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Abstract: In this study, we investigate the traveling wave solutions of the Gilson-Pickering equation
using two different approaches: F-expansion and (1/G′)-expansion. To carry out the analysis, we
perform a numerical study using the implicit finite difference approach on a uniform mesh and the
parabolic-Monge-Ampère (PMA) method on a moving mesh. We examine the truncation error,
stability, and convergence of the difference scheme implemented on a fixed mesh. MATLAB
software generates accurate representations of the solution based on specified parameter values by
creating 3D and 2D graphs. Numerical simulations with the finite difference scheme demonstrate
excellent agreement with the analytical solutions, further confirming the validity of our approaches.
Convergence analysis confirms the stability and high accuracy of the implemented scheme. Notably,
the PMA method performs better in capturing intricate wave interactions and dynamics that are not
readily achievable with a fixed mesh.
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1. Introduction

Nonlinear partial differential equations (PDEs) are crucial for studying nonlinear physical
phenomena in various models across different branches. Analyzing qualitative parameters is
necessary to comprehend the underlying facts of a model. Nonlinear evolution equations have
significant implications in applied sciences, such as optics, crystal lattice theory, fluid dynamics, and
plasma physics, making them an excellent source of motivation in recent decades. There are several
analytical methods for solving nonlinear partial differential equations (NLPDEs), including the Jacobi
elliptic expansion [1–3], the tanh-function method [4–6], the improved Q-expansion technique [7], the
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generalized direct algebraic method [8], the extended generalized (G′/G)-expansion method [9, 10],
and others [11–21]. In 1995, Gilson and Pickering presented a third-order nonlinear differential
equation explaining wave propagation in plasma physics [22]. This equation is widely recognized:

ut − αuxxt + 2γux − uuxxx − µ

(
u2

2

)
x
− βuxuxx = 0. (1.1)

There are four constants, α, µ, γ, β, in the Gilson-Pickering equation, all of which are nonzero. The
equation has three different types: Rosenau-Hyman equation when α = 0, µ = 1, γ = 0, β = 3;
Fuchssteiner-Fokas-Camassa-Holm equation when α = 1, µ = −3, β = 2; and Fornberg-Whitham
equation when α = 1, µ = −1, β = 3, γ = 0.5. Recently, there have been several numerical schemes
developed for solving NLPDEs. These include finite element, finite differences [23–27], the adaptive
moving mesh technique [28–33], and the parabolic Monge-Ampère (PMA) method [34–37]. Lately,
various computational methods have been employed to explore the Gilson-Pickering equation,
including Chen et al. [38] who performed a qualitative analysis of this equation. Clarkson et al.
investigated the symmetry reductions of Eq (1.1) using both the classical Lie method and the
non-classical method [39], the (1/G′) method [40], and the (G′/G2) method [41]. Additionally,
Baskonus provides several complex soliton solutions using the Bernoulli sub-equation function
method [42]. There are many researchers who investigated the Gilson-Pickering equation by different
methods [43–47]. The PMA approach mentioned in this context has yet to be used for Eq (1.1). This
motivated us significantly to apply it. It is widely acknowledged that the wave solutions in this
situation have areas with rapid spatial variations, such as steep front structures. However, it is
important to note that this method’s effectiveness in minimizing errors is specifically limited to
regions with rapid spatial variations, such as steep front structures. However, this method is effective
in minimizing errors in these specific regions.

The following organization is presented in this article: Section 2 provides exact solutions to the
Gilson-Pickering equation using the F-expansion method and the (1/G′)-expansion method. Section 3
introduces a numerical solution for the same equation on the uniform mesh utilizing implicit finite
difference with a study of the stability, error analysis, and convergence of the numerical scheme.
Section 4 on the moving mesh method applies the PMA technique to the Gilson-Pickering equation,
while the results and discussion are in Section 5. Ultimately, the conclusions are in Section 6.

2. Traveling wave solution

We consider a nonlinear evolution equation with some physical fields u(x, t) in two variables x and
t as follows:

Ω1(u, ut, ux, uxx, uxxt, uxxx, · · · ) = 0. (2.1)

Step 1. We look for the traveling-wave solutions of Eq (2.1) that are formed as follows:

u(x, t) = U(ξ), ξ = kx − ct, (2.2)

where k, c are constant, and c is the wave speed.
Step 2. Using Eqs (2.1) and (2.2) we directly reduce to

Ω2(U(ξ),U(ξ)ξ,U(ξ)ξξ,U(ξ)ξξξ, · · · ) = 0. (2.3)
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To convert Eq (1.1) into an ordinary differential equation (ODE), substitute the wave transformation
Eq (2.2) into it.

