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1. Introduction

The theory of fixed points plays a very important role in nonlinear analysis. In the recent years,
the generalization of non-expansive mappings with different applications has been reviewed by many
authors (see [2,5,9,11,12,15,18,20,21,23,32]), and the references therein. In this context, different
new mapping classes have been developed with interesting properties in the following years.

In 2008, Suzuki [30] defined a different class of generalized non-expansive mappings, which is
known as Suzuki’s generalized non-expansive mapping and is also referred as condition (C). Suzuki


https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2024584

11959

proved that the mappings satisfying the condition (C) are weaker than non-expansive and also obtained
few results related to the existence of fixed points for such mappings. Many authors have contributed
to the literature by generalizing the Suzuki’s generalized non-expansive mapping (see [6, 10, 19, 24]).
For approximation of fixed points and non-expansive mapping we refer to [8,14,26,28] or to the recent
updates [13,33] in the fixed point theory. For more fixed point results with iterative techniques for
single and multivalued mappings we refer to [4, 17]. Also, for the sake of application on fractional
evolution equations and partial differential equations, we suggest [16,22,29].

Later, in 2018, Patir et al. [25] introduced another generalization of non-expansive mappings, called
the condition B, , and proved some weak and strong convergence results for this type of mappings in
uniformly convex Banach spaces. A lot of authors have used various iterative methods reckoning
fixed points of nonlinear mappings, which is a captivating problem of nonlinear analysis. The most
renowned iterative method was improved by Picard, that is, x,,; = Yx,. It is well-known that Banach
contraction principle uses the Picard iteration to approximate the unique fixed point of T, where Y
is a contraction mapping. Nevertheless, for non-expansive generalized non-expansive mappings, the
Picard iterative method may fail to converge to the fixed point in general. To calculate fixed points of
these mappings, it is natural to investigate new iterative methods in the current literature.

In 2017, Ullah and Arshad [34] introduced the following iteration process, namely, the M" iteration
process:

o € Q, (1.1)
On+1 = Tv,,
v, = T ((1 - a,) On t+ a’nTwn)a
w,; = (1 _Bn)gn +ﬁnTQn,
where {«,} and {$,} are sequences in (0, 1). They proved some weak and strong convergence theorems

for the fixed point of Suzuki generalized non-expansive mappings in uniformly convex Banach spaces.
Recently, Ali and Ali [7] introduced a new iteration process the called F iteration as follows:

o € Q, (1.2)
On+1 Tvn,
v, = Y@,

w, = T ((1 - an) On + a“,l’lTQI’l)a

where @, € (0,1). They showed that the F iteration process has a better rate of convergence when
compared with the other iterations.

Abdeljawad et al. [1] showed that the so-called JA iteration process, which they proposed in 2020,
has a convergence faster than the other iterations in the literature for mappings satisfying the condition
B, , in the setting of uniformly convex Banach spaces. The iteration process reads as follows:

o0 € €, (1.3)
On+1 = T ((1 - an) TQn + anTUn),
v, = T,

w, = (1 _ﬁn)gn"'ﬁnTQn’
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where {a,} and {8,} are sequences in (0, 1).

Motivated by the above work, in this paper, we introduce a new class of mappings, called the
condition B, , ,, which is wider than the classes satisfying the condition B, ,. Also, we propose a new
iteration process to approximate fixed points of such mappings. We prove some weak and strong
convergence results for mappings satisfying the condition B, , ,, by using iteration process (3.1). Also,
we compare the speed of the proposed iteration with abovementioned iteration processes by giving a
numerical example.

2. Preliminaries

First, we give some basic definitions and a relevant lemma.

Definition 2.1. [30] Let Y be a mapping on a subset Q of a Banach space M, then Y is said to satisfy
the condition (C) if

1 ) .
> llo — Yoll < llo — vl implies |[Yo — Yvl| < [lo — v/l
for all o, v € Q.

