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Abstract: Fruit Disease Detection (FDD) using Computer Vision (CV) techniques is a powerful 

strategy to accomplish precision agriculture. Because, these techniques assist the farmers in identifying 

and treating the diseased fruits before it spreads to other plants, thus resulting in better crop yield and 

quality. Further, it also helps in reducing the usage of pesticides and other chemicals so that the farmers 

can streamline their efforts with high accuracy and avoid unwanted treatments. FDD and Deep 

Learning (DL)-based classification involve the deployment of Artificial Intelligence (AI), mainly the 

DL approach, to identify and classify different types of diseases that affect the fruit crops. The DL 

approach, especially the Convolutional Neural Network (CNN), has been trained to classify the fruit 

images as diseased or healthy, based on the presence or absence of the disease symptoms. In this 

background, the current study developed a new Battle Royale Optimization with a Feature Fusion 

Based Fruit Disease Grading and Classification (BROFF-FDGC) technique. In the presented BROFF-
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FDGC technique, the Bilateral Filtering (BF) approach is primarily employed for the noise removal 

process. Besides, a fusion of DL models, namely Inception v3, NASNet, and Xception models, is used 

for the feature extraction process with Bayesian Optimization (BO) algorithm as a hyperparameter 

optimizer. Moreover, the BROFF-FDGC technique employed the Stacked Sparse Autoencoder (SSAE) 

algorithm for fruit disease classification. Furthermore, the BRO technique is also employed for 

optimum hyperparameter tuning of the SSAE technique. The proposed BROFF-FDGC system was 

simulated extensively for validation using the test database and the outcomes established the enhanced 

performance of the proposed system. The obtained outcomes emphasize the superior performance of 

the BROFF-FDGC approach than the existing methodologies. 

Keywords: battle royale optimization; fruit disease detection; computer vision; agriculture; deep 

learning 

Mathematics Subject Classification: 65D19, 68T07 

 

1. Introduction 

Automatic Fruit Disease Detection (FDD) refers to a process of identifying the presence of 

diseases in fruit crops. Image analysis, sensor technology, and Machine Learning (ML) are some of 

the techniques through which the diseases can be detected. The ML techniques remain the most 

common method for automatic detection of fruit disease while this technique analyzes the images of 

the fruits [1]. For this purpose, a large set of images of both diseased as well as healthy fruits are 

collected and utilized to train the ML method. Then, the technique detects the patterns in these images 

that are indicative of diseases [2]. Sensor technology is another method used to collect the data on fruit 

crops. This includes humidity, other environmental conditions, temperature measurements and 

readings from sensors that confirm the presence of particular diseases [3]. The collected data can be 

used for fruit classification i.e., either diseased or healthy. There exist numerous benefits when utilizing 

an automated FDD system. One of the most important advantages is its accuracy and quick disease 

detection [4], which helps in the prevention of disease and protection of crop health. Automatic disease 

detection systems can be utilized for monitoring vast areas of crops, thus reducing the requirement for 

manual inspection. Also, these automatic systems are unbiased and highly objective than the human 

analysis, which in turn helps in minimizing the errors and enriching the precision of disease detection 

process [5]. However, there exists a few difficulties too when utilizing an automatic FDD system [6]. 

The necessity for high-quality and accurate data is one of the most challenging issues faced in 

automatic FDD system. The method cannot detect the disease accurately, if the data used to train the 

model is of poor quality or incomplete [7]. Further, another difficulty is the demand for robust 

algorithms that can manage variations in the dataset. For instance, the method should be aware of 

different kinds of fruits that may have diverse features. At last, the automatic systems necessitate 

reliable software and hardware infrastructure for proper functioning [8].  

There has been a significant surge in the application of image processing and machine vision 

technologies for enriching the quality of fruit surface images. This is attributed to the reason that such 

technologies provide huge benefits in areas, where the human eye is not sensitive. Thus, the application 

of image processing and Computer Vision (CV) methods overcomes the challenges through subjective 

industrial quality control approaches [9]. Although the performance of the ML algorithms developed 
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earlier is good enough, these methods mostly rely upon the image types (of fruit crops) used during 

testing and training periods. Further, the outcomes depend on the handcrafted feature extraction 

techniques, which are again a labor-intensive one. Additionally, such methods have been tested and 

trained only for smaller datasets, which raises the risk of biased estimations. An alternate method to 

overcome the abovementioned issues is to leverage the Deep Learning (DL) methods and develop a 

fruit classification and grading mechanism [10]. Such DL-based technique should be capable of 

deriving the appropriate features mechanically without any need for manual intervention [11]. 

