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Abstract: Cyber-physical systems (CPSs) are characterized by their integration of physical processes 

with computational and communication components. These systems are utilized in various critical 

infrastructure sectors, including energy, healthcare, transportation, and manufacturing, making them 

attractive targets for cyberattacks. Intrusion detection system (IDS) has played a pivotal role in 

identifying and mitigating cyber threats in CPS environments. Intrusion detection in secure CPSs is a 

critical component of ensuring the integrity, availability, and safety of these systems. The deep learning 

(DL) algorithm is extremely applicable for detecting cyberattacks on IDS in CPS systems. As a core 

element of network security defense, cyberattacks can change and breach the security of network 

systems, and then an objective of IDS is to identify anomalous behaviors and act properly to defend 

the network from outside attacks. Deep learning (DL) and Machine learning (ML) algorithms are 

crucial for the present IDS. We introduced an Equilibrium Optimizer with a Deep Recurrent Neural 

Networks Enabled Intrusion Detection (EODRNN-ID) technique in the Secure CPS platform. The 
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main objective of the EODRNN-ID method concentrates mostly on the detection and classification of 

intrusive actions from the platform of CPS. During the proposed EODRNN-ID method, a min-max 

normalization algorithm takes place to scale the input dataset. Besides, the EODRNN-ID method 

involves EO-based feature selection approach to choose the feature and lessen high dimensionality 

problem. For intrusion detection, the EODRNN-ID technique exploits the DRNN model. Finally, the 

hyperparameter related to the DRNN model can be tuned by the chimp optimization algorithm (COA). 

The simulation study of the EODRNN-ID methodology is verified on a benchmark data. Extensive 

results display the significant performance of the EODRNN-ID algorithm when compared to existing 

techniques. 

Keywords: smart environment; cyber-physical system; security; intrusion detection; deep learning 

Mathematics Subject Classification: 11T71, 68P25, 94A60 

 

1. Introduction 

Cyber physical system (CPS) is commonly utilized to observe and secure a physical environment 

using a set of components namely control units, physical objects, actuators, and sensors [1]. As the result 

of dreadful consequences of a CPS failure, it is more important than anything else to protect a CPS 

from dangerous attacks. In this paper, we speak about the reliability problem of a CPS aimed at 

enduring hazardous attacks over a long time without energy replacement [2]. CPS often works in a 

rough environment where energy renewal is not possible, and nodes may be captured or compromised 

at periods. As a result, the intrusion detection system (IDS) is needed to detect harmful nodes without 

unnecessarily wasting energy to extend the network lifetime. IDS designed for CPSs has attracted 

significant interest [3]. IDS were used to identify security attacks and to monitor computer systems. 

Usually, IDS were of two major types: Signature-based and Behavior-based. Signature-based IDS 

deals with the comparison of the real-time performance of the computer system in contradiction of 

identified security attacks [4]. They cannot detect unknown attacks (signatures) as they depend on 

known attack models. This is notably important for CPS as they are operating independently for a 

longer time, and therefore it is difficult to interrupt the common upgrading or patching in the field [5]. 

Contrastingly, Behavior-based systems identify intrusions by observing a system’s active 

implementation to identify suspect behavior and can identify both known and unknown attacks [6]. 

IDS, an initial layer is needed to fast assess, identify, and reply to dangerous cyber traffic. Network 

intrusion detection is vital for identifying and monitoring possible risks. Besides, there are key extreme 

data in public datasets for intrusion finding. In complex network infrastructure, managing a huge 

amount of data is another problem that these methods usually fail to solve [7]. For such reasons, 

classical IDSs based on predictable machine learning (ML) methods commonly have a few limitations, 

like poor real-time presentation and low regularization capability. In the past years, many researchers 

have been developed variations of IDS using deep learning (DL), ML, and other arithmetical 

approaches [8]. Over the years, DL methods have quickly been designed and it is largely used across 

various industries due to the continuous growth of computational capacity and much information. Both 

traditional and DL models were examined using familiar classification metrics. In multiple areas, 

involving image recognition and natural language processing (NLP), DL has created excellent 

outcomes [9]. Many researcher workers have used convolutional neural networks (CNN) effectively 
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to find cyberattacks to raise the intelligence and correctness of network intrusion detection. The major 

cause of the failure is that network traffic is not in an image data format [10]. 