Definition 2.2. [25] Let Q) be a nonempty subset of a Banach space M. Lety € [0, 1] and u € [0, %]
be such that 2 < y. A mapping Y : Q — M is said to satisfy the condition B,, on Qif, for all p,v
in Q,

vlle="Toll < llo—vll +ullv—"Tvl| implies
Mo —Tvl| < (1=y)lle—vll+u(le—"Tu|l+llv-"Tol).

Definition 2.3. [21] Let Q be a nonempty subset of a Banach space M and {0,} be a bounded sequence
in M. Forp e M.

The asymptotic radius of {0,} at o is defined by

r(o,{o,}) = lim sup |lo, — oll.

n—+0o

The asymptotic radius of {on} relative to Q is defined by

(€, {0n}) = inf {r(o, {on} : 0 € Q},

and the asymptotic center of {o,} relative to Q is defined by

A(Q,{o.}) = {0 € Q: r(o,{0.}) = r(€,{o.D}.

We note that if Q is weakly compact, the asymptotic center A(C,{o0,}) is nonempty. If M is
uniformly convex, then, A(Q2, {0,,}) has exactly one point.

Definition 2.4. [31] A Banach space M is said to satisfy the Opial property if for any sequence {0,}
in M with o, — @, we have
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lim inf|lo, — @] < lim infllo, — v||,
n—-+oo n—+oo
for all v € M with v # .

Lemma 2.1. [27] Let M be uniformly convex Banach space and {t,} be a sequence in [a,b] for
some a,b € (0,1). Suppose that the sequences {0,} and {v,} in M are such that limsup,__, ., |lo.l|l <
r, limsup,_ ., vl < r and limsup,_, . |I(1 =t)on+t,vll = r for some r > 0. Then,
limn—>+oo ”Qn - Un” =0.

3. Main results

In this section, we first define a new class of non-expansive mappings, called the condition B, , .
Later, we introduce a new iteration process and we prove some convergence theorem for mappings
satisfying the condition B, ,, by this iteration.

Definition 3.1. Ler Q be a nonempty subset of a Banach space M. Lety € [0, 1] and u,n € [0, %] such
that 2u +2n < vy, then a mapping (' : Q — M is said to satisfy the condition B, , on Q if for all o,v
in Q,

IA

llo = vll + pllv = Yol + nllo = Tul| implies
(I =»llo = vl + p(llo = Yol + [lv = Tol))
+1(llo = Toll + [lv = Tvl]).

Y lle — Toll
1o — Y|

IA

Example 3.1. Let Y : [0,4] — R be defined by
| 0,ifp#4,
Yo= { 1, ifo=4.

Choosey =1, u = }‘ and n = 7, then T satisfies the condition B, ,,. We consider different cases as
follows:

(1) For o # 4, v # 4, we have [|To — Yv|| = 0. Obviously, I satisfies the condition B, , .
(i) For o # 4, v =4, we have [|Yo — Tv|| = 1,and fory = I, u = }, and 57 = 1.

(I =P lle = vll + p(llo = Yol + [lv = Toll) + 1 (le = Toll + [lv = Tl

1 1 7
= —|lo=1+=lloll + =
7 llo =1+ Zllell + 7

> 1=]To-Tu.

Thus, Y satisfies the condition B, ,,.
(iii) For o = 4, v = 4, we have ||To — Tv|| = 0 and, again, T satisfies the condition B, , .

Proposition 3.1. Let T : Q — M be a mapping satisfying the condition B, , for a nonempty subset
Q of a Banach space M, then the following holds.

(i) If 7 satisfies condition (C), then Y satisfies condition B, ,,, fory = u =1 = 0.
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(ii) If ' is a mapping satisfying the condition B, ,, and (1) # 0, then Y is quasi-non-expansive
mapping.

Proof. (1) From the definition of condition (C),
1
3 llo = Toll < llo —vll = [ITo — Y|l < |l - vll,
and it is easily seen that

Mo =Tl < (1=y)llo—vll+ule—"Tuvl+|lv-"Tol)
+1(llo = Yoll + llv = Yvl)),

for y = p = n = 0. Hence, T satisfies condition B, , .
(i1) Let @ be a fixed point of T'. For all o € Q, we have

Yo - Y@l < |lw - oll + ullo — Toll + nllo — Tvl|.

