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Abstract: One of the main problems to be addressed in a multi-robot system is the selection of
the best robot, or group of them, to carry out a specific task. Among the large number of solutions
provided to allocate tasks to a group of robots, this work focuses on swarm-like approaches, and more
specifically on response-threshold algorithms, where each robot selects the next task to perform by
following a Markov process. To the best of our knowledge, the current response-threshold algorithms
do not provide any formal method to generate new transition functions between tasks. Thus, this paper
provides, for the first time, a mathematical model, as based on the so-called fuzzy preorders, for the
allocation of tasks to a collective of robots with communication capabilities. In our previous work, we
proved that transitions in the aforementioned process can be modeled as fuzzy preorders, constructed
through the aggregation of asymmetric distances, in such a way that each robot makes its decision
without taking into account the decisions of its teammates. Now, we extend this model in such a
way that each robot will take into account the number of robots previously allocated for each task.
To implement this method, a very simple communication mechanism has been considered. Several
simulations have been carried out in order to validate our approach. The results confirm that fuzzy
preorders are able to model the evolution of the system when this type of communication is considered
and show when and how the communication process improves the system’s performance. Experimental
results show the existence of a set of good values for the maximum communication distance between
robots and that these values depend on the distribution of the tasks in the environment. Thus, in some
cases, a better communication mechanism does not imply better results.
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1. Introduction

Multi-robot systems, defined as a group of two or more robots with a common mission, provide a
great number of advantages over systems with only one robot. In contrast, several open problems must
be addressed to fully exploit those advantages. Among these problems, this paper will be focused on
task allocation issues, that is, how each robot decides the next task to execute. Swarm intelligence
methods, which are inspired by the behavior of colonies of insects, give us a very appropriate approach
to solve the aforementioned problems with very low computational constraints. In such systems,
behavior resembling global intelligence emerges from the interaction of very simple behaviors that
are executed by every robot. Nowadays, there are several approaches that are inspired by swarm-
like paradigms, among the most widely used approaches are the so-called response-threshold methods
(RTMs) [1,2]. The RTMs assign a value, called a stimulus, to each robot-task pair in order to model the
adequacy level of the robot to suit the task. For example, the stimulus can be the inverse of the distance
between the task and the robot. Each robot decides the next task to perform according to a probability
that depends on the aforementioned stimulus and the task in which the robot is currently located. Thus,
the aforementioned probabilities are modeled by using the so-called probabilistic transition functions
and, at the same time, the system can be modeled as a memoryless process, i.e., a probabilistic
Markov chain, where the states are the tasks and the transition probabilities (modeled by means of
the transitions functions) depend on the stimulus value.

In general, the communication mechanism between robots plays a key role in task allocation.
Some allocation algorithms, like for example those derived from auctions [3], are based on explicit
communication protocols between robots to implement negotiation processes. Auction methods, and
negotiation paradigms in general, provide better solutions than swarm approaches. Nevertheless,
the communication requirement in such methods can become a drawback. In order to overcome
this problem, some papers, such as [4–6], have focused on the behavior of those methods under
communication restrictions. In any case, the proposed solutions still require complex communications
protocols. In contrast, swarm-like mechanisms do not require explicit communication protocols,
but the use of some communication can improve the system’s performance, as was analyzed in [7].
Some works in which specific examples of swarm algorithms that use very simple communication
mechanisms are as follows: Deshpande et al. [8] proposed a swarm algorithm whereby each robot
broadcasts its position to coordinate multiple robots to form specific geometric patterns (as circles)
around the location of the targets; in [9] the robots communicate their internal state through colored
LEDs; finally, in [10] the robots also communicate their positions in order to allocate the targets;
they also follow a given leader. In [11] Talamali et al. make use of a communication mechanism to
implement swarm-like task allocation methods. Here, each robot combines, via a voting process, the
information obtained from its local sensors with the information received from its neighbors to reach
a collective decision. Despite the authors presenting a schematic formal analysis corresponding to
when this consensus is reached, this method is more complex than the RTM approach implemented in
our paper. Moreover, how to aggregate the data coming from different sources is not analyzed in [11].
Finally, in [12] Gielis et al. conducted an exhaustive review of communications in multi-robot systems,
but without providing any formal method to aggregate the communication to the decision process. In
the light of the exposed facts, one of the goals of this paper is to propose a formalism to generate
transition functions that take into account a very simple communication between robots. As will be
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seen later, in the case in which the communication between robots is taken into account, the transition
function of an RTM algorithm can be modeled as a fuzzy preorder.

In [13], we introduced a new theoretical formalism for RTMs based on possibility theory in the sense
of [14,15]. Thus we developed a new RTM which incorporates possibility theory instead of probability
for task allocation from a very general agent perspective without taking into account the specific
characteristics of the robots. The evolution of the system was modeled as a possibilitic Markov chain
in which transition probabilities were replaced by transition possibilities and, in addition, the classical
sum-product algebra was replaced by the max-min one (for a fuller treatment of the topic we refer the
reader to [16]). Inspired by this fact, in [1], all transition functions (transition probabilities) considered
in the literature were identified by using transition possibilities through the use of indistinguishability
operators (see [17] for a detailed treatment of indistinguishability operators). In this way, a formal
methodology for generating transition possibilities via indistinguishability operators was developed;
thus, new and different transition functions based on indistinguishability operators were introduced
and shown to be appropriate mathematical tools in order to model possibilistic response functions
and describe the evolution of multi-robot systems according to different situations addressed in [18].
This was, to the best of our knowledge, the first formal and systematical method to generate response
functions for multi-robot systems in the literature. In all cases analyzed in the preceding references,
the possibilistic approach was compared to the probabilistic one in such a way that the formal and
empirical results evidenced that the former always outperforms the latter; particularly, it converges
faster to a stationary state, it requires lower computational capacities, and so on. It must be pointed out
that, in the aforementioned paper, thanks to indistinguishability operators, a formal method to generate
possibilistic response functions from distances and utilities was stated by using the aggregation of
asymmetric distances in the sense of [19].

