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Abstract: In this paper, we study the following non-autonomous Schrödinger-Poisson equation with
a critical nonlocal term and a critical nonlinearity: − ∆u + V(x)u + λφ|u|3u = f (u) + (u+)5, in R3,

− ∆φ = |u|5, in R3.

First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with
critical growth. Second, we consider the case that intV−1(0) is contained in a spherical shell. By using
variational methods, we obtain the existence and asymptotic behavior of positive solutions.
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1. Introduction

The Schrödinger-Poisson equation − ∆u + V(x)u + λφu = f (x, u), in R3,

− ∆φ = u2, in R3,
(1.1)

arises in a physical context. It is introduced while describing the interaction of a charged particle
with an electrostatic field. More details can be found in [3]. Also, it appears in other fields like
semiconductor theory, nonlinear optics, and plasma physics. The readers may refer to [18] and the
references therein for further discussion. When V ≡ 1, λ = 1, and f (x, u) = |u|p−2u, problem (1.1) has
been studied sufficiently. We refer to [9] for p ≤ 2 and p ≥ 6, [7,8,10] for 4 ≤ p < 6, [2] for 3 < p < 6,
and [22] for 2 < p < 6. In [31], the authors obtained an axially symmetric solution of the following
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Schrödinger-Poisson equation in R2: − ∆u + V(x)u + φu = K(x) f (u), in R2,

∆φ = u2, in R2,

where f ∈ C(R,R), and V and K are both axially symmetric functions. In [4, 5], the almost necessary
and sufficient condition (Berestycki-Lions type condition) for the existence of ground state solutions
of the problem

−∆u = g(u), u ∈ H1(RN)

was given by [4] when N = 2 and [5] when N ≥ 3. Precisely, they assumed g satisfies the following
conditions:

(g1) g(s) ∈ C(R,R) is continuous and odd.
(g2) −∞ < lim inf s→0

g(s)
s ≤ lim sups→0

g(s)
s = −a < 0 for N ≥ 3, and lims→0

g(s)
s = −a < 0 for N = 2.

(g3) When N ≥ 3, lim sups→∞
g(s)

|s|
N+2
N−2
≤ 0; when N = 2, for any α > 0 there exists Cα > 0 such that

g(s) ≤ Cαexp(αs2) for all s > 0.
(g4) There exists ξ0 > 0 such that G(ξ0) > 0, where G(ξ0) =

∫ ξ0

0
g(s)ds.

When g satisfies the above Berestycki-Lions type condition, the authors in [19] studied the problem − ∆u + qφu = g(u), in R3,

− ∆φ = qu2, in R3.

By using a truncation technique in [14], they proved that the problem admits a nontrivial positive radial
solution for q > 0 small. For the critical case, the authors in [30] studied the existence of positive radial
solutions of the problem  − ∆u + u + φu = µQ(x)|u|q−2u + K(x)u5, in R3,

− ∆φ = u2, in R3,

where q ∈ (2, 4), µ > 0, and Q and K are radial functions satisfying the following conditions:

(h1) K ∈ C(R3,R), lim|x|→∞ K(x) = K∞ ∈ (0,∞) and K(x) ≥ K∞ for x ∈ R3.
(h2) Q ∈ C(R3,R), lim|x|→∞ Q(x) = Q∞ ∈ (0,∞) and Q(x) ≥ Q∞ for x ∈ R3.
(h3) |K(x) − K(x0)| = o(|x − x0|

α), where 1 ≤ α < 3 and K(x0) = maxR3 K(x).

In [25], we studied (1.1) with f satisfying the following Berestycki-Lions type condition with critical
growth:

( f1) f ∈ C(R,R) is odd, limu→0+
f (u)
u = 0 and limu→+∞

f (u)
u5 = K > 0.

( f2) There exist D > 0 and 2 < q < 6 such that f (u) ≥ Ku5 + Duq−1 for u ≥ 0.
( f3) There exists θ > 2 such that 1

θ
f (u)u − F(u) ≥ 0 for all u ∈ R+, where F(u) =

∫ u

0
f (s)ds.
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When λ > 0 is small, we obtained positive radial solutions for q ∈ (4, 6), or q ∈ (2, 4] with D > 0 large.
In [29], the authors removed ( f3) by using a local deformation argument in [6]. It should be pointed
out that, in [25, 29], the problems were considered in a radial setting.

When the nonlocal term is of critical growth, that is, u2 is replaced by u5, problem (1.1) is reduced
to  − ∆u + V(x)u + λφu = f (x, u), in R3,

− ∆φ = u5, in R3.
(1.2)

These kind of equations are closely related with the Choquard-Pekar equation, which was proposed
in [20] to study the quantum theory of a polaron at rest. Since the critical nonlocal term may cause the
loss of compactness, problem (1.2) is quite different from the standard Schrödinger-Poisson equation.
In [16], the authors considered the equation − ∆u + bu + qφ|u|3u = f (u), in R3,

− ∆φ = |u|5, in R3,
(1.3)

where b ≥ 0, q ∈ R, and the subcritical nonlinearity f satisfies the following conditions:

(H1) f ∈ C(R+,R+) and limu→0+
f (u)

bu+u5 = 0.
(H2) limu→∞

f (u)
u5 = 0.

(H3) There is a function z ∈ H1
r (R3) such that

∫
R3 F(z) > b

∫
R3 z2, where F(z) =

∫ z

0
f (t)dt.

(H4) There exist r ∈ (4, 6), A > 0, B > 0 such that F(t) ≥ Atr − Bt2 for t ≥ 0.

