Research article

On Schrödinger-Poisson equations with a critical nonlocal term

Xinyi Zhang and Jian Zhang*

College of Science, China University of Petroleum, Qingdao 266580, Shandong, China

* Correspondence: Email: zjianmath@163.com.

Abstract

In this paper, we study the following non-autonomous Schrödinger-Poisson equation with a critical nonlocal term and a critical nonlinearity: $$
\left\{\begin{array}{l} -\Delta u+V(x) u+\lambda \phi|u|^{3} u=f(u)+\left(u^{+}\right)^{5}, \text { in } \mathbb{R}^{3}, \\ -\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3} . \end{array}\right.
$$

First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. Second, we consider the case that $\operatorname{int} V^{-1}(0)$ is contained in a spherical shell. By using variational methods, we obtain the existence and asymptotic behavior of positive solutions.

Keywords: Schrödinger-Poisson equation; critical nonlocal term; critical nonlinearity; variational method
Mathematics Subject Classification: 35A15, 35J60

1. Introduction

The Schrödinger-Poisson equation

$$
\begin{cases}-\Delta u+V(x) u+\lambda \phi u=f(x, u), & \text { in } \mathbb{R}^{3}, \tag{1.1}\\ -\Delta \phi=u^{2}, & \text { in } \mathbb{R}^{3},\end{cases}
$$

arises in a physical context. It is introduced while describing the interaction of a charged particle with an electrostatic field. More details can be found in [3]. Also, it appears in other fields like semiconductor theory, nonlinear optics, and plasma physics. The readers may refer to [18] and the references therein for further discussion. When $V \equiv 1, \lambda=1$, and $f(x, u)=|u|^{p-2} u$, problem (1.1) has been studied sufficiently. We refer to [9] for $p \leq 2$ and $p \geq 6,[7,8,10]$ for $4 \leq p<6$, [2] for $3<p<6$, and [22] for $2<p<6$. In [31], the authors obtained an axially symmetric solution of the following

Schrödinger-Poisson equation in \mathbb{R}^{2} :

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\phi u=K(x) f(u), \text { in } \mathbb{R}^{2}, \\
\Delta \phi=u^{2}, \text { in } \mathbb{R}^{2},
\end{array}\right.
$$

where $f \in C(\mathbb{R}, \mathbb{R})$, and V and K are both axially symmetric functions. In [4,5], the almost necessary and sufficient condition (Berestycki-Lions type condition) for the existence of ground state solutions of the problem

$$
-\Delta u=g(u), u \in H^{1}\left(\mathbb{R}^{N}\right)
$$

was given by [4] when $N=2$ and [5] when $N \geq 3$. Precisely, they assumed g satisfies the following conditions:
$\left(g_{1}\right) g(s) \in C(\mathbb{R}, \mathbb{R})$ is continuous and odd.
$\left(g_{2}\right)-\infty<\liminf _{s \rightarrow 0} \frac{g(s)}{s} \leq \lim \sup _{s \rightarrow 0} \frac{g(s)}{s}=-a<0$ for $N \geq 3$, and $\lim _{s \rightarrow 0} \frac{g(s)}{s}=-a<0$ for $N=2$.
$\left(g_{3}\right)$ When $N \geq 3$, lim $\sup _{s \rightarrow \infty} \frac{g(s)}{|s| \frac{N+2}{N+2}} \leq 0$; when $N=2$, for any $\alpha>0$ there exists $C_{\alpha}>0$ such that $g(s) \leq C_{\alpha} \exp \left(\alpha s^{2}\right)$ for all $s>0$.
$\left(g_{4}\right)$ There exists $\xi_{0}>0$ such that $G\left(\xi_{0}\right)>0$, where $G\left(\xi_{0}\right)=\int_{0}^{\xi_{0}} g(s) \mathrm{d} s$.
When g satisfies the above Berestycki-Lions type condition, the authors in [19] studied the problem

$$
\left\{\begin{array}{l}
-\Delta u+q \phi u=g(u), \text { in } \mathbb{R}^{3}, \\
-\Delta \phi=q u^{2}, \text { in } \mathbb{R}^{3}
\end{array}\right.
$$

By using a truncation technique in [14], they proved that the problem admits a nontrivial positive radial solution for $q>0$ small. For the critical case, the authors in [30] studied the existence of positive radial solutions of the problem

$$
\left\{\begin{array}{l}
-\Delta u+u+\phi u=\mu Q(x)|u|^{q-2} u+K(x) u^{5}, \text { in } \mathbb{R}^{3}, \\
-\Delta \phi=u^{2}, \text { in } \mathbb{R}^{3}
\end{array}\right.
$$

where $q \in(2,4), \mu>0$, and Q and K are radial functions satisfying the following conditions:
$\left(h_{1}\right) K \in C\left(\mathbb{R}^{3}, \mathbb{R}\right), \lim _{|x| \rightarrow \infty} K(x)=K_{\infty} \in(0, \infty)$ and $K(x) \geq K_{\infty}$ for $x \in \mathbb{R}^{3}$.
$\left(h_{2}\right) Q \in C\left(\mathbb{R}^{3}, \mathbb{R}\right), \lim _{|x| \rightarrow \infty} Q(x)=Q_{\infty} \in(0, \infty)$ and $Q(x) \geq Q_{\infty}$ for $x \in \mathbb{R}^{3}$.
$\left(h_{3}\right)\left|K(x)-K\left(x_{0}\right)\right|=o\left(\left|x-x_{0}\right|^{\alpha}\right)$, where $1 \leq \alpha<3$ and $K\left(x_{0}\right)=\max _{\mathbb{R}^{3}} K(x)$.
In [25], we studied (1.1) with f satisfying the following Berestycki-Lions type condition with critical growth:
$\left(f_{1}\right) f \in C(\mathbb{R}, \mathbb{R})$ is odd, $\lim _{u \rightarrow 0+} \frac{f(u)}{u}=0$ and $\lim _{u \rightarrow+\infty} \frac{f(u)}{u^{5}}=K>0$.
(f_{2}) There exist $D>0$ and $2<q<6$ such that $f(u) \geq K u^{5}+D u^{q-1}$ for $u \geq 0$.
$\left(f_{3}\right)$ There exists $\theta>2$ such that $\frac{1}{\theta} f(u) u-F(u) \geq 0$ for all $u \in \mathbb{R}^{+}$, where $F(u)=\int_{0}^{u} f(s) \mathrm{d} s$.

When $\lambda>0$ is small, we obtained positive radial solutions for $q \in(4,6)$, or $q \in(2,4]$ with $D>0$ large. In [29], the authors removed $\left(f_{3}\right)$ by using a local deformation argument in [6]. It should be pointed out that, in [25,29], the problems were considered in a radial setting.

When the nonlocal term is of critical growth, that is, u^{2} is replaced by u^{5}, problem (1.1) is reduced to

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\lambda \phi u=f(x, u), \text { in } \mathbb{R}^{3}, \tag{1.2}\\
-\Delta \phi=u^{5}, \text { in } \mathbb{R}^{3}
\end{array}\right.
$$

These kind of equations are closely related with the Choquard-Pekar equation, which was proposed in [20] to study the quantum theory of a polaron at rest. Since the critical nonlocal term may cause the loss of compactness, problem (1.2) is quite different from the standard Schrödinger-Poisson equation. In [16], the authors considered the equation

$$
\left\{\begin{array}{l}
-\Delta u+b u+q \phi|u|^{3} u=f(u), \text { in } \mathbb{R}^{3}, \tag{1.3}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $b \geq 0, q \in \mathbb{R}$, and the subcritical nonlinearity f satisfies the following conditions:
$\left(H_{1}\right) f \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $\lim _{u \rightarrow 0+} \frac{f(u)}{b u+u^{5}}=0$.
$\left(H_{2}\right) \lim _{u \rightarrow \infty} \frac{f(u)}{u^{5}}=0$.
$\left(H_{3}\right)$ There is a function $z \in H_{r}^{1}\left(\mathbb{R}^{3}\right)$ such that $\int_{\mathbb{R}^{3}} F(z)>b \int_{\mathbb{R}^{3}} z^{2}$, where $F(z)=\int_{0}^{z} f(t) \mathrm{d} t$.
$\left(H_{4}\right)$ There exist $r \in(4,6), A>0, B>0$ such that $F(t) \geq A t^{r}-B t^{2}$ for $t \geq 0$.
For $q \geq 0$, they proved that there exists $q_{0}>0$ such that for $q \in\left[0, q_{0}\right)$, and problem (1.3) has at least one positive radially symmetric solution if $\left(H_{1}\right)-\left(H_{3}\right)$ hold. For $q=-1$, they proved that problem (1.3) has at least one positive radially symmetric solution if $\left(H_{1}\right)-\left(H_{2}\right)$ and $\left(H_{4}\right)$ hold. In [17], the authors studied the existence, nonexistence, and multiplicity of positive radially symmetric solutions of the equation

$$
\left\{\begin{array}{l}
-\Delta u+u+\lambda \phi|u|^{3} u=\mu|u|^{p-1} u, \text { in } \mathbb{R}^{3}, \tag{1.4}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $\lambda \in \mathbb{R}, \mu \geq 0$, and $p \in[1,5]$. In [15], the author obtained positive solutions of the following equation with subcritical growth:

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u-K(x) \phi|u|^{3} u=f(x, u), \text { in } \mathbb{R}^{3}, \tag{1.5}\\
-\Delta \phi=K(x)|u|^{5}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where V, K, and f are asymptotically periodic functions of x. If the nonlinearity is of critical growth, the author in [12] studied ground state solutions of the equation

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u-\phi|u|^{3} u=f(u)+u^{5}, \text { in } \mathbb{R}^{3}, \tag{1.6}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $V(x)=1+x_{1}^{2}+x_{2}^{2}$ with $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ and f is an appropriate nonlinear function.
In this paper, we study the following Schrödinger-Poisson equation with a critical nonlocal term:

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\lambda \phi|u|^{3} u=f(u)+\left(u^{+}\right)^{5}, \text { in } \mathbb{R}^{3}, \tag{1.7}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3},
\end{array}\right.
$$

where $\left(u^{+}\right)^{5}$ is a critical term with $u^{+}:=\max \{u, 0\}$ and $\lambda>0$ is a parameter. When we study (1.7) for the case $\lambda<0$, the boundedness of the Palais-Smale sequence can be derived directly. However, for the case $\lambda>0$, the problem is quite different. Since the term $\int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x$ is homogeneous of degree 10 , the corresponding Ambrosetti-Rabinowitz condition on f is the following:
(f^{\prime}) There exists $\theta \geq 10$ such that $t f(t)-\theta F(t) \geq 0$ for any $t \in \mathbb{R}$.
Obviously, this condition is not suitable for the problem in dimension three. To solve the problem, the authors in [16] used a truncation technique in [14]. However, the argument is invalid when we study non-autonomous problems in a non-radial setting. Motivated by the above considerations, we first study the non-autonomous problem (1.7) in a non-radial setting, where the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. We assume V satisfies the following conditions:
$\left(V_{1}\right) V \in C^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and $\inf _{\mathbb{R}^{3}} V:=V_{0}>0$.
$\left(V_{2}\right) V(x) \leq \lim _{|x| \rightarrow \infty} V(x):=V_{\infty}$ for all $x \in \mathbb{R}^{3}$ and the inequality is strict in a set of positive Lebesgue measure.
$\left(V_{3}\right)$ There exists $\theta \in(0,1)$ such that $\frac{t^{3}}{2} V(t x)-\frac{t^{3}}{2} V(x)-\frac{t^{3}-1}{6}(\nabla V(x), x) \leq \frac{\theta(t-1)^{2}(t+2)}{24|x|^{2}}$ for $x \in \mathbb{R}^{3} \backslash\{0\}$ and $t \in \mathbb{R}^{+}$.

The result is as follows.
Theorem 1.1. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ and $\left(f_{1}\right)-\left(f_{2}\right)$ hold. Then there exists $\lambda_{0}>0$ such that for $\lambda \in\left(0, \lambda_{0}\right)$, problem (1.7) has a positive solution $\left(u_{\lambda}, \phi_{\lambda}\right)$. Moreover, as $\lambda \rightarrow 0,\left(u_{\lambda}, \phi_{\lambda}\right) \rightarrow(u, 0)$ in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$, where u is a ground state solution of the following limiting equation:

$$
\begin{equation*}
-\Delta u+V(x) u=f(u)+\left(u^{+}\right)^{5} \text { in } \mathbb{R}^{3} . \tag{1.8}
\end{equation*}
$$

When $V \equiv 1$, problem (1.7) is reduced to the following equation:

$$
\left\{\begin{array}{l}
-\Delta u+u+\lambda \phi|u|^{3} u=f(u)+\left(u^{+}\right)^{5}, \text { in } \mathbb{R}^{3}, \tag{1.9}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3} .
\end{array}\right.
$$

Then we have the following result.
Corollary 1.1. Assume that $\left(f_{1}\right)-\left(f_{2}\right)$ hold. Then there exists $\lambda_{0}>0$ such that for $\lambda \in\left(0, \lambda_{0}\right)$, problem (1.9) has a positive solution $\left(u_{\lambda}, \phi_{\lambda}\right)$. Moreover, as $\lambda \rightarrow 0,\left(u_{\lambda}, \phi_{\lambda}\right) \rightarrow(u, 0)$ in $H^{1}\left(\mathbb{R}^{3}\right) \times$ $D^{1,2}\left(\mathbb{R}^{3}\right)$, where u is a ground state solution of the following limiting equation:

$$
\begin{equation*}
-\Delta u+u=f(u)+\left(u^{+}\right)^{5} \text { in } \mathbb{R}^{3} . \tag{1.10}
\end{equation*}
$$

Remark 1.1. Corollary 1.1 is still valid if we replace $\left(f_{2}\right)$ by $\left(H_{3}\right)$. So, we generalize the result in [16] to the critical case.

In the next, we consider the case that $\operatorname{int} V^{-1}(0)$ is contained in a spherical shell. We assume the following conditions.
$\left(V_{1}^{\prime}\right) V \in C\left(\mathbb{R}^{3}, \mathbb{R}\right)$ and $V(x)=V(|x|)$ for all $x \in \mathbb{R}^{3}$.
$\left(V_{2}^{\prime}\right) V(x)=0$ for $x \in \wedge_{1}$ and there exists $V_{0}>0$ such that $V(x) \geq V_{0}$ for $x \notin \wedge_{2}$, where $\wedge_{1}:=\left\{x \in \mathbb{R}^{3}\right.$:
$\left.r_{1}<|x|<r_{2}\right\}$ and $\wedge_{2}:=\left\{x \in \mathbb{R}^{3}: R_{1}<|x|<R_{2}\right\}$ with $0<R_{1}<r_{1}<r_{2}<R_{2}$.
$\left(f_{3}^{\prime}\right)$ There exists $\theta>2$ such that $\frac{f(u)}{u^{\theta-1}}$ is increasing for all $u>0$.
To the best of our knowledge, there are no related results even for the case $\lambda=0$. We must face several difficulties. A main difficulty is how to get the compactness. In [11], del Pino and Felmer developed a penalization approach to deal with singularly perturbed problems. Motivated by [11], instead of studying (1.7) directly, we turn to consider a modified problem. By studying the influence of the potential on the compactness and the behavior of positive solutions at infinity, we solve the problem. When $\lambda>0$, we have to prove the boundedness of the Palais-Smale sequence for the modified problem. This is another difficulty. Now we state the result.
Theorem 1.2. Assume that $\left(V_{1}^{\prime}\right)-\left(V_{2}^{\prime}\right),\left(f_{1}\right)-\left(f_{2}\right)$, and $\left(f_{3}^{\prime}\right)$ hold. Then there exists $R^{\prime}>0$ such that for $R_{1}>R^{\prime}$, there exists $\lambda^{\prime}>0$ such that problem (1.7) has a positive solution ($u_{\lambda}, \phi_{\lambda}$) for $\lambda \in\left(0, \lambda^{\prime}\right)$. Moreover, as $\lambda \rightarrow 0,\left(u_{\lambda}, \phi_{\lambda}\right) \rightarrow(u, 0)$ in $H^{1}\left(\mathbb{R}^{3}\right) \times D^{1,2}\left(\mathbb{R}^{3}\right)$, where u is a positive solution of (1.8).

Notations.

- Denote $H^{1}:=H^{1}\left(\mathbb{R}^{3}\right)$ the Hilbert space with the norm $\|u\|_{H^{1}}^{2}:=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|u|^{2}\right) \mathrm{d} x$.
- Denote $D^{1,2}:=D^{1,2}\left(\mathbb{R}^{3}\right)=\left\{u \in L^{6}\left(\mathbb{R}^{3}\right):|\nabla u| \in L^{2}\left(\mathbb{R}^{3}\right)\right\}$ the Sobolev space with the norm $\|u\|_{D^{1,2}}^{2}:=$ $\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x$.
- Denote the norm $\|u\|_{s}:=\left(\int_{\mathbb{R}^{3}}|u|^{s} \mathrm{~d} x\right)^{\frac{1}{s}}$, where $2 \leq s<\infty$.
- Denote C a universal positive constant (possibly different).

2. Proof of Theorem 1.1

Without loss of generality, we assume that $f(u)=0$ for $u \leq 0$. Define the best Sobolev constant

$$
\begin{equation*}
S:=\inf _{u \in D^{1,2,2}\{0\}} \frac{\int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x}{\left(\int_{\mathbb{R}^{3}}|u|^{6} \mathrm{~d} x\right)^{\frac{1}{3}}} . \tag{2.1}
\end{equation*}
$$

By the Lax-Milgram theorem, for any $u \in D^{1,2}$ there exists a unique $\phi_{u} \in D^{1,2}$ such that $-\Delta \phi_{u}=|u|^{5}$. The function ϕ_{u} has the following properties.
Lemma 2.1. ([16])
(i) $\phi_{u} \geq 0, \phi_{t u}=|t|^{5} \phi_{u}$ and $\phi_{u(\bar{\xi})}=t^{2} \phi_{u}(\dot{\bar{t}})$ for all $t>0$.
(ii) $\left\|\phi_{u}\right\|_{D^{1,2}} \leq S^{-\frac{1}{2}}\|u\|_{6}^{5}$.
(iii) If $u_{n} \rightharpoonup u$ weakly in $L^{6}\left(\mathbb{R}^{3}\right)$ and $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{3}, then $\phi_{u_{n}} \rightharpoonup \phi_{u}$ weakly in $D^{1,2}$ up to a subsequence.
(iv) Let $J(u)=\int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x$, where $u \in D^{1,2}$. If $u_{n} \rightharpoonup u$ weakly in $L^{6}\left(\mathbb{R}^{3}\right)$ and $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{3}, then

$$
J\left(u_{n}\right)-J(u)-J\left(u_{n}-u\right)=o_{n}(1) .
$$

Define $X:=\left\{u \in H^{1}: \int_{\mathbb{R}^{3}} V(x)|u|^{2} \mathrm{~d} x<\infty\right\}$ as the Hilbert space with the norm $\|u\|=$ $\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)|u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$. Define the functional on X by

$$
I_{\lambda}(u)=\frac{1}{2}\|u\|^{2}+\frac{\lambda}{10} \int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x-\int_{\mathbb{R}^{3}} F(u) \mathrm{d} x-\frac{1}{6} \int_{\mathbb{R}^{3}}\left|u^{+}\right|^{6} \mathrm{~d} x,
$$

where $F(u):=\int_{0}^{u} f(s) \mathrm{d} s$. Obviously, the functional I_{λ} is of class C^{1} and critical points of I_{λ} are weak solutions of (1.7). Let

$$
\begin{equation*}
m_{0}:=\inf \left\{I_{0}(u): u \in X \backslash\{0\}, I_{0}^{\prime}(u)=0\right\} . \tag{2.2}
\end{equation*}
$$