−cU′ + ck2αU′′′ + 2kγU′ − k3UU′′′ − kµUU′ − k3βU′U′′ = 0, (2.4)

where ′ denotes the derivative with respect to ξ. We can obtain the following result by integrating once
for ξ and putting the constant of integration to zero:

−cU + ck2αU′′ + 2kγU − k3UU′′ + k3 (U′)
2

2

− kµ
(
U2

2

)
− k3β

(U′)
2

2

= 0. (2.5)

2.1. The F-expansion method

The F-expansion procedure [7] introduces the traveling wave solution of Eq (2.3) of the form

UN(ξ) = a0 +

N∑
j=1

a jF(ξ) j +

N∑
j=1

b jF(ξ)− j, (2.6)

where a0, a j, and b j are constants to be determined. The function F(ξ) represents a solution of the
following differential equation:

F′(ξ) = A0 + A1F(ξ) + A2F(ξ)2, (2.7)

where A0, A1, and A2 are constant [7]. By balancing the second derivative of U with the nonlinear term
U2 in Eq (2.5) we required that N + 2 = 2N. Then, we get the value of N as N = 2, and Eq (2.6)
becomes

U(ξ) = a0 + a1F(ξ) +
b1

F(ξ)
+ a2F(ξ)2 +

b2

F(ξ)2 . (2.8)

To solve for the values of a0, a1, a2, b1, b2, k, and c, we can substitute Eq (2.8) into Eq (2.4) and use
Eq (2.7). To create a system of algebraic equations, we collect coefficients of F(ξ)l,
l = (−6,−5, · · · , 5, 6). Then, solving this system using Mathematica 13.2 software will give us the
desired values as follows:

Case I: a0 = −b1, k = ∓
√
ϵ√

−β − 1
, c = ±

2
√
−β − 1γ

√
ϵ

αϵ + β + 1
, ba1 = a2 = b2 = 0;

Case II: a0 =
−4αγ + αb1ϵ − βb1 + b1

−αϵ + β − 1
, c = ±

2(β − 1)γ
√
ϵ√

−β − 1(−αϵ + β − 1)
,

k = ±
√
ϵ√

−β − 1
, a1 = a2 = b2 = 0;

Case III: a0 = b2 = −
b1

2
, k = ±

√
ϵ

2
√
−β − 1

, c = ∓

√
−β − 1γ

√
ϵ

αϵ + β + 1
, a1 = a2 = 0;

Case IV: a0 =
8αγ + b1(−αϵ + β − 1)

2αϵ − 2β + 2
, c = ±

(β − 1)γ
√
ϵ√

−β − 1(−αϵ + β − 1)
,
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b2 = −
b1

2
, k = ±

√
ϵ

2
√
−β − 1

, a1 = a2 = 0;

when A0 = 0, A1 = 1, A2 = −1.
The solution to Eq (1.1) can be determined through Case I and is as follows:

u1(x, t) = b1


2

tanh
(
√
ϵ(±2(β+1)γt∓x(αϵ+β+1))

2
√
−β−1(αϵ+β+1)

)
+ 1
− 1

 . (2.9)

Based on Case II, the solution to Eq (1.1) can be determined:

u2(x, t) =
4αγ + b1(−αϵ + β − 1)

αϵ − β + 1
∓

2b1

tanh
(
√
ϵ(2(β−1)γt+x(αϵ−β+1))

2
√
−β−1(−αϵ+β−1)

)
∓ 1
.

(2.10)

Using Case III, we can determine the solution for Eq (1.1):

u3(x, t) =
1
2

b1

sinh

 √ϵ(±x(αϵ + β + 1) ∓ 2(β + 1)γt)√
−β − 1(αϵ + β + 1)


− cosh

 √ϵ(±x(αϵ + β + 1) ∓ 2(β + 1)γt)√
−β − 1(αϵ + β + 1)

 . (2.11)

According to Case IV, we can find the solution to Eq (1.1):

u4(x, t) =
4αγ

αϵ − β + 1
∓

1
2

b1

sinh

 √ϵ(2(β − 1)γt + x(αϵ − β + 1))√
−β − 1(−αϵ + β − 1)


± cosh

 √ϵ(2(β − 1)γt + x(αϵ − β + 1))√
−β − 1(−αϵ + β − 1)

 , (2.12)

when A0 = 0, A1 = −1, A2 = 1.
The solution to Eq (1.1) can be determined through Case I and is as follows:

u5(x, t) = b1

−
2

coth
(
√
ϵ(±2(β+1)γt∓x(αϵ+β+1))

2
√
−β−1(αϵ+β+1)

)
− 1
− 1

 . (2.13)

Based on Case II, the solution to Eq (1.1) can be determined:

u6(x, t) =
4αγ + b1(−αϵ + β − 1)

αϵ − β + 1
±

2b1

coth
(
√
ϵ(2(β−1)γt+x(αϵ−β+1))

2
√
−β−1(−αϵ+β−1)

)
± 1
. (2.14)
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Using Case III, we can determine the solution for Eq (1.1):

u7(x, t) = −
1
2

b1

sinh

 √ϵ(±x(αϵ + β + 1) ∓ 2(β + 1)γt)√
−β − 1(αϵ + β + 1)


+ cosh

 √ϵ(±x(αϵ + β + 1) ∓ 2(β + 1)γt)√
−β − 1(αϵ + β + 1)