We introduce an Equilibrium Optimizer with Deep Recurrent Neural Networks Enabled Intrusion 

Detection (EODRNN-ID) technique in a Secure CPS environment. In the presented EODRNN-ID 

technique, a min-max normalization algorithm takes place to scale the input dataset. Besides, the 

EODRNN-ID technique involves an EO-based feature selection approach to choose the feature and 

diminish high dimensionality problem. For intrusion detection, the EODRNN-ID technique exploits 

the DRNN model. Finally, the hyperparameter related to the DRNN model can be tuned by the Chimp 

optimization algorithm (COA). The simulation study of the EODRNN-ID model is verified on a 

benchmark ID dataset. 

2. Related works 

Almuqren et al. [11] proposed an Explainable AI Enabled Intrusion Detection Approach for 

Secured CPSs (XAIID-SCPS). This developed method especially focuses on the classification and 

intrusion detection in the CPS. In this study, a Hybrid Enhanced GSO (HEGSO) method was employed 

for the FS. In the IDS, the Improved ENN (IENN) algorithm has been applied with the Enhanced 

Fruitfly Optimizer (EFFO) method for parameter optimization. Hilal et al. [12] presented an 

imbalanced GAN (IGAN) with optimum kernel ELM (OKELM), named the IGAN-OKELM method 

for IDS in the CPS platform. Furthermore, the OKELM framework was implemented as a 

classification and an optimum parameter tuning of KELM architecture was executed through the 

applications of the sandpiper optimization (SPO) method and thus, devises the effectiveness of IDS. 

The authors [13] implemented FID-GAN, an innovative fog-based, unsupervised ID for CPSs 

employing GANs. The IDS was introduced for the fog model that makes computation efficiency nearer 

to the terminal nodes and aids in gathering low-latency necessities. Almutairi et al. [14] employed a 

Quantum Dwarf Mongoose Optimizer with an Ensemble DL Intrusion Detection (QDMO-EDLID) 

method in CPS. This algorithm is targeted for identifying the survival of intrusions by employing 

ensemble learning and FS methods. Furthermore, a Deep Autoencoder (DAE), ensemble of 

Convolution Residual Network (CRN), and Deep Belief Networks (DBNs) techniques have been 

implemented for classifying intrusion methods. 

The authors [15] presented an Optimum DBN-based distributed IDS (ODBN-IDS) for secured 

CPS platforms. The Binary Flower Pollination Algorithm (BFPA) was utilized for the FS algorithm. 

The achieved features have been employed for optimally DBNs for detecting the occurrence of 

intrusion in cloud information and generating alarms if there is an existence of intrusions. In DBN 

architecture, the Equilibrium Optimizer Algorithm (EOA) could be employed for finetuning the 

hyperparameter. Xiao et al. [16] implemented the software-defined network (SDN) model into the CPS 

framework for easily managing CPS and providing a solution against network security issues. The 

authors also developed an identification method that depends on ELM to secure CPS. 

Duhayyim et al. [17] designed an original Stochastic Fractal Search Algorithm with DL Driven 

IDS (SFSA-DLIDS) for cloud-based CPS platform. This introduced method mainly implements a min-

max data normalization algorithm for converting an input dataset into well-suited formats. For 

decreasing a process of dimensionality, the SFSA method was implemented for choosing a feature 

subset. Moreover, a chicken swarm optimizer (CSO) with deep stacked-AE (DSAE) technique is 

exploited for discovering and organizing intrusion. Dutta et al. [18] developed a robust anomaly 
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detection mechanism according to semi-supervised ML techniques authorizing the nearby real-time 

location. A deep neural network (DNN) framework could be employed for identifying anomalies – 

relying on regeneration errors. 