From condition B, ,,

Yo —Toll < (A-plw-oll+ullz- Yol +llo - Y@l
+n (|lw - T@|| + [lo — Toll)
= (1 =-pllw-oll+u(lw-"Yoll +llo — @) +nllo - Yoll
= |lmw-Tol<(I-y+u+mnllo-al+ u+nl|o-To
l-y+u+
= o - Toll < (M)ng .

l—p—n
Since 2u + 2n < y, we obtain:
l = Toll < |l —-all,

and this completes the proof.

Remark 3.1. The converse of Proposition 3.1 does not hold in general, i.e., if a mapping is quasi-non-
expansive, it does not need to satisfy condition B, , ,,.

We now discuss some properties of mappings satisfying the condition B, , ,,.

Proposition 3.2. Let QO be a nonempty subset of a Banach space M. Let T : Q — Q satisfy the
condition B, , then for all o, v € Q and for c € [0, 1].

@ [re - 12| < llo - el
(i1) at least one of the following holds:

(@) 5 llo—"Yoll < llo—vll.
(b) £||Te — 12| < lITo -l
The condition (a) implies

C
e ="Tull < (I=3)lle = vil+ple = Tvll+ [l - Toll)
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+1(lle = Yoll + [lv = Tl)).
The condition (b) implies
e —rol| < (1= 3)Te v+ u(ite - Tull + v - %)
+1([[ve - %] + Il = roll).

(iii) [lo — ol < 3 = o) llo — Yoll + (1 = ) llo = vll + ( + M2llo — Yol + 2 || Yo — 2| + llo — Tull +
llv = Yoll).

Proof. (1) We have, for all p € Q,

¥llo = Yoll < llo = Yol + u |[Yo = Pof| + nllo — T*v]|.

By the condition B, ,,

[ro—"%| < (1=l "Toll+ule- "%
+1(llo - Yol + ||Yo - %))
< (1=p)llo—Toll +pllo - Yoll + || Yo — T

+nllo — Yoll + 1 ||Yo — Y20||
1—y+,u+77)

— |fro-rol < (15

llo = Yoll < lle = Toll .

(ii) We suppose, on the contrary, that 5 |lo — Yol| > |lo — v|| and 5 ||To — TZQ” > ||To — v|| for some
o, v € Q.

Now,

IA

llo — vl + llv = Toll
c c 5
5 llo = el + 5 |[Te - |

llo — Yoll

A

C C
—llo="Yoll +=|lo=",
2@ oll 2@ oll
cllo = Yoll.

IAN A

For ¢ < 1, we get |lo — Yol| < |lo — Toll, which is not possible. Thus, at least one of (a) and (b)
holds.
(i11) From (ii)-(a) and (b),

llo="ull < llo="Yell +|Te - T + [**e - Tv]|
< o=l + (1= Do el +ulo - 1]
+1(llo = Tell + || To ~ %) + (1 = S)1ite - vl
+ (10 = "l + v = 2|) + n (||e - | + v Toll)
< llo= ol + (1 = e - ell+ ullo = Yell + u|[Te - Y]
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+17lle = Tell +n[Te = ol + (1 = 5)lITe el

+(1= Dlle - vll + u1Ye = ol + ulle - ol

+ullo = Yol + p||Yo — Yo + n|[Te ~ T + nlv - Tul
B-0)lle =Tl + (1= lle vl

+u(2llo = Yoll + llo = ol + llv = Yoll + 2 || Yo - T?o|))
+7(2llo - Yol + 2 || Yo — Y20 + Ilv = Yoll + llo — vl

IA

C
= llo = "ol <3 -0)lle = Tell + (1 = )l vl
+u +m)2llo — Yoll + 2| Yo — Y2o|| + llo = Yull + v — Yol).

In this part, we introduce a new iteration process to approximate fixed points of mappings satisfying
the condition B, .

