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1. Introduction and motivation

Fractional calculus has garnered significant attention across various fields of study because of its
ability to capture non-local and long-range dependencies in data analysis and modeling. Fractional
calculus provides a more flexible framework for capturing intricate dynamics in real-world systems.
By incorporating non-integer orders, it becomes possible to model processes that exhibit fractal or
self-similar behavior, which are prevalent in many natural and man-made systems [2, 18]. This
flexibility allows for a more accurate representation of complex phenomena, leading to improved
understanding and enhanced predictive capabilities. Moreover, the application of fractional calculus
can unveil hidden patterns and long-range dependencies that may go unnoticed when using integer-
order operators [3, 4, 12, 13]. In physics, fractional derivatives have been used to model anomalous
diffusion [41], viscoelastic materials [17], and complex transport phenomena [20, 43].

A wide range of real-world processes exhibit memory effects or non-local interactions, where the
behavior of the system is significantly influenced by distant events or past observations [18]. For a
detailed discussion, we refer to the monographs by Kilbas et al. [27], Lakshmikanthem et al. [28],
Miller and Ross [29], Podlubny [31], Almeida et al. [11], and the references therein. Kilbas et al. [27]
provided generalized Riemann-Liouville fractional operators to define the derivative with respect to
a function. Several fractional derivatives concerning a function have been introduced, and their
properties have been studied [5, 8, 9, 14, 24, 34, 37–39]. Katugampola expands upon the established
framework of Erd’elyi-Kober operators, which are commonly used in the field of fractional derivatives.
However, Katugampola introduced a specific modification and variation to these operators, which is
referred to as the Hilfer-Katugampola fractional derivative [26]. These properties provide insights into
the behavior of such fractional derivatives and their interactions with other mathematical operations.

Terminal value problems have applications in various fields where the ability to specify a desired
final state is crucial to the problem at hand. For instance, in optimal control, terminal value problems
are employed to determine the optimal control that minimizes a cost function over a given time frame.
The terminal value serves as a constraint, allowing the specification of a particular final position or
velocity for the system. Researchers have extensively investigated the existence and uniqueness of
solutions to the terminal value problem, exploring the conditions under which a unique value can
be determined for the system. For example, Benchohra et al. [16] investigated the existence and
uniqueness of solutions for the terminal value problem in the Hilfer-Katugampola operator by using
different types of classical fixed point theory. Almalahi et al. [6, 7], developed sufficient conditions for
the existence and uniqueness of solutions as well as stability results for the new terminal problems
with respect to another function. Shah et al. [35] introduced some important notes on terminal
value problems for fractional differential equations (FDEs) on infinite intervals. Abdo et al. [1]
investigated the novel properties for the solution of a coupled system for terminal value problems
involving a generalized Hilfer fractional operator. On the other hand, the symmetric solutions offer
valuable insights into the behavior, stability, and simplification of mathematical and physical systems.
They play a crucial role in simplifying analysis, facilitating physical interpretation, aiding in stability
analysis, enhancing numerical computations, and contributing to the development of mathematical
theories [42, 44].

All of the aforementioned studies solely examined the properties of solutions within a single Banach
space. However, our study seeks to expand upon this by investigating how the behavior of solutions

AIMS Mathematics Volume 9, Issue 5, 11762–11788.



11764

is influenced by different weighted Banach spaces. Also, we aim to explore the impact of altering the
function w on the solutions, while also examining multiple symmetric cases to observe the resulting
variations in their behavior.

In this study, we investigate the existence and uniqueness of solutions for a system of terminal FDEs
with w-Hilfer fractional derivatives and study their Ulam-Hyers (UH) stability [19,33,40]. Specifically,
we study the fractional system{

Dpi,α
a+,w(ι)ςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), ι ∈ (a, b], a > 0,

ςi(b) = υi ∈ R, i = 1, 2, ...., n,
(1.1)

where

• w ∈ C1([a, b],R) is an increasing function such that w′(ι) , 0, for all ι ∈ (a, b).
• Dpi,α

a+,w(ι) denotes the w -Hilfer fractional derivatives of order pi, (0 < pi < 1) and type α, (0 ≤ α ≤
1), for each i = 1, 2, ...., n.
• The functions Fi : J×Rn → R, i = 1, 2, ...., n, are continuous and satisfy some conditions that will

be described later.

One of the primary motivations for studying terminal value problems with fractional derivatives
is to analyze the stability properties of the corresponding dynamical systems. The w-Hilfer fractional
derivative can capture complex behaviors such as subdiffusion or superdiffusion, which are not possible
with classical integer-order derivatives. By formulating the problem in a weighted space, stability
analysis can be performed in a manner that accounts for the importance or significance of different
components or variables within the system. The innovative aspects of this work compared to the
existing literature can be summarized as follows:

• We extend the analysis from single Banach spaces to different weighted Banach spaces, exploring
how the change of weights affects solution properties. This allows us to capture additional
structural information and understand the impact of weight functions on solutions.
• We investigate the sensitivity of solutions to changes in the weight function, providing insights

into the relationship between the weighted functions and solution behavior by considering
multiple symmetric cases to observe variations in solution behavior under different symmetry
conditions.
• Furthermore, our study examines the system’s properties in various Banach weighted spaces. We

establish the existence, uniqueness, and stability of solutions for the system of w-Hilfer FDEs with
minimal hypotheses, contributing to the theoretical understanding and providing a foundation for
further analysis and applications.
• To the best of our knowledge, this is the first study to establish the existence, uniqueness, and

stability of solutions for a system of w-Hilfer FDEs in different Banach-weighted spaces. Our
approach expands the understanding of the system’s behavior and broadens the range of potential
applications.
• Additionally, the study addresses various parallel problems by considering specific function

instances w. System (1.1) encompasses a fractional derivative that integrates several traditional
fractional derivatives. This broadens the scope of the analysis and allows for a comprehensive
investigation of the system’s properties.
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Notations: To enhance the readability, we fix the above notations and the following ones, we use these
without any further mention.

(1) For 0 < a < b, let J := (a, b] ⊂ R.
(2) Γ(p) is the standard Gamma function given in [15].
(3) C(J̄,R) is the Banach space for all real-valued continuous functions defined on J̄, equipped with

the norm ∥ς∥ = max
ι∈J
|ς(ι)| , where J̄ = [a, b]. The space

∏n
i=1 C(J̄,R) is the product space of n

copies of C(J̄,R).
(4) For each i = 1, 2, ..., n, let γi = pi + α(1 − pi), such that pi ∈ (0, 1) and α ∈ [0, 1]. Then, we define

the following spaces:

C1−γi,w(J,R) =
{
ς : J→ R; (w(ι) − w(a))1−γiςi(ι) ∈ C(J̄,R)

}
,

and
C
γi
1−γi,w

(J,R) =
{
ς ∈ C1−γi,w(J,R) : Dγi

a+,wς ∈ C1−γi,w(J,R)
}
.

The spaces C1−γi,w(J,R) are called weighted spaces. Clearly, these are Banach spaces equipped
with the norm

∥ςi∥1−γi,w = max
ι∈J

∣∣∣(w(ι) − w(a))1−γiςi(ι)
∣∣∣ .

(5) B =
∏n

i=1 C1−γi,w(J,R) is the product space of C1−γi,w(J,R), i = 1, 2, ...., n. The product spaces B
are Banach spaces equipped with the norm

∥(ς1, ς2, ......., ςn)∥B =
n∑

i=1

∥ςi∥1−γi
.