 . (2.15)

According to Case IV, we can find the solution to Eq (1.1):

u8(x, t) =
4αγ

αϵ − β + 1
±

1
2

b1

sinh

 √ϵ(2(β − 1)γt + x(αϵ − β + 1))√
−β − 1(−αϵ + β − 1)


∓ cosh

 √ϵ(2(β − 1)γt + x(αϵ − β + 1))√
−β − 1(−αϵ + β − 1)

 . (2.16)

2.2. The (1/G′)-expansion method

This subsection presents the important steps of the (1/G′)-expansion method. Assume that Eq (2.3)
has the solution of the form

UN(ξ) =
N∑

j=0

a j

(
1

G′(ξ)

) j

. (2.17)

The scalars a0, a1, · · · , aN need to be determined, and N represents the balance terms. Additionally,
G = G(ξ) must satisfy the given second-order linear ordinary differential equation

G′′(ξ) + ϑG′(ξ) + ν = 0, (2.18)

where ϑ and ν are constants. The solution of Eq (2.18) is given by

G′(ξ) = −
ν

ϑ
+ be−ϑξ. (2.19)

We can use the following format to express the algebraic equation provided in Eq (2.19) as a
trigonometric function

G′(ξ) = −
ν

ϑ
+ (b cosh(ϑξ) − b sinh(ϑξ)) . (2.20)

After applying the balance principle to Eq (2.5) we required that N + 2 = 2N, and then we obtain
N = 2. Equation (2.17) takes the following form:

U(ξ) = a0 + a1

(
1

G′(ξ)

)
+ a2

(
1

G′(ξ)

)2

. (2.21)

By inserting Eq (2.21) and its necessary derivatives, along with Eq (2.18) into Eq (2.3), we can obtain
the polynomial of

(
1

G′(ξ)

)l
, l ≥ 0. By summing the coefficients of

(
1

G′(ξ)

)l
with the same power and

setting the resulting summation to zero, we can derive a system of algebraic equations for a0, a1 and
a2. Solving this system using Mathematica 13.2 software yet gives us the values of the variables, which
in turn provides the solutions to Eq (1.1).
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Family 1:

a0 = 0, 1 =
24αγk2νϑ(

αk2ϑ2 − 1
) (

k2ϑ2 − ϵ
) , a2 = −

24αγk2ν2(
αk2ϑ2 − 1

) (
ϵ − k2ϑ2) ,

β = −2, c = −
2γk

αk2ϑ2 − 1
.

We can obtain the solution for Eq (1.1) as follows:

u9(x, t) =
24αbγk2νϑ3 exp

(
−kϑ

(
2γt

αk2ϑ2−1 + x
))

(
αk2ϑ2 − 1

) (
k2ϑ2 − ϵ

) (
ν − bϑ exp

(
−kϑ

(
2γt

αk2ϑ2−1 + x
)))2 . (2.22)

In Figures 1–3, we show the exact solutions.
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Figure 1. The 3D graph presents the analytic (left) and 2D plot (right) solutions for u9(x, t).
The used parameters are assumed as follows: α = 0.1, γ = 0.2, k = 1, ν = 0.09, ϑ = −1.2, ϵ =
1.1, b = 0.01, t = 0→ 10 and x = −10→ 10.

Family 2:

a0 =
4αγk2ϑ2

αk2ϵϑ2 + 2k2ϑ2 + ϵ
, a1 =

24αγk2νϵϑ(
ϵ − k2ϑ2) (αk2ϵϑ2 + 2k2ϑ2 + ϵ

) ,
a2 =

24αγk2ν2ϵ(
ϵ − k2ϑ2) (αk2ϵϑ2 + 2k2ϑ2 + ϵ

) , β = −2, c =
2
(
2γk3ϑ2 + γkϵ

)
αk2ϵϑ2 + 2k2ϑ2 + ϵ

.

The solution for the traveling wave of Eq (1.1) can be expressed as

u10(x, t) =
24αγk2ν2ϵ

S
(
ϵ − k2ϑ2) (b exp

(
−ϑ

(
kx − 2t(2γk3ϑ2+γkϵ)

S

))
− ν
ϑ

)2

+
24αγk2νϵϑ

S
(
ϵ − k2ϑ2) (b exp

(
−ϑ

(
kx − 2t(2γk3ϑ2+γkϵ)

S

))
− ν
ϑ

) + 4αγk2ϑ2

S
,

(2.23)
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where
S = αk2ϵϑ2 + 2k2ϑ2 + ϵ.
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Figure 2. The analytical solution of u10(x, t) is displayed in the left 3D surface, while the
2D plot is in the right figure. The parameters are taken as follows: α = −0.1, γ = 1/7, k =
1.6, ν = −0.03, ϑ = 1.01, ϵ = −0.8, b = 0.02,t = 0→ 10 and x = −10→ 10.

Family 3:

a0 =
4αγ
αϵ + 1

, a1 =
4αγν
ϑ(αϵ + 1)

, a2 = 0, k = −
√
−ϵ

ϑ
, β = −3, c = −

2γ
√
−ϵ

ϑ(αϵ + 1)
, ϵ < 0.