Let Q) be a Banach space and T : QQ — Q be a self-mapping on Q. We define our iteration process
as follows:

o) € Q, (3.1
On+1 = Tvn’
v, = T ((1 - a’n) wy + a’n‘rwn)»

w, = T ((1 _ﬁn) TQn +ﬁnT2Qn)a

where {a,} and {8,} are sequences in (0, 1).
Now, we prove following results which we will use in the next proofs.

Lemma 3.1. Let Q be a nonempty closed and convex subset of a uniformly convex Banach space M
and Y be a self-mapping on Q satisfying the condition B, ,. For oy € €, let {0,} be the sequence in
defined by the iteration process (3.1), then lim,_, ., ||0, — @]|| exists for all w € (7).

Proof. Let (T) # @ and let w € (7). By Proposition 3.1,

1Yo, - @l < llon — @l (3.2)
Y20, - || < IITo, — @l < llo, — @l
Also,
1Y@, -@l < |, -l (3.3)

(=80 Tou+ B.1%0,) - o

< (1 =B You +B. Y0, - @
< (1-B)ITo, — @l + B 120, — @
< (1 =B llow — @l + B llow — @l
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and
v, -l < |lv,— @l (3.4)
1T (1 - a,) @, + a,Tw,) — T
< ”(1 - a’n) w, + a’nTwn - iD'”
< (I-a)lw, - ol + a, || Yo, - @
< (I -a) o, - ol + a, T, — o
= |l@, — @l
< lon — @ll. (3.5)
Using Egs (3.2)—(3.4), we get
llons1 —@ll = [[Tv, — @l
< v, — @l
< @, — @l
< ”Qn _wlla

which shows that sequence {||o, — @]} is nonincreasing and bounded. Hence, lim,,_,, ||l0, — @]| exists
for all @w € (7).

Theorem 3.2. Let Q be a nonempty closed convex subset of a uniformly convex Banach space M. Let
T be a self-mapping on Q satisfying the condition B, ,,. Let {0,} be a sequence in Q defined by the
iteration process (3.1), then () # @ if and only if {0,} is bounded and lim,,_, , , || Y0, — 0,|| = 0.

Proof. Let (T) # @ and w € (Y). By Lemma 3.1, lim,_,, |lo, — @]| exists and {g,} is bounded.
Suppose lim,,_, .« |l0, — @|| = p.
From Egs (3.2)—(3.4), we obtain

lim sup|lv, — @l| £ lim sup|lo, — @|| = p. (3.6)
n—+oo n—+oo
and
lim sup||Yw, — @| < lim sup||lw, — @| < lim supllo, — @|| = p. (3.7)
n—+oco n—+oo n—+coo

By iteration (3.1), we get

llon+1 — @l = [Yv, - @l < |lv, — @ll,
so that
p = lim inf||0,,; — @|| £ lim inf||v, — @|. (3.8)
n—+oo n—+oo

Thus, from (3.6) and (3.8),
lim |jv, — @l = p.
n—+co

Consider,

lim ||v, — @||

n—+oo

Iim ||T (1 - a,) ©, + a,V@,) — ||
n—+oo
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IA

lim ||(1 - @) (@, — @) + an(Yw, — @)
n—+00

< lim ||w, - @|.
n——+oo

i-e-, lirnn—>+oo ”(1 - an) (’ZD',, - ZD-) + an(Twn - TD')” =p.
Using (3.7) and Lemma 2.1, we get

lim ||w, — Tw,|| = 0. (3.9)
n—+oo

Next,

”T ((1 - an) w, + anTwn) - Twn”

”(1 - a’n) wy + a’nTwn - zD-n”

”Un - Twn”

IA

< a, ||Twn - wn” ’

which gives with (3.9),
lim |jv, — Y@,| = 0. (3.10)
n—+oo

Now,
”wn - Un” < ”wn - T7D-n|| + ||TTD',, - Un” .