Hypotheses: To obtain our results, the following hypotheses must be satisfied:
(Hy1) For each (ι, ς1, ς2, ...., ςn) ,

(
ι, ς∗1, ς

∗
2, ...., ς

∗
n

)
∈ J × Rn, there exist constants κ

j
Fi

>

0, i, j = 1, 2, ...., n such that

∣∣∣Fi (ι, ς1(ι), ς2(ι), ...., ςn(ι)) − Fi
(
ι, ς∗1(ι), ς∗2(ι), ...., ς∗n(ι)

)∣∣∣ ≤ n∑
j=1

κ
j
Fi

∣∣∣ς j(ι) − ς∗j(ι)
∣∣∣ .

(Hy2) For each (ι, ς1, ς2, ....ςn) ∈ J × Rn, there exist φ j
Fi
> 0 with

|Fi (ι, ς1(ι), ς2(ι), ....ςn(ι))| ≤
n∑

j=1

φ
j
Fi

∣∣∣ς j(ι)
∣∣∣ .

This paper is organized as follows. In Section 2, we state the needed fundamental notions of
fractional derivatives, lemmas, and theorems that will be used in the conversion of the system into
a fixed-point problem. In Section 3, we study the existence and uniqueness results of system (1.1), and
discuss some properties of the symmetric cases of system (1.1). In Section 4, we investigate the UH
stability of the solutions of system (1.1) and its symmetric cases. To illustrate our findings, Section 5
exhibits numerical examples with four cases and provides graphs of the solutions for all cases. We end
the paper with concluding remarks.
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2. Basic definitions and essential interpretations

In this section, the background definitions, lemmas, and theorems are given [8, 27, 30, 37].

Definition 2.1. Let 0 < p < 1, ς be a continuous function on [a, b], and w be an increasing function
on (a, b) such that w′(ι) , 0 for all ι ∈ (a, b). Then

(1) The w-Riemann-Liouville fractional integral for ς of order p is given as

Ipa+,w(ι)ς(ι) =
1
Γ(p)

∫ ι

a
w′(s)(w(ι) − w(s))p−1ς(s)ds.

(2) The Riemann-Liouville fractional derivative for ς of order p with respect to w is given as

Dp
a+,w(ι)ς(ι) =

(
1

w′(ι)
d
dι

)
I1−p
a+,w(ι)ς(ι).

Definition 2.2. Let 0 < p < 1, 0 ≤ α ≤ 1, ι > a, and w be an increasing function on (a, b) such that
w′(ι) , 0 for all ι ∈ (a, b). Then, the w−Hilfer fractional derivative of ς of order p and type α is defined
by

Dp,α
a+,w(ι)ς(ι) = Iα(1−p)

a+,w(ι)

(
1

w′(ι)
d
dι

)
I(1−α)(1−p)
a+,w(ι) ς(ι). (2.1)

Clearly,
Dp,α

a+,w(ι)ς(ι) = Iγ−p
a+,w(ι) D

γ
a+,w(ι)ς(ι),

where γ = p + α(1 − p).

Lemma 2.3. For p, η, δ > 0, we have

(1) Ipa+,w(ι) I
η
a+,w(ι)ς(ι) = Ip+ηa+,w(ι)ς(ι).

(2) Ipa+,w(ι)(w(ι) − w(a))δ−1 =
Γ(δ)
Γ(p+δ) (w(ι) − w(a))p+δ−1.

Note that Dγa+,w(ι)(w(ι) − w(a))γ−1 = 0, where γ = p + α(1 − p).

Lemma 2.4. Let ς ∈ C(J,R), p ∈ (0, 1) and α ∈ [0, 1]. For γ = p + α(1 − p), we have

Ipa+,w(ι) D
p
a+,w(ι)ς(ι) = ς(ι) −

(w(ι) − w(a))γ−1

Γ(γ)
I1−γa+,w(ι)ς(ι).

Lemma 2.5. For each 0 < p < 1, 0 ≤ α ≤ 1, γ = p + α(1 − p), and ς ∈ Cγ1−γ;w(ι)(J,R), we have

Dp,α
a+,w(ι)I

p
a+,w(ι)ς(ι) = ς(ι), Iγa+,w(ι)D

γ
a+,w(ι)ς(ι) = Ipa+,w(ι) D

p,α
a+,w(ι)ς(ι),

and
Dγa+,w(ι)I

p
a+,w(ι)ς(ι) = Dα(1−p)

a+,w(ι)ς(ι).

Definition 2.6. (Contraction mapping) Let (X, d) be a metric space, and Q : X → X be a mapping.
Then, Q is a contraction mapping if there exists a constant 0 ≤ L < 1 such that for all ς, y ∈ X, the
following inequality holds:

d(Q(ς),Q(y)) ≤ L d(ς, y).

The constant L is referred to as the contraction constant. If L = 0, the mapping is called a strict
contraction.
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Theorem 2.7. (Banach fixed point theorem) Let (X, d) be a complete metric space, and Q : X → X be
a contraction mapping. Then, the mapping Q has a unique fixed point in X.

Definition 2.8. Let a < b be real numbers, and X be the space of all continuous function h on [a, b].
The set Ω ⊂ X is said to be

(1) a uniformly bounded set if there exists M > 0 with ∥h∥ = supι∈[a,b] |h(ι)| < M, for every h ∈ Ω.
(2) an equicontinuous set if for every ε > 0 there exists δ > 0 such that

|ι − ι∗| < δ =⇒ |h(ι) − h(ι∗)| < ε,

for all h ∈ Ω and for any ι, ι∗ ∈ [a, b] .

Theorem 2.9. (Arzelá-Ascoli’s theorem) Let a < b be real numbers, and X be the space of all
continuous function on [a, b]. The set Ω ⊂ X is relatively compact if it is a uniformly bounded and
equicontinuous set.

Theorem 2.10. (Schauder’s fixed-point theorem) Let X be a Banach space and Ω ⊂ X be a non-empty,
compact, convex subset. If Q : Ω → Ω is a continuous mapping, and Q(Ω) is a relatively compact
subset of X, then Q has at least one fixed point in Ω.

3. Main results

In this section, we establish and develop sufficient conditions for the existence and uniqueness as
well as UH stability results for the system (1.1). We begin by stating an equivalent integrals for the
considered system.

3.1. Equivalent integral equation

In the following theorem, we convert system (1.1) into equivalent integral equations.

Theorem 3.1. Let 0 < pi < 1, 0 ≤ α ≤ 1, and γi = pi + α(1 − pi), i = 1, 2, ...., n. If
Fi(·, ς1(·), ς2(·), ......, ςn(·)) ∈ C1−γ,w(J,R), and ςi ∈ C

γi
1−γi,w

(J,R), then ςi satisfies system (1.1) if and
only if ςi is given by:

ςi(ι) =
(

w(ι) − w(a)
w(b) − w(a)

)γi−1 [
υi − I

pi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), (3.1)

where

Ipi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b) =

1
Γ(pi)

∫ b

a
w′(s)(w(b) − w(s))pi−1Fi(s, ς1(s), .., ςn(s))ds,

and

Ipi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) =

1
Γ(pi)

∫ ι

a
w′(s)(w(ι) − w(s))pi−1Fi(s, ς1(s), ...., ςn(s))ds.
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Proof. Let ςi ∈ C
γi
1−γi,w

(J,R) be a solution of system (1.1). We prove that ςi is also a solution of Eq (3.1).
From the definition of Cγi

1−γi,w
(J,R), and using the definition 2.2, we have

I1−γi
a+,w(ι)ςi(ι) ∈ C1−γi,w(J,R) and Dγi

a+,w(ι)ςi(ι) = D1
a+,w(ι)I

1−γi
a+,w(ι)ςi(ι) ∈ C1−γi,w(J,R).