In this paper, we extend our previous work developed in [18]. Thus we introduce a mathematical
model based on fuzzy preorders i.e., a generalization of indistinguishability operators, with the aim of
taking into account the impact of the communication between the agents of the multi-robot system
on robots’ behavior. Hence, each robot broadcasts its location to its teammates located within a
neighborhood. This information is aggregated to the distance information and incorporated in the
transition possibility function. Thus, each robot will know how many robots are allocated near each
task and, according to this information, it will perceive based on the stimulus the adequacy level of
the tasks. Hence tasks with a high number of allocated robots or are very distant will have a very low
transition possibility function values. In contrast, the smaller the number of robots or the closer the
tasks, the higher the values of the transition possibility functions. As will be proved later in this paper,
the new transition possibility functions are exactly fuzzy preorders and, thus, all of the aforementioned
theoretical background can be applied to them. To the best of our knowledge, this is the first study
that provides a formal method to create new transition functions that take into account the interaction
(communication) between robots.

The task performed to validate our approach is defined as follows: The robots should visit a group
of tasks placed in the environment. Initially, each robot is allocated to a task and it must decide the next
one to execute by following a possibilistic transition function. It must be stressed that the values of the
transition functions change over the execution time (and hence the stimulus associated with each task
and perceived by the robot) and the tasks are not removed. Thus, a task can be visited by several robots
at many time instants. The goal of the system is to reduce the number of steps required to visit, at least
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once, each task. The large number of experiments, performed by using Matlab, show that the use of a
limited amount of communication improves the system results under certain circumstances. Moreover,
we have studied the impact of the task distribution on the system’s performance. The experimental
results show that there is a correlation between the system’s performance (the aforementioned required
number of steps to visit the tasks) and the maximum communication distance. In some cases, as shown
and discussed in Section 4, a very large communication range degrades the system’s performance.
However, an appropriate communication distance, which improves the system’s performance, always
exists for each placement or distribution of the tasks in the environment.

Thus, the above-mentioned contributions of this paper can be summarized as follows:

• This paper introduces a possibilistic/fuzzy framework for modeling the communication
mechanism among robots.
• For the first time, we propose a formalism based on indistinguishability (fuzzy preorders) to

aggregate information obtained from other robots.
• The experiments detailed in this paper demonstrate the benefits of robot communication.

However, depending on the specific environment characteristics, excessive communication can
adversely affect system’s performance.
• Furthermore, when communication enhances system performance, our method exhibits greater

robustness in terms of the parameters.
• In the future, we will present methods for generating new fuzzy preorders that allow one

to describe the behavior of multi-robot systems, adjusting appropriately according to the
characteristics of both the environment and tasks.

The structure of the remainder of the paper is as follows: In Section 2, the main concepts on
RTMs based on fuzzy preorders and aggregation of the asymmetric distances and possibilites are
introduced, as well as the key previous work performed by the authors of [18]; Section 3 explains
the communication process between robots and how the fuzzy preorders used in [18] must be modified
in order to include the new information provided by the aforementioned process; in Section 4, we will
show the experimental results. Finally, Section 5 presents the conclusions and future work.

2. Previous work: Aggregation of asymmetric distances and possibilistic approach to task
allocation

As was aforementioned, nowadays one of the most widely used swarm-like methods are those based
on the so-called RTMs, where there are a set of nr ∈ N robots R = {r1, ..., rnr} and a set of nt ∈ N tasks
to be visited T = {t1..., tnt}. Notice that N stands for the set of positive integer numbers. In these
methods, each robot rk ∈ R has associated with each task t j to be executed a stimulus (srk ,t j ∈ R), where
R denotes the set of real numbers. Those stimuli represent the suitability of the mentioned task for
the robot. For example, the stimulus can be the inverse of the distance between the task and the robot.
According to [20, 21], when the robot is located at the task ti and srk ,t j exceeds a threshold value θrk

(θrk ∈ R), the robot rk starts the execution of t j by following the probability p(rk, i j) given as follows:

p(rk, i j) =
sn

rk ,t j

sn
rk ,t j

+ θn
rk

, (2.1)
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where n ∈ N.
Notice that in the previous expression we are assuming that robot rk is allocated in the task ti and

the possibility to leave task ti in order to execute task t j is being evaluated. Moreover, we are assuming
that the threshold θrk depends only on the robot rk and that, hence, for each robot, such a value is the
same for all tasks.

In [18], fuzzy preorders, in the sense of [17,22], were shown to be an appropriate mathematical tool
to model response functions satisfying the expression given by (2.1).

Let us recall, according to [22], that a fuzzy preorder is a fuzzy set, in the sense of [14] with
E : X × X → [0, 1] satisfying the following conditions for each x, y, z ∈ X:

(i) E(x, x) = 1; (Reflexivity)

(ii) E(x, z) ≥ T (E(x, y), E(y, z)). (Transitivity)

It must be stressed that in the transitivity axiom, T is a triangular norm (t-norm for short) and that
for the basics of t-norms we refer the reader to [23].

Moreover a fuzzy preorder E is said to separate points provided that it satisfies, for each x, y ∈ X,
the following condition (i’):

(i’) E(x, y) = E(y, x) = 1⇒ x = y.

In [18], the considered stimulus was a constant value depending only on the (Euclidean) distance
among tasks and a fixed utility associated with each task. The utility of a task t j was defined as
a numerical value U j ∈ R

+ (R+ denotes the set of non-negative real numbers) that represents the
importance of performing that task. The higher the utility value, the more important the task. The
resulting (possibilistic) transitions between tasks are given as follows:

p(rk, i j) =
θn

rk

θn
rk

+ Qn
Φ,q,dE

((Ui, xi, yi), (U j, x j, y j))
, (2.2)

where θrk is the threshold constant for each robot rk. Observe that, following [18, 19], QΦ,q,dE : R+ ×

R2 → R+ is an asymmetric distance that depends on the utility of each task (Ui and U j) and the
Euclidean distance dE((xi, yi), (x j, y j)), where (xi, yi) and (x j, y j) denotes the allocation coordinates of
tasks ti and t j, respectively. Notice that R2 = {(x, y) : x, y ∈ R}.