In this background, the current research paper introduces a novel Battle Royale Optimization with 

a Feature Fusion Based Fruit Disease Grading and Classification (BROFF-FDGC) approach. In the 

proposed BROFF-FDGC approach, the Bilateral Filtering (BF) model is initially implemented for 

noise elimination. Besides, a compendium of DL methods such as the Inception v3, NASNet, and 

Xception methods is also utilized for feature extraction. In addition to this, the Bayesian optimization 

(BO) algorithm is used as a hyperparameter optimizer. Moreover, the BROFF-FDGC model utilizes 

the stacked sparse-AE(SSAE) technique for classification purpose. Furthermore, the BRO technique 

is also utilized for optimum hyperparameter tuning of the SSAE technique. The proposed BROFF-

FDGC model was extensively experimented through simulation while the outcomes showcase the 

enriched performance of the model.  

The remaining sections of the article are arranged as briefed herewith. Section 2 offers the 

literature review and Section 3 discusses about the proposed method. Then, Section 4 elaborates on 

the evaluation results and Section 5 concludes the work. 

2. Related works 

Majid et al. [12] examined an integrated DL architecture for fruit disease classification. At first, 

the researchers applied a data increase and two different kinds of features were derived. In the initial 

feature type, both color and texture features were derived while in the next type, the DL features were 

extracted through a pre-trained process. In general, the pre-trained process can be reused with Transfer 

Learning (TL). Then, both the features were fused through the maximal mean value of the serial 

technique after which a harmonic threshold-based genetic algorithm was used for the optimization of 

the resultant fused vector.  

Shah et al. [13] proposed a new computerized technique featuring Ant Colony Optimization 

(ACO)-oriented choice with the help of DL technique. The presented technique had four basic steps; 

a combination of the derived deep features through matrix length, data augmentation for solving the 

imbalanced data set, selection of better features utilizing ACO and hybrid Neighbourhood Component 

Analysis (NCA) methods, and fine-tuned pre-trained DL techniques (such as MobileNet-V2 and 

NasNet Mobile). The best-selective features were then passed onto multiple classifiers for ultimate 

recognition. Mostafa et al. [14] leveraged a deep CNN (DCNN)-related data enhancement method by 

utilizing the unsharp masking technique and color-histogram equalization in order to identify distinct 

guava plant species. In the presented technique, the data was first preprocessed and normalized. The 

presented study utilized five NN frameworks such as ResNet-50, AlexNet, GoogLeNet, ResNet-101, 

and SqueezeNet for identifying distinct guava plant species. 

The authors in the study conducted earlier [15] employed a two-phase DCNN methodology for 

citrus disease classification and plant disease detection by exploiting the leaf images. The proposed 

methodology had two key stages; categorization of the majorly targeted area to a particular disease; 
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and its classification utilizing a classifier, thus suggesting the effectively-targeted diseased areas in the 

RPN. In literature [16], the authors examined novel DL-related citrus disease recognition and 

classification models. An innovative DL-related AlexNet architecture was used in this study for 

effectual disease detection. The Otsu method was executed in this study for image segmentation after 

which the application of Alex-Net architecture was executed as an extraction procedure. Afterwards, 

the Random Forest (RF) method was utilized for categorizing different types of citrus diseases. In 

addition to this, the Adaptive Gamma Correction (AGC) method was also enforced to enhance the 

contrast of citrus images. Nikhitha et al. [17] emphasized on formulating a user-friendly device that 

can detect and grade the disease levels. The inception model utilized CNNs for the classification while 

the latter was retrained through the TL method. The presented mechanism even ranked the fruit 

depending on the infection percentage. 

In literature [18], the author focused on grape diseases and presented a new structure for 

identification and classification of selective diseases at the initial phase. A DL-related solution was 

entrenched into a typical architecture for optimum performance. In this model, three major stages were 

involved (a) Fusion of stronger features utilizing the presented approach after which the features were 

subjected to classifier step utilizing the Least Squared Support Vector Machine (LS-SVM), (b) feature 

extraction after the application of TL on pretrained deep methods such as ResNet101 and AlexNet, and 

(c) selecting the optimal features through the proposed Yager Entropy along with Kurtosis (YEaK) 

method. Kejriwal et al. [19] intended to identify and detect the foliar diseases with the help of apple 

leaf images. Involving a professional to detect the infections is not only time-consuming, but also 

inefficient, and expensive for large orchards. So, this technique was presented in which a group of 

three pre-trained DCNNs such as InceptionResNetV2, ResNet101V2, and Xception was used to 

categorize the apple tree leaves as either infected or healthy based on five disease classes. 