By the definition of the space Cn
1−γi,w

(J,R), it follows that

I1−γi
a+,w(ι)ςi(ι) ∈ C1

1−γi,w(J,R). (3.2)

Using Lemma 2.4, with p = γi, we obtain(
Iγi
a+,w(ι) D

γi
a+,w(ι)ςi

)
(ι) = ςi(ι) −

(w(ι) − w(a))γi−1

Γ(γi)
lim
ι→a

(
I1−γi
a+,w(ι)ςi

)
(ι). (3.3)

By hypothesis
(
ςi ∈ C

γi
1−γi,w

(J,R)
)

and Lemma 2.5, we have(
Iγi
a+,w(ι) D

γi
a+,w(ι)ςi

)
(ι) = Ipi

a+,w(ι) D
pi,α
a+,w(ι)ςi(ι).

Since Dpi,α
a+,w(ι)ςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), we have(

Iγi
a+,w(ι) D

γi
a+,w(ι)ςi

)
(ι) = Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)). (3.4)

Comparing Eqs (3.3) and (3.4), we see that

ςi(ι) =
(w(ι) − w(a))γi−1

Γ(γi)
lim
ι→a

(
I1−γi
a+,w(ι)ςi

)
(ι) + Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)). (3.5)

Replacing ι with b in Eq (3.5), we get

ςi(b) =
(w(b) − w(a))γi−1

Γ(γi)
lim
ι→a

(
I1−γi
a+,w(ι)ςi

)
(ι) + Ipi

a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).

Using the terminal condition ςi(b) = υi, we get

(w(b) − w(a))γi−1

Γ(γi)
lim
ι→a

(
I1−γi
a+,w(ι)ςi

)
(ι) + Ipi

a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) = υi.

Thus,

lim
ι→a

(
I1−γi
a+,w(ι)ςi

)
(ι) =

Γ(γi)
(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
. (3.6)

Putting Eq (3.6) into Eq (3.5), we get

ςi(ι) =
(

(w(ι) − w(a))
(w(b) − w(a))

)γi−1 [
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
+Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).

Hence, ςi(ι) satisfies Eq (3.1).
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Conversely, let ςi ∈ C
γi
1−γi,w

(J,R) be functions satisfying (3.1). We prove that ςi is also a solution of
the system (1.1). Applying the operator Dγi

a+,w(ι) on both sides of Eq (3.1), we get

Dγi
a+,w(ι)ςi(ι) = D

γi
a+,w(ι)

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1 [
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
+Dγi

a+,w(ι)I
pi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)). (3.7)

By Lemma 2.3, we have Dγi
a+,w(ι)(w(ι) − w(a))γi−1 = 0, and hence Eq (3.7) becomes

Dγi
a+,w(ι)ςi(ι) = D

γi
a+,w(ι)I

pi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)). (3.8)

Then, from Lemma 2.5, the right side of Eq (3.8) becomes

Dγi
a+,w(ι)I

pi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) = Dα(1−pi)

a+,w(ι) Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).

Thus, Eq (3.8) becomes

Dγi
a+,w(ι)ςi(ι) = D

α(1−pi)
a+,w(ι) Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).

From Eq (3.2), we have Dγi
a+,w(ι)ςi(ι) ∈ C1−γi,w(J,R), and hence, Eq (3.8) implies

Dγi
a+,w(ι)ςi(ι) = D

α(1−pi)
a+,w(ι) Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) ∈ C1−γi,w(J,R). (3.9)

As Fi(·, ς1(·), ς2(·), ......, ςn(·)) ∈ C1−γi,w(J,R), it follows that

I1−α(1−pi)
a+,w(ι) Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) ∈ C1−γi,w(J,R). (3.10)

From Eqs (3.9) and (3.10) and the definition of the space Cn
1−γi,w

(J,R), we get

I1−α(1−pi)
a+,w(ι) Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) ∈ C1

1−γi,w(J,R).

Now, by applying the operator Iα(1−pi)
a+,w(ι) on both sides of Eq (3.9) and using Lemma 2.4, we have

Iα(1−pi)
a+,w(ι) D

γi
a+,w(ι)ςi(ι) = ςi(ι) −

I1−α(1−pi)
a+,w(ι) Fi(a, ς1(a), ς2(a), ......, ςn(a))

Γ(α(1 − pi))
(w(ι) − w(a))α(1−pi)−1

= Dpi,α
a+,w(ι)ςi(ι)

= Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)). (3.11)

From Eq (2.1), Eq (3.11) reduces to

Dpi,α
a+,w(ι)ςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).

Thus, Eq (1.1) holds. □

Let Q : B → B be an operator defined by Q = (Q1,Q2, .....,Qn), where

Qi (ς1, ς2, ...., ςn) (ι) =
(

w(ι) − w(a)
w(b) − w(a)

)γi−1 [
υi − I

pi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)).
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3.2. Existence result

Theorem 3.2. Assume both (Hy1) and (Hy2) hold. For r = 1, 2, ....., n, let

Pr =

n∑
i=1

2(w(b) − w(a))1−γiφr
Fi

Γ(γr)
Γ(pi + γr)

(w(b) − w(a))pi+γr−1,

and

ζr =

n∑
i=1

2(w(b) − w(a))1−γiκr
Fi

Γ(γr)
Γ(pi + γr)

(w(b) − w(a))pi+γr−1.

If ζ = max
r
{ζr} < 1 and P = max

r
{Pr} < 1, then system (1.1) has at least one solution.

Proof. Let β ≥ 1
1−P

∑n
i=1

|υi |

(w(b)−w(a))γi−1 , and define a closed ball Sβ as

Sβ =
{
(ς1, ς2, ....ςn) ∈ B : ∥(ς1, ς2, ....ςn)∥B ≤ β

}
.

To apply Schauder’s fixed point theorem, we divide the proof into the following steps.
Step 1: Q

(
Sβ

)
⊂ Sβ. For any (ς1, ς2, ....ςn) ∈ Sβ, we have

∥Q (ς1, ς2, ....ςn)∥B ≤
n∑

i=1

∥Qi (ς1, ς2, ....ςn)∥C1−γi ,w
. (3.12)

From (Hy2), we get

|Qi (ς1, ς2, ....ςn) (ι)| ≤
(

w(ι) − w(a)
w(b) − w(a)

)γi−1 [
|υi| + I

pi
a+,w(b) |Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))|

]
+Ipi

a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

≤

(
w(ι) − w(a)
w(b) − w(a)

)γi−1
|υi| + I

pi
a+,w(b)

 n∑
j=1

φ
j
Fi

∣∣∣ς j(b)
∣∣∣


+Ipi
a+,w(ι)

 n∑
j=1

φ
j
Fi

∣∣∣ς j(ι)
∣∣∣ . (3.13)

Taking into consideration that (ς1, ς2, ....ςn) ∈ B, we have

Ipi
a+,w(ι)

 n∑
j=1

φF j
i

∣∣∣ς j(ι)
∣∣∣ = n∑

j=1

Ipi
a+,w(ι)φ

j
Fi

(w(ι) − w(a))γ j−1
∣∣∣∣(w(ι) − w(a))1−γ j

(
ς j(ι)

)∣∣∣∣
≤

n∑
j=1

φ
j
F1

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j

∥∥∥
C1−γ j ,w

. (3.14)

From (3.13) and (3.14), it follows that∣∣∣(w(ι) − w(a))1−γiQi (ς1, ς2, ....ςn) (ι)
∣∣∣

≤ (w(b) − w(a))1−γi

|υi| +

n∑
j=1

φ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j

∥∥∥
C1−γ j ,w
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+(w(ι) − w(a))1−γi

n∑
j=1

φ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j

∥∥∥
C1−γ j ,w

.

