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Abstract: Fruit Disease Detection (FDD) using Computer Vision (CV) techniques is a powerful
strategy to accomplish precision agriculture. Because, these techniques assist the farmers in identifying
and treating the diseased fruits before it spreads to other plants, thus resulting in better crop yield and
quality. Further, it also helps in reducing the usage of pesticides and other chemicals so that the farmers
can streamline their efforts with high accuracy and avoid unwanted treatments. FDD and Deep
Learning (DL)-based classification involve the deployment of Artificial Intelligence (Al), mainly the
DL approach, to identify and classify different types of diseases that affect the fruit crops. The DL
approach, especially the Convolutional Neural Network (CNN), has been trained to classify the fruit
images as diseased or healthy, based on the presence or absence of the disease symptoms. In this
background, the current study developed a new Battle Royale Optimization with a Feature Fusion
Based Fruit Disease Grading and Classification (BROFF-FDGC) technique. In the presented BROFF-
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FDGC technique, the Bilateral Filtering (BF) approach is primarily employed for the noise removal
process. Besides, a fusion of DL models, namely Inception v3, NASNet, and Xception models, is used
for the feature extraction process with Bayesian Optimization (BO) algorithm as a hyperparameter
optimizer. Moreover, the BROFF-FDGC technique employed the Stacked Sparse Autoencoder (SSAE)
algorithm for fruit disease classification. Furthermore, the BRO technique is also employed for
optimum hyperparameter tuning of the SSAE technique. The proposed BROFF-FDGC system was
simulated extensively for validation using the test database and the outcomes established the enhanced
performance of the proposed system. The obtained outcomes emphasize the superior performance of
the BROFF-FDGC approach than the existing methodologies.

Keywords: battle royale optimization; fruit disease detection; computer vision; agriculture; deep
learning
Mathematics Subject Classification: 65D19, 68T07

1. Introduction

Automatic Fruit Disease Detection (FDD) refers to a process of identifying the presence of
diseases in fruit crops. Image analysis, sensor technology, and Machine Learning (ML) are some of
the techniques through which the diseases can be detected. The ML techniques remain the most
common method for automatic detection of fruit disease while this technique analyzes the images of
the fruits [1]. For this purpose, a large set of images of both diseased as well as healthy fruits are
collected and utilized to train the ML method. Then, the technique detects the patterns in these images
that are indicative of diseases [2]. Sensor technology is another method used to collect the data on fruit
crops. This includes humidity, other environmental conditions, temperature measurements and
readings from sensors that confirm the presence of particular diseases [3]. The collected data can be
used for fruit classification i.e., either diseased or healthy. There exist numerous benefits when utilizing
an automated FDD system. One of the most important advantages is its accuracy and quick disease
detection [4], which helps in the prevention of disease and protection of crop health. Automatic disease
detection systems can be utilized for monitoring vast areas of crops, thus reducing the requirement for
manual inspection. Also, these automatic systems are unbiased and highly objective than the human
analysis, which in turn helps in minimizing the errors and enriching the precision of disease detection
process [5]. However, there exists a few difficulties too when utilizing an automatic FDD system [6].
The necessity for high-quality and accurate data is one of the most challenging issues faced in
automatic FDD system. The method cannot detect the disease accurately, if the data used to train the
model is of poor quality or incomplete [7]. Further, another difficulty is the demand for robust
algorithms that can manage variations in the dataset. For instance, the method should be aware of
different kinds of fruits that may have diverse features. At last, the automatic systems necessitate
reliable software and hardware infrastructure for proper functioning [8].

There has been a significant surge in the application of image processing and machine vision
technologies for enriching the quality of fruit surface images. This is attributed to the reason that such
technologies provide huge benefits in areas, where the human eye is not sensitive. Thus, the application
of image processing and Computer Vision (CV) methods overcomes the challenges through subjective
industrial quality control approaches [9]. Although the performance of the ML algorithms developed
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earlier is good enough, these methods mostly rely upon the image types (of fruit crops) used during
testing and training periods. Further, the outcomes depend on the handcrafted feature extraction
techniques, which are again a labor-intensive one. Additionally, such methods have been tested and
trained only for smaller datasets, which raises the risk of biased estimations. An alternate method to
overcome the abovementioned issues is to leverage the Deep Learning (DL) methods and develop a
fruit classification and grading mechanism [10]. Such DL-based technique should be capable of
deriving the appropriate features mechanically without any need for manual intervention [11].

