FrFST of distributions follows the conventional approach
employed in FTs. Consequently, it is necessary to highlight certain fundamental properties of the
FrFCT and FrFST for functions (refer to [12, Chapter 3]).

The FrFCT (FrFST) of an even (odd) tempered distribution f can be defined by

xF c f , φy “ x f ,F cφy, pxF s f , φy “ x f ,F sφyq

for arbitrary φ P SepRqpSopRqq. Thus, F cpF sq is a continuous mapping from S1
epRqpS1

opRqq to
S1

epRqpS1
opRqq.
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1.2. Fractional Fourier transform

Let f P L1pRq. Recall from [13] that the FrFT of order α is defined by

Fαp f pxqqpξq “

$

’

&

’

%

ş

R f pxqKαpx, ξqdx, ξ P R, α ‰ kπ, k P N,
f pξq, α “ 2kπ,
f p´ξq, α “ p2k ` 1qπ,

(1.3)

where
Kαpx, ξq “ Cαeip x2`ξ2

2 a´xξbq (1.4)

is the kernel of FrFT, a “ cotα, b “ cscα, and Cα “

b

1´ia
2π . The kernel Kαpx, ξq is a continuously

differentiable function in both variables, x and ξ. The function Fα f exhibits 2π periodicity with respect
to α, and, thus, we will consistently consider α within the interval r0, 2πq. Notice that when n P Z,
Fnπ{2 f “ F n f , where F n is the n-th power of the FT (1.2), i.e., Fα is the sth power of the FT for
s “ 2α{π, for α within the interval r0, 2πq, [13]. So, the FT is of order 1, while the identity operator is
of order 0. Negative orders correspond to inverse transforms. For instance, applying the FrFT of order
1/2 twice yields the FT.

In the research conducted by Pathak [15, Thrm. 3.1], it has been established that the FrFT constitutes
a continuous mapping from the Schwartz space SpRq to itself. Furthermore, this mapping can be
extended to the space of tempered distributions. Specifically, according to the definition provided
in [15, Def. 3.1], the generalized FrFT, denoted as Fα f for f P S1pRq, is expressed as follows:

xFα f , φy “ x f ,Fαφy, φ P SpRq. (1.5)

For f P SpRq, the inverse FrFT F´α is given with [3]

f pxq “

ż

R
Fα f pξqK´αpx, ξqdξ, x P R. (1.6)

From the linearity of the FrFT and the reversion property Fαp f p´xqqpξq “ Fαp f pxqqp´ξq, we have

Fαp f pxq ˘ f p´xqqpξq “ Fαp f pxqqpξq ˘ Fαp f pxqqp´ξq,

and we conclude that the FrFT of an even function is even, while the FrFT of an odd function is odd.

1.3. The fractional Fourier cosine (sine) transform

In [6], the FrFCT is denoted as F c
α p f pxqqpξq “

ş8

´8
f pxqKc

αpx, ξqdx, and the FrFST is represented
as F s

α p f pxqqpξq “
ş8

´8
f pxqKc

αpx, ξqdx. It is important to observe that if the function f is odd, then
F c
α p f pxqqpξq “ 0. Similarly, if f is an even function, then the corresponding FrFCT simplifies to the

one-sided FrFCT, given by:

F c
α p f pxqqpξq “

ż 8

0
f pxqKc

αpx, ξqdx.

A similar consideration can also be repeated for the FrFST.
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Here, we follow the notion from [3,18], and the definitions from there. This means that if we restrict
ourself to one-sided functions ( f pxq “ 0 for x ă 0), we can define the FrFCT of a function f P L1pRq

as

F c
α p f pxqqpξq “ Fαp f pxq ` f p´xqqpξq “

ż 8

0
f pxqKc

αpx, ξqdx, (1.7)

where

Kc
αpx, ξq “

$

’

’

&

’

’

%

Cαei x2`ξ2
2 a cos pxξbq, α ‰ kπ, k P Z “ N0 Y p´Nq,

b

2
π

cos pxξq, α “ π{2,

δpx ´ ξq, α “ kπ,

(1.8)

and a “ cotα, b “ cscα, and Cα “

b

2p1´iaq

π
.