3. The proposed model 

In the current study, an innovative BROFF-FDGC method has been introduced for identification 

and classification of the fruit disease. The proposed BROFF-FDGC technique incorporates the 

following processes namely, BF-based noise removal, fusion-based feature extraction, BO-based 

hyperparameter tuning, SSAE classification, and BRO-based parameter optimization. Figure 1 

represents the working flow of the BROFF-FDGC system. 

3.1. BF-based noise removal process 

The BF process is used to smoothen the images, while at the same time, preserving the rest of the 

fine details and edges in the image [20]. BF is used in image processing techniques to reduce the 

number of details and noise in the image and also preserve the overall structure of the image. The BF 

functions employ a weighted average for all the pixels in the image while the closest pixel is used as 

weight. The weight is measured based on the intensity difference and spatial distance between the pixel 

and its neighbors. This enables the filter to preserve other fine details and edges in the image, as the 

pixel with the largest spatial distance or highest intensity difference from the neighbor is given lower 

weight and remains less affected by the filter. BF is wisely applied in medical images for smoothening 

the images, while preserving the significant structures like tissue boundaries and blood vessels. 
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Figure 1. Working procedure of the BROFF-FDGC method. 

3.2. Fusion-based feature extraction process 

In this study, a fusion of DL architectures like Inception v3, NASNet, and Xception models is 

executed for the feature extraction process. Data fusion technique has been employed in a diverse 

range of CV and ML applications [21]. Feature fusion is a crucial task that incorporates multiple feature 

vectors. This technique depends on feature fusion using the formulated entropy.  

The three vectors are defined as follows 

𝑓𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛×𝑛 = {𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛1×1, 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛1×2, 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛1×3, ⋯ , 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛1×𝑛},  (1) 

𝑓NNet1×𝑚 = {NNet1×1, 𝑁𝑁𝑒𝑡1×2, 𝑁𝑁𝑒𝑡1×3, ⋯ , 𝑁𝑁𝑒𝑡1×𝑛},    (2) 

𝑓Xception 1×𝑝 = {Xception1×1, Xception1×2, Xception1×3, ⋯ , Xception1×𝑛}.  (3) 

Furthermore, the extracted feature is combined in a single vector. 

𝐹𝑢𝑠𝑒𝑑(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟)1×𝑞 = ∑ {3
𝑖=1 𝑓𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛1×𝑛, 𝑓𝑁𝑁𝑒𝑡1×𝑚, 𝑓Xception1×𝑝}.  (4) 

Here, 𝑓 refers to the fused vector (1 × 1186). The entropy is exploited to feature the vectors for 

the optimum Feature Selection (FSs) outcomes as per the score. The FS technique can be expressed 

mathematically as shown in the Eqs (1) and (4). Entropy is used for selecting 1186 score-assisted 

features in 7835 features. 

𝐵𝐻𝑒 = −𝑁𝐻𝑒𝑏 ∑ 𝑝𝑛
𝑖=1 (𝑓𝑖),         (5) 

𝐹𝑠𝑒𝑙𝑒𝑐𝑡 = 𝐵𝐻𝑒(max(𝑓𝑖 , 1186)).        (6) 
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In these expressions, 𝑝 denotes the feature probability and He signifies the entropy. The last 

selected feature is then fed into the classifiers for differentiating the glioma and healthy images. 

3.2.1. Inceptionv3 model 

InceptionV3 model outperforms the preceding inception architecture through cost-effective 

computational outcomes [22]. Inception module remains the core component of the inception 

architecture. The inception model allows for deep networking and effective computation through a 

reduction dimension with a stacked 1𝑥1 convolutional layer. The key aim of the proposed technique 

is to address the problems of computation cost and overfitting among various other problems. The 

fundamental concept behind the inception model is to generate different filters of various dimensions 

that can run in parallel mode instead of series mode. The network in the inception module has an 

additional 1𝑥1 convolutional layer before the 3 × 3 and 5x5 convolutional layers and this feature 

makes the procedure, a highly robust and computationally inexpensive one. A dense 128𝑥1 layer 

exchanges the classifier part of the models, viz., head of the model, 3𝑥1 and 128𝑥, and 12𝑥1 for 

ternary and binary classifications, correspondingly. Afterwards, the model is fine-tuned upon the input 

images for extracting the best features. For training purposes, InceptionV3 model is fed with input 

images sized at 224𝑥224𝑥3 while the input passes through different inception models in later stages 

and it might assist in preventing over-fitting as well as decreasing the computation cost. After being 

passed over the Inception module, the inputs are then passed to the dense layer of different sizes such 

as 128𝑥1 and 3𝑥1 or 2𝑥1 for the classifier model. 