If $I_{0}^{\prime}(u)=0$, by the arguments in $[16,21,24]$ we can derive the Pohozǎev type identity $J_{0}(u)=0$, where

$$
\begin{aligned}
J_{0}(u)= & \frac{1}{2}\|\nabla u\|_{2}^{2}+\frac{1}{2} \int_{\mathbb{R}^{3}}[3 V(x)+(\nabla V(x), x)]|u|^{2} \mathrm{~d} x-3 \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x \\
& -\frac{1}{2} \int_{\mathbb{R}^{3}}\left|u^{+}\right|^{6} \mathrm{~d} x .
\end{aligned}
$$

When $V \equiv V_{\infty}$, problem (1.8) is reduced to the following equation:

$$
\begin{equation*}
-\Delta u+V_{\infty} u=f(u)+\left(u^{+}\right)^{5} \text { in } \mathbb{R}^{3} \tag{2.3}
\end{equation*}
$$

The functional associated with (2.3) is

$$
I_{0}^{\infty}(u)=\frac{1}{2}\|\nabla u\|_{2}^{2}+\frac{1}{2} \int_{\mathbb{R}^{3}} V_{\infty}|u|^{2} \mathrm{~d} x-\int_{\mathbb{R}^{3}} F(u) \mathrm{d} x-\frac{1}{6} \int_{\mathbb{R}^{3}}\left|u^{+}\right|^{6} \mathrm{~d} x, u \in H^{1}
$$

Define

$$
\begin{equation*}
m_{0}^{\infty}:=\inf \left\{I_{0}^{\infty}(u): u \in H^{1} \backslash\{0\},\left(I_{0}^{\infty}\right)^{\prime}(u)=0\right\} \tag{2.4}
\end{equation*}
$$

Define

$$
\begin{equation*}
c_{0}^{\infty}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{0}^{\infty}(\gamma(t)) \tag{2.5}
\end{equation*}
$$

where $\Gamma:=\left\{\gamma \in C\left([0,1], H^{1}\right): \gamma(0)=0, I_{0}^{\infty}(\gamma(1))<0\right\}$.
Lemma 2.2. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ hold. Then, for all $x \in \mathbb{R}^{3} \backslash\{0\}$,

$$
\begin{equation*}
3 V_{\infty}-3 V(x)-\frac{\theta}{4|x|^{2}} \leq(\nabla V(x), x) \leq \frac{\theta}{2|x|^{2}} \tag{2.6}
\end{equation*}
$$

Proof. Let

$$
g(t):=\frac{t^{3}}{2} V(t x)-\frac{t^{3}}{2} V(x)-\frac{t^{3}-1}{6}(\nabla V(x), x)-\frac{\theta(t-1)^{2}(t+2)}{24|x|^{2}} .
$$

By $\left(V_{3}\right)$, we get $g(0) \leq 0$. Then $(\nabla V(x), x) \leq \frac{\theta}{2|x|^{2}}$ for all $x \in \mathbb{R}^{3} \backslash\{0\}$. By $\left(V_{2}\right)-\left(V_{3}\right)$, we get $\lim _{t \rightarrow+\infty} \frac{g(t)}{t^{3}} \leq$ 0 . Then $(\nabla V(x), x) \geq 3 V_{\infty}-3 V(x)-\frac{\theta}{4|x|^{2}}$ for all $x \in \mathbb{R}^{3} \backslash\{0\}$.
Theorem 2.1. ([13]) Let X be a Banach space equipped with a norm $\|.\|_{X}$ and let $J \subset \mathbb{R}^{+}$be an interval. We consider a family $\left(I_{\mu}\right)_{\mu \in J}$ of C^{1}-functionals on X of the form

$$
I_{\mu}(u)=A(u)-\mu B(u), \quad \forall \mu \in J
$$

where $B(u) \geq 0$ for all $u \in X$, and either $A(u) \rightarrow+\infty$ or $B(u) \rightarrow+\infty$ as $\|u\|_{X} \rightarrow \infty$. We assume there are two points v_{1}, v_{2} in X such that

$$
c_{\mu}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\mu}(\gamma(t))>\max \left\{I_{\mu}\left(v_{1}\right), I_{\mu}\left(v_{2}\right)\right\}, \quad \forall \mu \in J,
$$

where $\Gamma:=\left\{\gamma \in C([0,1], X) ; \gamma(0)=v_{1}, \gamma(1)=v_{2}\right\}$. Then, for almost every $\mu \in J$, there is a sequence $\left\{v_{n}\right\} \subset X$ such that $\left\{v_{n}\right\}$ is bounded, $I_{\mu}\left(v_{n}\right) \rightarrow c_{\mu}$, and $I_{\mu}^{\prime}\left(v_{n}\right) \rightarrow 0$ in X^{-1}. Moreover, the map $\mu \rightarrow c_{\mu}$ is continuous from the left-hand side.
Lemma 2.3. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ and $\left(f_{1}\right)-\left(f_{2}\right)$ hold. Then $m_{0} \in\left(0, m_{0}^{\infty}\right)$ is attained by a positive function.
Proof. Let $\mu_{0} \in(0,1)$. Define the functionals on X by

$$
I_{0, \mu}(u)=\frac{1}{2}\|u\|^{2}-\mu \int_{\mathbb{R}^{3}} F(u) \mathrm{d} x-\frac{\mu}{6} \int_{\mathbb{R}^{3}}\left|u^{+}\right|^{6} \mathrm{~d} x,
$$

where $\mu \in\left[\mu_{0}, 1\right]$. Similar to the argument in [27], we can use Theorem 2.1 to derive that for almost every $\mu \in\left[\mu_{0}, 1\right]$ there exists a positive function $u_{\mu} \in X$ such that $c_{\mu}=I_{0, \mu}\left(u_{\mu}\right)$ and $I_{0, \mu}^{\prime}\left(u_{\mu}\right)=0$.

Choose $\mu_{n} \uparrow 1$ such that $I_{0, \mu_{n}}\left(u_{\mu_{n}}\right)=c_{\mu_{n}}$ and $I_{0, \mu_{n}}^{\prime}\left(u_{\mu_{n}}\right)=0$. Then $u_{\mu_{n}}$ satisfies the following Pohozǎev type identity:

$$
\begin{align*}
& \frac{1}{2}\left\|\nabla u_{\mu_{n}}\right\|_{2}^{2}+\frac{1}{2} \int_{\mathbb{R}^{3}}[3 V(x)+(\nabla V(x), x)]\left|u_{\mu_{n}}\right|^{2} \mathrm{~d} x \\
& =3 \mu_{n} \int_{\mathbb{R}^{3}} F\left(u_{\mu_{n}}\right) \mathrm{d} x+\frac{\mu_{n}}{2} \int_{\mathbb{R}^{3}}\left|u_{\mu_{n}}\right|^{6} \mathrm{~d} x . \tag{2.7}
\end{align*}
$$

By (2.7), Lemma 2.2, and the Hardy inequality,

$$
\begin{equation*}
c_{\mu_{n}}=\frac{1}{3}\left\|\nabla u_{\mu_{n}}\right\|_{2}^{2}-\frac{1}{6} \int_{\mathbb{R}^{3}}(\nabla V(x), x)\left|u_{\mu_{n}}\right|^{2} \mathrm{~d} x \geq \frac{1-\theta}{3}\left\|\nabla u_{\mu_{n}}\right\|_{2}^{2}, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{1}{2}\left\|\nabla u_{\mu_{n}}\right\|_{2}^{2}+\frac{1}{2} \int_{\mathbb{R}^{3}}[3 V(x)+(\nabla V(x), x)]\left|u_{\mu_{n}}\right|^{2} \mathrm{~d} x \\
& \geq \frac{1-\theta}{2}\left\|\nabla u_{\mu_{n}}\right\|_{2}^{2}+\frac{3}{2} \int_{\mathbb{R}^{3}} V_{\infty}\left|u_{\mu_{n}}\right|^{2} \mathrm{~d} x . \tag{2.9}
\end{align*}
$$

By (2.7)-(2.9) and $\left(f_{1}\right)$, we get that $\left\|u_{\mu_{n}}\right\|$ is bounded. Then $I_{0}\left(u_{\mu_{n}}\right) \rightarrow c_{1}$ and $I_{0}^{\prime}\left(u_{\mu_{n}}\right) \rightarrow 0$. Similar to the argument in [27], we get that there exists a positive function $u_{0} \in X$ such that $u_{\mu_{n}} \rightarrow u_{0}$ in X, $I_{0}\left(u_{0}\right)=c_{1}$, and $I_{0}^{\prime}\left(u_{0}\right)=0$. Moreover, $0<m_{0} \leq c_{1}$ is attained. By [28], we get that $m_{0}^{\infty}=c_{0}^{\infty}$ is attained by a positive function u_{0}^{∞}. Then by $\left(V_{1}\right)-\left(V_{2}\right)$ and a standard argument, we have $c_{1}<c_{0}^{\infty}$.