For q ≥ 0, they proved that there exists q0 > 0 such that for q ∈ [0, q0), and problem (1.3) has at least
one positive radially symmetric solution if (H1)–(H3) hold. For q = −1, they proved that problem (1.3)
has at least one positive radially symmetric solution if (H1)–(H2) and (H4) hold. In [17], the authors
studied the existence, nonexistence, and multiplicity of positive radially symmetric solutions of the
equation  − ∆u + u + λφ|u|3u = µ|u|p−1u, in R3,

− ∆φ = |u|5, in R3,
(1.4)

where λ ∈ R, µ ≥ 0, and p ∈ [1, 5]. In [15], the author obtained positive solutions of the following
equation with subcritical growth: − ∆u + V(x)u − K(x)φ|u|3u = f (x, u), in R3,

− ∆φ = K(x)|u|5, in R3,
(1.5)

where V , K, and f are asymptotically periodic functions of x. If the nonlinearity is of critical growth,
the author in [12] studied ground state solutions of the equation − ∆u + V(x)u − φ|u|3u = f (u) + u5, in R3,

− ∆φ = |u|5, in R3,
(1.6)
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where V(x) = 1 + x2
1 + x2

2 with x = (x1, x2, x3) ∈ R3 and f is an appropriate nonlinear function.
In this paper, we study the following Schrödinger-Poisson equation with a critical nonlocal term: − ∆u + V(x)u + λφ|u|3u = f (u) + (u+)5, in R3,

− ∆φ = |u|5, in R3,
(1.7)

where (u+)5 is a critical term with u+ := max{u, 0} and λ > 0 is a parameter. When we study (1.7) for
the case λ < 0, the boundedness of the Palais-Smale sequence can be derived directly. However, for
the case λ > 0, the problem is quite different. Since the term

∫
R3 φu|u|5dx is homogeneous of degree 10,

the corresponding Ambrosetti-Rabinowitz condition on f is the following:

( f ′) There exists θ ≥ 10 such that t f (t) − θF(t) ≥ 0 for any t ∈ R.

Obviously, this condition is not suitable for the problem in dimension three. To solve the problem, the
authors in [16] used a truncation technique in [14]. However, the argument is invalid when we study
non-autonomous problems in a non-radial setting. Motivated by the above considerations, we first
study the non-autonomous problem (1.7) in a non-radial setting, where the nonlinearity satisfies the
Berestycki-Lions type condition with critical growth. We assume V satisfies the following conditions:

(V1) V ∈ C1(R3,R) and infR3 V := V0 > 0.
(V2) V(x) ≤ lim|x|→∞ V(x) := V∞ for all x ∈ R3 and the inequality is strict in a set of positive Lebesgue

measure.
(V3) There exists θ ∈ (0, 1) such that t3

2 V(tx) − t3
2 V(x) − t3−1

6 (∇V(x), x) ≤ θ(t−1)2(t+2)
24|x|2 for x ∈ R3 \ {0} and

t ∈ R+.

The result is as follows.
Theorem 1.1. Assume that (V1)–(V3) and ( f1)–( f2) hold. Then there exists λ0 > 0 such that for
λ ∈ (0, λ0), problem (1.7) has a positive solution (uλ, φλ). Moreover, as λ → 0, (uλ, φλ) → (u, 0) in
H1(R3) × D1,2(R3), where u is a ground state solution of the following limiting equation:

−∆u + V(x)u = f (u) + (u+)5 in R3. (1.8)

When V ≡ 1, problem (1.7) is reduced to the following equation: − ∆u + u + λφ|u|3u = f (u) + (u+)5, in R3,

− ∆φ = |u|5, in R3.
(1.9)

Then we have the following result.
Corollary 1.1. Assume that ( f1)–( f2) hold. Then there exists λ0 > 0 such that for λ ∈ (0, λ0),
problem (1.9) has a positive solution (uλ, φλ). Moreover, as λ → 0, (uλ, φλ) → (u, 0) in H1(R3) ×
D1,2(R3), where u is a ground state solution of the following limiting equation:

−∆u + u = f (u) + (u+)5 in R3. (1.10)

Remark 1.1. Corollary 1.1 is still valid if we replace ( f2) by (H3). So, we generalize the result in [16]
to the critical case.

In the next, we consider the case that intV−1(0) is contained in a spherical shell. We assume the
following conditions.

AIMS Mathematics Volume 9, Issue 5, 11122–11138.



11126

(V ′1) V ∈ C(R3,R) and V(x) = V(|x|) for all x ∈ R3.
(V ′2) V(x) = 0 for x ∈ ∧1 and there exists V0 > 0 such that V(x) ≥ V0 for x < ∧2, where ∧1 := {x ∈ R3 :

r1 < |x| < r2} and ∧2 := {x ∈ R3 : R1 < |x| < R2} with 0 < R1 < r1 < r2 < R2.
( f ′3) There exists θ > 2 such that f (u)

uθ−1 is increasing for all u > 0.

To the best of our knowledge, there are no related results even for the case λ = 0. We must face several
difficulties. A main difficulty is how to get the compactness. In [11], del Pino and Felmer developed
a penalization approach to deal with singularly perturbed problems. Motivated by [11], instead of
studying (1.7) directly, we turn to consider a modified problem. By studying the influence of the
potential on the compactness and the behavior of positive solutions at infinity, we solve the problem.
When λ > 0, we have to prove the boundedness of the Palais-Smale sequence for the modified problem.
This is another difficulty. Now we state the result.
Theorem 1.2. Assume that (V ′1)–(V ′2), ( f1)–( f2), and ( f ′3) hold. Then there exists R′ > 0 such that for
R1 > R′, there exists λ′ > 0 such that problem (1.7) has a positive solution (uλ, φλ) for λ ∈ (0, λ′).
Moreover, as λ→ 0, (uλ, φλ)→ (u, 0) in H1(R3) × D1,2(R3), where u is a positive solution of (1.8).
Notations.

• Denote H1 := H1(R3) the Hilbert space with the norm ‖u‖2H1 :=
∫
R3(|∇u|2 + |u|2)dx.

• Denote D1,2 := D1,2(R3) =
{
u ∈ L6(R3) : |∇u| ∈ L2(R3)

}
the Sobolev space with the norm ‖u‖2D1,2 :=∫

R3 |∇u|2dx.

• Denote the norm ‖u‖s :=
( ∫
R3 |u|sdx

) 1
s , where 2 ≤ s < ∞.

• Denote C a universal positive constant (possibly different).

2. Proof of Theorem 1.1

Without loss of generality, we assume that f (u) = 0 for u ≤ 0. Define the best Sobolev constant

S := inf
u∈D1,2\{0}

∫
R3 |∇u|2dx( ∫
R3 |u|6dx

) 1
3

. (2.1)

By the Lax-Milgram theorem, for any u ∈ D1,2 there exists a unique φu ∈ D1,2 such that −∆φu = |u|5.
The function φu has the following properties.
Lemma 2.1. ( [16])

(i) φu ≥ 0, φtu = |t|5φu and φu( .t ) = t2φu( .t ) for all t > 0.
(ii) ‖φu‖D1,2 ≤ S −

1
2 ‖u‖56.