Therefore, we have
lim ||@, — v,|| = 0. (3.11)
n—+0o

Finally, by using (3.10) and (3.11), we obtain:

1T0n+1 = Onall = 1T0ns1 = Yvill
< llonn — uall
= [[Tv, — vl
< vy = Y@l + [T, — vyl

IA

”Un - wn” + ”Twn - Un” .

Thus, we get
Tim Yo, il = 0.

Conversely, let {0,} be bounded and lim, ., ||T0, — 0.l = 0. Let @w € A(Q, {0,}). By Proposition
3.2 (iii), for y = 5, ¢ € [0, 1],

C
llow = Y@l < 3=0)liew = Teull + (1 = ) llo —
+( + M2 llen = Youll +2||Yon — T20u|| + llow — Y&l + Iz = Youl)
C
< B=0llen = Teull + (1= ) lio - =l

+(u + M)2llow — Toull + 2 || Yon = 20| + llow — Tl + llow — @l + llow — Tonl)

= (-1 lim swpllo, — T < (1= 5 +p+7) lim supllo, -
n—+oo n—+oo
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[

- tutny
——— | lim supllo, — @I,
1 u—-n n—+0o

= lim supllo, — T@| < (
n—+oo

1-5+u+n
l—p—-n

where ( ) < 1for 2u + 2n <y = 5. Hence, we have

r(Yw,{0,}) < r(w,{o,.}),

so T € A(Q, {o,}). Since M is a uniformly convex Banach space, which implies A(Q, {0,,}) contains
a single point, we obtain Y'@w = @, which is @w € (T), so (T)(T) # @.

Thereinafter, we prove some convergence results for mappings satisfying the condition B, ,, by
using iteration process (3.1).

Theorem 3.3. Let Q be a compact and convex subset of a Banach space M. Let Y be a self-mapping
on Q satisfying the condition B, ,,, for u+n < 1 and 2u < y. Let {0,} be a sequence in Q as defined by
the iteration process (3.1), then {0,} converges strongly to a fixed point of I

Proof. Since Q is compact, there exists a subsequence {0, } of {¢,} and @ € Q such that {o,;} converges
to w.

From Proposition 3.2 (ii), for y = %, c€[0,1]
Y llon, = You | < llow, = @| < |lw, = @ + ull@ = Yl + 7w, - o).
By the condition B, ,,
[Ten, - Yo|| < (1 =9llew, - @] +u(len, - To| + | - Tou])
+1(|lex, - Tou || + Iz - T))
< (1=low, = @| + 1 (|lon, = Ya| + |& = 0u,|| + [los, — Tou,|)
+1(|le, - ou | + Il - ).

Taking limit as n; — +oo and using Theorem 3.2, we have
(I-p-nlw-Ta| <0,

which is V@ = @. This shows that @ is a fixed point of Y.

Now, we show that {o,} converges to @w. From Lemma 3.1, lim,_,, |0, — @]|| exists. Let’s say
lim,,_, ;. “Qn - o = u.

Next,

llon = Y@l < llon = Yeull +[[Ton — Y]]
< lon = Toull + (X =y llon — @l + p ([lon = Y@l + @ — Toull)
+11 (llon = Youll + [l — Ta]])
< llow = Youll + (A =y llon — @l

+i(llon = Y@|| + [l = @ull + [lon = Teull)
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+1(llo, — Youll + llo — Yol)
= (y=2wllon— @l <A +pu+n)llo, — Toull.

Taking limit as n — +o0, we get (y —2u)u < 0. Since y — 2u, we obtain u = 0 which is
lim,,; |lo, — @|| = 0. Hence, {0,} converges strongly to .

Theorem 3.4. Let Q be a nonempty subset of a Banach space M having the Opial property. Let Y be
a self-mapping on Q satisfying the condition B, , . If {0,} is a sequence in M such that {0,} — @ and
lim, 1o [| Y0, — 04l = 0, then Yw = @.