In this background, the current research paper introduces a novel Battle Royale Optimization with
a Feature Fusion Based Fruit Disease Grading and Classification (BROFF-FDGC) approach. In the
proposed BROFF-FDGC approach, the Bilateral Filtering (BF) model is initially implemented for
noise elimination. Besides, a compendium of DL methods such as the Inception v3, NASNet, and
Xception methods is also utilized for feature extraction. In addition to this, the Bayesian optimization
(BO) algorithm is used as a hyperparameter optimizer. Moreover, the BROFF-FDGC model utilizes
the stacked sparse-AE(SSAE) technique for classification purpose. Furthermore, the BRO technique
is also utilized for optimum hyperparameter tuning of the SSAE technique. The proposed BROFF-
FDGC model was extensively experimented through simulation while the outcomes showcase the
enriched performance of the model.

The remaining sections of the article are arranged as briefed herewith. Section 2 offers the
literature review and Section 3 discusses about the proposed method. Then, Section 4 elaborates on
the evaluation results and Section 5 concludes the work.

2. Related works

Majid et al. [12] examined an integrated DL architecture for fruit disease classification. At first,
the researchers applied a data increase and two different kinds of features were derived. In the initial
feature type, both color and texture features were derived while in the next type, the DL features were
extracted through a pre-trained process. In general, the pre-trained process can be reused with Transfer
Learning (TL). Then, both the features were fused through the maximal mean value of the serial
technique after which a harmonic threshold-based genetic algorithm was used for the optimization of
the resultant fused vector.

Shah et al. [13] proposed a new computerized technique featuring Ant Colony Optimization
(ACO)-oriented choice with the help of DL technique. The presented technique had four basic steps;
a combination of the derived deep features through matrix length, data augmentation for solving the
imbalanced data set, selection of better features utilizing ACO and hybrid Neighbourhood Component
Analysis (NCA) methods, and fine-tuned pre-trained DL techniques (such as MobileNet-V2 and
NasNet Mobile). The best-selective features were then passed onto multiple classifiers for ultimate
recognition. Mostafa et al. [14] leveraged a deep CNN (DCNN)-related data enhancement method by
utilizing the unsharp masking technique and color-histogram equalization in order to identify distinct
guava plant species. In the presented technique, the data was first preprocessed and normalized. The
presented study utilized five NN frameworks such as ResNet-50, AlexNet, GoogLeNet, ResNet-101,
and SqueezeNet for identifying distinct guava plant species.

The authors in the study conducted earlier [15] employed a two-phase DCNN methodology for
citrus disease classification and plant disease detection by exploiting the leaf images. The proposed
methodology had two key stages; categorization of the majorly targeted area to a particular disease;
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and its classification utilizing a classifier, thus suggesting the effectively-targeted diseased areas in the
RPN. In literature [16], the authors examined novel DL-related citrus disease recognition and
classification models. An innovative DL-related AlexNet architecture was used in this study for
effectual disease detection. The Otsu method was executed in this study for image segmentation after
which the application of Alex-Net architecture was executed as an extraction procedure. Afterwards,
the Random Forest (RF) method was utilized for categorizing different types of citrus diseases. In
addition to this, the Adaptive Gamma Correction (AGC) method was also enforced to enhance the
contrast of citrus images. Nikhitha et al. [17] emphasized on formulating a user-friendly device that
can detect and grade the disease levels. The inception model utilized CNNs for the classification while
the latter was retrained through the TL method. The presented mechanism even ranked the fruit
depending on the infection percentage.