Let S_{0} be the set of ground states of (1.8). By Lemma 2.3, we have $S_{0} \neq \emptyset$.
Lemma 2.4. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ and $\left(f_{1}\right)-\left(f_{2}\right)$ hold. Then S_{0} is compact in X.
Proof. By Lemma 2.3, for any $\left\{u_{n}\right\} \subset S_{0}$ we have $I_{0}\left(u_{n}\right)=m_{0}, I_{0}^{\prime}\left(u_{n}\right)=0$, and $J_{0}\left(u_{n}\right)=0$. Moreover, $\left\|u_{n}\right\|$ is bounded. Assume that $u_{n} \rightharpoonup u_{0}$ weakly in X. Then $I_{0}^{\prime}\left(u_{0}\right)=0$. Let $v_{n}=u_{n}-u_{0}$. By $\left(V_{1}\right),\left(f_{1}\right)$, and the Brezis-Lieb lemma in [24], we have

$$
\begin{equation*}
m_{0}-I_{0}\left(u_{0}\right)+o_{n}(1)=I_{0}^{\infty}\left(v_{n}\right), \quad\left(I_{0}^{\infty}\right)^{\prime}\left(v_{n}\right)=o_{n}(1) . \tag{2.10}
\end{equation*}
$$

Since $v_{n} \rightharpoonup 0$ weakly in X, by the Lions Lemma in [24], $v_{n} \rightarrow 0$ in $L^{t}\left(\mathbb{R}^{3}\right)$ for any $t \in(2,6)$, or there exists $\left\{y_{n}^{1}\right\} \subset \mathbb{R}^{3}$ with $\left|y_{n}^{1}\right| \rightarrow \infty$ such that $v_{n}^{1}:=v_{n}\left(.+y_{n}^{1}\right) \rightharpoonup v^{1} \neq 0$ weakly in X. If $v_{n} \rightarrow 0$ in $L^{t}\left(\mathbb{R}^{3}\right)$ for any $t \in(2,6)$, by $\left(f_{1}\right)$ we get $\int_{\mathbb{R}^{3}} F\left(v_{n}\right) \mathrm{d} x=o_{n}(1)$ and $\int_{\mathbb{R}^{3}} f\left(v_{n}\right) v_{n} \mathrm{~d} x=o_{n}(1)$. Then

$$
\begin{equation*}
m_{0}+o_{n}(1)=I_{0}\left(u_{0}\right)+\frac{1}{2}\left\|v_{n}\right\|^{2}-\frac{1}{6}\left\|v_{n}\right\|_{6}^{6}, \quad\left\|v_{n}\right\|^{2}=\left\|v_{n}\right\|_{6}^{6}+o_{n}(1) . \tag{2.11}
\end{equation*}
$$

By $I_{0}^{\prime}\left(u_{0}\right)=0$, we have $J_{0}\left(u_{0}\right)=0$. By Lemma 2.2 and the Hardy inequality, we get $I_{0}\left(u_{0}\right) \geq 0$. Assume that $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{6}^{6}=l$. If $l>0$, by (2.11) and the definition of S, we get $l \geq S^{\frac{3}{2}}$. Then $m_{0} \geq \frac{1}{3} S^{\frac{3}{2}}$, a contradiction. So, $l=0$, from which we get $v_{n} \rightarrow 0$ in X. If there exists $\left\{y_{n}^{1}\right\} \subset \mathbb{R}^{3}$ with $\left|y_{n}^{1}\right| \rightarrow \infty$ such that $v_{n}^{1}:=v_{n}\left(.+y_{n}^{1}\right) \rightharpoonup v^{1} \neq 0$ weakly in X, similar to the argument of Lemma 2.6 in [27] there exist $k \in \mathbb{N} \cup\{0\},\left\{y_{n}^{i}\right\} \subset \mathbb{R}^{3}$ and $v^{i} \in X$ for $1 \leq i \leq k$ such that

$$
\begin{align*}
& \left|y_{n}^{i}\right| \rightarrow \infty \text { and }\left|y_{n}^{i}-y_{n}^{j}\right| \rightarrow \infty, \text { if } i \neq j, 1 \leq i, j \leq k, \\
& v_{n}\left(.+y_{n}^{i}\right) \rightharpoonup v^{i} \neq 0 \text { weakly in } X \text { and }\left(I_{0}^{\infty}\right)^{\prime}\left(v^{i}\right)=0, \forall 1 \leq i \leq k, \\
& \left\|v_{n}-\sum_{i=1}^{k} v^{i}\left(.-y_{n}^{i}\right)\right\| \rightarrow 0, \\
& m_{0}=I_{0}\left(u_{0}\right)+\sum_{i=1}^{k} I_{0}^{\infty}\left(v^{i}\right) . \tag{2.12}
\end{align*}
$$

Since $\left(I_{0}^{\infty}\right)^{\prime}\left(v^{i}\right)=0$, we have $I_{0}^{\infty}\left(v^{i}\right) \geq m_{0}^{\infty}$. If $k \geq 1$, by $I_{0}\left(u_{0}\right) \geq 0$ and (2.12) we get $m_{0} \geq m_{0}^{\infty}$, a contradiction. So, $k=0$, from which we get $u_{n} \rightarrow u_{0}$ in X.
Lemma 2.5. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ and $\left(f_{1}\right)$ hold. If $u \in S_{0}$, then $m_{0}=I_{0}(u)>I_{0}(u(\dot{(}))$ for all $t \in[0,1) \cup(1,+\infty)$. Also, there exists $t_{0}>1$ independent of $u \in S_{0}$ such that $I_{0}\left(u\left(\dot{\dot{t}_{0}}\right)\right) \leq-2$.
Proof. By $u \in S_{0}$, we have $J_{0}(u)=0$. Then

$$
\begin{align*}
I_{0}\left(u\left(\frac{x}{t}\right)\right)-I_{0}(u)= & \int_{\mathbb{R}^{3}}\left[\frac{t^{3}}{2} V(t x)-\frac{t^{3}}{2} V(x)-\frac{t^{3}-1}{6}(\nabla V(x), x)\right]|u|^{2} \mathrm{~d} x \\
& -\frac{(t-1)^{2}(t+2)}{6}\|\nabla u\|_{2}^{2} . \tag{2.13}
\end{align*}
$$

By $\left(V_{3}\right)$ and the Hardy inequality, we get $I_{0}(u)>I_{0}(u(\dot{\dot{t}}))$ for all $t \neq 1$. By Lemma 2.2 and the Hardy inequality,

$$
\begin{align*}
& \frac{1}{2}\|\nabla u\|_{2}^{2}+\frac{1}{2} \int_{\mathbb{R}^{3}}[3 V(x)+(\nabla V(x), x)]|u|^{2} \mathrm{~d} x \\
& \geq \frac{1-\theta}{2}\|\nabla u\|_{2}^{2}+\frac{3}{2} \int_{\mathbb{R}^{3}} V_{\infty}|u|^{2} \mathrm{~d} x . \tag{2.14}
\end{align*}
$$

Since $J_{0}(u)=0$, by $\left(f_{1}\right)$ and (2.14) there exists $\varrho>0$ independent of $u \in S_{0}$ such that $\|\nabla u\|_{2}^{2} \geq \varrho$. So, by (V_{3}), the Hardy inequality, and (2.13) we get there exists $t_{0}>1$ independent of $u \in S_{0}$ such that $I_{0}\left(u\left(\dot{t_{0}}\right)\right) \leq-2$.
Lemma 2.6. Assume that $\left(V_{1}\right)-\left(V_{3}\right)$ and $\left(f_{1}\right)$ hold. Then there exist $\lambda_{1}, M_{0}>0$ independent of $u \in S_{0}$ such that $I_{\lambda}\left(u\left(\dot{t_{0}}\right)\right) \leq-1, \max _{t \in[0,1]}\left\|u\left(\dot{\dot{t_{0}}}\right)\right\| \leq M_{0}$ and $\|u\| \leq M_{0}$ for all $\lambda \in\left[0, \lambda_{1}\right]$ and $u \in S_{0}$.

Proof. If $u \in S_{0}$, then $m_{0}=I_{0}(u)$ and $J_{0}(u)=0$. By the Hardy inequality and Lemma 2.2, we have $m_{0} \geq \frac{1-\theta}{3}\|\nabla u\|_{2}^{2}$. Together with (2.14), $J_{0}(u)=0$, and (f_{1}), we derive that there exists $\sigma_{1}>0$ independent of $u \in S_{0}$ such that $\|u\|_{H^{1}} \leq \sigma_{1}$. We note that

$$
\begin{equation*}
\left\|u\left(\frac{\cdot}{t t_{0}}\right)\right\|^{2}=t t_{0}\|\nabla u\|_{2}^{2}+\left(t t_{0}\right)^{3} \int_{\mathbb{R}^{3}} V\left(t t_{0} x\right)|u|^{2} \mathrm{~d} x . \tag{2.15}
\end{equation*}
$$

Together with $\left(V_{1}\right)$ and $\|u\|_{H^{1}} \leq \sigma_{1}$, we get

$$
\begin{equation*}
\|u\|^{2} \leq\left(1+\max _{\mathbb{R}^{3}} V\right) \sigma_{1}^{2}, \max _{t \in[0,1]}\left\|u\left(\frac{\cdot}{t t_{0}}\right)\right\|^{2} \leq\left(t_{0}+t_{0}^{3} \max _{\mathbb{R}^{3}} V\right) \sigma_{1}^{2} . \tag{2.16}
\end{equation*}
$$

By Lemma 2.1, we have

$$
\begin{align*}
I_{\lambda}\left(u\left(\frac{\cdot}{t t_{0}}\right)\right) & =I_{0}\left(u\left(\frac{\cdot}{t t_{0}}\right)\right)+\frac{\lambda\left(t t_{0}\right)^{5}}{10} \int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x \\
& \leq I_{0}\left(u\left(\frac{\dot{t t_{0}}}{)}\right)\right)+\frac{\lambda\left(t t_{0}\right)^{5}}{10 S^{6}}\|\nabla u\|_{2}^{10} . \tag{2.17}
\end{align*}
$$

By Lemma 2.5 and (2.17), we derive that there exists $\lambda_{1}>0$ independent of $u \in S_{0}$ such that $I_{\lambda}\left(u\left(\dot{\dot{t}_{0}}\right)\right) \leq$ -1 for $\lambda \in\left(0, \lambda_{1}\right)$ and $u \in S_{0}$.