The inverse FrFCT is given by

f pxq “

ż 8

0
F c
α f pξqKc

´αpx, ξqdξ, x P R. (1.9)

Similarly, the FrFST of a function f P L1pRq is defined as

F s
α p f pxqqpξq “ Fαp f pxq ´ f p´xqqpξq “

ż 8

0
f pxqK s

αpx, ξqdx, (1.10)

where

K s
αpx, ξq “

$

’

’

&

’

’

%

Cαeipα´π{2q
x2`ξ2

2 a sin pxξbq, α ‰ kπ, k P Z “ N0 Y p´Nq,
b

2
π

sin pxξq, α “ π{2,

δpx ´ ξq, α “ kπ,

(1.11)

with the same constants as above. The corresponding inverse FrFST is given by

f pxq “

ż 8

0
F s
α f pξqK s

´αpx, ξqdξ, x P R. (1.12)

The kernel Kc
αpx, ξqpK s

αpx, ξqq is a continuously differentiable function in both variables, x and ξ. For
α “

p2k´1qπ

2 , the FrFCT and FrFST are reduced to the FCT and FST, respectively.
To establish the connection between the FrFT of a causal, one-sided function f pxq, where f pxq “ 0

for x ă 0, and the FrFCT and FrFST of this function in an alternative manner, we can formulate the
following expression.

2Fα f p˘ξq “ F c
α f pξq ˘ eiαF s

α f pξq.

The expression F c
α f pξq can be associated with the even component of Fα f pξq, while F s

α f pξq is
linked to its odd component. In a broader context, it can be concluded that for determining the FrFCT
of a causal, one-sided function f pxq, one can equivalently determine the FrFT of the symmetrically
extended two-sided function f pxq ` f p´xq. Similarly, to ascertain the FrFST of such a function, one
can alternatively determine the FrFT of the anti-symmetrically extended two-sided function e jαp f pxq´

f p´xqq. Both cases involve restricting the analysis to ξ ě 0. Moreover, F c
α f pξq and Fα f pξq are

periodic with period π [2].
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In [6], authors studied the FrFCT (resp., FrFST) for the space SepRq (resp., SopRq). They
demonstrated a Parseval-type relationship, an inversion formula, and the continuity properties of the
FrFCT and FrFST. They, and also Prasad and Sihgh in [18, Thrm 3.1 and Thrm 3.2], have shown that
the FrFCT is the continuous linear mapping of SepRq onto itself, and that the FrFST is the continuous
linear mapping of SopRq onto itself. This allows them to define the generalized FrFCT (FrFST) of
distribution f from S1

epRq (S1
opRq) by

xF c
α f , φy “ x f ,F c

αφy, pxF s
α f , φy “ x f ,F s

αφyq (1.13)

for all φ P SepRqpSopRqq). Moreover, the FrFCT (FrFST) of a distribution f P S1
epRqpS1

opRqq is a
continuous linear map of S1

epRqpS1
opRqq onto itself.

We need the relation between the FrFCT and the FCT:

F c
α f pξq “

ż 8

0
f pxqKc

αpx, ξqdx “ Cαeiξ2a{2
ż 8

0
eix2a{2 cos pxξbq f pxqdx (1.14)

“
?

1 ´ iaeiξ2a{2F c
peix2a{2 f pxqqpξbq.

Similarly, it holds for the FrFST and the FST.

2. Asymptotic behavior of distributions

2.1. Quasi-asymptotic behavior for F c
α f (F s

α f ), f P S1
e (S1

oq

We will analyze the properties of a distribution by comparing it to regularly varying functions,
specifically focusing on the quasi-asymptotic behavior outlined in [17,22,23]. A real-valued function,
measurable, defined, and positive within an interval p0,Ds (or rD,8qq, where D ą 0, is termed “a
slowly varying function” at the origin (or at infinity) if it satisfies:

lim
εÑ0`

Lpdεq
Lpεq

“ 1 p resp. lim
hÑ8

Lpdhq

Lphq
“ 1q for each d ą 0. (2.1)

If L is a slowly varying function at zero, then L̃p¨q “ Lp1{¨q is also a slowly varying function in a
neighborhood of 8, and vice versa.