In literature [18], the author focused on grape diseases and presented a new structure for
identification and classification of selective diseases at the initial phase. A DL-related solution was
entrenched into a typical architecture for optimum performance. In this model, three major stages were
involved (a) Fusion of stronger features utilizing the presented approach after which the features were
subjected to classifier step utilizing the Least Squared Support Vector Machine (LS-SVM), (b) feature
extraction after the application of TL on pretrained deep methods such as ResNet101 and AlexNet, and
(c) selecting the optimal features through the proposed Yager Entropy along with Kurtosis (YEaK)
method. Kejriwal et al. [19] intended to identify and detect the foliar diseases with the help of apple
leaf images. Involving a professional to detect the infections is not only time-consuming, but also
inefficient, and expensive for large orchards. So, this technique was presented in which a group of
three pre-trained DCNNs such as InceptionResNetV2, ResNet101V2, and Xception was used to
categorize the apple tree leaves as either infected or healthy based on five disease classes.

3. The proposed model

In the current study, an innovative BROFF-FDGC method has been introduced for identification
and classification of the fruit disease. The proposed BROFF-FDGC technique incorporates the
following processes namely, BF-based noise removal, fusion-based feature extraction, BO-based
hyperparameter tuning, SSAE classification, and BRO-based parameter optimization. Figure 1
represents the working flow of the BROFF-FDGC system.

3.1. BF-based noise removal process

The BF process is used to smoothen the images, while at the same time, preserving the rest of the
fine details and edges in the image [20]. BF is used in image processing techniques to reduce the
number of details and noise in the image and also preserve the overall structure of the image. The BF
functions employ a weighted average for all the pixels in the image while the closest pixel is used as
weight. The weight is measured based on the intensity difference and spatial distance between the pixel
and its neighbors. This enables the filter to preserve other fine details and edges in the image, as the
pixel with the largest spatial distance or highest intensity difference from the neighbor is given lower
weight and remains less affected by the filter. BF is wisely applied in medical images for smoothening
the images, while preserving the significant structures like tissue boundaries and blood vessels.
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Figure 1. Working procedure of the BROFF-FDGC method.
3.2. Fusion-based feature extraction process

In this study, a fusion of DL architectures like Inception v3, NASNet, and Xception models is
executed for the feature extraction process. Data fusion technique has been employed in a diverse
range of CV and ML applications [21]. Feature fusion is a crucial task that incorporates multiple feature
vectors. This technique depends on feature fusion using the formulated entropy.

The three vectors are defined as follows

finceptionxn = Unception,y,, Inception,,,, Inception,,s, -, Inception, .}, (1)
funetixm = {NNetyy 1, NNetyyp, NNet iy, -+, NNet iy}, ()
fxception 1xp = {Xception, 4, Xception, ,, Xception, 3, -+, Xception; ., }. 3)

Furthermore, the extracted feature is combined in a single vector.
Fused(features vector),xg = Yi-1{ fInception,y,, fNNet; ., fXception;y,}. 4)

Here, f refers to the fused vector (1 x 1186). The entropy is exploited to feature the vectors for
the optimum Feature Selection (FSs) outcomes as per the score. The FS technique can be expressed
mathematically as shown in the Eqs (1) and (4). Entropy is used for selecting 1186 score-assisted
features in 7835 features.

By = —NHep, Y11 (fi), Q)

Foelect = BHe(maX(fiv 1186))- (6)
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In these expressions, p denotes the feature probability and He signifies the entropy. The last
selected feature is then fed into the classifiers for differentiating the glioma and healthy images.

3.2.1. Inceptionv3 model

InceptionV3 model outperforms the preceding inception architecture through cost-effective
computational outcomes [22]. Inception module remains the core component of the inception
architecture. The inception model allows for deep networking and effective computation through a
reduction dimension with a stacked 1x1 convolutional layer. The key aim of the proposed technique
is to address the problems of computation cost and overfitting among various other problems. The
fundamental concept behind the inception model is to generate different filters of various dimensions
that can run in parallel mode instead of series mode. The network in the inception module has an
additional 1x1 convolutional layer before the 3 X 3 and 5x5 convolutional layers and this feature
makes the procedure, a highly robust and computationally inexpensive one. A dense 128x1 layer
exchanges the classifier part of the models, viz., head of the model, 3x1 and 128x, and 12x1 for
ternary and binary classifications, correspondingly. Afterwards, the model is fine-tuned upon the input
images for extracting the best features. For training purposes, InceptionV3 model is fed with input
images sized at 224x224x3 while the input passes through different inception models in later stages
and it might assist in preventing over-fitting as well as decreasing the computation cost. After being
passed over the Inception module, the inputs are then passed to the dense layer of different sizes such
as 128x1 and 3x1 or 2x1 for the classifier model.