It must be pointed out that an asymmetric distance satisfies all metric axioms except for the
symmetry (see, for instance, [24]). Concretely, following [24], an asymmetric distance on a (non-
empty) set X is a function d : X × X → [0,∞] such that the following holds for all x, y, z ∈ X :

(AD1) d(x, x) = 0,

(AD2) d(x, z) ≤ d(x, y) + d(y, z).

Clearly every metric is an asymmetric distance but the converse is not true. In the light of the
exposed notion, it must be pointed out that the asymmetric distance QΦ,q,dE is defined, for all (Ui, xi, yi)
and (U j, x j, y j), by

QΦ,q,dE ((Ui, xi, yi), (U j, x j, y j)) = αu · qU(Ui,U j) + dE((xi, yi), (x j, y j)), (2.3)
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where qU(Ui,U j) = max{U j − Ui, 0} matches up with an asymmetric distance which measures the
improvement in utility made when a task ti is abandoned by the robot and it starts to perform the task
t j. Hence the value max{U j−Ui, 0} = 0 can be interpreted because the task ti is more attractive than the
task t j. Notice that the improvement in utility cannot be provided a metric. Observe that the distance
QΦ,q,dE is constructed by means of an aggregation of the asymmetric distance qU and a metric dE.

It is worth mentioning that αu is a system parameter that, on the one hand, causes the utility value
to have the same dimension and scale as the distance and, on the other hand, indicates the importance
of the utility with respect to the distance. We refer the reader to [18] for a deeper discussion of the role
played by αu.

In light of the exposed fact, it seems natural to expose the reason for which QΦ,q,dE is exactly an
asymmetric distance. The answer to the posed question is given by the following result (see [19,
Theorem 6]).

Proposition 1. Let Φ : (R+)2 → R+ and let d1, d2 be two asymmetric distances defined on non-empty
sets X and Y, respectively. Then the following assertions are equivalent:

1) The function QΦ,d1,d2: (X × Y)2
→ R+ is an asymmetric distance, where QΦ,d1,d2(x, y) =

Φ(d1(x1, y1), d2(x2, y2)) for all x = (x1, x2), y = (y1, y2) ∈ X × Y.

2) The function Φ is monotone, subadditive and Φ(x1, x2) = 0⇔ x1 = x2 = 0.

Clearly, the function Φ : (R+)2 → R+ given, for all x, y ∈ (R+)2, by Φ(x, y) = αu · x + y satisfies
assertion 2 in the statement of Proposition 1; thus, the function QΦ,q,dE is exactly an asymmetric distance
on R+ × R2.

Finally, it must be stressed that, on account of Proposition 1 in [18], given θ ∈ R+ with θ > 0, n ∈ N
and an asymmetric distance q on a non-empty set X, then the fuzzy set En

θ,q,Dom : X × X → [0, 1],
defined by

En
θ,q,Dom(x, y) =

θ

θ + (q(x, y))n (2.4)

is a fuzzy preorder that separates points when the t-norm under consideration, for the transitivity axiom,
is the Dombi t-norm T

1
n
Dom, where

T
1
n
Dom(a, b) =


0, if a = 0 or b = 0

1

1+

(
( 1−a

a )
1
n +(( 1−b

b )
1
n
)n , elsewhere . (2.5)

In light of the preceding remark we can deduce immediately that the transition probability given by
expression (2.2) matches up with a fuzzy preorder that separates points and, thus, that those transition
values given by p(rk, i j) can be understood as fuzzy preorder and, hence, as possibilities.

Possibilistic approaches provide a large number of advantages over the classical probabilistic
framework. Some of them, already outlined in Section 1, are as follows:

• In general, the transition functions p(rk, i j) provided by (2.2) from one state (task) ti to the other
ones t j do not satisfy the conditions of the axioms of a probabilistic distribution. Concretely,
the sum of all the values is not equal to 1, i.e.,

∑
j p(rk, i j) , 1. The probabilistic approaches

must perform unnatural manipulations in order to transform the set of transitions values to a
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probabilistic distribution. For example, each value must be normalized and from the new resulting
distribution each robot will select the next task to execute. Thus, the characteristics of the Markov
chain resulting from the normalization have changed from those of the original process. In the
case that the values of the transition functions are modeled as a fuzzy set, and, therefore, the case
that the system is modeled as a fuzzy Markov chain, there are several methods that have been
developed to make a decision without changing the original values (see [25]).
• To the best of knowledge, there does not exist any previous method to generate transition

functions. Previous works in the literature (see, for example, [26]) sugest the use of ad-hoc
functions for a specific task or environment, without following any methodical process. Thanks
to using model transition functions as fuzzy preorders, as it is proposed in our paper, the
system designer has a theoretical background to systematically generate new transition functions
which could be better adapted to the designer’s proposal. According to the exposed theoretical
background, a few new possibilistic transition functions have been introduced, and their utility in
multi-agent systems has also explored, in [27, 28].

3. Task allocation and communication between agents

This section is devoted to explaining the task allocation process when a simple communication
mechanism is taken into account. The main objective is to analyze how the aggregation of
fuzzy preorders and asymmetric distances allows us to model the evolution of the system when
communication is under consideration and, in addition, to show when and how the communication
process improves the system’s performance. To this end, as was exposed in Section 1, this work
modifies the transition function given by (2.2) to allow the communication between robots (how such
a modification is made will be subsequently explained in detail). From now on, in the simulations and
for all forthcoming processes and algorithms, we have defined a time unit, which we have called a step,
in such a way that, in each simulation step, the robot makes the decision (i.e., it decides the next task
to execute). In order to perform the task allocation, each robot must select the task and, in addition,
it must communicate the selected task to all other robots. The evolution of the system is due to the
execution of two processes: The task processing process and the communication processing process.
In the following subsection, we explain both processes.