3.2.2. NASNet model 

NASNet is a framework created with the help of a neural structural search method [23]. The 

search system called the Neural Architecture Search (NAS) as it exploits a control NN to develop a 

better CNN structure for the given data. The type of NASNet that was exploited in InstaCovNet19 was 

originally intended for the data named ImageNet. In this design, two classes of convolution cells are 

exploited, viz., the standard cell, and the reduction cell. Particularly, NASNet has been increased for 

the ImageNet data that comprises of images from every walk of life. In this case, a pre-trained NASNet 

infrastructure has been presented. The lack of huge datasets needs the usage of a pre-trained module. 

During the fine-tuning process, NASNet is provided with input images sized 224𝑥224𝑥3. Then, the 

input images pass over various reduction and normal layers that extract better features from these 

images. At last, the attained features are provided as two Dense layers sized at 128𝑥1 and 3𝑥1 for 

the purpose of classification.  

3.2.3. Xception model 

Xception refers to ‘extreme inception’ and it comprises of 36 deep layers apart from the FC layer. 

Xception contains depthwise convolution layers including the MobileNet model and it comprises of 

‘shortcuts’, in which the outcome of a certain layer is added to the output from the preceding layers. 

Unlike the InceptionV3, the Xception model combines the input records with compacted lumps, thus 

mapping the spatial connection for every channel autonomously; later, 1𝑥1 depthwise convolutional 

layer is implemented to capture the cross-channel connections. The Xception model overtakes the 
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InceptionV3 model with ImageNet dataset classification. In this case, a pre-trained Xception module 

(trained on ImageNet data) is developed. The pre-trained method is utilized due to the lack of a huge 

database for detection. The classification models, viz., head of the architecture, are later exchanged 

with dense layers sized at 128𝑥1 and 2𝑥1 for binary classification and 128𝑥1 and 2𝑥1 for ternary 

classification, correspondingly. 

3.2.4. BO-based hyperparameter tuning 

The BO technique is exploited for optimum hyperparameter adjustment process. BO functions by 

creating a posterior distribution of the function viz., Gaussian procedure that better describes the 

operation to be optimized [24]. When the observation counts increase, the posterior distribution also 

increases. Then, it becomes more apparent, especially at the region in parameter space that is worth 

computing and exploring. BO technique comprises of two key elements: A statistical method for 

modeling the objective function and an acquisition function for determining the next set of samples. 

Alternatively, the acquisition function offers sample points in the searching region as well. The 

function drives the tradeoff exploration and exploitation processes. Exploitation is a sample whereas 

the statistical models predict the highest objective scores while exploration refers to the return of a 

solution: The point estimate is either with a large posterior mean or large (𝑥). The sampling is done 

at the location where the forecast uncertainty is higher. Then, the objective is estimated based on the 

initial space‐filling analysis model. This model frequently contains only those points that are selected 

randomly and iteratively used for allocating the remainder of the 𝑁 function’s budget evaluation, 

demonstrated in Algorithm 1. For the BO algorithm, the time complexity is (𝑛3)  in which 𝑛 

represents the observation counts. The time complexity for DL is (𝑤 ⋅ 𝑚 ⋅ 𝑒), where 𝑤 represents 

the weight counts, 𝑚 indicates the learning instance counts, and 𝑒 indicates the running epochs. In 

this study, hyperparameter tuning was conducted by the researchers based on the attention module. 

The filter counts exploited in every attention layer can be enhanced. The optimization technique 

defines a better integration of the filter numbers for every attention layer.  

Algorithm 1. Bayesian optimization algorithm. 

Place the Gaussian process before 𝑓. 

Observe 𝑓 at 𝑛0 point based on the space‐filling experimental model. 

Set 𝑛 = 𝑛0. 

While 𝑛 ≤ 𝑁 do 

Upgrade the posterior probability distribution on 𝑓 utilizing each accessible dataset; 

Consider 𝑥𝑛 as a maximizer of the acquisition function over 𝑥, from which the acquisition 

function was calculated through the existing posterior distribution; 

Observe 𝑦𝑛 = 𝑓(𝑥𝑛); 

Increment 𝑛; 

End 

3.3. Optimal fruit classification process 

In order to identify the fruit diseases, the SSAE classifier is used. AE is a NN with multiple 

Hidden Layers (HLs) of unsupervised feature learning [25]. The basic design is to apply more than 
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one layer of NN for mapping the input dataset to attain the output vectors. Furthermore, the AE is 

applied to reduce the data feature sizes that could characterize both linear and non-linear conversions. 

The unlabeled input vector is exposed to weight mapping so as to attain the values of HL resultant 

vector as formulated below.  