Considering L as a function exhibiting slow variation at the origin, it is relevant to recall the
definition from [4] that a distribution f P S1pRq manifests quasi-asymptotic behavior, or quasi-
asymptotics, of degree m P R at the point x0 P R concerning L. This characterization is established if
there exists u P S1pRq such that, for every φ P SpRq, the following condition is satisfied:

lim
εÑ0`

x
f px0 ` εxq

εmLpεq
, φpxqy “ xupxq, φpxqy. (2.2)

The quasi-asymptotic behavior is conveniently denoted as:

f px0 ` εxq „ εmLpεqupxq as εÑ 0` in S1
pRq,

and should be consistently interpreted within the framework of the weak topology S1pRq, i.e., in the
sense of (2.2).
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The form of u is not arbitrary; it must exhibit homogeneity with a degree of homogeneity m, i.e.,
updxq “ dmupxq, for all d ą 0 [17, 25]. Additionally, if (2.2) holds for each φ P DpRq, it must also
hold for each φ P SpRq [22, Thrm. 6.1]. Consequently, the quasi-asymptotic behavior at finite points
is considered a local property. The quasi-asymptotics of distributions at infinity concerning a slowly
varying function L at infinity is similarly defined. The notation f phxq „ hmLphqupxq as h Ñ 8 in
S1pRq is employed in this case.

Furthermore, we may explore quasi-asymptotics within alternative distribution spaces. The
relationship f px0 ` εxq „ εmLpεqupxq as εÑ 0` in B1pRq implies that (2.2) holds for each φ P BpRq.
Similarly, the quasi-asymptotics at infinity in B1pRq satisfy this condition, where BpRq denotes any
space of test functions on R, and B1pRq represents their dual.

The next lemma, as presented in [4, Lemma 3.1], establishes a connection between quasi-asymptotic
behavior at the point and the corresponding oscillation at that same point.

Lemma 2.1. If
x f pεxq{pεmLpεqq, φpxqy, converges as εÑ 0`, @φ P S, (2.3)

then,
xeiCpεxq2{2 f pεxq{pεmLpεqq, φpxqy, converges as εÑ 0`, @φ P S, (2.4)

where C P R and ε P p0, 1q. On the contrary, if condition (2.4) is satisfied and there exists ε0 P p0, εq
such that the family

t f pεxq{pεmLpεqq : ε P p0, ε0qu is bounded in S1
pRq, (2.5)

then p2.4q ñ p2.3q.

Moreover, (2.3) is equivalent to

xe´i h2ξ2
2C ˚ pf phξq{ph´m´2L̃phqq, γpξqy, converges as h Ñ 8, @γ P S, (2.6)

where h ą h0 ą 0.

Theorem 2.2. Let f P S1
epRqpS1

opRqq. The statements below are equivalent:

f px{εq „ εmLpεqupxq as εÑ 8 in S1
epR

`
qpS1

opRqq, (2.7)

and

f̂cphξq „ h´m´1L̃phqûcpξq as h Ñ 8 in S1
epR

`
q,

p f̂sphξq „ h´m´1L̃phqûspξq as h Ñ 8 in S1
opR`

qq,
(2.8)

where L̃phq is slowly varying at 8, (L̃p¨q “ Lp 1
¨
q).

Proof. Let φ P SepRq. The relation obtained by using the Parseval identity

x
f̂cphξq

h´m´1L̃phq
, φpξqy “ x

f̂cpξq

h´mL̃phq
, φp
ξ

h
qy “ x

f pxq

h´mL̃phq
, φ̂cpxhqy “ x

f p x
hq

h´mL̃phq
, φ̂cpxqy,

immediately implies the assertion.
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The following theorem asserts that if f P S1
epRqp f P S1

opRqq has quasi-asymptotics at zero,
then F c

α f pF s
α f q quasi-asymptotically oscillates as it approaches infinity. The reverse is true, with the

additional assumption (2.5).