3.1. Task execution and communication

Figure 1 summarizes the steps to be followed by a robot. On the one hand, the left side of this figure
depicts the steps executed by the robot to carry out its current task and select the next one. On the other
hand, the right side of the figure specifies how the robot receives and processes the messages from
other robots. Both sides, task processing and communication processing, are performed in parallel.

During the task processing, the robot executes the following sequential steps after arriving at a task:

(1) Task processing: After getting to the task position (task ti), the robot starts its processing. As the
goal of the study was to analyze the communication issues, this step is assumed to take only one
time unit or step. It must be noted that this task does not disappear after being processed by a robot,
but it remains in the environment. This is due to the fact that several robots may need to execute
the same task.

AIMS Mathematics Volume 9, Issue 5, 11511–11536.



11518

(2) Selection of a new task: In this step, the robot chooses the next task to be executed by following
the memoryless process based on the transition possibility described by (2.2). In this case, the task
ti represents the current task, and the next task is denoted by tnext. Later, in Subsection 3.2, it will
be explained how to adapt this equation to our communication process, and we will provide a more
detailed description of the selection process, given by Algorithm 1.

(3) Go to the target task: In this step, the robot goes towards the target task selected in the previous
step (tnext). As was already mentioned, for the sake of simplicity, we will suppose that the time
required by the robots to transit from one task to the next one is negligible; therefore, it has not
been taken into account.

(4) Communication of the next task: In this step, the robot communicates to its teammates the new
task chosen as the target. If there is no communication between robots, i.e., MAXRANGE = 0
(notice that the parameter MAXRANGE indicates the distance or range within which the robot is
able to receive messages from the other robots; see Figure 2 for illustration), the robots skip this
step and start the execution of the target task by returning to Step 1. Thus, when a robot arrives
at a task, it broadcasts a message to the other robots with this information. The robot will repeat
this communication process during the whole execution of the task, during which time no other
task is selected by the robot. Due to the typical communication restrictions that exist in swarm
systems, the robots are only able to send messages within a maximum range or distance, that,
as explained before, we denote by MAXRANGE (look at Figure 2). It must be highlighted that
this is a very simple communication process, similar to a ping message, which does not imply
any communication protocol. However, the simplicity of this mechanism is compatible with the
required simplicity of any swarm system.

As the robot performs the above steps, it also receives, in parallel, the messages from the other robots,
computing the number of robots allocated to each task, as can be observed in the communication
processing flowchart of Figure 1. The communication processing scheme performs a loop while
the simulation is running, where each iteration requires a time unit to be executed. Specifically, the
following sequential steps are involved:

(1) The robot initializes to 0 the number of robots allocated to the tasks, where nr j stands for the
number of robots allocated to the task t j and nt is the total number of tasks.

(2) The robot waits to receive messages from other robots, i.e., it receives the messages that the other
robots have broadcast. It is important to remember that a robot can only receive messages from
robots which are within the range MAXRANGE.

(3) The robot updates the number of robots assigned to each task. This information will be used by
the robot during the second step of the task processing process (see the task execution flow chart
shown in Figure 1). This process returns a vector NT A = {nr1, . . . , nrnt}, where each element nr j

denotes the amount of robots allocated to a given task t j.
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Figure 1. Steps followed by a robot during the execution of a task and during the
communication process.

(a) Initial step. (b) Next step.

Figure 2. Example of task execution with four robots and three tasks.
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3.2. The selection of a new task

In this subsection, we provide a description about how each robot selects a new task to be executed
as exposed in the second step of the task processing process in Section 3.1. To this end, we need to
introduce how to update (2.2) which will be used by the robot in order to make such a decision. The
more robots allocated to a task, the lower the possibility of transitioning to this task. The asymmetric
distance QΦ,q,dE introduced in (2.3) will now depend on the Euclidean distance di j = dE((xi, yi), (x j, y j))
and, also, on the number of robots allocated to each task, as follows:

QΦ,qn,dE

(
(nri, xi, yi), (nr j, x j, y j)

)
= (di j + ωw · qn(nri, nr j))n, (3.1)

where Φ : (R+)2 → R+ is the function given by Φ(x, y) = x +ωw · y (the meaning of the parameter ωw is
explained below), qn(nri, nr j) = max{nr j − nri, 0} and nr j, nri stand for the number of robots allocated
to the task t j and ti, respectively

In light of Eq (3.1), (2.2) is rewritten in the following way:

p(rk, i j) =
θn

rk

θn
rk

+ Qn
Φ,qn,dE

(
(nri, xi, yi), (nr j, x j, y j)

) , (3.2)

where θrk is the threshold constant for each robot rk and ωw denotes the weighting of the number of
robots with respect to the distance between tasks and, thus, points out the importance of the aforesaid
number of robots is with respect to the distance. Hence, low values of ωw imply that a robot will select
tasks close to it, instead of tasks with a high number of robots. Moreover, the number of robots and the
distance are normalised by the ωw parameter. Notice that both parameters play a similar role to those
used in (2.2).

After dividing the numerator and the denominator of (2.2) by θrk , we obtain the following equation:

p(rk, i j) =
1

1 + 1
θn

rk
· (di j + ωw · qn(nri, nr j))n

, (3.3)

The same arguments as those given in Section 2 remain valid to show that the values of p(rk, i j)
given by (3.3) are possibilities provided by fuzzy preorders that separate points when Dombi t-norms
T

1
n
Dom are under consideration.