The solution of Eq (1.1) can be determined as follows:

u11(x, t) =
4αbγϑ

(αϵ + 1)
(
bϑ − ν exp

(
−
√
−ϵ(−2γt+αxϵ+x)
αϵ+1

)) . (2.24)
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Figure 3. The left plot illustrates the 3D of u11, while the right graph shows the 2D plot. The
parameter values are α = −1, γ = 1/8, ν = −0.05, ϑ = 1, ϵ = −1.5, b = 0.02, t = 0→ 20 and
x = −10→ 10.
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Figures 4 and 5 show the wave behavior of the solutions u9(x, t) and u10(x, t), respectively, when
changing specific parameters and fixing others. The amplitude increases as α and γ increase. Figure 4
shows that when α is positive, the wave is in the positive direction, while in Figure 5, the wave is in the
negative direction. However, parameter γ has the opposite effect of parameter α on the wave direction
between the solutions u9(x, t) and u10(x, t).
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Figure 4. These figures show the wave behavior of changing a specific parameter value while
fixing the others. The left figure plots the exact solution u9(x, t) as γ increases and α = 10−6,
while the right plot shows the behavior when α increases and γ is fixed at −1.
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Figure 5. The wave behavior of changing a specific parameter while fixing the others is
depicted in these figures. The left plot explicitly demonstrates the behavior of the exact
solution u10(x, t) as γ increases and α = 10−4, while the right plot highlights the behavior
when α increases and γ remains at 1

7 .

3. Implicit finite difference method

To obtain the numerical solutions of Eq (1.1) in this section, over the domain a ≤ x ≤ b, 0 ≤ t ≤ t f ,
where t f is a certain time, these coordinates are covered by a rectangular grid of points

x = xm = a + (m − 1)∆x, m = 1, 2, · · · ,Nx + 1, t = tn = n∆t, n = 0, 1, 2, · · · ,
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where Nx represents the nummber of grid points, ∆x = (b − a)/Nx represents the distance between any
two consecutive points, and ∆t denote the temporal increases.

To start, we write the variable v in the following form:

v = u − αuxx. (3.1)

Thus, Eq (1.1) is reformed as

vt + 2γux − uuxxx − µ

(
u2

2

)
x
− βuxuxx = 0. (3.2)

Then, we use the approximation solutions Un
m to the exact solution u(xm, tn) = u. To calculate spatial

derivatives, we utilize finite difference operators while keeping the temporal differentiation continuous.
The weighted average or (θ-method) approximation [48] for Eq (3.2) is as follows:

(Vt)n
m +
γ

∆x
δx

(
θUn+1

m + (1 − θ)Un
m

)
−

1
2∆3

x

(
θUn+1

m + (1 − θ)Un
m

)
δ3

x

(
θUn+1

m + (1 − θ)Un
m

)
−
µ

4∆x
δx

(
θ
(
Un+1

m

)2
+ (1 − θ)

(
Un

m
)2
)
−
β

2∆3
x
δx

(
θUn+1

m + (1 − θ)Un
m

)
δ2

x

(
θUn+1

m + (1 − θ)Un
m

)
= 0,

(3.3)

where

δ3
xU

n
m = (Un

m+2 − 2Un
m+1 + 2Un

m−1 − Un
m−2), δ2

xU
n
m = (Un

m+1 − 2Un
m + Un

m−1), δxUn
m = (Un

m+1 − Un
m−1).

We will assume we are using an average with nonnegative weights so that 0 ≤ θ ≤ 1. We will
analyze two implicit methods: the fully implicit scheme when θ = 1 and the well-known and popular
Crank-Nicolson scheme when θ = 1

2 . The boundary conditions for Eq (3.2) are ut,a = ut,b = 0. We
set t = 0 in Eq (2.22) to obtain the initial condition. The above system is solved utilizing an ODE
solver in FORTRAN 95 called the DASPK solver [49,50]. To determine the accuracy of the numerical
scheme (3.3), we utilize Taylor expansions to analyze the truncation error. Specifically, we apply
Taylor’s series expansion for all terms in Eq (3.3) around Un

m, where u represents the exact solution,
then we get [

ut − αuxxt + 2γ (θux + (1 − θ)ux) − (θu + (1 − θ)u) (θuxxx + (1 − θ)uxxx)

−
µ

2

(
θu2

x + (1 − θ)u2
x

)
− β ((θux + (1 − θ)ux) (θuxx + (1 − θ)uxx))

]
+

[
∆t

2
utt − α

∆t

2
uxxtt + 2γ (θ∆tuxt) − (θ2∆tuuxxxt + θ(1 − θ)∆tuuxxxt

+ θ2∆tutuxxx + θ(1 − θ)∆tutuxxx) −
µ

2

(
θ∆tu2

xt

)
− β

(
θ2∆tuxuxxt

+θ(1 − θ)∆tuxuxxt + θ
2∆tuxtuxx + θ(1 − θ)∆tuxtuxx

)
]

+

[
∆2

t

6
utt − α

∆2
x

12
uxxxt + 2γ(θ

∆2
x

6
uxxx + (1 − θ)

∆2
x

6
uxxx)

−(θ
∆2

t

2
utt(θuxxx + (1 − θ)uxxx)) −

µ

2
(θ
∆2

x

6
u2

xxx + (1 − θ)
∆2

x

6
u2

xxx)

−β(θ2∆2
t uxtuxx + (1 − θ)

∆2
x∆t

12
uxtuxxxx)

]
+ · · · .