(iii) If un ⇀ u weakly in L6(R3) and un → u a.e. in R3, then φun ⇀ φu weakly in D1,2 up to a
subsequence.

(iv) Let J(u) =
∫
R3 φu|u|5dx, where u ∈ D1,2. If un ⇀ u weakly in L6(R3) and un → u a.e. in R3, then

J(un) − J(u) − J(un − u) = on(1).

Define X :=
{
u ∈ H1 :

∫
R3 V(x)|u|2dx < ∞

}
as the Hilbert space with the norm ‖u‖ =(∫

R3 |∇u|2 + V(x)|u|2dx
) 1

2 . Define the functional on X by

Iλ(u) =
1
2
‖u‖2 +

λ

10

∫
R3
φu|u|5dx −

∫
R3

F(u)dx −
1
6

∫
R3
|u+|6dx,
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where F(u) :=
∫ u

0
f (s)ds. Obviously, the functional Iλ is of class C1 and critical points of Iλ are weak

solutions of (1.7). Let

m0 := inf{I0(u) : u ∈ X \ {0}, I′0(u) = 0}. (2.2)

If I′0(u) = 0, by the arguments in [16,21,24] we can derive the Pohozǎev type identity J0(u) = 0, where

J0(u) =
1
2
‖∇u‖22 +

1
2

∫
R3

[3V(x) + (∇V(x), x)]|u|2dx − 3
∫
R3

F(u)dx

−
1
2

∫
R3
|u+|6dx.

When V ≡ V∞, problem (1.8) is reduced to the following equation:

−∆u + V∞u = f (u) + (u+)5 in R3. (2.3)

The functional associated with (2.3) is

I∞0 (u) =
1
2
‖∇u‖22 +

1
2

∫
R3

V∞|u|2dx −
∫
R3

F(u)dx −
1
6

∫
R3
|u+|6dx, u ∈ H1.

Define

m∞0 := inf{I∞0 (u) : u ∈ H1 \ {0}, (I∞0 )′(u) = 0}. (2.4)

Define

c∞0 := inf
γ∈Γ

max
t∈[0,1]

I∞0 (γ(t)), (2.5)

where Γ :=
{
γ ∈ C([0, 1],H1) : γ(0) = 0, I∞0 (γ(1)) < 0

}
.

Lemma 2.2. Assume that (V1)–(V3) hold. Then, for all x ∈ R3 \ {0},

3V∞ − 3V(x) −
θ

4|x|2
≤ (∇V(x), x) ≤

θ

2|x|2
. (2.6)

Proof. Let

g(t) :=
t3

2
V(tx) −

t3

2
V(x) −

t3 − 1
6

(∇V(x), x) −
θ(t − 1)2(t + 2)

24|x|2
.

By (V3), we get g(0) ≤ 0. Then (∇V(x), x) ≤ θ
2|x|2 for all x ∈ R3\{0}. By (V2)–(V3), we get limt→+∞

g(t)
t3 ≤

0. Then (∇V(x), x) ≥ 3V∞ − 3V(x) − θ
4|x|2 for all x ∈ R3 \ {0}. �

Theorem 2.1. ( [13]) Let X be a Banach space equipped with a norm ‖.‖X and let J ⊂ R+ be an interval.
We consider a family (Iµ)µ∈J of C1 -functionals on X of the form

Iµ(u) = A(u) − µB(u), ∀ µ ∈ J,
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where B(u) ≥ 0 for all u ∈ X, and either A(u) → +∞ or B(u) → +∞ as ‖u‖X → ∞. We assume there
are two points v1, v2 in X such that

cµ := inf
γ∈Γ

max
t∈[0,1]

Iµ(γ(t)) > max{Iµ(v1), Iµ(v2)}, ∀ µ ∈ J,

where Γ := {γ ∈ C([0, 1], X); γ(0) = v1, γ(1) = v2}. Then, for almost every µ ∈ J, there is a sequence
{vn} ⊂ X such that {vn} is bounded, Iµ(vn) → cµ, and I′µ(vn) → 0 in X−1. Moreover, the map µ → cµ is
continuous from the left-hand side.
Lemma 2.3. Assume that (V1)–(V3) and ( f1)–( f2) hold. Then m0 ∈ (0,m∞0 ) is attained by a positive
function.
Proof. Let µ0 ∈ (0, 1). Define the functionals on X by

I0,µ(u) =
1
2
‖u‖2 − µ

∫
R3

F(u)dx −
µ

6

∫
R3
|u+|6dx,

where µ ∈ [µ0, 1]. Similar to the argument in [27], we can use Theorem 2.1 to derive that for almost
every µ ∈ [µ0, 1] there exists a positive function uµ ∈ X such that cµ = I0,µ(uµ) and I′0,µ(uµ) = 0.

Choose µn ↑ 1 such that I0,µn(uµn) = cµn and I′0,µn
(uµn) = 0. Then uµn satisfies the following Pohozǎev

type identity:

1
2
‖∇uµn‖

2
2 +

1
2

∫
R3

[3V(x) + (∇V(x), x)]|uµn |
2dx

= 3µn

∫
R3

F(uµn)dx +
µn

2

∫
R3
|uµn |

6dx. (2.7)

By (2.7), Lemma 2.2, and the Hardy inequality,

cµn =
1
3
‖∇uµn‖

2
2 −

1
6

∫
R3

(∇V(x), x)|uµn |
2dx ≥

1 − θ
3
‖∇uµn‖

2
2, (2.8)

and

1
2
‖∇uµn‖

2
2 +

1
2

∫
R3

[3V(x) + (∇V(x), x)]|uµn |
2dx

≥
1 − θ

2
‖∇uµn‖

2
2 +

3
2

∫
R3

V∞|uµn |
2dx. (2.9)