3. The proposed model 

In this work, a new EODRNN-ID method has been developed for cyberattack recognition in the 

CPS platform. The foremost goal of the EODRNN-ID model is to classify as well as identify of 

intrusive actions in the CPS platform. During the proposed EODRNN-ID method, four sets of 

operations are involved, namely data normalization, COA-based parameter tuning, DRNN-based 

classification, and EO-based feature subset selection. Figure 1 portrays the workflow of the EODRNN-

ID procedure. 

 

Figure 1. Workflow of EODRNN-ID algorithm. 

3.1. Data normalization 

Normalization can be done by processing the variably extended data into a reliable range, thereby 

removing the dimension variation among logging data while preserving relationships amongst the 
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datasets [19]. This method maps the dataset between 0 and 1: 

𝑥∗ =
𝑥−𝑥min

𝑥max−𝑥min
,         (1) 

where 𝑥min denotes the minimum value, 𝑥max signifies the maximum value of a certain feature in the 

dataset, 𝑥∗ refers to the normalized data, and 𝑥 denotes an original data. 

3.2. Feature selection using EO algorithm 

For electing the feature subsets, the EO model is used. The EO method is a new optimizer that draws 

on approximating equilibrium and dynamic states that establish control volume mass balance [20]. The 

particle with respective concentration plays the role of the searching agent. After generating a random 

population, the initial concentration of 𝑗𝑡ℎ particles can be formulated as: 

𝐶𝑛𝑗
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐷min+(𝐷max − 𝐷min) × 𝑟𝑎𝑛𝑑𝑗    𝑗 = 0,1, … , 𝑠.    (2) 

In Eq (2), 𝑟𝑎𝑛𝑑𝑗 is an arbitrarily produced value that lies in [0,1], 𝑠 refers to the number of 

particles, and 𝐷max and 𝐷min indicate the maximal and minimal values of the dimension. 

The EO creates an equilibrium pool. Initially, the equilibrium candidate is defined (without their 

knowledge concerning the equilibrium state) to obtain a search pattern for the agent. This can be 

performed by the four better candidates (viz., large fitness value), along with other particles where the 

fitness equals the average of four different particles.  

𝐶𝑒𝑞,𝑝𝑜𝑜𝑙 = [𝐶𝑒𝑞,1, 𝐶𝑒𝑞,2, 𝐶𝑒𝑞,3, 𝐶𝑒𝑞,4, 𝐶𝑒𝑞,𝑚𝑒𝑎𝑛].      (3) 

An exponential term (𝐹) is used for the concentration updating: 

𝐹 = 𝑒−𝛽(𝑡−𝑡0),          (4) 

𝜏 = (1 −
𝑖𝑇𝑒𝑟

𝑖𝑇𝑒𝑟 𝑚𝑎𝑥 
)

(
𝜇×𝑖𝑇𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 
)
.        (5) 

In Eq (5), 𝛽 indicates the random integer ranges between [0,1], 𝜇 shows the constant number 

to control the exploitation potential. As well, 𝛼  is a constant number to control the exploration 

potential, 𝑇0 is evaluated using Eq (6) to ensure the convergence: 

𝑡0 =
1

𝛽
ln(−𝛼𝑠𝑖𝑔𝑛(𝑟𝑎𝑛𝑑 − 𝑂. 5)[1 − 𝑒−𝛽𝑇]) + 𝑡.     (6) 

In the equation, sign (𝑟𝑎𝑛𝑑 − 𝑂. 5) is used to control the exploitation and exploration direction. 

Thus, Eq (4), is formulated by: 

𝐹 = 𝛼 𝑠𝑖𝑔𝑛(𝑟𝑎𝑛𝑑 − 𝑂. 5)(𝑒−𝛽𝑡 − 1).       (7) 

A parameter used to enhance the exploitation is named generation rate (𝐺𝑟 ) and is shown as 

follows: 
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𝐺𝑟 = 𝐺𝑟0𝑒−𝑛(𝑡−𝑡0),          (8) 

𝐺𝑟0 = 𝐺𝑟𝑃(𝐶𝑒𝑞 − 𝛽𝐶),         (9) 

𝑃𝐺 = {
0.5 𝑟𝑎𝑛𝑑1   𝑟𝑎𝑛𝑑2 > 𝑅𝑃
0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.        (10) 

Let 𝐺𝑟𝑃  and 𝑃𝐺  be the generation rate parameter and the likelihood generation, 

correspondingly. 