3.2.2. NASNet model

NASNet is a framework created with the help of a neural structural search method [23]. The
search system called the Neural Architecture Search (NAS) as it exploits a control NN to develop a
better CNN structure for the given data. The type of NASNet that was exploited in InstaCovNet19 was
originally intended for the data named ImageNet. In this design, two classes of convolution cells are
exploited, viz., the standard cell, and the reduction cell. Particularly, NASNet has been increased for
the ImageNet data that comprises of images from every walk of life. In this case, a pre-trained NASNet
infrastructure has been presented. The lack of huge datasets needs the usage of a pre-trained module.
During the fine-tuning process, NASNet is provided with input images sized 224x224x3. Then, the
input images pass over various reduction and normal layers that extract better features from these
images. At last, the attained features are provided as two Dense layers sized at 128x1 and 3x1 for
the purpose of classification.

3.2.3.  Xception model

Xception refers to ‘extreme inception’ and it comprises of 36 deep layers apart from the FC layer.
Xception contains depthwise convolution layers including the MobileNet model and it comprises of
‘shortcuts’, in which the outcome of a certain layer is added to the output from the preceding layers.
Unlike the InceptionV3, the Xception model combines the input records with compacted lumps, thus
mapping the spatial connection for every channel autonomously; later, 1x1 depthwise convolutional
layer is implemented to capture the cross-channel connections. The Xception model overtakes the
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InceptionV3 model with ImageNet dataset classification. In this case, a pre-trained Xception module
(trained on ImageNet data) is developed. The pre-trained method is utilized due to the lack of a huge
database for detection. The classification models, viz., head of the architecture, are later exchanged
with dense layers sized at 128x1 and 2x1 for binary classification and 128x1 and 2x1 for ternary
classification, correspondingly.

3.2.4. BO-based hyperparameter tuning

The BO technique is exploited for optimum hyperparameter adjustment process. BO functions by
creating a posterior distribution of the function viz., Gaussian procedure that better describes the
operation to be optimized [24]. When the observation counts increase, the posterior distribution also
increases. Then, it becomes more apparent, especially at the region in parameter space that is worth
computing and exploring. BO technique comprises of two key elements: A statistical method for
modeling the objective function and an acquisition function for determining the next set of samples.
Alternatively, the acquisition function offers sample points in the searching region as well. The
function drives the tradeoff exploration and exploitation processes. Exploitation is a sample whereas
the statistical models predict the highest objective scores while exploration refers to the return of a
solution: The point estimate is either with a large posterior mean or large (x). The sampling is done
at the location where the forecast uncertainty is higher. Then, the objective is estimated based on the
initial space-filling analysis model. This model frequently contains only those points that are selected
randomly and iteratively used for allocating the remainder of the N function’s budget evaluation,
demonstrated in Algorithm 1. For the BO algorithm, the time complexity is (n3) in which n
represents the observation counts. The time complexity for DL is (w - m - e), where w represents
the weight counts, m indicates the learning instance counts, and e indicates the running epochs. In
this study, hyperparameter tuning was conducted by the researchers based on the attention module.
The filter counts exploited in every attention layer can be enhanced. The optimization technique
defines a better integration of the filter numbers for every attention layer.

Algorithm 1. Bayesian optimization algorithm.

Place the Gaussian process before f.

Observe f at n, point based on the space-filling experimental model.

Set n = n,.