(3.4)
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Since u is the exact solution of Eq (1.1), for Crank-Nicolson scheme θ = 1
2 , the first and second

brackets are equal to zero. As a result, in both time and space, the scheme is second-order. Therefore,
the truncation error of the numerical method becomes O(∆2

x,∆
2
t ). With the fully implicit scheme of

θ = 1, the first bracket equals zero, and the truncation error becomes O(∆2
x,∆t). We will examine the

stability of the numerical solution. To begin, we will express Eq (1.1) in the following form:

ut − αuxxt + 2γux − uuxxx − µ

(
u2

2

)
x
− β(uuxx)x + βuuxxx = 0. (3.5)

Our numerical scheme’s stability is displayed by using von-Neumann stability analysis. The
von-Neumann analysis, further called Fourier analysis, is only used when the scheme is linear. The
differential Eq (3.5) must be written in the linearized form:

ut − αuxxt + 2γux − ŵuxxx − µŵux = 0, (3.6)

where ŵ = max |u|. The general form of the implicit scheme for Eq (3.6) can be written as:

1
∆t

(
Un+1

m − Un
m

)
−
α

∆t∆2
x
δ2

x

(
Un+1

m − Un
m

)
+
γ

∆x
δx

(
θUn+1

m + (1 − θ)Un
m

)
−

ŵ
2∆3

x
δ3

x

(
θUn+1

m + (1 − θ)Un
m

)
−
µŵ
2∆x
δx

(
θUn+1

m + (1 − θ)Un
m

)
= 0.

(3.7)

Assume that
Un

m = λ
neιωm∆x, ι =

√
−1. (3.8)

When using von-Neumann, |λ| ≤ 1 is required for stability. The following result was obtained by
substituting Eq (3.8) into Eq (3.7), and canceling the common factor Un

m, and doing some operations

(λ − 1) +
α

∆2
x

(
4 sin2

(
ω∆x

2

))
(λ − 1) +

2ιγ∆t

∆x
sin(ω∆x)(θλ + (1 − θ))

+
3ιŵ∆t

∆3
x

sin(ω∆x) sin2
(
ω∆x

2

)
(θλ + (1 − θ))

−
ιµŵ∆t

∆x
sin(ω∆x)(θλ + (1 − θ)) = 0.

(3.9)

Let

1 +
4α
∆2

x
sin2(
ω∆x

2
) = φ1, sin(ω∆x)

(
2γ∆t

∆x
+

3ŵ∆t

∆3
x

sin2
(
w∆x

2

)
−
µŵ∆t

∆x

)
= φ2.

Therefore, Eq (3.9) can be written as

(λ − 1)φ1 + ιφ2(θλ + (1 − θ)) = 0. (3.10)

Hence,
λ (φ1 + ιφ2θ) = φ1 − ιφ2(1 − θ). (3.11)

As a result, λ can be expressed explicitly as

λ =
φ1 − ιφ2(1 − θ)
φ1 + ιφ2θ

. (3.12)
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Let us analyze the stability of two schemes: the Crank-Nicolson scheme and the fully implicit
scheme. Starting with the Crank-Nicolson scheme, we can determine its stability by plugging in θ = 1

2
into Eq (3.12)

λ =
φ1 − ι

1
2φ2

φ1 + ι
1
2φ2
. (3.13)

Then, using Eq (3.13), we find that |λ| = 1, meaning that the Crank-Nicolson scheme is linearly
unconditionally stable. Moving on to the fully implicit scheme, we substitute the value of θ = 1 into
Eq (3.12) to get Eq (3.14)

λ =
φ1

φ1 + ιφ2
. (3.14)

By analyzing Eq (3.14), we find that |λ| < 1, indicating that the fully implicit scheme is also linearly
unconditionally stable. To discuss the convergence of our numerical method, we have some initial data
and perform a sequence of computations using two refined meshes, where ∆x and ∆t both approach
zero. If, for a given point in the rectangular domain [a, b] × [0, t f ], with coordinates (x∗, t∗), we have
xm and tn approaching x∗ and t∗, respectively, this means that the numerical scheme is convergent. In
other words, Un

m = u(x∗, t∗). Assume that

en+1
m = Un+1

m − u(xm, tn+1) (3.15)

at the point (xm, tn+1), the approximation solution is represented by Un+1
m , and the analytical solution is

represented by u(xm, tn+1). The error at this point is denoted by en+1
m

En+1 = max
1≤m≤Nx

{
|en+1

m |
}
, n ≥ 0. (3.16)