As was described in Section 1, multiple robots can be assigned to each task and the possibility of
transition from the current task (task ti) to the next one (task t j) is given by (3.3). Thus, a robot rk,
located at task ti, will make the decision about the next task to carry out based on a fuzzy possibility
distribution with the following values:

xk = (p(rk, i1), p(rk, i2), ..., p(rk, int)). (3.4)

It must be noted that, in general, xk does not satisfy the conditions of axioms of the probability
distribution, as

∑n
j=1 p(rk, i j) , 1; therefore, each element of xk stands for a possibility of transition.

Figure 2 depicts an execution example of the above-mentioned process. There are three tasks,
represented by the blue circles and labeled as T1, T2, and T3. There are also four robots marked
by triangles of different colors (red, yellow, green and black). Initially (Figure 2(a)), the red robot is
executing the task T1, the yellow and the green robots are executing the task T2, and the black robot

AIMS Mathematics Volume 9, Issue 5, 11511–11536.



11521

is executing T3. The dashed red circle indicates the maximum communication range (MAXRANGE) of
the red robot. Thus, the red robot can get the information about the number of robots assigned to T2
which is two robots in this case. In contrast, T3 is out of the range of the red robot. The red robot, after
executing Steps 2 and 3 of the task execution process (look at Figure 1) decides to go to the task T2, as
can be seen in Figure 2(b). Meanwhile, the yellow robot has decided to go to the task T1. Now, the red
robot is able to get the information about the number of robots assigned to each task (the three tasks),
because all of them are within the communication range.

There are several decision making methods to choose the next task to be performed, and they are
based on the activation of a possibility of transition by means of the generation of samples from
a probability distribution induced by the possibilistic one (see [29]). In our case, with the aim of
developing a robot decision making method, we use the interval method that can be described as
follows:
(1) The xk vector is normalized, dividing each element of the vector by the sum

∑n
j=1 p(rk, i j).

(2) Create n right-open intervals with width p(rk ,i j)∑n
j=1 p(rk ,i j) ( j = 1, . . . , nt) over the interval [0, 1], that is

0, p(rk, i1)∑nt
j=1 p(rk, i j)

 ,  p(rk, i1)∑nt
j=1 p(rk, i j)

,
p(rk, i1) + p(rk, i2)∑nt

j=1 p(rk, i j)

 , . . . , ∑nt−1
j=1 p(rk, i j)∑nt
j=1 p(rk, i j)

, 1

 .
(3) Generate a sample u of a random variableU(0, 1).

(4) We will choose the task t j whose index j satisfies the condition

u ∈
[∑ j−1

s=1 p(rk ,is)∑nt
j=1 p(rk ,i j) ,

∑ j
s=1 p(rk ,is)∑nt
j=1 p(rk ,i j)

)
.

In light of the exposed facts, each robot will make a decision by following Algorithm 1 during
Step 2 of the task execution process (see Figure 1).

Algorithm 1 Decision making for robot rk

Require: Current task ti

Require: NT A = {nr1, . . . nrnt}

Require: θrl , ωw, T = {t1, . . . tnt}

1: xk = ∅

2: for l = 1, . . . , nt do
3: p(rk, il) = 1

1+ 1
θnrl
·(dil+ωw·qn(nri,nrl))n (Equation (3.3))

4: xk ← xk ∪ p(rk, il)
5: end for
6: xNormk = Normalize(xk)
7: next ← random integer from xNormk with the interval method
8: return tnext

This algorithm has the following requirements for the input parameters: the current task assigned
to the robot rk, i.e., ti; the θrl and ωw parameters defined in (3.3); the set of tasks T to calculate the
distances between tasks; and, finally, the set NT A = {nr1, . . . nrnt}, which contains the number of
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robots allocated to each task, where nrk represents the number of robots assigned to the task tk. The
vector NT A is set during the communication processing process described in Figure 1. First, in line 1,
the algorithm initializes the fuzzy set xk to an empty set. Line 2 executes a loop where, for each task tl,
the transition possibility from the current task ti to the task tl is computed, denoted as p(rk, il) (see line
3). This value is calculated according to (3.3). In the last step of this loop, the value p(rk, il) is added
to the fuzzy set xk (line 4). Then, in line 6, the vector xk is normalized as stated in the first step of the
interval method described above. At last, line 7 computes the index next ∈ {1, . . . , nt} of the next task
to execute according to Steps 3 and 4 of the aforementioned interval method. This index specifies the
next task to be executed tnext that will be returned by the algorithm.

Note that, if there is no communication, i.e., MAXRANGE = 0, the decision about the next task to
execute only depends on the distance between the task and the robot (di j value in (3.3)). Indeed, the
lack of communication is equivalent to the fact that all values of the vector NT A are zero; therefore,
the number of robots allocated to a task has no impact on the decision making process. Consequently,
the transition possibilistic function given by (3.3) is reduced to the following one:

p(rk, i j) =
1

1 +

(
di j

θrk

)n . (3.5)

4. Experimental results

In this section, we present the simulations conducted to analyze the influence of communication on
our task allocation mechanism. All experiments were performed by using Matlab, specifically release
2018a. Additionally, the source code for all developed scripts is publicly available in a repository
located at this link*.

To validate the task allocation mechanism independently of other factors, we have made the
following assumptions: (1) the travel time required by robots from one task to the next is zero; and
(2) there are no collisions between robots. Two kinds of environments have been taken into account:
environments with randomly-placed tasks and environments with tasks grouped in clusters, both of
them being synthetic environments. For the first one, the tasks are located randomly, as can be observed
in Figure 3. Figure 4 shows the location of the clustered tasks for the later experiments. As can be
seen, the tasks are arranged into 2, 4, 6 and 8 groups or clusters. Each cluster of tasks is circled in
red and labeled as C1,...,C8. For all experiments, 30 robots and 100 tasks have been used and the
dimension of the environment is the same (width=600 units and height=600 units). The threshold
value θrk will always be, for all robots, equal to dmax

4 , where dmax is the maximum distance between two
tasks in the environments generated to carry out the experiments. In our case, dmax is equal to 800.5
units. It is important to mention that there is a relationship between dmax and the maximum range of
communication: greater values of dmax will require greater values of MAXRANGE, and vice versa. Due to
this relationship, we have decided to keep constant dmax and to modify the MAXRANGE value during the
experiments. Since our purpose is to analyze the number of steps (time) required by the multi-robot
system to visit, at least once, each task, tasks are never finished and therefore always remain in the
same position from the beginning until the end of the simulation.