While n < N do

Upgrade the posterior probability distribution on f utilizing each accessible dataset;

Consider x, as a maximizer of the acquisition function over x, from which the acquisition
function was calculated through the existing posterior distribution;

Observe y, = f(x,);

Increment n;

End

3.3. Optimal fruit classification process

In order to identify the fruit diseases, the SSAE classifier is used. AE is a NN with multiple
Hidden Layers (HLs) of unsupervised feature learning [25]. The basic design is to apply more than
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one layer of NN for mapping the input dataset to attain the output vectors. Furthermore, the AE is
applied to reduce the data feature sizes that could characterize both linear and non-linear conversions.
The unlabeled input vector is exposed to weight mapping so as to attain the values of HL resultant
vector as formulated below.

vi = fo(x;) = S(T)_y Wiy x; + by). (7

Let y; be the activation value of the HL, W;; indicates the weight coefficient, b; represents
the offset vector of HL and S(x) represents the activation function and the mathematical expression
is:

1
LCxiyi) = 5 llx = yill*. ®)

The weight parameter from the input layer to the HL is 6 = {W, b}, and the weight parameter in

the HL to the resultant layer is represented as 6’ = {W', b'}. Figure 2 shows the architecture of the

SSAE model.

Stacked Sparse Autoencoder

O
-8 b
o

A
Lo |

Hidden Layers Output Layer

Random Forest

S,

6-66
o

Input Layer

Figure 2. Architecture of the SSAE model.

Once a certain number of neurons is acquired from the HL, then they are considered as features
so as to reduce the data size. Due to the existence of various neurons from the HL, a sparsity constraint
is added for training the network and extracting valuable features.

Js =]+ BX7 K (ollpj)e, ©)

here, p indicates the sparsity parameter; S, denotes the number of neurons from the HL; f
characterizes the penalty factor to control sparsity; and K (p||p;) indicates the difference between p
and p;.

Typically, a simple SAE is not suitable for training purposes. So, the current study adopts a
stacking technique in which every HL is separately trained with unsupervised learning of SAE. Then,
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these layers are linked to produce a stacked network. Every sensor extracts 31 feature parameters in
the vibration signal which are signified as 31xN input feature vector as SSAE.

To raise the classification effectiveness of the SSAE system, the BRO technique is utilized in the
current study. Rahkar Farshi (2020) introduced the BRO algorithm based on battle royal video game.
In this game, the player needs to make use of and explore the surroundings to survive [26]. All the
players outside the safer region get affected in two ways while the former is exposed to the risk of
being removed from the battle.

The early population of the BRO technique is made up of n randomly-produced individuals in
D-dimensional region. x{(i € [1,n]) and xf, dam Tepresent the location data and damage level of the
it" playerin t*" iteration amongst the population, correspondingly. The player from the best location
who stayed back in the original location is termed as the winner. However, the loss level is fixed as 0.
The player in a worse position gets damaged during a mutual attack and so, they are named as loser.
The loss levels of the loser can be upgraded, as demonstrated in Eq (10). Furthermore, due to the global
best place and the present place, the location of the loser is upgraded, as demonstrated in Eq (11) and
it aims to defend itself and attack the enemy from another side.

X{ham = x{,dam + 1, (10)
xlF+1 = xl't + r(xbest - xlt) (11)

In this expression, r indicates the coefficient (r € [0,1]). Once a player becomes the winner,
then the damage levels return to 0. In order to emphasize the exploration process, once the player's
cumulative damage levels exceed the predetermined value (thre = 3), the player dies and respawns
from the present safer region. In this scenario, the damage level returns to 0. The average player
respawns from the present safer region, as given below.

xl't+1 = T(ubd - lbd) + lbd (12)

In Eq (12), ub; and lb; denote the lower and upper boundaries of the safer region.
Furthermore, during the iteration procedure, if the iteration count is better than the area update
threshold (4), then the safer region gets reduced by the global optimum location while the center, the
upper and lower limits are demonstrated as follows:

lbg = Xpest — SD (), (13)

uby = Xpese + SD(Xq), (14)
here, SD(x;) denotes the standard deviation, X, indicates the existing optimum solution. lby
and ub, exceed the lower and upper boundary of the solution space as given below.

A=A+ round (2) (15)

The initial value 4 is 10g10(Tmax ), and T, ax represents the maximal iteration counts. The
pseudocode of the BRO algorithm is shown in Algorithm 2.

The BRO algorithm grows an FF to realize a better effectiveness of the classifier and finds a
positive integer to represent the optimal outcomes of the candidate. Here, FF corresponds to a reduced
classifier error rate.
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fitness(x;) = ClassifierErrorRate(x;)

__ No. of misclassified instances

- Total no.of instances % 100. (16)
Algorithm 2. Pseudocode of BRO algorithm.
Start
Randomly initializing a population (x,), and each parameter;
Shrink = ceil(l1og10(Tmax));
Tmax .