Since γi < 1, then 1 − γi > 0, and hence (w(ι) − w(a))1−γi < (w(b) − w(a))1−γi . Then, we get

∥Qi (ς1, ς2, ....ςn)∥C1−γi ,w
≤ |υi| (w(b) − w(a))1−γi + 2(w(b) − w(a))1−γi

×

n∑
j=1

φ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j

∥∥∥
C1−γ j ,w

.

Thus,

∥Q (ς1, ς2, ....ςn)∥B ≤
n∑

i=1

∥Qi((ς1, ς2, ....ςn)∥C1−γi ,w

≤

n∑
i=1

|υi| (w(b) − w(a))1−γi +

n∑
i=1

2(w(b) − w(a))1−γi

×

n∑
j=1

φ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j

∥∥∥
C1−γ j ,w

≤

n∑
i=1

|υi| (w(b) − w(a))1−γi + P ∥(ς1, ς2, ....ςn)∥B ≤ β.

Hence, Q
(
Sβ

)
⊂ Sβ.

Step 2: Q is continuous. Let (ς1k, ς2k, ...., ςnk) be a sequence in Sβ such that (ς1k, ς2k, ...., ςnk) →
(ς1, ς2, ...., ςn) in Sβ as k → ∞. Then, we have

∥Q(ς1k, ς2k, ...., ςnk)(ι) − Q(ς1, ς2, ...., ςn)(ι)∥B

≤

n∑
i=1

∥(Qi(ς1k, ς2k, ...., ςnk) − Qi(ς1, ς2, ...., ςn)) (ι)∥C1−γi ,w

≤

n∑
i=1

(w(b) − w(a))1−γiIpi
a+,w(ι) |Fi(ι, ς1k(ι), ς2k(ι), ...., ςnk(ι))(b) − Fi(ι, ς1(ι), ς2(ι), ...., ςn(ι))(b)|

+

n∑
i=1

(w(ι) − w(a))1−γiIpi
a+,w(ι) |Fi(ι, ς1k(ι), ς2k(ι), ...., ςnk(ι)) − Fi(ι, ς1(ι), ς2(ι), ...., ςn(ι))|

≤

n∑
i=1

2(w(b) − w(a))1−γi

n∑
j=1

κi
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς jk − ς j

∥∥∥
C1−γ j ,w

≤ ζ ∥(ς1k, ς2k, ...., ςnk) − (ς1, ς2, ....ςn)∥B .

This implies that ∥Q(ς1k, ς2k, ...., ςnk) − Q(ς1, ς2, ...., ςn)∥B → 0 as k → ∞. So, Q is continuous.
Step 3: Q

(
Sβ

)
is equicontinuous.

For ι1, ι2 ∈ J with ι1 < ι2, and for any (ς1, ς2, ...., ςn) ∈ Sβ, we have
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|Q(ς1, ς2, ...., ςn)(ι2) − Q(ς1, ς2, ...., ςn)(ι1)|

≤

n∑
i=1

|Qi(ς1, ς2, ...., ςn)(ι2) − Qi(ς1, ς2, ...., ςn)(ι1)|

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

×
[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

∣∣∣Ipi
a+,w(ι2)Fi(ι2, ς1, ς2, ...., ςn) − Ip1

a+,w(ι1)Fi(ι1, ς1, ς2, ...., ςn)
∣∣∣ .

Since Fi(·, ς1(·), ...., ςn(·)) are continuous on J, there exist ξFi ∈ R such that

|Fi(·, ς1(·), ...., ς1(·))| ≤ ξFi .

Hence,

|Q(ς1, ς2, ...., ςn)(ι2) − Q(ς1, ς2, ...., ςn)(ι1)|

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

∣∣∣Ipi
a+,w(ι2)Fi(ι2, ς1(ι2), ς2(ι2), ...., ςn(ι2)) − Ipi

a+,w(ι1)Fi(ι1, ς1(ι1), ς2(ι1), ...., ςn(ι1))
∣∣∣

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

1
Γ(pi)

∫ ι1

a
w′(ι)

[
(w(ι2) − w(ι))pi−1 − (w(ι1) − w(ι))pi−1

]
|Fi(ι, ς1(ι), ς2(ι), ...., ςn(ι))| dι

+

n∑
i=1

1
Γ(pi)

∫ ι2

ι1

w′(ι)(w(ι2) − w(ι))pi−1 |Fi(ι, ς1(ι), ς2(ι), ...., ςn(ι))| dι

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

ξFi

Γ(pi)

∫ ι1

a
w′(ι)

[
(w(ι2) − w(ι))pi−1 − (w(ι1) − w(ι))pi−1

]
dι

+

n∑
i=1

ξFi

Γ(pi)

∫ ι2

ι1

w′(ι)(w(ι2) − w(ι))pi−1dι

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

ξFi

Γ(pi + 1)
[
(w(ι2) − w(a))pi − (w(ι1) − w(a))pi

]
. (3.15)

Thus, we get
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|Q(ς1, ς2, ...., ςn)(ι2) − Q(ς1, ς2, ...., ςn)(ι1)|

≤

n∑
i=1

(w(ι2) − w(a))γi−1
− (w(ι1) − w(a))γi−1

(w(b) − w(a))γi−1

[
υi − I

pi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))(b)

]
+

n∑
i=1

2ξFi

Γ(pi + 1)
[
(w(ι2) − w(a))pi − (w(ι1) − w(a))pi

]
.

Since w(ι) is an increasing function, then

|Q(ς1, ς2, ...., ςn)(ι2) − Q(ς1, ς2, ...., ςn)(ι1)| → 0, as ι2 → ι1.

This implies that Q
(
Sβ

)
is equicontinuous. Since Q

(
Sβ

)
is also uniformly bounded, then by Arzelá-

Ascoli’s theorem, it is relatively compact. By Theorem 3.1, Q has a fixed point. Consequently,
system (1.1) possesses at least one solution. □

3.3. Uniqueness result

Theorem 3.3. Suppose that hypothesis (Hy1) holds. For r = 1, 2, ..., n, let

ζr =

n∑
i=1

2(w(b) − w(a))1−γiκr
Fi

Γ(γr)
Γ(pi + γr)

(w(b) − w(a))pi+γr−1.

If ζ = max
r
{ζr} < 1, then system (1.1) has a unique solution.

Proof. To show that system (1.1) has a unique solution, we show that the operator Q is a contraction,
where Φ as defined in Theorem 3.1.