Eq (11) is used as an updating rule (𝑊 is defined as a unit). 

𝐶 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞). 𝐹 +
𝐺𝑟

𝛽𝑊
(1 − 𝐹).       (11) 

In the EO, the FF is used to balance the classifier outcome (higher) attained and the amount of 

features elected in the solution (lower), The fitness function to evaluate solutions is given in Eq (12). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
.        (12) 

Now, 𝛼 and 𝛽 are parameters respective to the significance of classification quality and subset 

length. ∈ [1,0] and 𝛽 = 1 − 𝛼. |𝑅| implies the cardinality of the nominated sub-set. 𝛾𝑅(𝐷) implies 

an error rate of classification. |𝐶| shows the overall feature count in the database. 

3.3. Optimal DRNN based intrusion detection 

The DRNN model is used for the intrusion detection process. RNN is a special type of dense 

connection NN which is diametrically opposed to the typical FFNN for the introduction of “time” [21]. 

Especially, the output of the latent layer in the RNN is fed into the input, since the input is a composite 

of the recent and the present past. RNN exploits the peculiar structure to determine the relationship 

between events divided by the temporal instant. This means a kind of long‐term dependency since a 

specific event is often a function of a past event. Figure 2 illustrates the framework of RNN. 

 

Figure 2. Architecture of RNN. 
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The RNN has a problem that degrades the performance. During the learning, the gradient tends 

to vanish similar to other NN models. In this network, the gradient expresses the changes in each 

weight regarding the change in error. Moreover, the computation gradient passes over several phases 

of multiplication, and when the quantity multiplied is lesser than one, then the gradient becomes 

smaller (vanishing), if the quantity multiplied is slightly greater than one, then the gradient becomes 

larger (exploding). We could not adjust the weight and train the network without accurate knowledge 

of the gradient. A variant of the RNN is the optimum solution for the gradient vanishing problems that 

exploit the LSTM unit. LSTM unit helps to retain the error information that can be backpropagated by 

the time and layers. LSTM unit can able to learn long‐term dependency problems on the gradient. 

LSTM presents a new structure named a memory cell that encompasses of four major components of 

gate such as a forget, an input, an output and a neuron with a self‐recurrent link. The LSTM one has 

three gating models as new elements in relation to the typical RNN. 

The proposed architecture encompassed two recurrent layers with LSTM cells along with the 

softmax activation function and dense layer for the last classification. The entire network was trained 

by reducing the categorical cross‐entropy as a loss function: 

ℒ(𝑦, �̂�) = − ∑ 𝑦𝑖
𝑁
𝑖=1  log �̂�𝑖.        (13) 

In Eq (13), 𝑦 and �̂� denote the target and the predicted classes correspondingly. 

The Adam algorithm is the chosen optimizer, a gradient‐based optimization technique that uses 

first and second-order moments to attain a fast and smooth convergence. 

The COA is used for the optimal parameters tuning of the DRNN. Unlike the other social predators, 

COA is based on the sexual motivation and intelligence of chimps during group hunting [22]. The four 

dissimilar stages of hunting in COA are pushing, chasing, blocking, and assaulting. Initially, 

Chimpanzees are generated randomly to start the COA. The mathematical model of COA’s hunting is 

given below: 

𝑝𝑐ℎ𝑖𝑚𝑝
𝑡+1 = 𝑝𝑝𝑟𝑒𝑦

𝑡 − 𝜅 ⋅ |𝐽 ⋅ 𝑝𝑝𝑟𝑒𝑦
𝑡 − 𝜁 ⋅ 𝑝𝑐ℎ𝑖𝑚𝑝

𝑡 |,     (14) 

𝜅 = 2 ⋅ 𝛽 ⋅ 𝑟1 − 𝛽,         (15) 

𝐽 = 2 ⋅ (𝑟2),          (16) 

𝜁 = 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑐ℎ𝑎𝑜𝑡𝑖𝑐 𝑚𝑎𝑝𝑠,      (17) 

where 𝑡 indicates the iteration number, 𝜅, 𝐽, and 𝜁 represent the coefficient vector, 𝑝𝑝𝑟𝑒𝑦 shows the 

optimum solution attained r, and 𝑝𝑐ℎ𝑖𝑚𝑝 denotes the optimum location of the chimp. 𝜁 refers to the 

chaotic mapping vector. Furthermore, 𝛽 is a nonlinearly dropped constant value that ranges from 2.5 

to 0,  𝑟1  and r2 are randomly generated values within [0,1]. Note that the reference gives a 

comprehensive analysis of these mappings and coefficients. 