By (2.7)–(2.9) and ( f1), we get that ‖uµn‖ is bounded. Then I0(uµn) → c1 and I′0(uµn) → 0. Similar
to the argument in [27], we get that there exists a positive function u0 ∈ X such that uµn → u0 in X,
I0(u0) = c1, and I′0(u0) = 0. Moreover, 0 < m0 ≤ c1 is attained. By [28], we get that m∞0 = c∞0 is
attained by a positive function u∞0 . Then by (V1)-(V2) and a standard argument, we have c1 < c∞0 . �

Let S 0 be the set of ground states of (1.8). By Lemma 2.3, we have S 0 , ∅.
Lemma 2.4. Assume that (V1)–(V3) and ( f1)–( f2) hold. Then S 0 is compact in X.
Proof. By Lemma 2.3, for any {un} ⊂ S 0 we have I0(un) = m0, I′0(un) = 0, and J0(un) = 0. Moreover,
‖un‖ is bounded. Assume that un ⇀ u0 weakly in X. Then I′0(u0) = 0. Let vn = un − u0. By (V1), ( f1),
and the Brezis-Lieb lemma in [24], we have

m0 − I0(u0) + on(1) = I∞0 (vn), (I∞0 )′(vn) = on(1). (2.10)
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Since vn ⇀ 0 weakly in X, by the Lions Lemma in [24], vn → 0 in Lt(R3) for any t ∈ (2, 6), or there
exists {y1

n} ⊂ R
3 with |y1

n| → ∞ such that v1
n := vn(. + y1

n) ⇀ v1 , 0 weakly in X. If vn → 0 in Lt(R3) for
any t ∈ (2, 6), by ( f1) we get

∫
R3 F(vn)dx = on(1) and

∫
R3 f (vn)vndx = on(1). Then

m0 + on(1) = I0(u0) +
1
2
‖vn‖

2 −
1
6
‖vn‖

6
6, ‖vn‖

2 = ‖vn‖
6
6 + on(1). (2.11)

By I′0(u0) = 0, we have J0(u0) = 0. By Lemma 2.2 and the Hardy inequality, we get I0(u0) ≥ 0. Assume
that limn→∞ ‖vn‖

6
6 = l. If l > 0, by (2.11) and the definition of S , we get l ≥ S

3
2 . Then m0 ≥

1
3S

3
2 , a

contradiction. So, l = 0, from which we get vn → 0 in X. If there exists {y1
n} ⊂ R

3 with |y1
n| → ∞ such

that v1
n := vn(. + y1

n) ⇀ v1 , 0 weakly in X, similar to the argument of Lemma 2.6 in [27] there exist
k ∈ N ∪ {0}, {yi

n} ⊂ R
3 and vi ∈ X for 1 ≤ i ≤ k such that

|yi
n| → ∞ and |yi

n − y j
n| → ∞, i f i , j, 1 ≤ i, j ≤ k,

vn(. + yi
n) ⇀ vi , 0 weakly in X and (I∞0 )′(vi) = 0, ∀ 1 ≤ i ≤ k,∥∥∥∥∥∥∥vn −

k∑
i=1

vi(. − yi
n)

∥∥∥∥∥∥∥→ 0,

m0 = I0(u0) +

k∑
i=1

I∞0 (vi). (2.12)

Since (I∞0 )′(vi) = 0, we have I∞0 (vi) ≥ m∞0 . If k ≥ 1, by I0(u0) ≥ 0 and (2.12) we get m0 ≥ m∞0 , a
contradiction. So, k = 0, from which we get un → u0 in X. �
Lemma 2.5. Assume that (V1)–(V3) and ( f1) hold. If u ∈ S 0, then m0 = I0(u) > I0(u( .t )) for all
t ∈ [0, 1) ∪ (1,+∞). Also, there exists t0 > 1 independent of u ∈ S 0 such that I0(u( .

t0
)) ≤ −2.

Proof. By u ∈ S 0, we have J0(u) = 0. Then

I0

(
u
( x

t

))
− I0(u) =

∫
R3

[
t3

2
V(tx) −

t3

2
V(x) −

t3 − 1
6

(∇V(x), x)
]
|u|2dx

−
(t − 1)2(t + 2)

6
‖∇u‖22. (2.13)

By (V3) and the Hardy inequality, we get I0(u) > I0(u( .t )) for all t , 1. By Lemma 2.2 and the Hardy
inequality,

1
2
‖∇u‖22 +

1
2

∫
R3

[3V(x) + (∇V(x), x)]|u|2dx

≥
1 − θ

2
‖∇u‖22 +

3
2

∫
R3

V∞|u|2dx. (2.14)

Since J0(u) = 0, by ( f1) and (2.14) there exists % > 0 independent of u ∈ S 0 such that ‖∇u‖22 ≥ %. So,
by (V3), the Hardy inequality, and (2.13) we get there exists t0 > 1 independent of u ∈ S 0 such that
I0(u( .

t0
)) ≤ −2. �

Lemma 2.6. Assume that (V1)–(V3) and ( f1) hold. Then there exist λ1, M0 > 0 independent of u ∈ S 0

such that Iλ(u( .
t0

)) ≤ −1, maxt∈[0,1] ‖u( .
tt0

)‖ ≤ M0 and ‖u‖ ≤ M0 for all λ ∈ [0, λ1] and u ∈ S 0.
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Proof. If u ∈ S 0, then m0 = I0(u) and J0(u) = 0. By the Hardy inequality and Lemma 2.2, we
have m0 ≥

1−θ
3 ‖∇u‖22. Together with (2.14), J0(u) = 0, and ( f1), we derive that there exists σ1 > 0

independent of u ∈ S 0 such that ‖u‖H1 ≤ σ1. We note that∥∥∥∥∥∥u
(
.

tt0

)∥∥∥∥∥∥2

= tt0‖∇u‖22 + (tt0)3
∫
R3

V(tt0x)|u|2dx. (2.15)

Together with (V1) and ‖u‖H1 ≤ σ1, we get

‖u‖2 ≤
(
1 + max

R3
V
)
σ2

1, max
t∈[0,1]

∥∥∥∥∥∥u
(
.

tt0

)∥∥∥∥∥∥2

≤

(
t0 + t3

0 max
R3

V
)
σ2

1. (2.16)

By Lemma 2.1, we have

Iλ

(
u
(
.

tt0

))
=I0

(
u
(
.