Choose $U_{0} \in S_{0}$. Define

$$
\begin{equation*}
b_{\lambda}:=\inf _{g \in G_{0}} \max _{t \in[0,1]} I_{\lambda}(g(t)), \tag{2.18}
\end{equation*}
$$

where $G_{0}:=\left\{g \in C([0,1], X): g(0)=0, g(1)=U_{0}\left(\dot{t_{0}}\right)\right\}$ and $\lambda \in\left(0, \lambda_{1}\right)$. Define

$$
\begin{equation*}
B_{\lambda}:=\max _{t \in[0,1]} I_{\lambda}\left(U_{0}\left(\frac{\cdot}{t t_{0}}\right)\right) . \tag{2.19}
\end{equation*}
$$

Lemma 2.7. $\lim _{\lambda \rightarrow 0} b_{\lambda}=\lim _{\lambda \rightarrow 0} B_{\lambda}=m_{0}$.
Proof. By (2.17) and Lemmas 2.5-2.6, we get

$$
b_{\lambda} \leq B_{\lambda} \leq m_{0}+\frac{\lambda\left(t t_{0}\right)^{5} M_{0}^{10}}{10 S^{6}}
$$

Then $\lim \sup _{\lambda \rightarrow 0} b_{\lambda} \leq \lim \sup _{\lambda \rightarrow 0} B_{\lambda} \leq m_{0}$. On the other hand, for any $g \in G_{0}$,

$$
\max _{t \in[0,1]} I_{\lambda}(g(t)) \geq \max _{t \in[0,1]} I_{0}(g(t)) \geq b_{0}
$$

where $b_{0}:=\inf _{g \in G_{0}} \max _{t \in[0,1]} I_{0}(g(t))$. Then $b_{\lambda} \geq b_{0}$. By Lemma 2.6, there exists $\mu_{0} \in(0,1)$ such that $I_{0, \mu}(g(1)) \leq-\frac{1}{2}$ for $\mu \in\left(\mu_{0}, 1\right)$. Define

$$
c_{\mu}:=\inf _{g \in G_{0}} \max _{t \in[0,1]} I_{0, \mu}(g(t))
$$

By repeating the proof of Lemma 2.3, we get that c_{μ} is a critical value. Moreover, we can prove that b_{0} is a critical value. Then $b_{0} \geq m_{0}$. So, $\liminf _{\lambda \rightarrow 0} b_{\lambda} \geq m_{0}$.

For $\eta, d>0$, define $I_{\lambda}^{\eta}:=\left\{u \in X: I_{\lambda}(u) \leq \eta\right\}$ and $S_{0}^{d}:=\left\{u \in X: \inf _{v \in S_{0}}\|u-v\| \leq d\right\}$.
Lemma 2.8. Let $\left\{u_{\lambda_{i}}\right\} \subset S_{0}^{d}$ with $\lim _{i \rightarrow \infty} \lambda_{i}=0$ be such that $\lim _{i \rightarrow \infty} I_{\lambda_{i} i}\left(u_{\lambda_{i}}\right) \leq m_{0}$ and $\lim _{i \rightarrow \infty} I_{\lambda_{i}}^{\prime}\left(u_{\lambda_{i}}\right)=0$. Then for $d>0$ small, there exists $u_{0} \in S_{0}$ such that $u_{\lambda_{i}} \rightarrow u_{0}$ in X up to a subsequence.
Proof. By the proof of Lemma 2.5, there exists $\varrho>0$ independent of $u \in S_{0}$ such that $\|u\|^{2} \geq \varrho$ for $u \in S_{0}$. Since $\left\{u_{\lambda_{i}}\right\} \subset S_{0}^{d}$, by choosing $d>0$ small we get $\left\|u_{\lambda_{i}}\right\|^{2} \geq \frac{\varrho}{2}$. By Lemma 2.4, we have that $\left\|u_{\lambda_{i}}\right\|$ is bounded. Then $\lim _{i \rightarrow \infty} I_{0}\left(u_{\lambda_{i}}\right) \leq m_{0}$ and $\lim _{i \rightarrow \infty} I_{0}^{\prime}\left(u_{\lambda_{i}}\right)=0$. By the argument of Lemma 2.4, there exists $u_{0} \in X$ such that $u_{\lambda_{i}} \rightarrow u_{0}$ in X up to a subsequence. So, $\left\|u_{0}\right\|^{2} \geq \frac{\varrho}{2}, I_{0}\left(u_{0}\right) \leq m_{0}$ and $I_{0}^{\prime}\left(u_{0}\right)=0$, which implies that $u_{0} \in S_{0}$.
Lemma 2.9. Let $d>0$. Then there exists $\eta>0$ such that for small $\lambda>0, I_{\lambda}(\gamma(t)) \geq b_{\lambda}-\eta$ implies that $\gamma(t) \in S_{0}^{\frac{d}{2}}$, where $\gamma(0)=0$ and $\gamma(t)=U_{0}\left(\frac{\dot{\bar{t}}}{}\right)$ for $t \in(0,1]$.
Proof. By Lemma 2.5, if $\gamma(t) \notin S_{0}^{\frac{d}{2}}$, then there exists $\delta>0$ such that $\left|t t_{0}-1\right| \geq \delta$. Moreover, there exists $\eta^{\prime}>0$ such that $I_{0}(\gamma(t)) \leq m_{0}-\eta^{\prime}$. By Lemmas 2.1 and 2.6-2.7, there exists $\eta>0$ such that for small $\lambda>0$, it holds that $I_{\lambda}(\gamma(t))<b_{\lambda}-\eta$.
Proof of Theorem 1.1. Recall that if $u \in S_{0}$, then there exists $\varrho>0$ independent of $u \in S_{0}$ such that $\|\nabla u\|_{2}^{2} \geq \varrho$. So, we can choose $d>0$ small such that $\|u\|^{2} \geq \frac{\varrho}{2}$ for any $u \in S_{0}^{d}$. We use the idea in $[6,29]$ to claim that for small $\lambda>0$, there exists $\left\{u_{n}\right\} \subset S_{0}^{d} \cap I_{\lambda}^{B_{\lambda}}$ such that $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. Otherwise, there exists $a(\lambda)>0$ such that $\left\|I_{\lambda}^{\prime}(u)\right\| \geq a(\lambda)$ for $u \in S_{0}^{d} \cap I_{\lambda}^{B_{\lambda}}$. By Lemmas 2.7-2.8, there exists $\rho_{0}>0$ independent of $\lambda>0$ small such that $\left\|I_{\lambda}^{\prime}(u)\right\| \geq \rho_{0}$ for $u \in I_{\lambda}^{B_{\lambda}} \cap\left(S_{0}^{d} \backslash S_{0}^{\frac{d}{2}}\right)$. We note that there exists a pseudo-gradient vector field Q_{λ} on a neighborhood Z_{λ} of $S_{0}^{d} \cap I_{\lambda}^{B_{\lambda}}$ for I_{λ}. Let η_{λ} be a Lipschitz continuous function on X such that $\eta_{\lambda}=1$ on $S_{0}^{d} \cap I_{\lambda}^{B_{\lambda}}, \eta_{\lambda}=0$ on $\mathrm{R}^{3} \backslash Z_{\lambda}$, and $0 \leq \eta_{\lambda} \leq 1$ on R^{3}. Let ξ_{λ} be a Lipschitz continuous function such that $\xi_{\lambda}(t)=1$ for $\left|t-b_{\lambda}\right| \leq \frac{\eta}{2}, \xi_{\lambda}(t)=0$ for $\left|t-b_{\lambda}\right| \geq \eta$, and $0 \leq \xi_{\lambda} \leq 1$ for $t \in \mathrm{R}^{+}$. Consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{d \psi_{\lambda}(u, t)}{d t}=-\eta_{\lambda}\left(\psi_{\lambda}(u, t)\right) \xi_{\lambda}\left(I_{\lambda}\left(\psi_{\lambda}(u, t)\right)\right) Q_{\lambda}\left(\psi_{\lambda}(u, t)\right) \tag{2.20}\\
\psi_{\lambda}(u, 0)=u
\end{array}\right.
$$

Then (2.20) has a unique global solution $\psi_{\lambda}(u, t)$. Recall that $\lim _{\lambda \rightarrow 0} b_{\lambda}=\lim _{\lambda \rightarrow 0} B_{\lambda}=m_{0}$. Also, we have Lemma 2.9. By a standard argument, for any $t \in[0,1]$ there exists $s(t) \geq 0$ such that $\psi_{\lambda}(\gamma(t), s(t))$ is continuous in $t \in[0,1]$ and

$$
\max _{t \in[0,1]} I_{\lambda}\left(\psi_{\lambda}(\gamma(t), s(t))\right) \leq b_{\lambda}-\frac{\eta}{4},
$$

where γ is given in Lemma 2.9. Let $\gamma_{0}()=.\psi_{\lambda}(\gamma(),. s()$.$) . Then \gamma_{0} \in G_{0}$, from which we get

$$
\max _{t \in[0,1]} I_{\lambda}\left(\psi_{\lambda}(\gamma(t), s(t))\right) \geq b_{\lambda},
$$

a contradiction. Since for $\lambda>0$ small there exists $\left\{u_{n}\right\} \subset I_{\lambda}^{B_{\lambda}} \cap S_{0}^{d}$ such that $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, by Lemma 2.4 we get that $\left\|u_{n}\right\|$ is bounded. Assume that $u_{n} \rightharpoonup u_{\lambda}$ weakly in X. By Lemma 2.1, we have $I_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$. Let $u_{n}=v_{n}+w_{n}$, where $v_{n} \in S_{0}$ and $\left\|w_{n}\right\| \leq d$. By Lemma 2.4, there exists $v_{\lambda} \in S_{0}$ such that $v_{n} \rightarrow v_{\lambda}$ in X. Assume that $w_{n} \rightharpoonup w_{\lambda}$ in X. Then $\left\|w_{\lambda}\right\| \leq d$. So, $u_{\lambda} \in S_{0}^{d}$. Moreover, u_{λ} is positive. Together with Lemma 2.8, we get the result.