The most effective and primary strategy for statistically duplicating the chimpanzee behavior is 

using prey assumed as the initial position of the target. The COA is accountable for housing four of 

the topmost chimpanzees. Consequently, based on the selected position of best chimpanzees, other 

individuals would be compelled to relocate as follows: 

𝑝𝑡+1 =
1

4
× (𝑝1 + 𝑝2 + 𝑝3 + 𝑝4),      (18) 
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where 

𝑝1 = 𝑝𝐴 − 𝑎1 ⋅ |𝑐1𝑝𝐴 − 𝑚1𝑥|,         

𝑝2 = 𝑝𝐵 − 𝑎2 ⋅ |𝑐2𝑝𝐵 − 𝑚2𝑥|,         

𝑝3 = 𝑝𝐶 − 𝑎3 ⋅ |𝑐3𝑝𝑐 − 𝑚3𝑃|,         

𝑝4 = 𝑝𝐷 − 𝑎4 ⋅ |𝑐4𝑝𝐷 − 𝑚4𝑃|.      (19) 

Moreover, chaotic value mimics social motivation activity in classical COA, as follows: 

𝑝𝑡+1 = {
𝜁 𝜂𝑚 ≥

1

2

𝐸𝑞(5) 𝜂𝑚 <
1

2

.       (20) 

Where, 𝜂𝑚 refers to a stochastic value within [0,1]; however, this may result in a moderate or 

premature convergence. 

The COA method derives an FF in order to get high efficacy of classification. It defines an 

optimistic integer to signify the optimal outcome of the solution candidate. The decay of classification 

error rate is expected as FF. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) =
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100.   (21) 

4. Results and discussion 

The intrusion detection outcomes of EODRNN-ID technique are verified on 2 benchmark 

databases: NSLKDD2015 and CICIDS2017 datasets as defined in Table 1. 

Table 1. Details of two datasets. 

Classes No. of Instances 

NSLKDD2015 CICIDS2017 

Normal 67343 50000 

Anomaly 58630 50000 

Total No. of Instances 125973 100000 

The confusion matrices achieved by the EODRNN-ID approach on the NSLKDD2015 dataset is 

shown in Figure 3. The results show an effective recognition of the normal as well as anomaly samples 

under all classes. 
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Figure 3. Confusion matrices on NSLKDD2015 dataset (a and b) 80:20 of TRAP/TESP 

and (c and d) 70:30 of TRAP/TESP. 

The recognition outcome of the EODRNN-ID methodology can be inspected on the 

NSLKDD2015 dataset is given in Table 2 and Figure 4. The outcome implies the effectual recognition 

of the normal as well as anomaly samples by the EODRNN-ID technique. With 80% of the TRAP, the 

EODRNN-ID method obtains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  values of 

97.44%, 97.45%, 97.44%, 97.45%, and 97.44%, respectively. Moreover, with 20% of the TESP, the 

EODRNN-ID method obtains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  values of 

97.39%, 97.41%, 97.39%, 97.40%, and 97.39%, respectively. 

 

Figure 4. Average of EODRNN-ID algorithm on NSLKDD2015 dataset. 
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Table 2. Detection outcome of the EODRNN-ID method on the NSLKDD2015 database. 