All results have been obtained after 500 iterations or steps. In order to keep the same initial
*https://github.com/joseGuerreroUIB/MultiComm
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conditions over all experiments, the number of tasks was always the same and they were always placed
in the same position. Thus, the goal of the system was to decrease the number of simulation steps so
that all tasks have been visited by at least one robot (which has been measured by applying the values
of the parameter ωw in (3.3)).

-300 -200 -100 0 100 200 300

X

-300

-200

-100

0

100

200

300

Y

Figure 3. An example of an environment in which tasks are randomly placed. Blue dots
represent the positions of the tasks.

(a) Tasks arranged into 2 clusters. (b) Tasks arranged into 4 clusters.

(c) Tasks arranged into 6 clusters. (d) Tasks arranged into 8 clusters.

Figure 4. Environments with 100 tasks arranged into the clusters used for the experiments.
Blue dots represent the positions of the tasks. Each cluster is marked with a red circle and
labeled as C1, ..., C8.

Next, we describe the results obtained from the experiments.

4.1. Experiments with randomly-placed tasks

Figure 5 shows the number of simulation steps that have been necessary for all tasks to be visited by
a robot at least once when the tasks are placed randomly in the environment according to the parameter
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ωw in (3.3), running from ωw = 0.2 to ωw = 2.0. What is more, different values of the maximum
communication range have been tested, from no communication strategies (MAXRANGE = 0) to full
communication between robots (MAXRANGE = 800.5). Each experiment has been performed with
500 different random environments and the mean value of all of those experiments has also been
depicted in Figure 5. As can be seen, the minimum number of simulation steps for all task visits is
obtained when the maximum communication range is equal to 200 units and ωw = 1.0. In this case,
the use of communication decreases by 7.5% the number of simulation steps relative to the strategy
without communication. When the maximum communication range is high (MAXRANGE = 600 or
MAXRANGE = 800), even when we use full communication between robots, there are no significant
differences in terms of the results without communication. In contrast, it must be noted that for some
values of MAXRANGE, like for example when MAXRANGE = 400, the communication, for some values
of ωw, increase the number of simulation steps.
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Figure 5. Number of simulation steps required to visit all tasks for random environments,
considering different values of both ωw and the maximum communication range
(MAXRANGE).

4.2. Experiments with clustered environments

Figures 6 and 7 show the number of simulation steps performed so that all tasks have been visited
by at least one robot when the tasks are arranged into 2, 4, 6, and 8 clusters (see Figure 4). The
ωw parameter ran from ωw = 0.2 to ωw = 2.0. In this case, we fixed the maximum communication
range and analyzed the impact of the parameter ωw when different clusters are proposed. Hence, the
maximum communication range MAXRANGE is 200 units in Figure 6 and 400 units in Figure 7.

When MAXRANGE = 200 units, the number of simulation steps decreases with increments of the
values of ωw. This behavior is seen more clearly when the number of clusters is low, like for instance
with only 2 clusters. The minimum number of simulation steps carried out to visit all tasks is obtained
when ωw = 1.2 with 6 clusters.

With MAXRANGE = 400 units, a tendency similar to the one observed for randomly-placed task
environments. In this case, when there are a lot of clusters (i.e., the number of clusters is equal to
either 6 or 8) and the communication has a high weight value in the decision process (high values of
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the parameter ωw), the communication process reduces the performance of the system. In contrast,
when there is a low number of clusters (either 2 or 4 clusters), then the system behavior is similar to
that exposed in Figure 6. The minimum number of simulation steps carried to visit all tasks is obtained
when ωw = 1.6 with 4 clusters.

These results also demonstrate that, with 2 clusters, the number of simulation steps is, in some cases,
higher than with more than two. This behavior is due to the low value of the probability transition
function between these two clusters. In contrast, with in-between clusters (four or more), the robots
can jump to closer clusters in order to perform faraway tasks.
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Figure 6. Number of simulation steps required to visit all tasks with different clusters, and
for different values of ωw. MAXRANGE = 200 units.
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Figure 7. Number of simulation steps required to visit all tasks with different clusters, and
for different values of ωw. MAXRANGE = 400 units.

Figure 8 depicts the total distance traveled by the robots without using communication when the
tasks are clustered in 2, 4, 6 and 8 groups. As can be observed, the greater the number of clusters,
the longer the total distance. When there are more clusters, for example 8, the robots must constantly
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transit from one group of tasks to another one, increasing the traveled distance. On the contrary, with a
lower number of clusters, for example 2, the robots remain in their current cluster, because the distance
between clusters is longer and the possibility for transiting between them is, in consequence, lower.
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Figure 8. Total distance traveled by all robots with different clusters of tasks and without
communication (MAXRANGE = 0).

Figures 9 and 10 represent the total distance traveled by the robots with different numbers of
clusters, different values of the parameter ωw and with MAXRANGE = 200 units and MAXRANGE = 400
units, respectively. Both figures show the same behavior as that without communication, that is to
say, the environments with a higher number of clusters imply longer distances. Besides, in both cases,
and more specifically with MAXRANGE = 400, the total traveled distance decreases with respect to the
parameter ωw. Remember that ωw weights the number of robots with respect to the distance between
tasks; therefore, if the value of ωw is higher then the transition possibility to distant clusters is lower.
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Figure 9. Total distance traveled by all robots with different clusters of tasks, and for different
values of ωw. MAXRANGE = 200 units.
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Figure 10. Total distance traveled by all robots with different clusters of tasks, and for
different values of ωw. MAXRANGE = 400 units.