3. Proof of Theorem 1.2

Define $X_{r}:=\left\{u \in H_{r}^{1}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}} V(x)|u|^{2} \mathrm{~d} x<\infty\right\}$ as the Hilbert space with the norm $\|u\|=$ $\left(\int_{\mathbb{R}^{3}}|\nabla u|^{2}+V(x)|u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$. By $\left(V_{2}^{\prime}\right)$, we derive that for all $u \in X_{r}$,

$$
\begin{align*}
\|u\|_{H^{1}}^{2} \leq & \int_{\Lambda_{2}}\left(|\nabla u|^{2}+u^{2}\right) \mathrm{d} x+\int_{\mathbb{R}^{3} \backslash \Lambda_{2}}\left(|\nabla u|^{2}+\frac{V(x)}{V_{0}} u^{2}\right) \mathrm{d} x \\
\leq & \int_{\Lambda_{2}}|\nabla u|^{2} \mathrm{~d} x+\left(\int_{\Lambda_{2}}|u|^{6} \mathrm{~d} x\right)^{\frac{1}{3}}|\wedge|^{\frac{2}{3}} \\
& +\max \left\{1, \frac{1}{V_{0}}\right\} \int_{\mathbb{R}^{3} \backslash \wedge_{2}}\left(|\nabla u|^{2}+V(x) u^{2}\right) \mathrm{d} x \\
\leq & \max \left\{1+\frac{\left|\Lambda_{2}\right|^{\frac{2}{3}}}{S}, \frac{1}{V_{0}}\right\}\|u\|^{2} . \tag{3.1}
\end{align*}
$$

Then the imbedding $X_{r} \hookrightarrow H_{r}^{1}\left(\mathbb{R}^{3}\right)$ is continuous. Define $g(u)=0$ for $u \leq 0$ and $g(u)=$ $\min \left\{f(u)+\left(u^{+}\right)^{5}, \frac{V_{0} u}{\kappa}\right\}$ for $u>0$, where $\kappa>2$. Let χ be the characteristic function such that $\chi(x)=1$ for $x \in \wedge_{2}$ and $\chi(x)=0$ for $x \in \mathbb{R}^{3} \backslash \wedge_{2}$. Consider the truncated problem of (1.8) as

$$
\begin{equation*}
-\Delta u+V(x) u=h(x, u) \text { in } \mathbb{R}^{3}, \tag{3.2}
\end{equation*}
$$

where $h(x, u)=\chi(x)\left[f(u)+\left(u^{+}\right)^{5}\right]+(1-\chi(x)) g(u)$. The functional associated with (3.2) is

$$
\hat{I}_{0}(u)=\frac{1}{2}\|u\|^{2}-\int_{\mathbb{R}^{3}} H(x, u) \mathrm{d} x, \quad u \in X_{r},
$$

where $H(x, u)=\int_{0}^{u} h(x, s) \mathrm{d} s=\chi(x)\left[F(u)+\frac{1}{6}\left(u^{+}\right)^{6}\right]+(1-\chi(x)) G(u)$ with $G(u)=\int_{0}^{u} g(s) \mathrm{d} s$. In what follows, we look for critical points of \hat{I}_{0}. Define

$$
\begin{equation*}
\hat{c}_{0}:=\inf _{\gamma \in \Gamma_{0}} \max _{t \in[0,1]} \hat{I}_{0}(\gamma(t)), \tag{3.3}
\end{equation*}
$$

where $\Gamma_{0}:=\left\{\gamma \in C\left([0,1], X_{r}\right): \gamma(0)=0, \hat{I}_{0}(\gamma(1))<0\right\}$.
Lemma 3.1. There exists a bounded sequence $\left\{u_{n}\right\} \subset X_{r}$ such that $\hat{I}_{0}\left(u_{n}\right) \rightarrow \hat{c}_{0} \in\left(0, \frac{1}{3} S^{\frac{3}{2}}\right)$ and $\hat{I}_{0}^{\prime}\left(u_{n}\right) \rightarrow 0$.
Proof. By $\left(f_{1}\right)$, for any $\varepsilon>0$ there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\max \{|h(x, u) u|,|H(x, u)|\} \leq \varepsilon|u|^{2}+C_{\varepsilon}|u|^{6}, \quad \forall u \in \mathbb{R} . \tag{3.4}
\end{equation*}
$$

Then there exist $\rho, \varrho>0$ such that $\hat{I}_{0}(u) \geq \varrho$ for $\|u\|=\rho$, in view of the definition of S. Also, $\hat{I}_{0}(0)=0$ and $\lim _{t \rightarrow+\infty} \hat{I}_{0}(t \varphi)=-\infty$ for any $\varphi \in C_{0}^{\infty}\left(\wedge_{2}\right) \backslash\{0\}$. By the mountain pass theorem in [1], there exists a sequence $\left\{u_{n}\right\} \subset X_{r}$ such that $\hat{I}_{0}\left(u_{n}\right) \rightarrow \hat{c}_{0} \geq \varrho$ and $\hat{I}_{0}^{\prime}\left(u_{n}\right) \rightarrow 0$. By $\left(f_{3}^{\prime}\right)$, we get $\frac{1}{\theta} f(u) u-F(u) \geq 0$ for all $u \in \mathbb{R}$. Then

$$
\hat{c}_{0}+o_{n}(1)+o_{n}(1)\left\|u_{n}\right\|=\hat{I}_{0}\left(u_{n}\right)-\frac{1}{\theta}\left(\hat{I}_{0}^{\prime}\left(u_{n}\right), u_{n}\right)
$$

$$
\begin{align*}
& \geq\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|u_{n}\right\|^{2}+\int_{\mathbb{R}^{3} \backslash \wedge_{2}}\left[\frac{1}{\theta} g\left(u_{n}\right) u_{n}-G\left(u_{n}\right)\right] \mathrm{d} x \\
& \geq\left(\frac{1}{2}-\frac{1}{\theta}\right)\left(1-\frac{1}{\kappa}\right)\left\|u_{n}\right\|^{2} . \tag{3.5}
\end{align*}
$$

So, $\left\|u_{n}\right\|$ is bounded. By [24], the function $U(x):=\frac{3^{\frac{1}{4}}}{\left(1+|x|^{2}\right)^{\frac{1}{2}}}$ is a minimizer for S. Define $U_{\varepsilon}(x):=$ $\varepsilon^{-\frac{1}{2}} U\left(\frac{x}{\varepsilon}\right)$. Let $x_{0} \in \wedge_{1}$. Choose $r>0$ such that $B_{2 r}\left(x_{0}\right) \subset \wedge_{1}$. Define $u_{\varepsilon}(x):=\psi(x) U_{\varepsilon}(x)$, where $\psi \in C_{0}^{\infty}\left(B_{2 r}\left(x_{0}\right)\right)$ such that $\psi(x)=1$ for $x \in B_{r}\left(x_{0}\right), \psi(x)=0$ for $x \in \mathbb{R}^{3} \backslash B_{2 r}\left(x_{0}\right), 0 \leq \psi(x) \leq 1$, and $|\nabla \psi(x)| \leq C$. By the definition of \hat{c}_{0}, we get $\hat{c}_{0} \leq \sup _{t \geq 0} \hat{I}_{0}\left(t u_{\varepsilon}\right)$. Moreover, by Lemma 2.1 in [28], we get $\hat{c}_{0}<\frac{1}{3} S^{\frac{3}{2}}$.
Lemma 3.2. \hat{I}_{0} admits a positive critical point u_{0} with $\hat{I}_{0}\left(u_{0}\right)=\hat{c}_{0}$.
Proof. By Lemma 3.1, there exists a bounded sequence $\left\{u_{n}\right\} \subset X_{r}$ such that $\hat{I}_{0}\left(u_{n}\right) \rightarrow \hat{c}_{0} \in\left(0, \frac{1}{3} S^{\frac{3}{2}}\right)$ and $\hat{I}_{0}^{\prime}\left(u_{n}\right) \rightarrow 0$. Assume that $u_{n} \rightharpoonup u_{0}$ weakly in X_{r}. Then $\hat{I}_{0}^{\prime}\left(u_{0}\right)=0$. For $R>R_{2}$, define $\psi_{R} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ such that $\psi_{R}(x)=0$ for $|x| \leq R, \psi_{R}(x)=1$ for $|x| \geq 2 R$, and $0 \leq \psi_{R} \leq 1$ and $\left|\nabla \psi_{R}\right| \leq \frac{C}{R}$. By $\left(\hat{I}_{0}^{\prime}\left(u_{n}\right), \psi_{R} u_{n}\right)=o_{n}(1)$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}}\left(\left|\nabla u_{n}\right|^{2} \psi_{R}+V(x) u_{n}^{2} \psi_{R}\right) \mathrm{d} x+o_{n}(1) \\
& \leq \int_{\mathbb{R}^{3}} g\left(u_{n}\right) u_{n} \psi_{R} \mathrm{~d} x+\int_{\mathbb{R}^{3}}\left|\nabla u_{n}\left\|\nabla \psi_{R}\right\| u_{n}\right| \mathrm{d} x \leq \frac{1}{2} \int_{\mathbb{R}^{3}} V(x) u_{n}^{2} \psi_{R} \mathrm{~d} x+\frac{C}{R} .
\end{aligned}
$$

Then, for any $\delta>0$, there exists $R_{\delta}>0$ such that for $R>R_{\delta}$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{|x| \geq 2 R}\left(\left|\nabla u_{n}\right|^{2}+V(x) u_{n}^{2}\right) \mathrm{d} x \leq \delta \tag{3.6}
\end{equation*}
$$

Since $h(x, u) u \leq \frac{V_{0}}{\kappa} u^{2}$ for $x \in \mathbb{R}^{3} \backslash \wedge_{2}$, by the Lebesgue dominated convergence theorem

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{B_{2 R} \backslash \Lambda_{2}} h\left(x, u_{n}\right) u_{n} \mathrm{~d} x=\int_{B_{2 R} \backslash \Lambda_{2}} h\left(x, u_{0}\right) u_{0} \mathrm{~d} x . \tag{3.7}
\end{equation*}
$$

By the argument of Lemma 2.1 in [26], we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Lambda_{2}} h\left(x, u_{n}\right) u_{n} \mathrm{~d} x=\int_{\Lambda_{2}} h\left(x, u_{0}\right) u_{0} \mathrm{~d} x . \tag{3.8}
\end{equation*}
$$

Combining (3.6)-(3.8), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{3}} h\left(x, u_{n}\right) u_{n} \mathrm{~d} x=\int_{\mathbb{R}^{3}} h\left(x, u_{0}\right) u_{0} \mathrm{~d} x . \tag{3.9}
\end{equation*}
$$

Let $v_{n}=u_{n}-u_{0}$. Then

$$
o_{n}(1)=\left(\hat{I}_{0}^{\prime}\left(u_{n}\right), u_{n}\right)-\left(\hat{I}_{0}^{\prime}\left(u_{0}\right), u_{0}\right)=\left\|v_{n}\right\|^{2}+o_{n}(1),
$$

from which we derive that $u_{n} \rightarrow u_{0}$ in $X_{r}, \hat{I}_{0}\left(u_{0}\right)=\hat{c}_{0}$ and $\hat{I}_{0}^{\prime}\left(u_{0}\right)=0$. By $\left(\hat{I}_{0}^{\prime}\left(u_{0}\right), u_{0}^{-}\right)=0$, we get $u_{0} \geq 0$. The maximum principle implies that u_{0} is positive.