Theorem 2.3. Let f P S1
epRqpS1

opRqq, L be of the form (2.1) at 0`, u P S1
epRqpS1

opRqq be a homogeneous
function, and m P R. If

f pεxq „ εmLpεqupxq as εÑ 0` in S1
epRqpS1

opRqq, (2.9)

then

e´iaphξq2{2F c
α f phξq „

?
1 ´ ia
bm`1 h´m´1L̃phqpucpξq as h Ñ 8,

pe´iaphξq2{2F s
α f phξq „

?
1 ´ ia
bm`1 h´m´1L̃phqpuspξq as h Ñ 8q,

(2.10)

in S1
epRqpS1

opRqq. Conversely, if (2.5) holds, then (2.10) ñ (2.9).

Proof. The notation with 1{ε will be maintained in the proof instead of using h. We will present the
proof for the FrFCT, since the proof for the FrFST is analogous.

Let φ P SepRq. Using (1.13) and (1.14), we obtain:

xe´iap
ξ
ε q2{2F c

α f p
ξ

ε
q, φpξqy “ εxe´iaξ2{2

pF c
α f qpξq, φpεξqy

“
εCα

?
2π

b
xF c

peiax2{2 f pxqqpξq, φp
εξ

b
qy “

?
1 ´ iaxeiax2{2 f pxq, pφcp

xb
ε

qy

“

?
1 ´ iaε

b
xeiap εtb q2{2 f p

εt
b

q, pφcptqy.

The essential relation is the next one (see [4]):

1
εm`1Lpεq

xe´iap
ξ
ε q2{2F c

α f p
ξ

ε
q, φpξqy “

Lp εbq

Lpεq

?
1 ´ ia

bm`1p εbqmLp εbq
xeiap εtb q2{2 f p

εt
b

q, pφcptqy. (2.11)

From (2.1), we obtain:

lim
εÑ0`

x
e´iap

ξ
ε q2{2F c

α f p
ξ

ε
q

εm`1Lpεq
, φpξqy “

“

?
1 ´ ia
bm`1 lim

εÑ0`

1
p εbqmLp εbq

xeiap εtb q2{2 f p
εt
b

q, pφcptqy

“

?
1 ´ ia
bm`1

ˆ

lim
εÑ0`

1
p εbqmLp εbq

x f p
εt
b

q, pφcptqy ` lim
εÑ0`

1
p εbqmLp εbq

x f p
εt
b

q, peiap εtb q2{2
´ 1qpφcptqy

˙

.

The second limit is zero because

lim
εÑ0`

peiap εtb q2{2
´ 1qpφcptq “ 0,
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and t
f p εtb q

p εb qmLp εb q
: ε P p0, ε0qu is bounded in S1

epRq.
Now, by (2.9) and the Banach Steinhaus theorem, we have

lim
εÑ0`

x
e´iap

ξ
ε q2{2F c

α f p
ξ

ε
q

εm`1Lpεq
, φpξqy “

?
1 ´ ia
bm`1 lim

εÑ0`
x

f pεtq
εmLpεq

, pφcptqy

“

?
1 ´ ia
bm`1 xupxq, pφcpxqy “

?
1 ´ ia
bm`1 xpucpξq, φpξqy.

This proves p2.9q ñ p2.10q.

For the opposite implication, we assume that (2.10) holds and we use (2.11).

lim
εÑ0`

x
1

εm`1Lpεq
f pεxq, φpxqy

“ lim
εÑ0`

x
1

εm`1Lpεq
e´iapxεq2{2 f pεxq, φpxqy ´ lim

εÑ0`
x

1
εm`1Lpεq

pe´iapxεq2{2
´ 1q f pεxq, φpxqy.

Now, by the boundedness condition (2.5), we have that

x
1

εm`1Lpεq
pe´iapxεq2{2

´ 1q f pεxq, φpxqy Ñ 0, as εÑ 0`, φ P Se.

For the last part, we note that for any p ą 0:

F c
pe

ipx2
2 qpξq “

ei π4
?

p
e´i ξ

2
2p , ξ P R`.