A = round (m),
For i = It Thax
Find the nearby player (xf) by computing the Euclidean distance;
d=i;v=j

If () < f(x)
d=j,v=1i,

End if
If X§ gam < thre

Upgrade the damage level and the location of the loser;
Else

The loser respawns in the present safer region;
xé,dam =0

End if
Re-evaluate the fitness value of x};
xlg,dam =0;
Ift=>4
Upgrade ub; and Iby;
Upgrade the threshold (4 ) ;
End if
If Iby/ub, exceeds the Lower or upper limits of the solution space, then set to the original

uby and Iby;

Record the better individual and the fitness value.
End

4. Performance validation
The performance of the proposed BROFF-FDGC system, in terms of FDD, was validated using

the the CASC IFW Database [27]. Table 1 provides the details about the dataset. Figure 3 shows some
of the sample images. The images in the dataset were collected from the Internal Feeding Worm (IFW)
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dataset of Comprehensive Automation for Specialty Crops (CASC) research work after obtaining
previous consent from Purdue University. The dataset contains images for four cultivars of apples:
Golden Delicious, Fuji, York, and Red Delicious. Every cultivar has images in different phases of
ripening of defective and healthy apples. The images of the damaged apples show noticeable dark spots
on the outside skin as a result of damage from internal feeding worms. Individual apple images were
clipped to a size range of 120 x 120 pixels for the purpose of image processing.

Table 1. Details of the database.

Class No. of Instances
NON-HEALTHY 3800
HEALTHY 2058
Total No. of Instances 5858

Figure 3. Sample images.

The confusion matrices generated by the BROFF-FDGC methodology on the FDD process are
shown in Figure 4. The simulation values specify that the BROFF-FDGC approach correctly classified
the healthy and damaged apples.
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11443

Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix

NON-HEALTHY

NON-HEALTHY

Actual
Actual

2 =
g 1583 g 16 397
2 33.78% 3 1371% 33.87%
= =
NON-HEALTHY HEALTHY NON-HEALTHY HEALTHY
Predicted Predicted
(a) (b)

Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix

2633
64.22%

1105
62.86%

NON-HEALTHY

NON-HEALTHY

Actual
Actual

z z
g 1390 g 9 626
S 33.90% < 0.51% 35.61%
= =
NON-HEALTHY HEALTHY NON-HEALTHY HEALTHY
Predicted Predicted
(c) (d)

Figure 4. Confusion matrices of the BROFF-FDGC algorithm (a and b) 80% of TR set/20%
of TS set and (c and d) 70% of TR set/30% of TS set.

Table 2 offers a brief overview on the FDD results accomplished by the BROFF-FDGC
methodology with 80:20 of TR phase and TS phase. Figure 5 exhibits the overall FDD performance of
the BROFF-FDGC system for 80% of the TR phase. The simulation values indicate that the BROFF-
FDGC technique classified non-healthy and healthy apple images properly. In addition, it is also
observed that the BROFF-FDGC technique attained an average accupq, of 96.93%, sens, of
96.93%, spec, 0f96.93%, Fcore 0f 96.87%, and an MCC of 93.73%.

Table 2. FDD analysis outcomes of the BROFF-FDGC methodology on 80:20 of TR set/TS set.

Class Accuy,  Sens,, Spec, Fscore MCC
Training Phase (80%)

NON-HEALTHY 97.63 97.63 96.23 97.79 93.73
HEALTHY 96.23 96.23 97.63 95.94 93.73
Average 96.93 96.93 96.93 96.87 93.73
Testing Phase (20%)

IFW DAMAGED 98.68 98.68 96.13 98.29 95.13
HEALTHY 96.13 96.13 98.68 96.83 95.13
Average 97.40 97.40 97.40 97.56 95.13

AIMS Mathematics Volume 9, Issue 5, 11432-11451.