Let $\hat{m}_{0}:=\inf \left\{\hat{I}_{0}(u): u \in X_{r}, \hat{I}_{0}^{\prime}(u)=0\right\}$.
Lemma 3.3. $\hat{m}_{0} \in\left(0, \frac{1}{3} S^{\frac{3}{2}}\right)$ is attained.
Proof. By Lemmas 3.1-3.2, we get $\hat{m}_{0} \leq \hat{I}_{0}\left(u_{0}\right)=\hat{c}_{0}<\frac{1}{3} S^{\frac{3}{2}}$. By the definition of \hat{m}_{0}, there exists $\left\{u_{n}\right\} \subset X_{r}$ such that $\hat{I}_{0}\left(u_{n}\right) \rightarrow \hat{m}_{0}$ and $\hat{I}_{0}^{\prime}\left(u_{n}\right)=0$. By $\left(\hat{I}_{0}^{\prime}\left(u_{n}\right), u_{n}\right)=0$, (3.4), and the definition of S, there exists $C_{1}>0$ such that $\left\|u_{n}\right\|^{2} \geq C_{1} S^{\frac{3}{2}}$. Similar to (3.5), we get $\hat{m}_{0}>0$. Also, there exists $C_{2}>0$ such that $\left\|u_{n}\right\|^{2} \leq C_{2} S^{\frac{3}{2}}$. Assume that $u_{n} \rightharpoonup u_{0}$ weakly in X_{r}. Then $\hat{I}_{0}^{\prime}\left(u_{0}\right)=0$. Similar to the argument of Lemma 3.2, we get $u_{n} \rightarrow u_{0}$ in X_{r}. So $\hat{m}_{0}=\hat{I}_{0}\left(u_{0}\right)$ and $\hat{I}_{0}^{\prime}\left(u_{0}\right)=0$, that is, \hat{m}_{0} is attained.

Define by \hat{S}_{0} the set of ground states of (3.2). By Lemma 3.3, we get $\hat{S}_{0} \neq \emptyset$.
Lemma 3.4. \hat{S}_{0} is compact and there exist $C_{1}, C_{2}>0$ such that $C_{1} S^{\frac{3}{2}} \leq\|u\|^{2} \leq C_{2} S^{\frac{3}{2}}$ for all $u \in \hat{S}_{0}$. Proof. Similar to the argument of Lemma 3.3, we get $C_{1} S^{\frac{3}{2}} \leq\|u\|^{2} \leq C_{2} S^{\frac{3}{2}}$ for all $u \in \hat{S}_{0}$. For any $\left\{u_{n}\right\} \subset \hat{S}_{0}$, since $\left\|u_{n}\right\|^{2} \leq C_{2} S^{\frac{3}{2}}$, we assume that $u_{n} \rightharpoonup u$ weakly in X_{r}. By Lemma 3.3, we get $\hat{I}_{0}\left(u_{n}\right)=\hat{m}_{0} \in\left(0, \frac{1}{3} S^{\frac{3}{2}}\right)$. Similar to the argument of Lemma 3.2, we obtain that $u_{n} \rightarrow u$ in X_{r}. So, \hat{S}_{0} is compact.
Lemma 3.5. ([23]) There exists a constant $C_{0}>0$ such that for all $u \in H_{r}^{1}\left(\mathrm{R}^{3}\right)$, there holds $|u(x)| \leq$ $\frac{C_{0}}{\left.|x|\right|^{\frac{1}{2}}}\|u\|_{H^{1}}$ for any $x \neq 0$.

By $\left(f_{1}\right)$, there exists $C^{\prime}>0$ such that

$$
\begin{equation*}
\left|f(u)+\left(u^{+}\right)^{5}\right| \leq \frac{V_{0}}{2 \kappa}|u|+C^{\prime}|u|^{5}, \quad \forall u \in \mathrm{R} . \tag{3.10}
\end{equation*}
$$

Choose $R^{\prime}>0$ such that for $R_{1}>R^{\prime}$,

$$
\begin{equation*}
\frac{2 C_{2} C_{0}^{2} S^{\frac{3}{2}}}{R_{1}} \max \left\{1+\frac{\left|\wedge_{2}\right|^{\frac{2}{3}}}{S}, \frac{1}{V_{0}}\right\} \leq \sqrt{\frac{V_{0}}{2 \kappa C^{\prime}}} \tag{3.11}
\end{equation*}
$$

Lemma 3.6. If $u \in \hat{S}_{0}$, then $\hat{m}_{0}=\hat{I}_{0}(u)>\hat{I}_{0}(t u)$ for all $t \neq 1$. Also, there exists $t_{0}>1$ independent of $u \in \hat{S}_{0}$ such that $\hat{I}_{0}\left(t_{0} u\right) \leq-2$.
Proof. We claim that

$$
\begin{equation*}
\left|\operatorname{supp} u \cap\left\{x \in \mathrm{R}^{3}: \chi(x)>0\right\}\right|>0, \quad \forall u \in \hat{S}_{0} . \tag{3.12}
\end{equation*}
$$

Otherwise, there exists $u \in \hat{S}_{0}$ such that $\left|\operatorname{supp} u \cap\left\{x \in \mathrm{R}^{3}: \chi(x)>0\right\}\right|=0$. By $\left(\hat{I}_{0}^{\prime}(u), u\right)=0$,

$$
\|u\|^{2}=\int_{\left\{x \in \mathrm{R}^{3}: \chi(x)=0\right\}} g(u) u \mathrm{~d} x \leq \frac{V_{0}}{\kappa} \int_{\left\{x \in \mathrm{R}^{3}: \chi(x)=0\right\}} u^{2} \mathrm{~d} x \leq \frac{1}{2} \int_{\mathrm{R}^{3}} V(x) u^{2} \mathrm{~d} x,
$$

a contradiction. Let $l(t)=\hat{I}_{0}(t u)$, where $t \geq 0$ and $u \in \hat{S}_{0}$. Then $l^{\prime}(t)=t y(t)$, where

$$
y(t)=\|u\|^{2}-\int_{\mathrm{R}^{3}} \frac{(1-\chi(x)) g(t u) u}{t} \mathrm{~d} x-\int_{\mathrm{R}^{3}} \chi(x)\left(\frac{f(t u) u}{t}+t^{4}|u|^{6}\right) \mathrm{d} x .
$$

Since $l^{\prime}(1)=0$, we have $y(1)=0$. By $\left(f_{3}^{\prime}\right)$, we get that $y(t)$ is strictly decreasing on $t>0$. Then $l^{\prime}(t)>0$ for $t \in(0,1)$ and $l^{\prime}(t)<0$ for $t>1$, from which we get $\hat{I}_{0}(u)>\hat{I}_{0}(t u)$ for all $t \neq 1$. By $\left(\hat{I}_{0}^{\prime}(u), u\right)=0$, (3.4), and the definition of S, there exists $\delta_{0}>0$ independent of $u \in \hat{S}_{0}$ such that $\int_{\mathbb{R}^{3}} \chi(x)|u|^{6} \mathrm{~d} x \geq \delta_{0}$. Together with Lemma 3.4, we derive that there exists $t_{0}>1$ independent of $u \in \hat{S}_{0}$ such that $\hat{I}_{0}\left(t_{0} u\right) \leq-2$.

We consider the following truncated problem of (1.7):

$$
\left\{\begin{array}{l}
-\Delta u+V(x) u+\lambda \phi|u|^{3} u=h(x, u), \text { in } \mathbb{R}^{3}, \tag{3.13}\\
-\Delta \phi=|u|^{5}, \text { in } \mathbb{R}^{3} .
\end{array}\right.
$$

The functional associated with (3.13) is as follows:

$$
\hat{I}_{\lambda}(u)=\frac{1}{2}\|u\|^{2}+\frac{\lambda}{10} \int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x-\int_{\mathbb{R}^{3}} H(x, u) \mathrm{d} x, u \in X_{r} .
$$

Lemma 3.7. There exists $\lambda_{1}^{\prime}>0$ independent of $u \in \hat{S}_{0}$ such that $\hat{I}_{\lambda}\left(t_{0} u\right) \leq-1$ for $\lambda \in\left(0, \lambda_{1}^{\prime}\right)$. Proof. By Lemma 2.1, we have

$$
\begin{equation*}
\hat{I}_{\lambda}\left(t_{0} u\right)=\hat{I}_{0}\left(t_{0} u\right)+\frac{\lambda t_{0}^{10}}{10} \int_{\mathbb{R}^{3}} \phi_{u}|u|^{5} \mathrm{~d} x \leq \hat{I}_{0}\left(t_{0} u\right)+\frac{\lambda t_{0}^{10}}{10 S^{6}}\|\nabla u\|_{2}^{10} \tag{3.14}
\end{equation*}
$$

By Lemma 3.4, Lemma 3.6, and (3.14), we derive that there exists $\lambda_{1}^{\prime}>0$ independent of $u \in \hat{S}_{0}$ such that $\hat{I}_{\lambda}\left(t_{0} u\right) \leq-1$.