NSLKDD2015 Database 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

80% of TRAP 

Normal 97.66 97.58 97.66 97.62 97.44 

Anomaly 97.23 97.32 97.23 97.27 97.44 

Average 97.44 97.45 97.44 97.45 97.44 

20% of TESP 

Normal 97.73 97.47 97.73 97.60 97.39 

Anomaly 97.04 97.34 97.04 97.19 97.39 

Average 97.39 97.41 97.39 97.40 97.39 

70% of TRAP 

Normal 99.06 98.09 99.06 98.57 98.43 

Anomaly 97.80 98.91 97.80 98.35 98.43 

Average 98.43 98.50 98.43 98.46 98.43 

30% of TESP 

Normal 98.99 98.19 98.99 98.59 98.44 

Anomaly 97.89 98.82 97.89 98.35 98.44 

Average 98.44 98.51 98.44 98.47 98.44 

To evaluate the performance of EODRNN-ID method on the NSLKDD2015 dataset, TRA and 

TES 𝑎𝑐𝑐𝑢𝑦 curves are defined, as presented in Figure 5. The TRA and TES 𝑎𝑐𝑐𝑢𝑦 curves display 

the performance of EODRNN-ID method over some epochs. The outcome shows significant facts 

about learning task and generalization capacities of EODRNN-ID model. It is practical that the TRA 

and TES 𝑎𝑐𝑐𝑢𝑦  curves get improved with an increased epoch count. It is well-known that the 

EODRNN-ID technique attains superior testing results, which has high ability in detecting the pattern 

in TRA and TES data. 

 

Figure 5. 𝐴𝑐𝑐𝑢𝑦 curve of EODRNN-ID algorithm on NSLKDD2015 dataset. 

Figure 6 demonstrates the complete TRA and TES loss performances of the EODRNN-ID model 

on the NSLKDD2015 dataset over epochs. The TRA loss shows the model loss acquires reduced over 
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epochs. Primarily, the loss value gets minimized as the model adapts the load to reduce the prediction 

error on TRA and TES datasets. The loss curves illustrate the level to which the model fit the TRA 

dataset. The TRA and TES loss is gradually reduced and showed that the EODRNN-ID technique 

efficiently learns the pattern revealed in the TRA and TES data. Also, the EODRNN-ID method adjusts 

the parameters to reduce the divergence among the forecast as well as original TRA labels. 

 

Figure 6. Loss curve of EODRNN-ID algorithm on NSLKDD2015 dataset. 

The detection performance of the EODRNN-ID method can be inspected on the CICIDS2017 

dataset as delivered in Table 3 and Figure 7. The outcomes indicate the effective detection of the normal 

and anomaly samples by the EODRNN-ID methodology. With 80% of the TRAP, the EODRNN-ID 

method accomplished average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  values of 99.20%, 

99.20%, 99.20%, 99.20%, and 99.20%, respectively. Besides, with 20% of the TESP, the EODRNN-

ID model obtains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 values of 99.28%, 99.27%, 

99.28%, 99.27%, and 99.28%, correspondingly. 

 

Figure 7. Average of EODRNN-ID algorithm on the CICIDS2017 dataset. 
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Table 3. Detection outcome of the EODRNN-ID algorithm under CICIDS2017 dataset. 

CICIDS 2017 Dataset 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

80% of TRAP 

Normal 99.05 99.35 99.05 99.20 99.20 

Anomaly 99.36 99.05 99.36 99.20 99.20 

Average 99.20 99.20 99.20 99.20 99.20 

20% of TESP 

Normal 99.15 99.40 99.15 99.28 99.28 

Anomaly 99.40 99.15 99.40 99.27 99.28 

Average 99.28 99.27 99.28 99.27 99.28 

70% of TRAP 

Normal 98.20 98.25 98.20 98.23 98.23 

Anomaly 98.26 98.20 98.26 98.23 98.23 

Average 98.23 98.23 98.23 98.23 98.23 

30% of TESP 

Normal 98.28 98.24 98.28 98.26 98.26 

Anomaly 98.23 98.28 98.23 98.25 98.26 

Average 98.26 98.26 98.26 98.26 98.26 

To estimate the performance of the EODRNN-ID methodology on the dataset of CICIDS2017, 

TRA and TS 𝑎𝑐𝑐𝑢𝑦 curves are well-defined, as given in Figure 8. The TRA and TES 𝑎𝑐𝑐𝑢𝑦 curves 

illustrate the performance of EODRNN-ID model over numerous epochs. The figure delivers 

significant details concerning the learning task and generalization capabilities of EODRNN-ID 

technique. It is perceived that the TRA and TES 𝑎𝑐𝑐𝑢𝑦 curves get improved with an increased epoch 

count. The EODRNN-ID methodology attains improved testing accurateness which has the skill to 

detect the pattern in TRA and TES datasets. 