We insert Eq (3.16) into Eq (3.3) to obtain

1
∆t

(
En+1 − En

)
=T n

m +
α

∆t∆2
x
δ2

x

(
En+1 − En

)
−
γ

∆x
δx

(
θEn+1 + (1 − θ)En

)
+

1
2∆3

x

(
θEn+1 + (1 − θ)En

)
δ3

x

(
θEn+1 + (1 − θ)En

)
+
µ

4∆x
δx

(
θ
(
En+1

)2
+ (1 − θ) (En)2

)
+
β

2∆3
x
δx

(
θEn+1 + (1 − θ)En

)
δ2

x

(
θEn+1 + (1 − θ)En

)
.

(3.17)

We have
En+1 ≤ En + ∆t(T n

m). (3.18)

We can identify using the provided initial data E0 = 0. As a result, the inequality is expressed as

En ≤ n × ∆t(T n
m). (3.19)

Then,
En ≤ n × ∆t(T n

m)→ 0, as ∆t → 0. (3.20)

Hence, Eq (3.3) is convergent in both the Crank-Nicolson scheme and in the fully implicit method, as
∆x,∆t → 0.
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Figures 6 and 7 illustrate the behavior of the analytical and numerical solutions of Eq (2.22). The
parameter values are taken as α = 1.2, γ = −1.2, k = 0.5, ν = 1.8, ϑ = −1.2, ϵ = 0.1, b = 1.5,
and x = −50 → 20. The numerical solution developed for Eq (2.23) aligns with the exact solution of
the equation. Figures 8 and 9 demonstrate that the exact and numerical solutions for Eq (2.24) behave
similarly when α = 1, γ = 2, ν = −0.05, ϑ = 1, ϵ = −1.5, b = 0.2, and x = −50→ 10.

Figure 6. The left figure displays the analytical solution for Eq (2.22), whereas the right
surface depicts the numerical solution’s behavior.
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Figure 7. Alteration in the time of the numerical solutions with Nx = 30000 for t = 0 :
2 : 8. The waveform at t = 8 demonstrates a notable similarity between the numerical and
analytical solutions.
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Figure 8. The figures compare the analytical solution (left) and the numerical solution of
u11(x, t) (right). These 3D figures assess the performance of the numerical method with the
analytical solution.
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Figure 9. The numerical results for u11(x, t) have been displayed at time t = 0 : 1 : 5. The
wave at time t = 5 demonstrates the coincidence of the numerical and analytic solutions.

4. The PMA equation

To find an approximate solution to a PDE numerically, we divide the domain into small parts or
nodes, creating a mesh. This mesh should be fine enough to capture areas of the solution where the
values change rapidly, such as steep fronts or shock-like structures. The step size, ∆x, representing the
distance between adjacent nodes, should be small enough to resolve these features accurately across
the entire domain. While this method is effective, it comes at the cost of intensive computation and
high expense. Additionally, it only applies to problems that do not change over time. If the solution
changes with time, the mesh must constantly be redistributed. Therefore, a more efficient and
alternative approach is needed to reduce the error in regions where the solution has a high curvature.
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In the PMA method, mesh points are redistributed in time to adapt to changes in the solution. This
involves generating moving mesh nodes using the potential function’s gradient as the mesh generator.
The PMA equation has the advantage of requiring one fewer equation to solve for the mesh in two
dimensions, and the resulting meshes are typically regular and free of tangles compared with the
moving mesh partial differential equation (MMPDE) method. The MMPDE method is another
technique for generating meshes in numerical simulations, particularly for problems involving moving
interfaces or regions with high solution gradients. To examine the numerical solution of Eq (3.2) on
the moving mesh, the PMA approach is applied. We will now explore a new transformation

x = x(η, t) : [0, 1]→ [a, b], t > 0. (4.1)

The physical and computational coordinates are represented by x and η, respectively. The solution for
u is derived from this:

u(x, t) = u(x(η), t). (4.2)

We now divide the physical domain into equal subintervals as follows:

x1 < x2 < · · · < xNx < xNx+1. (4.3)

Therefore, the moving mesh is rewritten as

xm = x(ηm, t), where ηm =
(m − 1)

Nx
, m = 1, · · · ,Nx + 1. (4.4)

To obtain the physical coordinate x, we can use the gradient of the mesh potential P(η, t), which is
achieved using the one-dimensional PMA mesh equation:

τ
(
1 − ρ∂ηη

)
Ṗ = Λ

(
Pη, t

)
Pηη, x = Pη. (4.5)

The monitor function is known as Λ(Pη, t). Additionally, τ indicates a relaxation parameter. When
the value of τ is smaller, the mesh responds more quickly to changes in Λ(x, t). Conversely, the mesh
moves more slowly when the value of τ is extensive. ρ ∈ R is a positive smoothing parameter. It is
subject to the boundary condition given by