tt0

))
+
λ(tt0)5

10

∫
R3
φu|u|5dx

≤I0

(
u
(
.

tt0

))
+
λ(tt0)5

10S 6 ‖∇u‖10
2 . (2.17)

By Lemma 2.5 and (2.17), we derive that there exists λ1 > 0 independent of u ∈ S 0 such that Iλ(u( .
t0

)) ≤
−1 for λ ∈ (0, λ1) and u ∈ S 0. �

Choose U0 ∈ S 0. Define

bλ := inf
g∈G0

max
t∈[0,1]

Iλ(g(t)), (2.18)

where G0 :=
{
g ∈ C([0, 1], X) : g(0) = 0, g(1) = U0

(
.
t0

)}
and λ ∈ (0, λ1). Define

Bλ := max
t∈[0,1]

Iλ

(
U0

(
.

tt0

))
. (2.19)

Lemma 2.7. limλ→0 bλ = limλ→0 Bλ = m0.
Proof. By (2.17) and Lemmas 2.5–2.6, we get

bλ ≤ Bλ ≤ m0 +
λ(tt0)5M10

0

10S 6 .

Then lim supλ→0 bλ ≤ lim supλ→0 Bλ ≤ m0. On the other hand, for any g ∈ G0,

max
t∈[0,1]

Iλ(g(t)) ≥ max
t∈[0,1]

I0(g(t)) ≥ b0,

where b0 := infg∈G0 maxt∈[0,1] I0(g(t)). Then bλ ≥ b0. By Lemma 2.6, there exists µ0 ∈ (0, 1) such that
I0,µ(g(1)) ≤ −1

2 for µ ∈ (µ0, 1). Define

cµ := inf
g∈G0

max
t∈[0,1]

I0,µ(g(t)).

By repeating the proof of Lemma 2.3, we get that cµ is a critical value. Moreover, we can prove that b0

is a critical value. Then b0 ≥ m0. So, lim infλ→0 bλ ≥ m0. �
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For η, d > 0, define Iηλ := {u ∈ X : Iλ(u) ≤ η} and S d
0 := {u ∈ X : infv∈S 0 ‖u − v‖ ≤ d}.

Lemma 2.8. Let {uλi} ⊂ S d
0 with limi→∞ λi = 0 be such that limi→∞ Iλi(uλi) ≤ m0 and limi→∞ I′λi

(uλi) = 0.
Then for d > 0 small, there exists u0 ∈ S 0 such that uλi → u0 in X up to a subsequence.
Proof. By the proof of Lemma 2.5, there exists % > 0 independent of u ∈ S 0 such that ‖u‖2 ≥ % for
u ∈ S 0. Since {uλi} ⊂ S d

0, by choosing d > 0 small we get ‖uλi‖
2 ≥

%

2 . By Lemma 2.4, we have that ‖uλi‖

is bounded. Then limi→∞ I0(uλi) ≤ m0 and limi→∞ I′0(uλi) = 0. By the argument of Lemma 2.4, there
exists u0 ∈ X such that uλi → u0 in X up to a subsequence. So, ‖u0‖

2 ≥
%

2 , I0(u0) ≤ m0 and I′0(u0) = 0,
which implies that u0 ∈ S 0. �

Lemma 2.9. Let d > 0. Then there exists η > 0 such that for small λ > 0, Iλ(γ(t)) ≥ bλ − η implies that
γ(t) ∈ S

d
2
0 , where γ(0) = 0 and γ(t) = U0( .

tt0
) for t ∈ (0, 1].

Proof. By Lemma 2.5, if γ(t) < S
d
2
0 , then there exists δ > 0 such that |tt0 − 1| ≥ δ. Moreover, there

exists η′ > 0 such that I0(γ(t)) ≤ m0 − η
′. By Lemmas 2.1 and 2.6–2.7, there exists η > 0 such that for

small λ > 0, it holds that Iλ(γ(t)) < bλ − η. �

Proof of Theorem 1.1. Recall that if u ∈ S 0, then there exists % > 0 independent of u ∈ S 0 such that
‖∇u‖22 ≥ %. So, we can choose d > 0 small such that ‖u‖2 ≥ %

2 for any u ∈ S d
0. We use the idea in [6,29]

to claim that for small λ > 0, there exists {un} ⊂ S d
0 ∩ IBλ

λ such that I′λ(un)→ 0. Otherwise, there exists
a(λ) > 0 such that ‖I′λ(u)‖ ≥ a(λ) for u ∈ S d

0∩ IBλ
λ . By Lemmas 2.7–2.8, there exists ρ0 > 0 independent

of λ > 0 small such that ‖I′λ(u)‖ ≥ ρ0 for u ∈ IBλ
λ ∩ (S d

0 \S
d
2
0 ). We note that there exists a pseudo-gradient

vector field Qλ on a neighborhood Zλ of S d
0 ∩ IBλ

λ for Iλ. Let ηλ be a Lipschitz continuous function on X
such that ηλ = 1 on S d

0 ∩ IBλ
λ , ηλ = 0 on R3 \ Zλ, and 0 ≤ ηλ ≤ 1 on R3. Let ξλ be a Lipschitz continuous

function such that ξλ(t) = 1 for |t − bλ| ≤
η

2 , ξλ(t) = 0 for |t − bλ| ≥ η, and 0 ≤ ξλ ≤ 1 for t ∈ R+.
Consider the initial value problem

dψλ(u, t)
dt

= −ηλ(ψλ(u, t))ξλ(Iλ(ψλ(u, t)))Qλ(ψλ(u, t)),

ψλ(u, 0) = u.
(2.20)

Then (2.20) has a unique global solution ψλ(u, t). Recall that limλ→0 bλ = limλ→0 Bλ = m0. Also, we
have Lemma 2.9. By a standard argument, for any t ∈ [0, 1] there exists s(t) ≥ 0 such that ψλ(γ(t), s(t))
is continuous in t ∈ [0, 1] and

max
t∈[0,1]

Iλ(ψλ(γ(t), s(t))) ≤ bλ −
η

4
,

where γ is given in Lemma 2.9. Let γ0(.) = ψλ(γ(.), s(.)). Then γ0 ∈ G0, from which we get

max
t∈[0,1]