𝑦𝑖 = 𝑓𝜃(𝑥𝑗) = 𝑆(∑ 𝑊𝑖𝑗
𝑁
𝑗=1 𝑥𝑗 + 𝑏𝑖).      (7) 

Let 𝑦𝑖 be the activation value of the HL, 𝑊𝑖𝑗 indicates the weight coefficient, 𝑏𝑖 represents 

the offset vector of HL and 𝑆(𝑥) represents the activation function and the mathematical expression 

is: 

𝐿(𝑥𝑖,𝑦𝑖) =
1

2
‖𝑥𝑖 − 𝑦𝑖‖2.         (8) 

The weight parameter from the input layer to the HL is 𝜃 = {𝑊, 𝑏}, and the weight parameter in 

the HL to the resultant layer is represented as 𝜃′ = {𝑊′, 𝑏′}. Figure 2 shows the architecture of the 

SSAE model. 

 

Figure 2. Architecture of the SSAE model. 

Once a certain number of neurons is acquired from the HL, then they are considered as features 

so as to reduce the data size. Due to the existence of various neurons from the HL, a sparsity constraint 

is added for training the network and extracting valuable features. 

𝐽𝑆 = 𝐽 + 𝛽 ∑ 𝐾𝐿
𝑠2
𝑗=1 (𝜌‖𝜌𝑗)𝑐,        (9) 

here, 𝜌  indicates the sparsity parameter; 𝑆2  denotes the number of neurons from the HL; 𝛽 

characterizes the penalty factor to control sparsity; and 𝐾𝐿(𝜌‖𝜌𝑗) indicates the difference between 𝜌 

and 𝜌̂𝑗 . 

Typically, a simple SAE is not suitable for training purposes. So, the current study adopts a 

stacking technique in which every HL is separately trained with unsupervised learning of SAE. Then, 
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these layers are linked to produce a stacked network. Every sensor extracts 31 feature parameters in 

the vibration signal which are signified as 31x𝑁 input feature vector as SSAE.  

To raise the classification effectiveness of the SSAE system, the BRO technique is utilized in the 

current study. Rahkar Farshi (2020) introduced the BRO algorithm based on battle royal video game. 

In this game, the player needs to make use of and explore the surroundings to survive [26]. All the 

players outside the safer region get affected in two ways while the former is exposed to the risk of 

being removed from the battle. 

The early population of the BRO technique is made up of 𝑛 randomly-produced individuals in 

D-dimensional region. 𝑥𝑖
𝑡(𝑖 ∈ [1, 𝑛]) and 𝑥𝑖,𝑑𝑎𝑚

𝑡  represent the location data and damage level of the 

𝑖𝑡ℎ player in 𝑡𝑡ℎ iteration amongst the population, correspondingly. The player from the best location 

who stayed back in the original location is termed as the winner. However, the loss level is fixed as 0. 

The player in a worse position gets damaged during a mutual attack and so, they are named as loser. 

The loss levels of the loser can be upgraded, as demonstrated in Eq (10). Furthermore, due to the global 

best place and the present place, the location of the loser is upgraded, as demonstrated in Eq (11) and 

it aims to defend itself and attack the enemy from another side. 

𝑥𝑖,𝑑𝑎𝑚
𝑡+1 = 𝑥𝑖

𝑡 , 𝑑𝑎𝑚 + 1,         (10) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡).        (11) 

In this expression, 𝑟 indicates the coefficient (𝑟 ∈ [0,1]). Once a player becomes the winner, 

then the damage levels return to 0. In order to emphasize the exploration process, once the player's 

cumulative damage levels exceed the predetermined value (𝑡ℎ𝑟𝑒 = 3), the player dies and respawns 

from the present safer region. In this scenario, the damage level returns to 0 . The average player 

respawns from the present safer region, as given below.  

𝑥𝑖
𝑡+1 = 𝑟(𝑢𝑏𝑑 − 𝑙𝑏𝑑) + 𝑙𝑏𝑑.        (12) 

In Eq (12), 𝑢𝑏𝑑  and 𝑙𝑏𝑑  denote the lower and upper boundaries of the safer region. 

Furthermore, during the iteration procedure, if the iteration count is better than the area update 

threshold (𝛥), then the safer region gets reduced by the global optimum location while the center, the 

upper and lower limits are demonstrated as follows: 

𝑙𝑏𝑑 = 𝑥𝑏𝑒𝑠𝑡 − 𝑆𝐷(𝑥𝑑),        (13) 

𝑢𝑏𝑑 = 𝑥𝑏𝑒𝑠𝑡 + 𝑆𝐷(𝑥𝑑),        (14) 

here, 𝑆𝐷(𝑥𝑑)  denotes the standard deviation, 𝑥𝑏𝑒𝑠𝑡  indicates the existing optimum solution. 𝑙𝑏𝑑 

and 𝑢𝑏𝑑 exceed the lower and upper boundary of the solution space as given below. 