11444

Training Phase (80%)
97.5 F— F— . F— F—

Q7.0 1 I

o
o
n

0
o
-]

0
o
-]

Avg. Values (%)
(-]
(0]
(%]

£

£

©
w

E T T T T
Accuracy Sensitivity Specificity F-Score MCC

Figure 5. Average outcomes of the BROFF-FDGC methodology on 80% of TR set.

Figure 6 demonstrates the overall FDD examination outcomes achieved by the BROFF-FDGC
technique on 20% of the TS set. The results point out that the BROFF-FDGC model can recognize
non-healthy and healthy apple images accurately. Furthermore, it is also observed that the BROFF-
FDGC technique accomplished an average accupq of 97.40%, sens, of 97.40%, spec, of
97.40%, F;cpre of 97.56%, and an MCC of 95.13%.

Testing Phase (20%)
98.0

©
[
tn

Avg. Values (%)

95.0-

Accuracy Sensitivity Specificity F-Score McC

Figure 6. Average outcomes of the BROFF-FDGC methodology on 20% of TS set.

Table 3 shows the comprehensive FDD analytical outcomes attained by the BROFF-FDGC
technique with 70:30 of the TR set and TS set. Figure 7 shows the overall FDD analysis outcomes of
the BROFF-FDGC system at 70% of the TR set. The obtained outcomes infer that the BROFF-FDGC
technique identified non-healthy and healthy apple images accurately. Furthermore, it is also noted
that the BROFF-FDGC approach accomplished an average accuyg of 98.02%, sens,, of 98.02%,
spec, 0of 98.02%, Fcore 0f 97.93%, and an MCC of 95.87%.
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Table 3. FDD analysis outcomes of the BROFF-FDGC system on 70:30 of TR set/TS set.

Class Accuyg Sens,, Spec, Fscore MCC
Training Phase (70%)

NON-HEALTHY 98.36 98.36 97.68 98.56 95.87
HEALTHY 97.68 97.68 98.36 97.30 95.87
Average 98.02 98.02 98.02 97.93 95.87
Testing Phase (30%)

NON-HEALTHY 98.40 98.40 98.58 98.79 96.69
HEALTHY 98.58 98.58 98.40 97.89 96.69
Average 98.49 98.49 98.49 98.34 96.69

Training Phase (70%)

Avg. Values (%)

0
a
]

Accuracy

T T
Sensitivity Specificity

T
F-Score

Figure 7. Average outcomes of the BROFF-FDGC algorithm on 70% of TR set.

Figure 8 shows the overall FDD examination outcomes produced by the BROFF-FDGC method
on 30% of the TS set. The outcomes indicate that the BROFF-FDGC method detected non-healthy as
well as healthy apple images appropriately. Besides, it is observed that the BROFF-FDGC
methodology accomplished an average accupg of 98.49%, sens, of 98.49%, spec, of 98.49%,

Ficore Of 98.34%, and an MCC of 96.69%.

Testing Phase (30%)

Accuracy

T T
Sensitivity Specificity

T
F-Score

T
McC

Figure 8. Average outcomes of the BROFF-FDGC methodology on 30% of TS set.
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The TRAC and VDAC values achieved by the BROFF-FDGC system for the FDD solution are
shown in Figure 9. The outcomes exhibit that the BROFF-FDGC method produced excellent outcomes
with high TRAC and VDAC values. The BROFF-FDGC system attained the highest TRAC
performance.

Training and Validation Accuracy

8.985 -

—— Training
Validation

0.980
08.975 4

0.970 -|

Accuracy

Epochs

Figure 9. TRAC and VDAC outcomes of the BROFF-FDGC approach.

The TRLS and VDLS values, accomplished by the BROFF-FDGC technique in terms of FDD
solution, are shown in Figure 10. The outcomes infer that the BROFF-FDGC system achieved better
outcomes with lesser TRLS and VDLS values. This is obvious due to the fact that the BROFF-FDGC
technique achieved the least VDLS performance.