Iλ(ψλ(γ(t), s(t))) ≥ bλ,

a contradiction. Since for λ > 0 small there exists {un} ⊂ IBλ
λ ∩ S d

0 such that I′λ(un)→ 0, by Lemma 2.4
we get that ‖un‖ is bounded. Assume that un ⇀ uλ weakly in X. By Lemma 2.1, we have I′λ(uλ) = 0.
Let un = vn + wn, where vn ∈ S 0 and ‖wn‖ ≤ d. By Lemma 2.4, there exists vλ ∈ S 0 such that vn → vλ
in X. Assume that wn ⇀ wλ in X. Then ‖wλ‖ ≤ d. So, uλ ∈ S d

0. Moreover, uλ is positive. Together with
Lemma 2.8, we get the result. �
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3. Proof of Theorem 1.2

Define Xr :=
{
u ∈ H1

r (R3) :
∫
R3 V(x)|u|2dx < ∞

}
as the Hilbert space with the norm ‖u‖ =(∫

R3 |∇u|2 + V(x)|u|2dx
) 1

2 . By (V ′2), we derive that for all u ∈ Xr,

‖u‖2H1 ≤

∫
∧2

(
|∇u|2 + u2

)
dx +

∫
R3\∧2

(
|∇u|2 +

V(x)
V0

u2
)

dx

≤

∫
∧2

|∇u|2dx +

(∫
∧2

|u|6dx
) 1

3

| ∧ |
2
3

+ max
{

1,
1
V0

}∫
R3\∧2

(
|∇u|2 + V(x)u2

)
dx

≤max

1 +
| ∧2 |

2
3

S
,

1
V0

 ‖u‖2. (3.1)

Then the imbedding Xr ↪→ H1
r (R3) is continuous. Define g(u) = 0 for u ≤ 0 and g(u) =

min
{
f (u) + (u+)5, V0u

κ

}
for u > 0, where κ > 2. Let χ be the characteristic function such that χ(x) = 1

for x ∈ ∧2 and χ(x) = 0 for x ∈ R3 \ ∧2. Consider the truncated problem of (1.8) as

−∆u + V(x)u = h(x, u) in R3, (3.2)

where h(x, u) = χ(x)
[
f (u) + (u+)5

]
+ (1 − χ(x))g(u). The functional associated with (3.2) is

Î0(u) =
1
2
‖u‖2 −

∫
R3

H(x, u)dx, u ∈ Xr,

where H(x, u) =
∫ u

0
h(x, s)ds = χ(x)

[
F(u) + 1

6 (u+)6
]

+ (1 − χ(x))G(u) with G(u) =
∫ u

0
g(s)ds. In what

follows, we look for critical points of Î0. Define

ĉ0 := inf
γ∈Γ0

max
t∈[0,1]

Î0(γ(t)), (3.3)

where Γ0 :=
{
γ ∈ C([0, 1], Xr) : γ(0) = 0, Î0(γ(1)) < 0

}
.

Lemma 3.1. There exists a bounded sequence {un} ⊂ Xr such that Î0(un) → ĉ0 ∈
(
0, 1

3S
3
2

)
and

Î′0(un)→ 0.
Proof. By ( f1), for any ε > 0 there exists Cε > 0 such that

max{|h(x, u)u|, |H(x, u)|} ≤ ε|u|2 + Cε|u|6, ∀ u ∈ R. (3.4)

Then there exist ρ, % > 0 such that Î0(u) ≥ % for ‖u‖ = ρ, in view of the definition of S . Also, Î0(0) = 0
and limt→+∞ Î0(tϕ) = −∞ for any ϕ ∈ C∞0 (∧2) \ {0}. By the mountain pass theorem in [1], there exists a
sequence {un} ⊂ Xr such that Î0(un) → ĉ0 ≥ % and Î′0(un) → 0. By ( f ′3), we get 1

θ
f (u)u − F(u) ≥ 0 for

all u ∈ R. Then

ĉ0 + on(1) + on(1)‖un‖ =Î0(un) −
1
θ

(
Î′0(un), un

)
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≥

(
1
2
−

1
θ

)
‖un‖

2 +

∫
R3\∧2

[
1
θ

g(un)un −G(un)
]

dx

≥

(
1
2
−

1
θ

) (
1 −

1
κ

)
‖un‖

2. (3.5)

So, ‖un‖ is bounded. By [24], the function U(x) := 3
1
4(

1+|x|2
) 1

2
is a minimizer for S . Define Uε(x) :=

ε−
1
2 U( x

ε
). Let x0 ∈ ∧1. Choose r > 0 such that B2r(x0) ⊂ ∧1. Define uε(x) := ψ(x)Uε(x), where

ψ ∈ C∞0 (B2r(x0)) such that ψ(x) = 1 for x ∈ Br(x0), ψ(x) = 0 for x ∈ R3 \ B2r(x0), 0 ≤ ψ(x) ≤ 1, and
|∇ψ(x)| ≤ C. By the definition of ĉ0, we get ĉ0 ≤ supt≥0 Î0(tuε). Moreover, by Lemma 2.1 in [28], we
get ĉ0 <

1
3S

3
2 . �

Lemma 3.2. Î0 admits a positive critical point u0 with Î0(u0) = ĉ0.
Proof. By Lemma 3.1, there exists a bounded sequence {un} ⊂ Xr such that Î0(un)→ ĉ0 ∈

(
0, 1

3S
3
2

)
and

Î′0(un) → 0. Assume that un ⇀ u0 weakly in Xr. Then Î′0(u0) = 0. For R > R2, define ψR ∈ C∞0 (R3)
such that ψR(x) = 0 for |x| ≤ R, ψR(x) = 1 for |x| ≥ 2R, and 0 ≤ ψR ≤ 1 and |∇ψR| ≤

C
R . By(

Î′0(un), ψRun

)
= on(1),∫

R3

(
|∇un|

2ψR + V(x)u2
nψR

)
dx + on(1)

≤

∫
R3

g(un)unψRdx +

∫
R3
|∇un||∇ψR||un|dx ≤

1
2

∫
R3

V(x)u2
nψRdx +

C
R
.