Pη,1 = a, Pη,Nx+1 = b, (4.6)

and the initial condition is chosen to be

P(ηm, t = 0) =
(ηm)2

2
, m = 1, · · · ,Nx + 1, (4.7)

where ηm ∈ [0, 1] is the computational coordinate. We get the following using the chain rule:

ux =
uη
Pηη
, ut = u̇ −

uη
Pηη

Ṗη. (4.8)

Thus, the expression of Eq (3.2) is given by

v̇ −
(

vη
Pηη

)
Ṗη = − 2γ

(
uη
Pηη

)
+ u

 1
Pηη

 1
Pηη

(
uη
Pηη

)
η


η

 + µ2
 u2
η

Pηη

 + β ( uη
Pηη

)  1
Pηη

(
uη
Pηη

)
η

 ,
v =u −

α

Pηη

(
uη
Pηη

)
η

,

(4.9)
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where m = 1, · · · ,Nx + 1. The boundary conditions

ut,1 = ut,Nx+1 = 0,

and the initial condition are determined based on the solution of Eq (1.1) at t = 0. To obtain the
coordinate transformation x(η), we use the 1D PMA mesh equation

Ṗ −
ρ

∆2
η

(
Ṗm+1 − 2Ṗm − Ṗm−1

)
=

1
τ
Λ

(
Pη, t

) 1
∆2
η

(Pm+1 − 2Pm − Pm−1) , (4.10)

where ∆η represents the step size of the computational coordinate.

4.1. Discretization

The computational coordinate η, in this problem, is determined by

ηm = a + (m − 1)∆η, m = 1, · · · ,Nx + 1, (4.11)

where
∆η =

b − a
Nx
.

Then, the physical coordinate x is defined by xm = x(ηm, t), where the boundary grids are forced to be
x1 = a and xNx+1 = b. Thus, the location of the grids xm is determined as follows:

xm =
Pm+1 − Pm−1

2∆η
, m = 2, · · · ,Nx. (4.12)

Pm = P(ηm, t) is the mesh potential obtained by solving Eq (4.10). Therefore, the semi-discretisation
of Eq (4.9) is defined by

V̇ =
(

Vm+1 − Vm−1

Pm+2 − 2Pm + Pm−2

) (
Ṗm+1 − Ṗm−1

)
− 4γ∆η

(
Um+1 − Um−1

Pm+2 − 2Pm + Pm−2

)
+ 2∆η

(
Um ((Uxx)m+1 − (Uxx)m−1)

Pm+2 − 2Pm + Pm−2

)
+ µ∆η

(
(U2)m+1 − (U2)m−1

Pm+2 − 2Pm + Pm−2

)
+ 2β∆η

(
Um+1 − Um−1

Pm+2 − 2Pm + Pm−2

)
(Uxx)m ,

(4.13)

Uxx =
8∆2
η

Pm+2 − 2Pm + Pm−2

(
Um+1 − Um

Pm+2 − Pm+1 − Pm + Pm+1
−

Um − Um−1

Pm+1 − Pm − Pm−1 + Pm−2

)
. (4.14)

For a successful moving mesh method, it is essential to select a monitor function carefully. This
function helps increase mesh density in areas of high interest in the PDE solution, such as propagating
fronts or singularities. The monitor function should be stable under numerical discretizations, meaning
that the numerical solution should not exhibit excessive oscillations or other problems. The monitor
function should be computationally efficient to evaluate, as it is typically called at each iteration of
the PMA algorithm. Furthermore, using two monitor functions together is common when employing
adaptive methods to solve NPDEs [29].
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For example, one monitor function could track the error in the solution, while another could track
the smoothness of the solution. The grid would then be refined in areas where the error is significant or
the smoothness is poor. In general, using two monitor functions can be a valuable tool for improving the
performance of adaptive methods. By tracking different aspects of the solution, the adaptive method
can ensure that the grid is refined in the areas most needed, leading to more accurate and efficient
solutions.

Curvature monitor function:

Λ(x, t) =
√

1 + ρ̂u2
xx, (4.15)

where ρ̂ is the user-specified parameter. If u is not smooth, the discretized monitor function may
change abruptly and cause slow computation. It is common practice in most standard moving mesh
methods to smooth the monitor function to achieve a smoother mesh. A simple yet effective smoothing
scheme involves weighted averaging as its essential ingredient, as cited in [29,51]. Weighted averaging
can help to smooth out the monitor function and reduce oscillations in the mesh. This can lead to a
more accurate and stable solution to the underlying PDE. In addition to weighted averaging, other
smoothing schemes can be used for monitor functions, such as filtering and interpolation. The choice
of smoothing scheme depends on the specific application and the desired properties of the mesh [32].

From Figures 10–12, adaptive methods are crucial in resolving intricate spatial scales and rapidly
changing temporal behaviors in various applications. The fundamental idea behind the PMA equation
method is to increase the number of points in regions with higher curvature. An important aspect of
implementing this method is the transformation between the computational and physical domains.