For all ι ∈ J and (ς1, ς2, ...., ςn), (ς∗1, ς
∗
2, ...., ς

∗
n) ∈ B, we have

∥∥∥Q(ς1, ς2, ...., ςn) − Q(ς∗1, ς
∗
2, ...., ς

∗
n)
∥∥∥
B
≤

n∑
i=1

∥∥∥Qi(ς1, ς2, ...., ςn) − Qi(ς∗1, ς
∗
2, ...., ς

∗
n)
∥∥∥
C1−γi ,w

≤

n∑
i=1

(w(b) − w(a))1−γiIpi
a+,w(b)

∣∣∣Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) − Fi(ι, ς∗1(ι), ς∗2(ι), ...., ς∗n(ι))
∣∣∣

+

n∑
i=1

(w(ι) − w(a))1−γiIpi
a+,w(ι)

∣∣∣Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) − Fi(ι, ς∗1(ι), ς∗2(ι), ...., ς∗n(ι))
∣∣∣

≤

n∑
i=1

2(w(b) − w(a))1−γi

 n∑
j=1

κ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−1
∥∥∥ς j − ς

∗
j

∥∥∥
C1−γ j ,w


≤ ζ

∥∥∥(ς1, ς2, ...., ςn) − (ς∗1, ς
∗
2, ...., ς

∗
n)
∥∥∥
B
.

Since ζ < 1, the operator Q is a contraction map. Thus, by Theorem 2.7, system (1.1) has a unique
solution. □

3.4. Symmetric cases of system (1.1)

In this subsection, we consider some symmetric cases of system (1.1):
Case1: w(ι) = ι. In this case, system (1.1) reduces to a system of Hilfer fractional equations in the
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following form {
Dpi,α

a+,ιςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), ι ∈ J,

ςi(b) = υi ∈ R, i = 1, 2, ...., n,
(3.16)

where Dpi,α
a+,ι represents the Hilfer fractional derivative of order pi [23]. Let B1 =

∏n
i=1 C1−γi,ι (J,R) ,

where C1−γi,ι is the weighted space defined as in the notation part and equipped with the norm

∥ςi∥1−γi
= max

ι∈J

∣∣∣(ι − a)1−γiςi(ι)
∣∣∣ . (3.17)

Theorems 3.2 and 3.3 imply the following corollary.

Corollary 3.4. Assume that both (Hy1) and (Hy2) hold. For 1 ≤ r ≤ n, let

P⋆r =

n∑
i=1

2(b − a)γi−1φr
Fi

Γ(γr)
Γ(pi + γr)

(b − a)pi+γr−1, (3.18)

and

ζ⋆r =

n∑
i=1

2(b − a)γi−1κr
Fi

Γ(γr)
Γ(pi + γr)

(b − a)pi+γr−1. (3.19)

If P⋆ = max
r

{
P⋆r

}
< 1, and ζ⋆ = max

r
{ζ⋆r } < 1, then system (3.16) has at least one solution

(ς1, ς2, ...., ςn) ∈ B1, where ςi is given by

ςi(ι) =
(ι − a)γi−1

(b − a)γi−1

[
υi − I

pi
a+,bFi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
+Ipi

a+,ιFi(ι, ς1(ι), ς2(ι), ......, ςn(ι)),

where

Ipi
a+,bFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ b

a
(b − s)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds,

and

Ipi
a+,ιFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ ι

a
(ι − s)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds.

Case 2: w(ι) = log ι. In this case, system (1.1) has the form{
Dpi,α

1+,log ιςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), ι ∈ J, a = 1,
ςi(b) = υi ∈ R, i = 1, 2, ...., n,

(3.20)

where, Dpi,α

1+,log ι is the Hilfer-Hadamard fractional derivative of order pi [22, 32]. Let B2 =∏n
i=1 C1−γi,log ι (J,R) , where C1−γi,log ι is equipped with the norm

∥ςi∥1−γi,log ι = max
ι∈J

∣∣∣(log ι)1−γiςi(ι)
∣∣∣ . (3.21)

Theorems 3.2 and 3.3 then imply the following corollary.
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Corollary 3.5. Assume that both (Hy1) and (Hy2) hold. For 1 ≤ r ≤ n, let

P∗∗r =

n∑
i=1

2
(
log ι

)γi−1 φr
Fi

Γ(γr)
Γ(pi + γr)

(
log ι

)pi+γr−1 , (3.22)

and

ζ∗∗j = 2
(
log ι

)γi−1
n∑

j=1

κ
j
Fi

Γ(γ j)
Γ(pi + γ j)

(log ι)pi+γ j−1. (3.23)

If P∗∗ = max
r

{
P∗∗r

}
< 1, and ζ∗∗ = max

r
{ζ∗∗r } < 1, then, system (3.20) has at least one solution

(ς1, ς2, ...., ςn) ∈ B2, where ςi is given by

ςi(ι) =
(log ι)γi−1

(log b)γi−1

[
υi − I

pi
1+,log bFi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
+Ipi

1+,log ιFi(ι, ς1(ι), ς2(ι), ......, ςn(ι)),

where

Ipi
1+,log bFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ b

1

1
s

(log
b
s

)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds,

and

Ipi
1+,log ιFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ ι

1

1
s

(log
ι

s
)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds.

Case 3: w(ι) = ιq, where q > 0. In this case, system (1.1) becomes a system of Hilfer-Katugampola in
the following form. {

Dpi,α
a+,ιqςi(ι) = Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)), ι ∈ J, a > 0,

ςi(b) = υi ∈ R, i = 1, 2, ...., n,
(3.24)

where Dpi,α
a+,ιp is the Hilfer-Katugampola fractional derivative of order pi [26, 30]. Let B3 =∏n

i=1 C1−γi,ιq (J,R) , where C1−γi,ιq is the weighted space equipped with the norm

∥ςi∥1−γi,ιq = max
ι∈J

∣∣∣(ιq − aq)1−γiςi(ι)
∣∣∣ . (3.25)

Theorems 3.2 and 3.3 imply the following corollary.

Corollary 3.6. Assume that (Hy1) and (Hy2) hold. For 1 ≤ r ≤ n, let

P∗∗∗r =

n∑
i=1

2(bq − aq)γi−1φr
Fi

Γ(γr)
Γ(pi + γr)

(bq − aq)pi+γr−1, (3.26)

and

ζ∗∗∗r =

n∑
i=1

2(bq − aq)γi−1κr
Fi

Γ(γr)
Γ(pi + γr)

(bq − aq)pi+γr−1. (3.27)
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If P∗∗∗ = max
r

{
P∗∗∗r

}
< 1, and ζ∗∗∗ = max

r
{ζ∗∗∗r } < 1, then system (3.20) has at least one solution

(ς1, ς2, ...., ςn) ∈ B3, where ςi is given by

ςi(ι) =
( ι

q−aq

q )γi−1

(bq−aq

q )γi−1

[
υi − I

pi
a+,bqFi(ι, ς1(ι), ς2(ι), ......, ςn(ι))

]
+Ipi

a+,ιqFi(ι, ς1(ι), ς2(ι), ......, ςn(ι)),

where

Ipi
a+,bqFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ b

a
qsq−1(bq − sq)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds,

and

Ipi
a+,ιqFi(ι, ς1(ι), ς2(ι), ...., ςn(ι)) =

1
Γ(pi)

∫ ι

a
qsq−1(ιq − sq)pi−1Fi(s, ς1(s), ς2(s), ...., ςn(s))ds.