Then, for any δ > 0, there exists Rδ > 0 such that for R > Rδ,

lim
n→+∞

∫
|x|≥2R

(
|∇un|

2 + V(x)u2
n

)
dx ≤ δ. (3.6)

Since h(x, u)u ≤ V0
κ

u2 for x ∈ R3 \ ∧2, by the Lebesgue dominated convergence theorem

lim
n→+∞

∫
B2R\∧2

h(x, un)undx =

∫
B2R\∧2

h(x, u0)u0dx. (3.7)

By the argument of Lemma 2.1 in [26], we obtain that

lim
n→+∞

∫
∧2

h(x, un)undx =

∫
∧2

h(x, u0)u0dx. (3.8)

Combining (3.6)–(3.8), we have

lim
n→+∞

∫
R3

h(x, un)undx =

∫
R3

h(x, u0)u0dx. (3.9)

Let vn = un − u0. Then

on(1) =
(
Î′0(un), un

)
−

(
Î′0(u0), u0

)
= ‖vn‖

2 + on(1),

from which we derive that un → u0 in Xr, Î0(u0) = ĉ0 and Î′0(u0) = 0. By
(
Î′0(u0), u−0

)
= 0, we get u0 ≥ 0.

The maximum principle implies that u0 is positive. �
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Let m̂0 := inf{Î0(u) : u ∈ Xr, Î′0(u) = 0}.
Lemma 3.3. m̂0 ∈

(
0, 1

3S
3
2

)
is attained.

Proof. By Lemmas 3.1–3.2, we get m̂0 ≤ Î0(u0) = ĉ0 <
1
3S

3
2 . By the definition of m̂0, there exists

{un} ⊂ Xr such that Î0(un)→ m̂0 and Î′0(un) = 0. By
(
Î′0(un), un

)
= 0, (3.4), and the definition of S , there

exists C1 > 0 such that ‖un‖
2 ≥ C1S

3
2 . Similar to (3.5), we get m̂0 > 0. Also, there exists C2 > 0 such

that ‖un‖
2 ≤ C2S

3
2 . Assume that un ⇀ u0 weakly in Xr. Then Î′0(u0) = 0. Similar to the argument of

Lemma 3.2, we get un → u0 in Xr. So m̂0 = Î0(u0) and Î′0(u0) = 0, that is, m̂0 is attained. �
Define by Ŝ 0 the set of ground states of (3.2). By Lemma 3.3, we get Ŝ 0 , ∅.

Lemma 3.4. Ŝ 0 is compact and there exist C1, C2 > 0 such that C1S
3
2 ≤ ‖u‖2 ≤ C2S

3
2 for all u ∈ Ŝ 0.

Proof. Similar to the argument of Lemma 3.3, we get C1S
3
2 ≤ ‖u‖2 ≤ C2S

3
2 for all u ∈ Ŝ 0. For

any {un} ⊂ Ŝ 0, since ‖un‖
2 ≤ C2S

3
2 , we assume that un ⇀ u weakly in Xr. By Lemma 3.3, we get

Î0(un) = m̂0 ∈
(
0, 1

3S
3
2

)
. Similar to the argument of Lemma 3.2, we obtain that un → u in Xr. So, Ŝ 0 is

compact. �
Lemma 3.5. ( [23]) There exists a constant C0 > 0 such that for all u ∈ H1

r (R3), there holds |u(x)| ≤
C0

|x|
1
2
‖u‖H1 for any x , 0.

By ( f1), there exists C′ > 0 such that

| f (u) + (u+)5| ≤
V0

2κ
|u| + C′|u|5, ∀ u ∈ R. (3.10)

Choose R′ > 0 such that for R1 > R′,

2C2C2
0S

3
2

R1
max

1 +
| ∧2 |

2
3

S
,

1
V0

 ≤
√

V0

2κC′
. (3.11)

Lemma 3.6. If u ∈ Ŝ 0, then m̂0 = Î0(u) > Î0(tu) for all t , 1. Also, there exists t0 > 1 independent of
u ∈ Ŝ 0 such that Î0(t0u) ≤ −2.
Proof. We claim that ∣∣∣suppu ∩ {x ∈ R3 : χ(x) > 0}

∣∣∣ > 0, ∀ u ∈ Ŝ 0. (3.12)

Otherwise, there exists u ∈ Ŝ 0 such that
∣∣∣suppu ∩ {x ∈ R3 : χ(x) > 0}

∣∣∣ = 0. By (Î′0(u), u) = 0,

‖u‖2 =

∫
{x∈R3:χ(x)=0}

g(u)udx ≤
V0

κ

∫
{x∈R3:χ(x)=0}

u2dx ≤
1
2

∫
R3

V(x)u2dx,

a contradiction. Let l(t) = Î0(tu), where t ≥ 0 and u ∈ Ŝ 0. Then l′(t) = ty(t), where

y(t) = ‖u‖2 −
∫

R3

(1 − χ(x))g(tu)u
t

dx −
∫

R3
χ(x)

(
f (tu)u

t
+ t4|u|6

)
dx.

Since l′(1) = 0, we have y(1) = 0. By ( f ′3), we get that y(t) is strictly decreasing on t > 0. Then
l′(t) > 0 for t ∈ (0, 1) and l′(t) < 0 for t > 1, from which we get Î0(u) > Î0(tu) for all t , 1. By(
Î′0(u), u

)
= 0, (3.4), and the definition of S , there exists δ0 > 0 independent of u ∈ Ŝ 0 such that∫

R3 χ(x)|u|6dx ≥ δ0. Together with Lemma 3.4, we derive that there exists t0 > 1 independent of u ∈ Ŝ 0

such that Î0(t0u) ≤ −2. �
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We consider the following truncated problem of (1.7): − ∆u + V(x)u + λφ|u|3u = h(x, u), in R3,

− ∆φ = |u|5, in R3.
(3.13)

The functional associated with (3.13) is as follows:

Îλ(u) =
1
2
‖u‖2 +

λ

10

∫
R3
φu|u|5dx −

∫
R3

H(x, u)dx, u ∈ Xr.