Proof. By Proposition 3.2 (ii), fory = £,
Y llon = Youll < llon — @l < llon — wll + ullw = Y@l + nllo, — Tl .
So, by the condition B, ,,,

ITon = Y@l < (I =pllon — @l + pllon — Yol + [l — Toll) (3.12)
+17 (llon = Youll + llw — Yw@l]). (3.13)

Using by (3.12), we have

llon = Y@l < lon = Toull + ITon — Y|
< lon = Youll + (A = llon — @l + p(llon — Y@l + [lw — Toull)
+11(llon — Toull + llw — Tal|)
< llon = Yeull + (1 =) llon — @l

+t (lon = T@|| + [l — o4l + llon — Tenll)
+17 (llon = Yol + [l = 0ull + llon = Ya)) .

So, taking limit as n — +oc0 and using lim,_,;« || Yo, — 0.l| = 0, we get

l—y+u+n@
oy — To|| £ ———— llon — @l .
l—p—n
Since % < 1, we obtain |lo, — T@|| < |lo, — @l . Hence,

lim inf|lo, — T@l < lim inf|lo, — @]|. (3.14)
n—-+oo n—+oo
Now, accept Y@ # @. Since o, — @, by the Opial property, we have
lim inf |lo, — @|| < lim inf|lo, — T@||,
n—+oo n—+oo

which is a contradiction to (3.14). Hence, Tw = w.

Theorem 3.5. Let Q be a weakly compact convex subset of a Banach space M with the Opial property,
and (' be a self-mapping on Q satisfying the condition B, ,,. Let {0,} be a sequence in Q as defined by
the iteration process (3.1), then {0,} converges weakly to a fixed point of Y.
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Proof. By Theorem 3.2, lim,_ .« ||Y0o, —0ul| = 0. Since Q is weakly compact, there exists a
subsequence {o,} of {0,} and @ € Q such that {0,,} converges weakly to @w. Now, by Theorem 3.4, @
is a fixed point of Y.

We accept that {0,} does not converge weakly to @. Then, there is a subsequence {0,,} of {0,} and
u € € such that {0, } converges weakly to u and u # @w. Again, Tu = u (by Theorem 3.4).

Now,

lim infllo, - @] = o, — @
n—+oo nj—-+oo
< lim - u|| (by Opial property)
= lim inf|jo,, —u”
ng—+00

< lim inf|lo,, - w”

ni—+00

= lim infllo, — @l|,
n—+oo

which is a contradiction.
So, {0,} converges weakly to @.

4. Numerical example

Let Q = —5, 5] be endowed with an absolute valued norm and Y : @ — Q be a mapping defined
by

l\)»—

_ —lfQ;t_
TQ_{ 0 ifp= %

Fory=1,u= }‘ ndn = %,’ we prove that Y satisfies the condition B, , .

Case 1. Forp # %, U # %, we have [|Yo — Tv|| = % llo — vl|, and
(I =y llo—vll +ule - Tvll + ||v TQII) + n(IIQ Yoll + [lv = Yul))
1 v—1 - 1 v -1
= —_ — U -
a7\ 73

1
= pBe-v+lli+Bv-eg+1l)+ E (20 + 1| + 1120 + 1))

+

1 1
> — |ldo—dull+ — 20 -2
> 12|| o — 4| 12|| o — 2|
= 1|| 1
= > o—v
1
> 3 llo — vl = [[o — Y.
Case 2. For o # 3, v = 3, we have || Yo — Yv|| = 1 |lo — 1||, and
(I =P llo—vll+u(lo—Yull + |lv—"TelD) +n(le — Toll + [lv — Yuvl)
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1 1 [(o-1 1 o-1 Hl H
= ~le=on+[=-==I+-1llo-[=— ~-0
ille-or |- () (e -(5)] -

1 1 1 1
= ZIIQI|+ﬁll5—ZQII+EII2Q+1||+§

1
> 3 lle—1I=1Ye - Tv.

Case 3. For o = 3, v = 3, we have

=

(I =»lle = vll + pllo = Yol + llv = Yoll) + 1 (le = Toll + [lv = Tv|) = 0 = [|Te - Tl

In all the above cases, we have ||[Yo—Yv| < (1 — y)llo—vll + u(lo— Tv|| + |lv—- Tol]) +
n(llo — Yoll + [lv — Yv|]), hence, T satisfies the condition B, , .