Remark 3.7. There are many symmetric cases of the function w and parameter α that result in
symmetric systems, some of which have already been discussed in the literature. For example.

1) For w(ι) = ι and α = 0, system (1.1) is equivalent to the Riemann-Liouville system [27].
2) For w(ι) = ι and α = 1, system (1.1) is equivalent to the Caputo system [27].
3) For w(ι) = ιq and α = 1, system (1.1) is equivalent to the Caputo-Katugampola system [10].
4) For w(ι) = ιq and α = 0, system (1.1) is equivalent to the Katugampola system [26].
5) For w(ι) = ι and α ∈ (0, 1), system (1.1) is equivalent to the Hilfer system [23].
6) For w(ι) = ιq, q > 0 and α ∈ (0, 1) system (1.1) is equivalent to the Hilfer-Katugampola

system [30].
7) For w(ι) = log ι and α ∈ (0, 1), system (1.1) is equivalent to the Hilfer-Hadamard system [32].
8) For w(ι) = log ι and α = 0), system (1.1) is equivalent to the Hadamard system [22].
9) For w(ι) = log ι and α = 1, system (1.1) is equivalent to the Caputo-Hadamard system [25].

4. Ulam-Hyers stability analysis

The UH stability of system (1.1) is discussed in this section. Following the notation of this paper,
we state the following definition for UH for system (1.1) [19, 33, 40].

Definition 4.1. System (1.1) is UH stable if there exists a positive constant Υ = max{Υ1,Υ2, ...,Υn}

such that for some ε = max{ε1, ε2, ..., εn} > 0 and for each solution (z1, z2, ...., zn) of system (1.1)
satisfying the following inequality∣∣∣Dpi,α

a+,w(ι)zi(ι) − Fi(ι, z1(ι), z2(ι), ......, zn(ι))
∣∣∣ ≤ εi, (4.1)

there exists a unique solution (ς1, ς2, ...., ςn) for system (1.1) such that

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤ Υε. (4.2)

Remark 4.2. The functions (z1, z2, ...., zn) are a solution of inequality (4.1) if and only if there exist
functions σi(ι) ∈ C1−γi,w, i = 1, 2, ...., n (which depends on solution zi) such that
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• |σi(ι)| ≤ εi.
• Dpi,α

a+,w(ι)zi(ι) = Fi(ι, z1(ι), z2(ι), ......, zn(ι)) + σi(ι).

Theorem 4.3. Under hypothesis (Hy1), system (1.1) is UH stable, provided that

2
κi
Fi
Γ (γi)

Γ(pi + γi)
(w(b) − w(a))pi < 1,

for all 1 ≤ i ≤ n.

Proof. Let ε = max {ε1, ε2, ...., εn} > 0 and let (z1, z2, ...., zn) ∈ B be a solution of system (1.1) satisfying
inequality (4.1), and let (ς1, ς2, ...., ςn) ∈ B be the unique solution of system (1.1). By virtue of
Theorem 3.1, we obtain

ςi(ι) = Aςi−

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

Ipi
a+,w(b)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) (4.3)

+Ipi
a+,w(ι)Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)),

where

Aςi = υi

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

, (4.4)

since, we have assumed that (z1, z2, ...., zn) ∈ B is a solution of system (1.1) satisfying the
inequality (4.1). Then, by Remark 4.2, we conclude that (z1, z2, ...., zn) satisfies the following system{

Dpi,α
a+,w(ι)zi(ι) = Fi(ι, z1(ι), z2(ι), ......, zn(ι)) + σi(ι), ι ∈ J,

zi(b) = υi ∈ R, i = 1, 2, ...., n.
(4.5)

By Theorem 3.1, the solution zi(ι) of system (4.5) is given as

zi(ι) = Azi−

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

Ipi
a+,w(b) [Fi(ι, z1(ι), z2(ι), ..., zn(ι)) + σi(ι)]

+Ipi
a+,w(ι) [Fi(ι, z1(ι), z2(ι), ..., zn(ι)) + σi(ι)] ,

where

Azi = υi

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

. (4.6)

Hence, we have

|zi(ι) − ςi(ι)|

≤
∣∣∣Azi −Aςi

∣∣∣ + (
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

Ipi
a+,w(b) |σi(ι)| + I

pi
a+,w(ι) |σi(ι)|

+

(
(w(ι) − w(a))
(w(b) − w(a))

)γi−1

Ipi
a+,w(b) |Fi(ι, z1(ι), z2(ι), ......, zn(ι)) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))|

+Ipi
a+,w(ι) |Fi(ι, z1(ι), z2(ι), ......, zn(ι)) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))| . (4.7)
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By (4.4) and (4.6), we have Azi = Aςi . Since the function w is increasing for each ι ∈ J and γi < 1
for i = 1, 2, ...n, we get (

(w(ι) − w(a))
(w(b) − w(a))

)γi−1

< 1.

Hence, Eq (4.7) becomes

|zi(ι) − ςi(ι)|
≤ Ipi

a+,w(b) |σi(ι)| + I
pi
a+,w(ι) |σi(ι)|

+Ipi
a+,w(b) |Fi(ι, z1(ι), z2(ι), ......, zn(ι)) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))|
+Ipi

a+,w(ι) |Fi(ι, z1(ι), z2(ι), ......, zn(ι)) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))| .

By the first part of Remark 4.2 and (Hy1), we get

|zi(ι) − ςi(ι)| ≤ εi
2(w(b) − w(a))pi

Γ(pi + 1)
+ 2Ipi

a+,w(b)

n∑
j=1

κ
j
Fi

∣∣∣z j(ι) − ς j(ι)
∣∣∣ .

Thus, for i = 1, we have

|z1(ι) − ς1(ι)| ≤ ε1
2(w(b) − w(a))p1

Γ(p1 + 1)
+ 2Ip1

a+,w(b)

n∑
j=1

κ
j
F1

∣∣∣z j(ι) − ς j(ι)
∣∣∣ .

Since ∥ςi∥1−γi,w = maxι∈J
∣∣∣(w(ι) − w(a))1−γiςi(ι)

∣∣∣ , and w is increasing function, then

∥z1 − ς1∥1−γ1,w ≤ ε1
2(w(b) − w(a))p1

Γ(p1 + 1)
+ 2

n∑
j=1

(w(b) − w(a))1−γ1Ip1
a+,w(ι)κ

j
F1

∣∣∣z j(ι) − ς j(ι)
∣∣∣

≤ ε1
2(w(b) − w(a))p1

Γ(p1 + 1)
+ 2

κ1
F1
Γ (γ1)

Γ(p1 + γ1)
(w(b) − w(a))p1 ∥z1 − ς1∥C1−γ1 ,w

+2
n∑

j=2

κ
j
F1
Γ
(
γ j

)
Γ(p1 + γ j)

(w(b) − w(a))p1+γ j−γ1
∥∥∥z j − ς j

∥∥∥
C1−γ j ,w

.