𝛥 = 𝛥 + 𝑟𝑜𝑢𝑛𝑑 (
𝛥

2
).         (15) 

The initial value 𝛥  is log10(𝑇 max ),  𝑎𝑛𝑑 𝑇 max  represents the maximal iteration counts. The 

pseudocode of the BRO algorithm is shown in Algorithm 2. 

The BRO algorithm grows an FF to realize a better effectiveness of the classifier and finds a 

positive integer to represent the optimal outcomes of the candidate. Here, FF corresponds to a reduced 

classifier error rate.  
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.  𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
× 100.     (16) 

Algorithm 2. Pseudocode of BRO algorithm. 

Start 

Randomly initializing a population (𝑥𝑛), and each parameter; 

𝑆ℎ𝑟𝑖𝑛𝑘 = 𝑐𝑒𝑖𝑙(𝐼𝑜𝑔10(𝑇 max )); 

𝛥 = 𝑟𝑜𝑢𝑛𝑑 (
𝑇 max 

𝑆ℎ𝑟𝑖𝑛𝑘
) ;  

For 𝑖 = I: 𝑇max 

Find the nearby player (𝑥𝑗
𝑡) by computing the Euclidean distance; 

𝑑 = 𝑖; 𝑣 = 𝑗 

If 𝑓(𝑥𝑖
𝑡) < 𝑓(𝑥𝑗

𝑡) 

𝑑 = 𝑗; 𝑣 = 𝑖; 

End if 

If 𝑋𝑑,𝑑𝑎𝑚
𝑡 < 𝑡ℎ𝑟𝑒 

Upgrade the damage level and the location of the loser; 

Else 

The loser respawns in the present safer region; 

𝑥d,𝑑𝑎𝑚
𝑡 = 0 

End if 

Re-evaluate the fitness value of 𝑥𝑖
𝑡; 

𝑥𝑣,𝑑𝑎𝑚
𝑡 = 0; 

If 𝑡 ≥ 𝛥 

Upgrade 𝑢𝑏𝑑 and 𝐼𝑏𝑑; 

Upgrade the threshold (𝛥 ) ; 

End if 

If 𝐼𝑏𝑑/𝑢𝑏𝑑 exceeds the Lower or upper limits of the solution space, then set to the original 

𝑢𝑏𝑑 and 𝐼𝑏𝑑; 

Record the better individual and the fitness value. 

End 

4. Performance validation 

The performance of the proposed BROFF-FDGC system, in terms of FDD, was validated using 

the the CASC IFW Database [27]. Table 1 provides the details about the dataset. Figure 3 shows some 

of the sample images. The images in the dataset were collected from the Internal Feeding Worm (IFW) 
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dataset of Comprehensive Automation for Specialty Crops (CASC) research work after obtaining 

previous consent from Purdue University. The dataset contains images for four cultivars of apples: 

Golden Delicious, Fuji, York, and Red Delicious. Every cultivar has images in different phases of 

ripening of defective and healthy apples. The images of the damaged apples show noticeable dark spots 

on the outside skin as a result of damage from internal feeding worms. Individual apple images were 

clipped to a size range of 120 × 120 pixels for the purpose of image processing. 

Table 1. Details of the database. 

Class No. of Instances 

NON-HEALTHY 3800 

HEALTHY 2058 

Total No. of Instances  5858 

 

Figure 3. Sample images. 

The confusion matrices generated by the BROFF-FDGC methodology on the FDD process are 

shown in Figure 4. The simulation values specify that the BROFF-FDGC approach correctly classified 

the healthy and damaged apples. 
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Figure 4. Confusion matrices of the BROFF-FDGC algorithm (a and b) 80% of TR set/20% 

of TS set and (c and d) 70% of TR set/30% of TS set. 

Table 2 offers a brief overview on the FDD results accomplished by the BROFF-FDGC 

methodology with 80:20 of TR phase and TS phase. Figure 5 exhibits the overall FDD performance of 

the BROFF-FDGC system for 80% of the TR phase. The simulation values indicate that the BROFF-

FDGC technique classified non-healthy and healthy apple images properly. In addition, it is also 

observed that the BROFF-FDGC technique attained an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 96.93%, 𝑠𝑒𝑛𝑠𝑦  of 

96.93%, 𝑠𝑝𝑒𝑐𝑦 of 96.93%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.87%, and an MCC of 93.73%. 