 

Figure 8. 𝐴𝑐𝑐𝑢𝑦 curve of EODRNN-ID algorithm on CICIDS2017 dataset. 

Figure 9 shows the complete TRA and TES loss performances of the EODRNN-ID model on the 

CICIDS2017 dataset over epochs. The TRA loss demonstrates the model loss gets reduced over epochs. 
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Primarily, the loss value gets minimized as the model adapts the weight to diminish the predictive error 

on the TRA and TES datasets. The loss curves illustrate the range to which the model fits the TRA 

dataset. It is perceived that the TRA and TES loss is steadily reduced and depicted that the EODRNN-

ID technique learns the pattern presented in the TRA and TES datasets. Also, the EODRNN-ID 

technique adjusts the parameter to minimize the dissimilarity among the prediction and original TRA 

label. 

 

Figure 9. Loss curve of EODRNN-ID algorithm on CICIDS2017 dataset. 

The PR curve of the EODRNN-ID method on the CICIDS2017 dataset is established by plotting 

precision against recall as defined in Figure 10. The outcomes confirm that the EODRNN-ID technique 

achieves enlarged precision-recall values below all classes. The figure shows that the method learns to 

identify many classes. The EODRNN-ID method reaches upgraded outcomes in the detection of 

positive samples through a least false positives. 

 

Figure 10. PR curve of EODRNN-ID algorithm on CICIDS2017 dataset. 

The ROC curves delivered by the EODRNN-ID methodology on the CICIDS2017 dataset are 

demonstrated in Figure 11, which has the ability to distinguish the classes. The figure shows valuable 

insights into the tradeoff amongst the TPR and FPR rates over different detection thresholds and 
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variable numbers of epochs. It projects an accurate predictive performance of the EODRNN-ID model 

on the detection of different classes. 

 

Figure 11. ROC curve of EODRNN-ID method on CICIDS2017 dataset. 

The intrusion detection results of the EODRNN-ID system are compared with the present 

methods in Table 4 and Figure 12 [11]. The outcomes established that the EODRNN-ID technique 

reaches improved performance over other models. It is stated that the LIB-SVM, WISARD, and 

Forest-PA models have resulted in worse results whereas the XAIID-SCPS, FURIA, AE-RF, and 

GSAE models have tried to accomplish manageable performance. However, the EODRNN-ID 

technique resulted in better performance with maximum 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

99.28%, 99.27%, 99.28%, and 99.27% respectively. Thus, the EODRNN-ID technique can be applied 

to achieve security from the CPS platform. 

Table 4. Comparative outcome of EODRNN-ID algorithm with existing approaches. 

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 

EODRNN-ID 99.28 99.27 99.28 99.27 

XAIID-SCPS 98.87 98.95 98.87 98.91 

FURIA Model 98.14 97.57 96.93 98.26 

AE-RF Model 97.62 97.35 97.79 97.30 

Forest-PA 96.72 96.97 97.32 98.13 

WISARD 96.64 97.58 97.29 98.65 

GSAE Model 97.63 95.97 98.39 98.19 

LIB-SVM 96.57 96.96 96.83 97.92 
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Figure 12. Comparative outcome of EODRNN-ID system with existing techniques. 

5. Conclusions 

In this manuscript, we have established the EODRNN-ID methodology for cyberattack 

recognition in the CPS platform. The major intention of the EODRNN-ID algorithm is to classify and 

detect the intrusive actions from the CPS platforms. In the proposed EODRNN-ID method, four sets 

of operations are included such as data normalization, COA-based parameter tuning, DRNN-based 

classification, and EO-based feature subset selection. The simulation study of EODRNN-ID method 

can be verified on a benchmark data. Extensive outcomes illustrate the significant performance of the 

EODRNN-ID method over existing techniques 
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