Hence, we have1 − 2
κ1
F1
Γ (γ1)

Γ(p1 + γ1)
(w(b) − w(a))p1

 ∥z1 − ς1∥1−γ1,w

≤ ε1
2(w(b) − w(a))p1+1−γ1

Γ(p1 + 1)
+ 2

n∑
j=2

κ
j
F1
Γ
(
γ j

)
Γ(p1 + γ j)

(w(b) − w(a))p1+γ j−γ1
∥∥∥z j − ς j

∥∥∥
C1−γ j ,w

≤ ε1
2(w(b) − w(a))p1+1−γ1

Γ(p1 + 1)
+ 2ε1

n∑
j=2

κ
j
F1
Γ
(
γ j

)
Γ(p1 + γ j)

(w(b) − w(a))p1+γ j−γ1
∥∥∥z j − ς j

∥∥∥
C1−γ j ,w

.

Note that the positive values of the Gamma function on (0, 1] are necessary to obtain the last inequality.
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Let c1 = 1 − 2
κ1
F1
Γ(γ1)

Γ(p1+γ1) (w(b) − w(a))p1 , and

Υ1 =
2(w(b) − w(a))p1

Γ(p1 + 1)
+ 2

n∑
j=2

κ
j
F1
Γ
(
γ j

)
Γ(p1 + γ j)

(w(b) − w(a))p1+γ j−γ1
∥∥∥z j − ς j

∥∥∥
C1−γ j ,w

.

If 2
κ1
F1
Γ(γ1)

Γ(p1+γ1) (w(b) − w(a))p1 < 1, then c1 > 0. Then, we obtain

∥z1 − ς1∥1−γ1,w ≤
ε1

c1
Υ1.

Similarly, for each i = 2, 3, .., n, provided that 2
κi
Fi
Γ(γi)

Γ(pi+γi)
(w(b) − w(a))pi < 1, we have

∥zi − ςi∥1−γi,w ≤
εi

ci
Υi,

where ci = 1 − 2
κi
Fi
Γ(γi)

Γ(pi+γi)
(w(b) − w(a))pi , and

Υi =
2(w(b) − w(a))pi

Γ(pi + 1)
+

n∑
j,i

κ
j
Fi
Γ
(
γ j

)
Γ(pi + γ j)

(w(b) − w(a))pi+γ j−γi
∥∥∥z j − ς j

∥∥∥
C1−γ j ,w

.

Therefore, if 2
κi
Fi
Γ(γi)

Γ(pi+γi)
(w(b) − w(a))pi < 1, i = 1, 2, ..n, then

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤
n∑

i=1

∥zi − ςi∥1−γi,w ≤

n∑
i=1

εi

ci
Υi ≤ εΥ,

where ε = max
i
{εi} and Υ =

∑n
i=1
Υi
ci
. By Definition 4.1, the solution of system (1.1) is UH stable. □

4.1. Ulam-Hyers stability of symmetric cases

According to Theorem 4.3, we can easily prove the UH stability of symmetric systems as follows.

(1) Under hypothesis (Hy1), system (3.16) is UH stable, provided that

2
κi
Fi
Γ (γi)

Γ(pi + γi)
(b − a)pi < 1,

for all 1 ≤ i ≤ n.
(2) Under hypothesis (Hy1), system (3.20) is UH stable, provided that

2
κi
Fi
Γ (γi)

Γ(pi + γi)
(log

b
a

)pi < 1,

for all 1 ≤ i ≤ n.
(3) Under the hypothesis (Hy1), the system (3.24) is UH stable, provided that

2
κi
Fi
Γ (γi)

Γ(pi + γi)
(bq − aq)pi < 1,

for all 1 ≤ i ≤ n.
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5. An example

In this section, we consider an example of a system of w-Hilfer FDEs with different functions w.

Example 5.1. We study the system D
1
2 ,

1
2

0,w(ι)ςi(ι) = 1
18(52ι)

[
1+

∑n
j=1|ς j(ι)|

] , ι ∈ (0, 1] ,

ςi(1) = 3i
2 , i = 1, 2, ..., n,

(5.1)

for the cases w(ι) = eι,w(ι) = ι,w(ι) = log ι, and w(ι) = ιq.
Here, pi =

1
2 , αi =

1
2 , γi =

3
4 , a = 0, b = 1, υi =

3i
2 , and

Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) =
1

18(52ι)
[
1 +

∑n
j=1

∣∣∣ς j(ι)
∣∣∣] .

Clearly, Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) are continuous functions on [0, 1] × Rn and satisfy

|Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))| ≤
1
18
,

and

|Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι)) − Fi(ι, z1(ι), z1(ι), ......, zn(ι))| ≤
1
18

n∑
j=1

∣∣∣ς j − z j

∣∣∣ ,
for all (ς1, ς2, ....ςn) , (z1, z2, ....zn) , i.e., φ j

Fi
= κ

j
Fi
= 1

18 .

We fix the number of equations to be n = 5, and investigate the following cases:
Case 1: w(ι) = eι. In this case, we have P = max{P1, ...,P5} ≃ 0.75 < 1, and ζ = max {ζ1, ..., ζ5} =

0.75 < 1, where Pr and ζr are given in Theorems 3.2 and 3.3, respectively.
Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has a unique

solution (ς1, ς2, ..., ς5) . This solution has the form

ςi(ι) =
(eι − 1)

−1
4

(e − 1)
−1
4

3i
2
−

1
Γ(1

2 )

∫ 1

0

es(e − es)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds


+

1
Γ( 1

2 )

∫ ι

0

es(eι − es)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds.

On the other hand, let ι ∈ (0, 1] and εi > 0, i = 1, 2, ..., n satisfying the following inequality∣∣∣∣D 1
2 ,

1
2

0+,eιςi(ι) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))
∣∣∣∣ ≤ εi.

Then, system (1.1) is UH stable with

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤
n∑

i=1

εi

ci
Υi,
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where

Υi =
2(eι − 1)

1
2

Γ(1
2 + 1)

+

n∑
j,i

κ
j
Fi
Γ
(
γ j

)
Γ( 1

2 + γ j)
(e − 1)

1
2+γ j−γi > 0,

and

ci = 1 − 2
1
18Γ

(
3
4

)
Γ(1

2 +
3
4 )

(e − 1)
1
2 = 0.8 > 0.

Symmetric cases:
Case 2: w(ι) = ι. In this case, we have P∗ = max{P∗1, ...,P

∗
5} ≃ 0.37 < 1, and ζ∗ = maxι∈J

{
ζ∗1 , ..., ζ

∗
5

}
=

0.37 < 1, where P∗r and ζ∗r are given in (3.18) and (3.19), respectively.
Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has at least

one solution (ς1, ς2, ..., ς5) given by

ςi(ι) = ι
−1
4

3i
2
−

1
Γ(1

2 )

∫ 1

0

(1 − s)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds


+

1
Γ( 1

2 )

∫ ι

0

(ι − s)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds. (5.2)

On the other hand, let ι ∈ (0, 1] and εi > 0, i = 1, 2, ..., n, satisfying the following inequality,∣∣∣∣D 1
2 ,

1
2

0+,ιςi(ι) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))
∣∣∣∣ ≤ εi.

Then, system (3.16) is UH stable with

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤
n∑

i=1

εi

ci
Υi,

where

Υi =
2

Γ(1
2 + 1)

+

n∑
j,i

κ
j
Fi
Γ
(
γ j

)
Γ( 1

2 + γ j)
> 0,

and

ci = 1 − 2
1

18Γ
(

3
4

)
Γ( 1

2 +
3
4 )
= 0.9 > 0.