Table 2. FDD analysis outcomes of the BROFF-FDGC methodology on 80:20 of TR set/TS set. 

Class 𝐴𝑐𝑐𝑢𝑏𝑎𝑙 𝑆𝑒𝑛𝑠𝑦 𝑆𝑝𝑒𝑐𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 MCC 

Training Phase (80%) 

NON-HEALTHY 97.63 97.63 96.23 97.79 93.73 

HEALTHY 96.23 96.23 97.63 95.94 93.73 

Average 96.93 96.93 96.93 96.87 93.73 

Testing Phase (20%) 

IFW DAMAGED 98.68 98.68 96.13 98.29 95.13 

HEALTHY 96.13 96.13 98.68 96.83 95.13 

Average 97.40 97.40 97.40 97.56 95.13 
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Figure 5. Average outcomes of the BROFF-FDGC methodology on 80% of TR set. 

Figure 6 demonstrates the overall FDD examination outcomes achieved by the BROFF-FDGC 

technique on 20% of the TS set. The results point out that the BROFF-FDGC model can recognize 

non-healthy and healthy apple images accurately. Furthermore, it is also observed that the BROFF-

FDGC technique accomplished an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙  of 97.40%, 𝑠𝑒𝑛𝑠𝑦  of 97.40%, 𝑠𝑝𝑒𝑐𝑦  of 

97.40%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.56%, and an MCC of 95.13%. 

 

Figure 6. Average outcomes of the BROFF-FDGC methodology on 20% of TS set. 

Table 3 shows the comprehensive FDD analytical outcomes attained by the BROFF-FDGC 

technique with 70:30 of the TR set and TS set. Figure 7 shows the overall FDD analysis outcomes of 

the BROFF-FDGC system at 70% of the TR set. The obtained outcomes infer that the BROFF-FDGC 

technique identified non-healthy and healthy apple images accurately. Furthermore, it is also noted 

that the BROFF-FDGC approach accomplished an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.02%, 𝑠𝑒𝑛𝑠𝑦 of 98.02%, 

𝑠𝑝𝑒𝑐𝑦 of 98.02%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.93%, and an MCC of 95.87%. 
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Table 3. FDD analysis outcomes of the BROFF-FDGC system on 70:30 of TR set/TS set. 

Class 𝐴𝑐𝑐𝑢𝑏𝑎𝑙 𝑆𝑒𝑛𝑠𝑦 𝑆𝑝𝑒𝑐𝑦 𝐹𝑆𝑐𝑜𝑟𝑒 MCC 

Training Phase (70%) 

NON-HEALTHY 98.36 98.36 97.68 98.56 95.87 

HEALTHY 97.68 97.68 98.36 97.30 95.87 

Average 98.02 98.02 98.02 97.93 95.87 

Testing Phase (30%) 

NON-HEALTHY 98.40 98.40 98.58 98.79 96.69 

HEALTHY 98.58 98.58 98.40 97.89 96.69 

Average 98.49 98.49 98.49 98.34 96.69 

 

Figure 7. Average outcomes of the BROFF-FDGC algorithm on 70% of TR set. 

Figure 8 shows the overall FDD examination outcomes produced by the BROFF-FDGC method 

on 30% of the TS set. The outcomes indicate that the BROFF-FDGC method detected non-healthy as 

well as healthy apple images appropriately. Besides, it is observed that the BROFF-FDGC 

methodology accomplished an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.49%, 𝑠𝑒𝑛𝑠𝑦 of 98.49%, 𝑠𝑝𝑒𝑐𝑦 of 98.49%, 

𝐹𝑠𝑐𝑜𝑟𝑒 of 98.34%, and an MCC of 96.69%. 

 

Figure 8. Average outcomes of the BROFF-FDGC methodology on 30% of TS set. 
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The TRAC and VDAC values achieved by the BROFF-FDGC system for the FDD solution are 

shown in Figure 9. The outcomes exhibit that the BROFF-FDGC method produced excellent outcomes 

with high TRAC and VDAC values. The BROFF-FDGC system attained the highest TRAC 

performance. 

 

Figure 9. TRAC and VDAC outcomes of the BROFF-FDGC approach. 

The TRLS and VDLS values, accomplished by the BROFF-FDGC technique in terms of FDD 

solution, are shown in Figure 10. The outcomes infer that the BROFF-FDGC system achieved better 

outcomes with lesser TRLS and VDLS values. This is obvious due to the fact that the BROFF-FDGC 

technique achieved the least VDLS performance. 

 

Figure 10. TRLS and VDLS outcomes of the BROFF-FDGC approach. 