In order to conduct a deeper study of the system’s behavior, we constructed Figures 11–14 to show
the number of simulation steps required to visit all tasks when those tasks are arranged into 2, 4, 6,
and 8 clusters as illustrated in Figure 4. Different values of MAXRANGE and ωw have been considered.
Figure 11 depicts the results for 2 clusters. As can be seen, the use of a full communication strategy
provides the worst results (the greatest number of simulation steps). In contrast, when a limited
communication range is considered, even if MAXRANGE = 0, the number of simulation steps decreases
as the weight ωw is increased. Furthermore, for the remaining number of clusters (look at Figures 12–
14), as the number of clusters increases, there is a MAXRANGE value that abruptly increases the number
of simulation steps. From now on, the worst value of MAXRANGE will be denoted as MAXWORS T . The
simulations demonstrate that there is a correlation between the number of clusters and, therefore, the
distance between them and the MAXWORS T value: The shorter the distance between clusters (or the
greater the number of clusters), the lower the MAXWORS T value. Thus, when the number of clusters
is equal to 4, MAXWORS T is equal to 600 (see Figure 12); when the number of clusters is equal to 6,
MAXWORS T is equal to 400 (see Figure 13); finally, regarding the maximum number of clusters, clearly,
the worst communication range is equal to 400 (see Figure 14). In light of these results, we can
conclude that increasing communication (communication range increases) can increase the number of
simulation steps; therefore, the system’s performance degrades. These results are consistent with those
obtained by Talamali et al. in [11] where, as was explained in Section 1, increasing the communication
range could degrade the system’s performance. It should be noted that the communication mechanism
is very simple because we want to meet the requirements of swarm systems. These kinds of situations
in which more information does not imply better results have been suggested by other authors using
swarm-like mechanisms and remain a hot topic in research, as Talamali et al. pointed out.
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Figure 11. Number of simulation steps required to visit all tasks with 2 clusters, different
values of MAXRANGE, and different values of ωw.
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Figure 12. Number of simulation steps required to visit all tasks with 4 clusters, different
values of MAXRANGE, and different values of ωw.

AIMS Mathematics Volume 9, Issue 5, 11511–11536.



11529

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

w

18

19

20

21

22

23

24

25

26

27

28

#
S

te
p

s

No Comm.
Dist=200
Dist=400
Dist=600
Dist=800
Full Comm.

Figure 13. Number of simulation steps required to visit all tasks with 6 clusters, different
values of MAXRANGE, and different values of ωw.
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Figure 14. Number of simulation steps (Steps) required to visit all tasks with 8 clusters,
different values of MAXRANGE, and different values of ωw.

The last set of simulations carried out to validate our approach considers the impact of the
cluster distribution on the system’s performance. Thus, instead of using the aforementioned clustered
environments, which were arranged symmetrically as illustrated in Figure 4, clusters arranged
asymmetrically are now under consideration. Figure 15 shows the three considered asymmetric
clustered environments in which tasks are arranged into 4, 6, and 8 clusters. As can be observed,
the clusters are not uniformly distributed over the environment; moreover, most of them are positioned
in the upper right corner of the environment. The remaining parameters had the same values as in the
previous experiments, i.e., the number of tasks was equal to 100, there were 30 robots, and dmax was
equal to 800.5 units of distance.
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(a) Tasks arranged into 4 clusters. (b) Tasks arranged into 6 clusters. (c) Tasks arranged into 8 clusters.

Figure 15. Environments with 100 tasks arranged into asymmetric clusters used for the
experiments. Blue dots represent the positions of the tasks. Each cluster is marked with a red
circle and labeled as C1, ..., C8.

Table 1 summarizes the number of simulation steps required to visit all tasks with the 4, 6, and 8
asymmetric clusters without using communication. This means that robots only take into account the
distance to choose the next task to visit, i.e., the possibilistic transitions are given by (3.5). As can
be seen, despite the results being very similar for all clusters, the number of simulation steps slightly
increases when the number of clusters increases. Notice that these results are similar to those obtained
with symmetric clusters of tasks.

Table 1. Number of simulation steps required to visit all tasks with different amounts of
asymmetric clusters without using communication.

- Steps
4 Clusters 18.72
6 Clusters 19.09
8 Clusters 19.22

Figures 16 and 17 show the mean number of simulation steps required to visit all tasks with 4, 6
and 8 asymmetric clusters (look at Figure 15). The maximum communication range has been fixed
and different values of the parameter ωw have been tested. The obtained results are equivalent to those
represented in Figures 6 and 7, but with asymmetric clusters instead.

Figure 16 depicts these results when the parameter MAXRANGE is equal to 200 units. As can be seen,
for any number of clusters, if ωw is lower than 0.8, the number of simulation steps is slightly lower than
the corresponding results without communication. For instance, if ωw = 0.2, then the mean number
of simulation steps with communication and 8 clusters is equal to 18.14, but without communication
(refer to Table 1), this value is equal to 19.22. What is more, the results obtained for low values of
ωw and these asymmetric clusters are similar to the results without asymmetry, as can be observed
in Figure 6. It seems that the distribution of tasks does not impact the system’s performance when
the communication does not have a high value of ωw. The environments with 2 clusters, as shown
in Figure 6, have the worst results. For values of ωw higher than 0.8 and 4 clusters, the number of
simulation steps is very similar to those needed when 2 clusters without asymmetrical task arrangement
are considered. This is due to the fact that the clusters of tasks C2, C3, and C4 in the asymmetric
environment (see Figure 15) are so close to each other that all of them can be understood to be one
virtual, unique, bigger cluster. The number of simulation steps increases significantly according to the
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parameter ωw when ωw is greater than 0.8 and we consider 6 and 8 clusters. The exposed results are
very similar to those obtained without asymmetric clusters and with MAXRANGE = 400 (see Figure 7).
The reason for this may be the fact that the communication range is too short for robots to cover clusters
from C2 to C8 when the tasks are asymmetrical.
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Figure 16. Mean number of simulation steps required to visit all tasks with different amounts
of asymmetric clusters, and for different values of ωw. MAXRANGE = 200 units.