Now, we show that iteration process (3.1) converges to fixed point w = —% faster than the F-
iteration, M* iteration, and JA iteration processes.

Choosing initial value o; = 0.5 and parameters «, = 8, = 1/4, Table 1 and Figure 1 show the
efficiency of the iteration process (3.1).

Table 1. Sequences generated by different iteration processes.

n Iteration (3.1) F iteration M" iteration JA iteration

1 0.50000000000000000 0.50000000000000000 0.50000000000000000 0.50000000000000000
2 —0.48713991769547325 —0.46759259259259259 —0.40856481481481481 —0.36689814814814814
3 —0.49988974552208053 —0.49899977137631458 -0.49167488283036122  —0.48788115855052583
4 —0.49999905474555967 —0.49996912874618254  —0.49924200322066560  —0.49889658696679170
5 —0.49999999189596673 —0.49999904718352415 —0.49993098486114084  —0.49989953492444554
6 —0.49999999993052097 —0.49999997059208407 —0.49999371621420881 —0.49999085271688624
7 —0.49999999999940432 —0.49999999909234827 —0.49999942786518259 —0.49999916714551896
8 —0.49999999999999489 —0.49999999997198605 —0.49999994790747804  —0.49999992416911360
9 —0.49999999999999995 —0.49999999999913537 —0.49999999525700803 —0.49999999309564460
10 —0.49999999999999999 —0.49999999999997331 —0.49999999956815350  —0.49999999937136270
11 —0.50000000000000000  —0.49999999999999917 —0.49999999996068064  —0.49999999994276296
12 —0.50000000000000000  —0.49999999999999997 —0.49999999999641999 —0.49999999999478860
13 —0.50000000000000000  —0.49999999999999999 —0.49999999999967404  —0.49999999999952550
14 —0.50000000000000000  —0.50000000000000000  —0.49999999999997032  —-0.49999999999995679
15 —0.50000000000000000  —0.50000000000000000  —0.49999999999999729 —0.49999999999999606
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Figure 1. The efficiency of the iteration process (3.1).

In Table 2, we find numbers of iterations used to approximate fixed point w = —% for different
initial values and the same parameters using numerical example.

Table 2. Influence of initial points for various iteration procecesses with a,, = % and 5, = }L.

Initial points

Iterations -04 -0.2 0.1 0.3
Iteration (3.1) 10 10 11 11
F iteration 13 13 14 14
M" iteration 18 18 19 19
JA iteration 18 18 19 19

Changing initial values and parameters, numbers of iterations used to approximate fixed point can
be seen in Tables 3 and 4.

In any situation, it can be easily seen that iteration process (3.1) converges faster than the other
iteration processes.

Table 3. Impact of parameters for different iteration processes.

Initial points

Iterations -04 -0.2 0.1 0.3 0.5
Iteration (3.1) 10 10 10 10 10
F iteration 13 13 13 13 13
M" iteration 17 17 17 17 17
JA iteration 17 17 17 17 18
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Table 4. Impact of parameters for different iteration processes.

Initial points

Iterations -04 -0.2 0.1 0.3 0.5
a1 \1/3 i \2/5
For @, = (ﬁ) »Pn = (2n++29)
Iteration (3.1) 9 9 9 9 9
F-iteration 11 12 12 12 12
M" iteration 13 13 13 13 13
JA iteration 13 13 13 13 13

5. Conclusions

We have introduced a new class of generalized non-expansive mappings, which extends the class
satisfying the condition B, ,. A new iterative process to approximate the fixed point of the newly
introduced mapping has been followed and a related convergence theorem has been proved. Finally,
a simple example has been given to illustrate the iterated process via the new class of the defined
mappings. In fact, due to newly defined generalized class of non-expansive mappings, our result is
considered to be an extension and generalization of many known fixed point results in the literature.
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