Applying the FT to Eq (2.3), we find that there exists a suitable constant C̃ P C such that:

xF c
peiCpεxq2

qpξq ˚ F c
p f pεxqqpξq{pεmLpεqq, pφ̂cqpξqy

“ C̃
1

εm`2Lpεq
xe´iξ2{p2ε2Cq

˚ F c
p f qpξ{εq, pφ̂cqpξqy.

If we put h “ 1{ε and γ “ φ̂c, we obtain (2.6). The implication p2.6q ñ p2.4q follows in the same
way. The result is now obvious by (2.11).

Remark 2.4. Now, we take tan β “ ε2 tanα, and ε ą 0, with Cα,β defined as:

Cα,βpξq “

c

cos β
cosα

ei α2

ei β2
exp

ˆ

i
ξ2

2
cotαp1 ´

cos2 β

cos2 α
q

˙

.

We have the following scalar property for the FrFCT (FrFST):

F c
α p f pεxqqpξq “ Cα,βpξqF c

β p f pxqqp
sξ
ε

q, (2.12)

and
F s
α p f pεxqqpξq “ Cα,βpξqe´iβF s

β p f pxqqp
sξ
ε

q, (2.13)

where s “
sin β
sinα , [2], then, we can obtain the same result with very few modifications.
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Example 2.5. It is known that every bounded function in R defines a tempered distribution, so the
function f pxq “ Hpxqp2 ` sin 1

xq P S1pRq, where Hpxq is Heviside’s function. It is known that it does
not have regular asymptotics at 0, but f pεxq „ 2 as ε Ñ 0` (m “ 0, Lpϵq “ 1 and upxq “ 2). Since

puspξq “ 2
ξ

b

2
π
, by Theorem 2.3 we have

e´iaphξq2{2F s
α f phξq „

1
hξ

2
a

2p1 ´ iaq
?
πb

as h Ñ 8

with respect to L̃pξq ” 1.

Example 2.6. For f pxq “ sin x P S1
0pRq, it is known that f pεxq „ ε´1δpxq as ε Ñ 0`, for m “

1, Lpεq ” 1, upxq “ δpxq, then by puspξq “ pδspξq “ 0 and Theorem 2.3, we have

e´iaphξq2{2F s
α f phξq „ 0 as h Ñ 8

with respect to L̃pξq ” 1.

Example 2.7. Let f pxq “ 2πδpx ´ 1q, so it follows that f pεxq „ ε2π
δ

px ´ 1q as ε Ñ 0`, then by
puspξq “ F sp2πδpξ ´ 1qq “

?
2πeiξ and Theorem 2.3, we have

e´iaphξq2{2F s
α f phξq „

?
2π

a

p1 ´ iaq

b2 h´2eiξ as h Ñ 8

with respect to L̃pξq ” 1.

2.2. Quasi-asymptotic boundednes of distributions

We require an additional concept from quasi-asymptotic analysis, specifically the idea of quasi-
asymptotic boundedness as in [24]. Recall from [24] that the distribution f P S1pRq is quasi-
asymptotically bounded at x0 P R of degree m P R, in relation to the slowly varying function L at
the origin if

f px0 ` εxq “ OpεmLpεqq as εÑ 0` in S1
pRq.

The above relation should be interpreted in the sense of the weak topology of S1pRq, namely,

x f px0 ` εxq, φpxqy “ OpεmLpεqq as εÑ 0`, (2.14)

for every φ P SpRq. This means there exists a constant C ą 0 such that

|x f px0 ` εxq, φpxqy| ď C|εmLpεq|,

for x sufficiently close to x0.
The notion of quasi-asymptotic boundedness, with respect to a degree m P R in correlation

with the slowly varying function at infinity L, is explicated in an analogous manner. Concurrently,
our examination extends to the contemplation of quasi-asymptotic boundedness within a designated
mathematical space: S1

epRq, φ P SepRq (S1
opRq, φ P SopRq).