Case 3: w(ι) = log ι. For this case, we need to change the interval J, as the function w is not defined
on (0, 1]. So, in this case, only a and b will be changed to be a = 1, b = 2, P∗∗ = max{P∗∗1 , ...,P

∗∗
5 } ≃

0.75 < 1, and ζ∗∗ = max
{
ζ∗∗1 , ..., ζ

∗∗
5

}
= 0.76 < 1, where P∗∗r and ζ∗∗r are defined in (3.22) and (3.23),

respectively. Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has
at least one solution (ς1, ς2, ..., ς5) given by

ςi(ι) =
(log ι)

−1
4

(log 2)
−1
4

3i
2
−

1
Γ( 1

2 )

∫ 2

1

s−1(log 2 − log s)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds


+

1
Γ(1

2 )

∫ ι

1

s−1(log ι − log s)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds. (5.3)
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On the other hand, let ι ∈ (1, 2] and εi > 0, i = 1, 2, ..., n, satisfying the following inequality.∣∣∣∣D 1
2 ,

1
2

0+,log ιςi(ι) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))
∣∣∣∣ ≤ εi.

Then, system (3.20) is UH stable with

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤
n∑

i=1

εi

ci
Υi,

where

Υi =
2(log 2 − log 1)

1
2

Γ(1
2 + 1)

+

n∑
j,i

κ
j
Fi
Γ
(
γ j

)
Γ( 1

2 + γ j)
(log 2 − log 1)

1
2+γ j−γi > 0,

and

ci = 1 − 2
1
18Γ

(
3
4

)
Γ(1

2 +
3
4 )

(log 2 − log 1)
1
2 = 0.9 > 0.

Case 4: w(ι) = ιq, q > 0. We also consider this case on (1, 2], even though we can consider the
system on [0, 1], where it will be generalizing case 2. In this case, we have P = max{P∗∗∗1 , ..,P∗∗∗5 } ≃

0.75 < 1, and ζ = max
{
ζ∗∗∗1 , .., ζ∗∗∗5

}
= 0.75 < 1, where P∗∗∗r and ζ∗∗∗r are defined in (3.26) and (3.27),

respectively. Hence, all conditions in Theorem 3.2 are satisfied. Thus, the system has at least one
solution (ς1, ς2, ..., ςn) given by

ςi(ι) =
(ιq − 1)

−1
4

(2q − 1)
−1
4

3i
2
−

1
Γ( 1

2 )

∫ 2

1

qsq−1(2q − sq)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds


+

1
Γ(1

2 )

∫ ι

1

qsq−1(ιq − sq)
−1
2

18(52s)
[
1 +

∑5
j=1

∣∣∣ς j(s)
∣∣∣]ds. (5.4)

Let q = 2 and εi > 0, i = 1, 2, ..., n, satisfying the following inequality.∣∣∣∣D 1
2 ,

1
2

0+,ι2ςi(ι) − Fi(ι, ς1(ι), ς2(ι), ......, ςn(ι))
∣∣∣∣ ≤ εi.

Then, system (3.24) is UH stable with

∥(z1, z2, ...., zn) − (ς1, ς2, ...., ςn)∥B ≤
n∑

i=1

εi

ci
Υi,

where

Υi =
2(22 − 1)

1
2

Γ( 1
2 + 1)

+

n∑
j,i

κ
j
Fi
Γ
(
γ j

)
Γ( 1

2 + γ j)
(22 − 1)

1
2+γ j−γi > 0,

and

ci = 1 − 2
1

18Γ
(

3
4

)
Γ( 1

2 +
3
4 )

(22 − 1)
1
2 = 0.7 > 0.
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We fix i = 2 and present the graphical presentations of solutions for the above four cases in
Figures 1, 2, 3, and 4 respectively as follows:

In Figure 1, we have presented the graphical presentation of Case I using i = 2 to investigate
the properties of the system under the Banach weighted spaces and provide insights into the system’s
response by using the weighted measurable function w(ι) = eι over the interval [0, 1]. From Figure 1,
the UH stability is obvious and the symmetry in the approximation solution also arises. Moreover,
the uniqueness of the solutions here clearly corresponds to the coupled system of two equations.
Remember, we use for graphical presentation (1.1) using i = 2.
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Figure 1. Graphical presentations of solutions for Case I.

In Figure 2, we have presented the approximate solution for the system using i = 2 to investigate
the properties of the system under the Banach weighted spaces and provide insights into the system’s
response by using the weighted measurable function w(ι) = ι over the interval [0, 1]. The graphical
illustration for the approximate solution demonstrates the symmetry in both solutions for the given
weighted measurable function. Here, we have also used (5.2) to illustrate graphs for the approximate
solution using i = 2.
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Figure 2. Graphical presentations of solutions for Case II.

In Figure 3, the approximate solutions using the weighted measurable function w(ι) = logι in
Banach weighted spaces are displayed by selecting the interval [1, 2]. We considered again (5.3)
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using i = 2 and demonstrated the approximate solutions to elaborate the behaviors of both graphs.
From the graphs, we see that, as log ι is considered, we have displayed the approximate solutions
over the interval [1, 2]. The UH stability can be observed in the graphs and the symmetry also is
understandable. There is a little bit of difference in both graphs’ behaviors is due to the reason that we
do not know the exact solution as the problem is very highly nonlinear.
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Figure 3. Graphical presentations of solutions for Case III.

In Figure 4, we have displayed the approximate solution of (5.4) using i = 2 by utilizing the weighted
measurable function w(ι) =ιq in Banach weighted spaces. The solutions for the coupled system have
been plotted over [1, 2]. From the graphs, we see the symmetric behaviors and UH stability. From
these discussions, we conclude that symmetry concepts are significant when it comes to natural laws.
Further, it is highly interesting that symmetry is the key to nature, but symmetry-breaking processes
are mostly responsible for the texture of the universe. There are many different ways that nature’s
symmetry can be obscured or disturbed. All these discussions about the symmetry in solutions of
type as mentioned above integrals will be helpful for those researchers working in physical sciences
including quantum physics, mechanics, etc.
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Figure 4. Graphical presentations of solutions for Case IV.
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6. Conclusions

In our study, we focused on exploring the existence and uniqueness of symmetric solutions for a
system of terminal FDEs in the context of weighted spaces. The specific operator we utilized was the
w-Hilfer FD, which is known for its importance in fractional calculus. To examine the existence and
uniqueness of symmetric solutions, we employed two fixed-point theorems, the Schauder and Banach
fixed-point theorems. These theorems provide the mathematical tools for establishing the existence and
uniqueness of solutions in various settings. By applying Schauder and Banach fixed-point theorems
to our system, we were able to obtain two key theoretical findings and four symmetry cases. These
findings clarify the behavior and properties of symmetric solutions in the considered Banach weighted
spaces. By mathematical analysis, we discussed two types of stability in the Ulam sense. The
investigation of terminal FDEs using the w-Hilfer FD operator in Banach weighted spaces represents
a recent and cutting-edge research direction. We believe this study contributes to the advancement of
knowledge in this particular area. Overall, our study not only addresses the challenge of examining the
existence and uniqueness of symmetric solutions, but also provides valuable insights into the dynamics
and applications of such solutions in fractal mediums. By offering a comprehensive explanation of
these processes, our research contributes to the existing literature and expands the understanding of
the real-world application of fractional calculus. In future work, we will extend these results with a
piecewise fractional operator with the concept of Atangana-Baleanu.
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