It remains for us discuss the system’s behavior when MAXRANGE = 400. Figure 17 shows
the obtained results when the parameter MAXRANGE is equal to 400 units for different amounts of
asymmetric clusters and different values of the parameter ωw. As can be observed, the number
of simulation steps decreases for the experiments with MAXRANGE = 200 and asymmetrical task
arrangement. Moreover, the aforesaid number of simulation steps does not increase according to ωw as
significantly as it did in the aforementioned asymmetric case with MAXRANGE = 200. Furthermore, the
system behaves in a more stable way in relation to the parameter ωw when higher values of MAXRANGE

are considered. It is worth noting that with MAXRANGE = 400, the communication range is able to cover
the entire cluster area from C2 to C4 (look at Figure 15); therefore, robots can make their decisions
with less uncertainty than with MAXRANGE = 200. What is more, the numbers of simulation steps
for the highest values of ωw with asymmetric task arrangement are very similar to those showed for 2
clusters without asymmetry in Figure 7. Thus, the behavior of a system with 8 asymmetric clusters,
as they are arranged in Figure 15(c), is similar to the behavior of a system with 2 clusters without
asymmetric arrangement, as in Figure 4(a). Notice that these results are similar to those mentioned
above with MAXRANGE = 200 and are due to the fact that the clusters from C2 to C8 are so close that
they can be seen as a single cluster by our system.
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Figure 17. Mean number of simulation steps required to visit all tasks with different amounts
of asymmetric clusters, and for different values of ωw. MAXRANGE = 400 units.

Finally, Figures 18 and 19 illustrate the standard deviation (σ) of the number of simulation steps
required to visit all tasks with 4, 6, and 8 asymmetric clusters, i.e., these figures represent the standard
deviation of the results depicted in Figures 16 and 17, respectively. Upon comparing Figures 18 and 19,
we can observe that the standard deviation is generally smaller when MAXRANGE is equal to 400 units
than the corresponding results obtained with MAXRANGE = 200. More to the point, with MAXRANGE =

400, the maximum standard deviation across all clusters is 5.07 units, whereas the global maximum
value of σ is 9.3 units when MAXRANGE = 200. When MAXRANGE = 200, in general, larger values
of the ωW parameter result in larger values of σ; additionally, it is important to note that the standard
deviation is also highly influenced by the number of clusters; specifically, when the number of clusters
is either 6 or 8, σ experiences a sudden increase when the ωW parameter exceeds 1.0. In contrast,
when MAXRANGE = 400, the standard deviation remains more stable in terms of variations in the ωW

parameter. This fact could suggest that effective communication contributes to more robust system
behavior.
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Figure 18. Standard deviation (σ) of the number of simulation steps required to visit all tasks
with different amounts of asymmetric clusters, and for different values of ωw. MAXRANGE =

200 units.
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Figure 19. Standard deviation (σ) of the number of simulation steps required to visit all tasks
with different amounts of asymmetric clusters, and for different values of ωw. MAXRANGE =

400 units.

5. Conclusions and future work

In this paper, we have studied how to model a multi-robot task-allocation process by using
fuzzy preorders as transitions when a simple communication mechanism between robots is under
consideration. Thus, we have extended our previous work by including a communication mechanism
that allows one to share the information about the number of robots allocated to each task, in a
response threshold-like algorithm. This new information allows us to model the transitions through
the use of appropriate fuzzy preorders. The simulation results, under Matlab, have demonstrated the
impact of both the maximum communication range (MAXRANGE) and the parameter ωw on the system’s
performance. The use of the parameter ωw helps us to weight the number of robots with respect to the
distance between tasks and, thus, determines the importance of the aforementioned number of robots
according to the distance. The simulations have been performed for different kinds of environments.
In light of the simulation results obtained, the following conclusions can be drawn:

• For specific combinations of MAXRANGE and values of ωw, our approach enhances the
system’s performance by reducing the number of simulation steps relative to the case without
communication. Nevertheless, in general, as discussed in Section 4, a better communication
mechanism with a larger MAXRANGE does not necessarily lead to improved results; in fact, in
some cases, it may even decrease the system’s performance. Furthermore, there appears to be a
correlation between the distribution of tasks and the best MAXRANGE value.
• The use of the proposed communication mechanism not only improves the system’s performance

in terms of simulation steps for the same system without communication, but it also benefits from
its simplicity, making it applicable to any swarm system.
• Overall, larger values of MAXRANGE tend to result in lower standard deviations. Thus, the

communication mechanism clearly contributes to the realization of more stable and robust
outcomes.

It is worth emphasizing that this paper introduces, for the first time, a formalism based on fuzzy
preorders, asymmetric distances and aggregation to model multi-robot communication. This novel
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formalism is able to automatically generate new transition functions from previous ones through the
use of fuzzy preorders. Some realistic applications of this response threshold algorithm could be those
where the task should be visited as soon as possible for the first time to check its initial status. Besides,
the status of each task should be periodically checked to monitor its evolution. One specific type
of task that aligns with all of these characteristics is the use of nanorobots in cancer detection and
treatment [30]. Initially, the nanorobots must visit the potential tumors. Subsequently, they should
revisit these regions over time to track their evolution and verify treatment correctness. In this context,
the clusters depicted in Figure 4 could represent the potential tumor-affected regions.

In a future work, a deeper study of the impact of ωw will be carried out. With this aim, we expect
to include a machine learning algorithm to fit the parameters of the proposed task-allocation method.
Furthermore, we expect to implement and test this method in a colony of real robots.
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