Finding a suitable monitor function that works well with the underlying PDE is a crucial aspect of
the success of a PMA method. Additionally, it is important to mention that the mesh redistribution
is carried out by utilizing the monitor function, which oversees the mesh evaluation. The choice of
monitor function can also significantly impact the PMA algorithm’s convergence rate. Sometimes,
it may be necessary to experiment with different monitor functions to find one that works well for a
particular problem.

-50 -40 -30 -20 -10 0 10 20
-16

-14

-12

-10

-8

-6

-4

-2

0

2

N
u

m
e

ri
c

a
l 

S
o

lu
ti

o
n

 f
o

r 
u

9
(x

,t
)

Exact Solution

PMA Method

Figure 10. The analytical solution of u9(x, t) obtained using the (1/G′)-expansion technique
and the numerical solution obtained by the PMA method are compatible. This figure is
plotted at t = 5.
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Figure 12. The associated time development of x(η, t).

The choice of monitor function is ultimately a problem-specific decision. However, by
understanding the key properties of a good monitor function, researchers can make informed choices
that lead to more accurate and efficient solutions to their problems. It is helpful to understand the
concept of a non-uniform mesh and how it can be used to improve the accuracy of numerical
simulations. Figure 12 shows the associated time development of a non-uniform mesh. The mesh is
initially uniform, but it becomes non-uniform over time. The solution changing rapidly between −30
and −10 highlights the importance of refining the mesh in areas with significant variation. This
refinement allows the simulation to capture the details of the solution more accurately, which can be
crucial for problems with steep gradients or sharp transitions.

5. Results and discussion

We have successfully applied two analytical methods to extract traveling wave solutions of the
Gilson-Pickering equation. We use the F-expansion method and the (1/G′)-expansion strategy.
Figure 4 presents the behavior of u9(x, t) when we change the values of γ and α, while the other
parameters take fixed values k = 1, ϑ = −0.2, ν = 0.01, ϵ = 3.1, and b = 1. Figure 5 illustrates the
wave behavior of u10(x, t) with the values of parameters k = 0.1, ϑ = 1.01, ν = −0.3, b = 2, and
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ϵ = −0.8. As a result, these plots show that the value of α, γ affect the direction and the amplitude of
the wave. Figures 4 and 5 are displayed with Nx = 1000 and at time t = 1. We verify the solutions
with numerical results using two numerical techniques. First, we convert the underlying problems
into a system of ODEs using the finite difference method while keeping time derivatives continuous.
Then, we solve the resulting system of ODEs using the differential-algebraic system problem solver
kit (DASPK) and the PMA approach, where the PMA technique reduces the error in the region where
the solution has a significant variation. This method gives reliable and robust results. This can be seen
in the graphical comparisons in the figures mentioned above.

In Figure 13, the numerical solutions for u9(x, t) differ from the exact solution for different values of
Nx. It is evident from the figure that as Nx becomes large, the numerical solutions of u9(x, t) converge
towards the exact solutions. Specifically, there is a notable increase in error when employing Nx = 200.
However, the numerical solutions closely approximate the exact solution (depicted by the blue line) as
Nx is increased to 1600.
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Figure 13. Convergence of the numerical results to the exact solution at different values of
the number of points.

From Figure 14 and Table 1, the error of the numerical solution for u11(x, t) decreases as the value
of ∆x approaches zero, indicating a convergence towards zero error when we increase the number of
points Nx.
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Figure 14. Describing the L2 errors depicted in Table 1.
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Table 1. The relative error with L2 norm at time t = 5.

Nx The relative error

200 2.17 × 10−4

400 3.81 × 10−5

800 7.03 × 10−6

1600 1.6 × 10−6

3200 6.73 × 10−7

6400 4.27 × 10−7

12800 2.96 × 10−7

20000 2.36 × 10−7

6. Conclusions

This article has concentrated on developing the exact and numerical solutions of the
Gilson-Pickering equation, utilizing the F-expansion and the (1/G′)-expansion methods to extract the
analytical solutions. Moreover, we used the moving mesh method, the PMA approach for the
Gilson-Pickering equation, and the implicit finite difference approach on a uniform mesh with the
examination of the stability for two implicit scheme: the fully implicit method and the
Crank-Nicolson method. We provided that the numerical schemes are unconditionally stable. We
have successfully computed both the analytical and numerical solutions. In this work, it has been
demonstrated that the solutions generated using the (1/G′)-expansion method are novel compared to
the ones determined in [40]. Additionally, the solutions derived through the F-expansion method are
demonstrated to be more inclusive than previously noted in the literature. For example, β can take any
value and is not specified by a value. We utilized Mathematica 13.2 software to validate the
correctness of our solutions by plugging them back into the original equation. One of the most
excellent ways to ensure accurate solutions is to check the conformity of exact and numerical
solutions. While some experts focus exclusively on obtaining exact solutions, this study employs a
comparative approach, examining exact and numerical solutions to guarantee accuracy and
correctness. The methodologies employed in this work can be applied to other NLPDEs encountered
in the natural sciences.
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