Please note that L exhibits slow variation at the origin if, and only if, there exist measurable
functions u and w defined on an interval p0, As, where u is bounded and possesses a finite limit at
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0. Additionally, ω is continuous on r0, As with ωp0q “ 0, such that the following representation holds
for Lpxq within the interval p0, As:

Lpxq “ exp
ˆ

upxq `

ż A

x

ωpξq

ξ
dξ

˙

, x P p0, As.

In the context of our exploration for suitable modifications of L concerning quasi-asymptotics, it is
reasonable to assume that L is defined across the entire interval p0,8q and maintains nonnegativity or
even positivity throughout. The analysis entails extending the functions u and ω to p0,8q through a
chosen method.

For example, when addressing functions with slow variation at the origin, the condition ξ´1ωpξq P

L1pr1,8qq implies the existence of positive constants C̃ and C such that the following inequalities hold
for x ą 1:

C̃ ă Lpxq ă C.

Remark 2.8. It is readily apparent that when f belongs to the space S1
cpRq ( f belonging to S1

opRq) and
exhibits quasi-asymptotic boundedness at zero concerning εmLpεq, then eiCpxq2

f pxq also demonstrates
quasi-asymptotic boundedness at zero, considering the same slowly varying function. Here, x is a real
number, and the condition |eiCpxq2

| “ 1 holds.

Remark 2.9. It is clear that for φ P SepRq, it follows that xpφ P SepRq, p P N, and

pφ
ppq
c ptq “

"

p´1qp{2F cpxpφpxqqptq, p is even;
p´1qpp´1q{2F cpxpφpxqqptq, p is odd.

Similar remark holds for pφsptq in SopRq.

We have the following result.

Theorem 2.10. Let f P S1
cpRq ( f P S1

opRq) be a quasi-asymptotically bounded at zero with respect to
a slowly varying function at infinity L, that is,

|x f pεxq, φpxqy| ď CφεmLpεq, εÑ 0,

where φ P ScpRq (φ P SopRq), and Cφ ą 0 depends of φ, then the FrFCT (FrFST) for f is a bounded
function at 0, i.e., there exists a constant C ą 0 such that

ˇ

ˇ

ˇ
xe´iap

ξ
ε q2{2F c

α f p
ξ

ε
q, φpξqy

ˇ

ˇ

ˇ

εm`1Lpεq
ď C

¨

˝

ˇ

ˇ

ˇ
xe´iap

ξ
ε q2{2F s

α f p
ξ

ε
q, φpξqy

ˇ

ˇ

ˇ

εm`1Lpεq
ď C

˛

‚.

Proof. Let f be a quasi-asymptotically bounded at zero with respect to L. From (2.11) and Remarks
2.8 and 2.9, we have that there exist k P N0 and M ą 0 such that

1
εm`1Lpεq

ˇ

ˇ

ˇ
xe´iap

ξ
ε q2{2F c

α f p
ξ

ε
q, φpξqy

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

?
1 ´ ia

b
Lpεq

εm xe´iap εtb q2{2 f p
εt
b

q, pφcptqy

ˇ

ˇ

ˇ

ď M ¨ Cα}pφcptq}k ăď M ¨ Cα sup
xPR,pďk

p1 ` |t|2
q

k{2
|pφ

ppq
c ptq| ă 8.
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3. Conclusions

In conclusion, in this research we extended recent inquiries into the analysis of integral transforms
within specific distributional spaces. Our approach integrates the concept of quasi-asymptotic behavior,
as introduced by Zavialov in [27], and we quantify the scaling asymptotic properties of distributions
by asymptotic comparisons with Karamata regularly varying functions. In this paper, we characterized
the quasi-asymptotic behavior of even (resp., odd) distributions within the context of a Tauberian
theorem applied to the FrFCT (resp., FrFST), and by Thrm. 2.3, we established that distributions
exhibiting quasi-asymptotic behavior at zero manifest quasi-asymptotic oscillations at infinity through
their corresponding FrFCT or FrFST. Additionally, our second result presented by Thrm. 2.10 sheds
light on the boundedness of these transforms concerning quasi-asymptotically bounded distributions.
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