Training and Validation Loss

—— Training
Validation

Epochs

Figure 10. TRLS and VDLS outcomes of the BROFF-FDGC approach.
Figure 11 shows an apparent PR curve plotted with the values produced by the BROFF-FDGC

system on the test database. The outcomes denote that the BROFF-FDGC method improved the PR
outcomes on both the classes.
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Precision-Recall Curve
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Figure 11. Precision-recall outcomes of the BROFF-FDGC methodology.
A comprehensive ROC inspection was conducted upon the BROFF-FDGC technique using the

test database and the results are shown in Figure 12. The simulation values imply that the BROFF-
FDGC methodology established its ability on both the classes.

ROC-Curve

True Positive Rate

i {—— NON-HEALTHY
0.6 B SR O S R TR R R R OV O WO SO SO HEALTHY

““““““““

False Positive Rate

Figure 12. ROC outcomes of the BROFF-FDGC methodology.

Table 4 shows the comprehensive analysis outcomes of the BROFF-FDGC system with recent
models [28]. Figure 13 exhibits the comparative analysis results achieved by the BROFF-FDGC
approach in terms of accu,,. The simulation values indicate that the BROFF-FDGC approach gained
an optimal solution with the maximal values of accu,,. in terms of accu,, the BROFF-FDGC
technique yielded a maximum accu,, of 98.49% while the ResNet-50, DenseNet-121, NASNetA,
EfficientNetBO, EfficientNetB1, and the EfficientNetB2 models accomplished the least accu,, values
such as 91.94%, 96.96%, 96.79%, 96.53%, 98.06%, and 98.15% correspondingly.
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Table 4. Comparative analysis outcomes of the BROFF-FDGC method and other recent

methodologies.
Methods Sens, Spec, Accu,

BROFF-FDGC 98.49 98.49 98.49
ResNet-50 86.65 86.53 91.94
DenseNet-121 99.01 97.54 96.96
NASNetA 97.39 98.26 96.79
EfficientNetBO 97.71 98.59 96.53
EfficientNetB1 97.69 99.91 98.06
EfficientNetB2 97.88 98.34 98.15

m= BROFF-FDGC  mes EfficientNet-B0

ResNet-50 I EfficientNet-B1

wl i ::;;Ie;:-lzl mm EfficientNet-B2

s W T

96 1

Accuracy (%)

92 4

1 2 3 4 5
Methods

Figure 13. Accu, outcomes of the BROFF-FDGC algorithm and other recent methods.

Figure 14 exhibits the comparative analytical outcomes of the BROFF-FDGC methodology in
terms of sens, and spec,. The outcomes demonstrate that the BROFF-FDGC system attained better
performance with the maximum values of sens, and spec,. With regards to sens,,, the BROFF-
FDGC technique produced a high sens, of 98.49% whereas the ResNet-50, DenseNet-121,
NASNetA, EfficientNetB0, EfficientNetB1, and the EfficientNetB2 techniques achieved the least
sens,, values such as 86.65%, 99.01%, 97.39%, 97.71%, 97.69%, and 97.88% correspondingly.

Also, in terms of spec,,, the BROFF-FDGC method accomplished a maximum spec, of 98.49%
while the ResNet-50, DenseNet-121, NASNetA, EfficientNetB0, EfficientNetBl, and the
EfficientNetB2 techniques achieved the least spec, values such as 86.53%, 97.54%, 98.26%,
98.59%, 99.91%, and 98.34% correspondingly. Therefore, it can be inferred that the BROFF-FDGC
technique shows maximum performance on FDD over other DL models.
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Figure 14. Sens, and spec, outcome of the BROFF-FDGC algorithm with other recent systems.
5. Conclusions

In the current study, a novel BROFF-FDGC methodology has been presented for detection and
classification of the fruit diseases. The proposed BROFF-FDGC method integrates the BF-based noise
removal, fusion-based feature extraction, BO-based hyperparameter tuning, SSAE classification, and
BRO-based parameter optimization processes. A fusion of DL models namely Inception v3, NASNet,
and Xception models is executed for the purpose of feature extraction. Besides, the BRO algorithm is
also employed for optimum hyperparameter tuning of the SSAE technique. The BROFF-FDGC
algorithm was extensively validated through simulation and the outcomes exhibit the greater
performance. The obtained outcomes display the superior performance of the BROFF-FDGC approach
compared to the rest of the methods. In the future, hybrid metaheuristic optimization algorithms can
be designed to improve the FDD performance.
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