Lemma 3.7. There exists λ′1 > 0 independent of u ∈ Ŝ 0 such that Îλ(t0u) ≤ −1 for λ ∈ (0, λ′1).
Proof. By Lemma 2.1, we have

Îλ (t0u) = Î0 (t0u) +
λt10

0

10

∫
R3
φu|u|5dx ≤ Î0 (t0u) +

λt10
0

10S 6 ‖∇u‖10
2 . (3.14)

By Lemma 3.4, Lemma 3.6, and (3.14), we derive that there exists λ′1 > 0 independent of u ∈ Ŝ 0 such
that Îλ(t0u) ≤ −1. �

Choose V0 ∈ Ŝ 0. Define

dλ := inf
γ∈Γ

max
t∈[0,1]

Îλ(γ(t)), (3.15)

where Γ := {γ ∈ C([0, 1], Xr) : γ(0) = 0, γ(1) = t0V0} and λ ∈ (0, λ′1). Define

Dλ := max
t∈[0,1]

Îλ (tt0V0) . (3.16)

Lemma 3.8. limλ→0 dλ = limλ→0 Dλ = m̂0.
Proof. By (3.14), Lemma 3.4, and 3.6, we get

dλ ≤ Dλ ≤ m̂0 +
λt10

0

10S 6

(
C2S

3
2
)5
.

Then lim supλ→0 dλ ≤ lim supλ→0 Dλ ≤ m̂0. By Lemma 3.6, for any γ ∈ Γ,

max
t∈[0,1]

Îλ(γ(t)) ≥ max
t∈[0,1]

Î0(γ(t)) ≥ ĉ0,

from which we get dλ ≥ ĉ0. By Lemma 3.2, we have ĉ0 ≥ m̂0, which implies that lim infλ→0 dλ ≥
m̂0. �

For η, d > 0, define Îηλ := {u ∈ Xr : Îλ(u) ≤ η} and Ŝ d
0 := {u ∈ Xr : infv∈S 0 ‖u − v‖ ≤ d}. By

Lemma 3.4, we can choose d > 0 small such that C1
2 S

3
2 ≤ ‖u‖2 ≤ 2C2S

3
2 for all u ∈ Ŝ d

0.
Lemma 3.9. Let {uλi} ⊂ Ŝ d

0 with limi→∞ λi = 0 be such that limi→∞ Îλi(uλi) ≤ m̂0 and limi→∞ Î′λi
(uλi) = 0.

Then, for d > 0 small, there exists u0 ∈ Ŝ 0 such that uλi → u0 in Xr up to a subsequence.
Proof. Since {uλi} ⊂ Ŝ d

0, we have C1
2 S

3
2 ≤ ‖uλi‖

2 ≤ 2C2S
3
2 . Moreover, limi→∞ Î0(uλi) ≤ m̂0 and

limi→∞ Î′0(uλi) = 0. Similar to the argument of Lemma 3.2, we derive that there exists u0 ∈ Xr such that
uλi → u0 in Xr. So, ‖u0‖

2 ≥
C1
2 S

3
2 , Î0(u0) ≤ m̂0, and Î′0(u0) = 0, from which we get u0 ∈ Ŝ 0. �
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Lemma 3.10. Let d > 0. Then there exists η > 0 such that for small λ > 0, Îλ(γ(t)) ≥ dλ − η implies
that γ(t) ∈ Ŝ

d
2
0 , where γ(t) = tt0V0 for t ∈ [0, 1].

Proof. By Lemma 3.6, if γ(t) < Ŝ
d
2
0 , then there exists δ > 0 such that |tt0 − 1| ≥ δ. Moreover, there

exists η′ > 0 such that Î0(γ(t)) ≤ m0 − η
′. By Lemma 2.1, Lemma 3.4, and Lemma 3.8, there exists

η > 0 such that for small λ > 0, it holds that Îλ(γ(t)) < dλ − η. �
Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we can use Lemmas 3.8–3.10 to derive
that, for small λ > 0, there exists {un} ⊂ Ŝ d

0 ∩ ÎDλ

λ such that Î′λ(un) → 0. Then C1
2 S

3
2 ≤ ‖un‖

2 ≤ 2C2S
3
2 .

Assume that un ⇀ uλ weakly in Xr. Then Î′λ(uλ) = 0. Let un = vn +wn, where vn ∈ Ŝ 0 and ‖wn‖ ≤ d. By
Lemma 3.4, there exists vλ ∈ Ŝ 0 such that vn → vλ in Xr. Assume that wn ⇀ wλ in Xr. Then ‖wλ‖ ≤ d.
So, uλ ∈ Ŝ d

0. Moreover, C1
2 S

3
2 ≤ ‖uλ‖2 ≤ 2C2S

3
2 . Together with (3.1) and Lemma 3.5, we have

|uλ(x)|2 ≤ 2C2C2
0S

3
2 max

1 +
| ∧2 |

2
3

S
,

1
V0

 1
|x|
, ∀x , 0. (3.17)

By (3.11), we get maxx∈∧2
uλ(x) ≤ 4

√
V0

2κC′ . Let ϕ = (uλ − σ)+, where σ =
4
√

V0
2κC′ . By

(
Î′λ(uλ), ϕ

)
= 0,∫

(R3\∧2)∩{x∈R3:uλ(x)>σ}
|∇uλ|2dx +

∫
R3\∧2

V(x)uλ(uλ − σ)+dx

≤

∫
R3\∧2

g(uλ)(uλ − σ)+dx ≤
1
2

∫
R3\∧2

V(x)uλ(uλ − σ)+dx. (3.18)

Since V(x) ≥ V0 for x ∈ R3 \∧2, by (3.18), we get uλ(x) ≤ σ for x ∈ R3 \∧2. Then h(x, uλ) = f (uλ)+u5
λ,

from which we get I′λ(uλ) = 0. Together with Lemma 3.9, we get the result. �

4. Conclusions

In this paper, we study the existence and asymptotic behavior of positive solutions of a non-
autonomous Schrodinger-Poisson equation with critical growth. First, we consider the case that the
nonlinearity satisfies the Berestycki-Lions type condition with critical growth. To the best of our
knowledge, existing results on Schrodinger-Poisson equations are about radial solutions. However, the
problem is quite different when we consider the problem in a non-radial setting. Second, we consider
the case that the zero set of the potential is contained in a spherical shell. To the best of our knowledge,
there are no results on this question. By developing some techniques in variational methods, we solve
the problem successfully.
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