Figure 11 shows an apparent PR curve plotted with the values produced by the BROFF-FDGC 

system on the test database. The outcomes denote that the BROFF-FDGC method improved the PR 

outcomes on both the classes.  



11447 

AIMS Mathematics  Volume 9, Issue 5, 11432–11451. 

 

Figure 11. Precision-recall outcomes of the BROFF-FDGC methodology. 

A comprehensive ROC inspection was conducted upon the BROFF-FDGC technique using the 

test database and the results are shown in Figure 12. The simulation values imply that the BROFF-

FDGC methodology established its ability on both the classes.  

 

Figure 12. ROC outcomes of the BROFF-FDGC methodology. 

Table 4 shows the comprehensive analysis outcomes of the BROFF-FDGC system with recent 

models [28]. Figure 13 exhibits the comparative analysis results achieved by the BROFF-FDGC 

approach in terms of 𝑎𝑐𝑐𝑢𝑦. The simulation values indicate that the BROFF-FDGC approach gained 

an optimal solution with the maximal values of 𝑎𝑐𝑐𝑢𝑦 . in terms of 𝑎𝑐𝑐𝑢𝑦 , the BROFF-FDGC 

technique yielded a maximum 𝑎𝑐𝑐𝑢𝑦 of 98.49% while the ResNet-50, DenseNet-121, NASNetA, 

EfficientNetB0, EfficientNetB1, and the EfficientNetB2 models accomplished the least 𝑎𝑐𝑐𝑢𝑦 values 

such as 91.94%, 96.96%, 96.79%, 96.53%, 98.06%, and 98.15% correspondingly. 
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Table 4. Comparative analysis outcomes of the BROFF-FDGC method and other recent 

methodologies. 

Methods 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝒄𝒄𝒖𝒚 

BROFF-FDGC 98.49 98.49 98.49 

ResNet-50 86.65 86.53 91.94 

DenseNet-121 99.01 97.54 96.96 

NASNetA 97.39 98.26 96.79 

EfficientNetB0 97.71 98.59 96.53 

EfficientNetB1 97.69 99.91 98.06 

EfficientNetB2 97.88 98.34 98.15 

 

Figure 13. 𝐴𝑐𝑐𝑢𝑦 outcomes of the BROFF-FDGC algorithm and other recent methods. 

Figure 14 exhibits the comparative analytical outcomes of the BROFF-FDGC methodology in 

terms of 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦. The outcomes demonstrate that the BROFF-FDGC system attained better 

performance with the maximum values of 𝑠𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦. With regards to 𝑠𝑒𝑛𝑠𝑦, the BROFF-

FDGC technique produced a high 𝑠𝑒𝑛𝑠𝑦  of 98.49% whereas the ResNet-50, DenseNet-121, 

NASNetA, EfficientNetB0, EfficientNetB1, and the EfficientNetB2 techniques achieved the least 

𝑠𝑒𝑛𝑠𝑦 values such as 86.65%, 99.01%, 97.39%, 97.71%, 97.69%, and 97.88% correspondingly. 

Also, in terms of 𝑠𝑝𝑒𝑐𝑦, the BROFF-FDGC method accomplished a maximum 𝑠𝑝𝑒𝑐𝑦 of 98.49% 

while the ResNet-50, DenseNet-121, NASNetA, EfficientNetB0, EfficientNetB1, and the 

EfficientNetB2 techniques achieved the least 𝑠𝑝𝑒𝑐𝑦  values such as 86.53%, 97.54%, 98.26%, 

98.59%, 99.91%, and 98.34% correspondingly. Therefore, it can be inferred that the BROFF-FDGC 

technique shows maximum performance on FDD over other DL models. 
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Figure 14. 𝑆𝑒𝑛𝑠𝑦 and 𝑠𝑝𝑒𝑐𝑦 outcome of the BROFF-FDGC algorithm with other recent systems. 

5. Conclusions 

In the current study, a novel BROFF-FDGC methodology has been presented for detection and 

classification of the fruit diseases. The proposed BROFF-FDGC method integrates the BF-based noise 

removal, fusion-based feature extraction, BO-based hyperparameter tuning, SSAE classification, and 

BRO-based parameter optimization processes. A fusion of DL models namely Inception v3, NASNet, 

and Xception models is executed for the purpose of feature extraction. Besides, the BRO algorithm is 

also employed for optimum hyperparameter tuning of the SSAE technique. The BROFF-FDGC 

algorithm was extensively validated through simulation and the outcomes exhibit the greater 

performance. The obtained outcomes display the superior performance of the BROFF-FDGC approach 

compared to the rest of the methods. In the future, hybrid metaheuristic optimization algorithms can 

be designed to improve the FDD performance. 
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