Choose $V_{0} \in \hat{S}_{0}$. Define

$$
\begin{equation*}
d_{\lambda}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \hat{I}_{\lambda}(\gamma(t)), \tag{3.15}
\end{equation*}
$$

where $\Gamma:=\left\{\gamma \in C\left([0,1], X_{r}\right): \gamma(0)=0, \gamma(1)=t_{0} V_{0}\right\}$ and $\lambda \in\left(0, \lambda_{1}^{\prime}\right)$. Define

$$
\begin{equation*}
D_{\lambda}:=\max _{t \in[0,1]} \hat{I}_{\lambda}\left(t t_{0} V_{0}\right) . \tag{3.16}
\end{equation*}
$$

Lemma 3.8. $\lim _{\lambda \rightarrow 0} d_{\lambda}=\lim _{\lambda \rightarrow 0} D_{\lambda}=\hat{m}_{0}$.
Proof. By (3.14), Lemma 3.4, and 3.6, we get

$$
d_{\lambda} \leq D_{\lambda} \leq \hat{m}_{0}+\frac{\lambda t_{0}^{10}}{10 S^{6}}\left(C_{2} S^{\frac{3}{2}}\right)^{5}
$$

Then limsup $\operatorname{sum}_{\lambda \rightarrow 0} d_{\lambda} \leq \lim \sup _{\lambda \rightarrow 0} D_{\lambda} \leq \hat{m}_{0}$. By Lemma 3.6, for any $\gamma \in \Gamma$,

$$
\max _{t \in[0,1]} \hat{I}_{\lambda}(\gamma(t)) \geq \max _{t \in[0,1]} \hat{I}_{0}(\gamma(t)) \geq \hat{c}_{0}
$$

from which we get $d_{\lambda} \geq \hat{c}_{0}$. By Lemma 3.2, we have $\hat{c}_{0} \geq \hat{m}_{0}$, which implies that $\liminf _{\lambda \rightarrow 0} d_{\lambda} \geq$ \hat{m}_{0}.

For $\eta, d>0$, define $\hat{I}_{\lambda}^{\eta}:=\left\{u \in X_{r}: \hat{I}_{\lambda}(u) \leq \eta\right\}$ and $\hat{S}_{0}^{d}:=\left\{u \in X_{r}: \inf _{v \in S_{0}}\|u-v\| \leq d\right\}$. By Lemma 3.4, we can choose $d>0$ small such that $\frac{C_{1}}{2} S^{\frac{3}{2}} \leq\|u\|^{2} \leq 2 C_{2} S^{\frac{3}{2}}$ for all $u \in \hat{S}_{0}^{d}$.
Lemma 3.9. Let $\left\{u_{\lambda_{i}}\right\} \subset \hat{S}_{0}^{d}$ with $\lim _{i \rightarrow \infty} \lambda_{i}=0$ be such that $\lim _{i \rightarrow \infty} \hat{I}_{\lambda_{i}}\left(u_{\lambda_{i}}\right) \leq \hat{m}_{0}$ and $\lim _{i \rightarrow \infty} \hat{I}_{\lambda_{i}}^{\prime}\left(u_{\lambda_{i}}\right)=0$. Then, for $d>0$ small, there exists $u_{0} \in \hat{S}_{0}$ such that $u_{\lambda_{i}} \rightarrow u_{0}$ in X_{r} up to a subsequence.
Proof. Since $\left\{u_{\lambda_{i}}\right\} \subset \hat{S}_{0}^{d}$, we have $\frac{C_{1}}{2} S^{\frac{3}{2}} \leq\left\|u_{\lambda_{i}}\right\|^{2} \leq 2 C_{2} S^{\frac{3}{2}}$. Moreover, $\lim _{i \rightarrow \infty} \hat{I}_{0}\left(u_{\lambda_{i}}\right) \leq \hat{m}_{0}$ and $\lim _{i \rightarrow \infty} \hat{I}_{0}^{\prime}\left(u_{\lambda_{i}}\right)=0$. Similar to the argument of Lemma 3.2, we derive that there exists $u_{0} \in X_{r}$ such that $u_{\lambda_{i}} \rightarrow u_{0}$ in X_{r}. So, $\left\|u_{0}\right\|^{2} \geq \frac{c_{1}}{2} S^{\frac{3}{2}}, \hat{I}_{0}\left(u_{0}\right) \leq \hat{m}_{0}$, and $\hat{I}_{0}^{\prime}\left(u_{0}\right)=0$, from which we get $u_{0} \in \hat{S}_{0}$.

Lemma 3.10. Let $d>0$. Then there exists $\eta>0$ such that for small $\lambda>0, \hat{I}_{\lambda}(\gamma(t)) \geq d_{\lambda}-\eta$ implies that $\gamma(t) \in \hat{S}_{0}^{\frac{d}{2}}$, where $\gamma(t)=t t_{0} V_{0}$ for $t \in[0,1]$.
Proof. By Lemma 3.6, if $\gamma(t) \notin \hat{S}_{0}^{\frac{d}{2}}$, then there exists $\delta>0$ such that $\left|t t_{0}-1\right| \geq \delta$. Moreover, there exists $\eta^{\prime}>0$ such that $\hat{I}_{0}(\gamma(t)) \leq m_{0}-\eta^{\prime}$. By Lemma 2.1, Lemma 3.4, and Lemma 3.8, there exists $\eta>0$ such that for small $\lambda>0$, it holds that $\hat{I}_{\lambda}(\gamma(t))<d_{\lambda}-\eta$.
Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, we can use Lemmas 3.8-3.10 to derive that, for small $\lambda>0$, there exists $\left\{u_{n}\right\} \subset \hat{S}_{0}^{d} \cap \hat{I}_{\lambda}^{D_{\lambda}}$ such that $\hat{I}_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. Then $\frac{C_{1}}{2} S^{\frac{3}{2}} \leq\left\|u_{n}\right\|^{2} \leq 2 C_{2} S^{\frac{3}{2}}$. Assume that $u_{n} \rightharpoonup u_{\lambda}$ weakly in X_{r}. Then $\hat{I}_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$. Let $u_{n}=v_{n}+w_{n}$, where $v_{n} \in \hat{S}_{0}$ and $\left\|w_{n}\right\| \leq d$. By Lemma 3.4, there exists $v_{\lambda} \in \hat{S}_{0}$ such that $v_{n} \rightarrow v_{\lambda}$ in X_{r}. Assume that $w_{n} \rightharpoonup w_{\lambda}$ in X_{r}. Then $\left\|w_{\lambda}\right\| \leq d$. So, $u_{\lambda} \in \hat{S}_{0}^{d}$. Moreover, $\frac{C_{1}}{2} S^{\frac{3}{2}} \leq\left\|u_{\lambda}\right\|^{2} \leq 2 C_{2} S^{\frac{3}{2}}$. Together with (3.1) and Lemma 3.5, we have

$$
\begin{equation*}
\left|u_{\lambda}(x)\right|^{2} \leq 2 C_{2} C_{0}^{2} S^{\frac{3}{2}} \max \left\{1+\frac{\left|\wedge_{2}\right|^{\frac{2}{3}}}{S}, \frac{1}{V_{0}}\right\} \frac{1}{|x|}, \quad \forall x \neq 0 \tag{3.17}
\end{equation*}
$$

By (3.11), we get $\max _{x \in \overline{\Lambda_{2}}} u_{\lambda}(x) \leq \sqrt[4]{\frac{V_{0}}{2 \kappa C^{\prime}}}$. Let $\varphi=\left(u_{\lambda}-\sigma\right)^{+}$, where $\sigma=\sqrt[4]{\frac{V_{0}}{2 \kappa C^{\prime}}}$. By $\left(\hat{I}_{\lambda}^{\prime}\left(u_{\lambda}\right), \varphi\right)=0$,

$$
\begin{align*}
& \int_{\left(\mathrm{R}^{3} \backslash \Lambda_{2}\right) \cap\left\{x \in \mathrm{R}^{3}: u_{\lambda}(x)>\sigma\right\}}\left|\nabla u_{\lambda}\right|^{2} \mathrm{~d} x+\int_{\mathrm{R}^{3} \backslash \Lambda_{2}} V(x) u_{\lambda}\left(u_{\lambda}-\sigma\right)^{+} \mathrm{d} x \\
& \leq \int_{\mathrm{R}^{3} \backslash \wedge_{2}} g\left(u_{\lambda}\right)\left(u_{\lambda}-\sigma\right)^{+} \mathrm{d} x \leq \frac{1}{2} \int_{\mathrm{R}^{3} \backslash \Lambda_{2}} V(x) u_{\lambda}\left(u_{\lambda}-\sigma\right)^{+} \mathrm{d} x . \tag{3.18}
\end{align*}
$$

Since $V(x) \geq V_{0}$ for $x \in \mathrm{R}^{3} \backslash \wedge_{2}$, by (3.18), we get $u_{\lambda}(x) \leq \sigma$ for $x \in \mathrm{R}^{3} \backslash \wedge_{2}$. Then $h\left(x, u_{\lambda}\right)=f\left(u_{\lambda}\right)+u_{\lambda}^{5}$, from which we get $I_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$. Together with Lemma 3.9, we get the result.

4. Conclusions

In this paper, we study the existence and asymptotic behavior of positive solutions of a nonautonomous Schrodinger-Poisson equation with critical growth. First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. To the best of our knowledge, existing results on Schrodinger-Poisson equations are about radial solutions. However, the problem is quite different when we consider the problem in a non-radial setting. Second, we consider the case that the zero set of the potential is contained in a spherical shell. To the best of our knowledge, there are no results on this question. By developing some techniques in variational methods, we solve the problem successfully.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This project is supported by Natural Science Foundation of Shandong Province(ZR2023MA037) and NSFC(No. 12101192). The authors would like to thank the editors and referees for their useful suggestions and comments.

Conflict of interest

All authors declare no conflict of interest in this paper.

References

1. A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
2. A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. http://doi.org/10.1016/j.jmaa.2008.03.057
3. V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Method Nonl. An., 11 (1998), 283-293. http://doi.org/10.12775/TMNA.1998.019
4. H. Berestycki, T. Gallouët, O. Kavian, Equations de champs scalaires euclidiens non linéaire dans le plan, C. R. Acad. Sci. Paris Ser. I Math., 297 (1983), 307-310.
5. H. Berestycki, P.-L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. https://doi.org/10.1007/BF00250555
6. J. Byeon, L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Rational Mech. Anal., 185 (2007), 185-200. http://doi.org/10.1007/s00205-006-0019-3
7. G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Communications in Applied Analysis, 7 (2003), 417-423.
8. T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations, P. Roy. Soc. Edinb. A, 134 (2004), 893-906. http://doi.org/10.1017/S030821050000353X
9. T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. http://doi.org/10.1515/ans-2004-0305
10. P. d'Avenia, Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192. http://doi.org/10.1515/ans-20020205
11. M. del Pino, P. Felmer, Local mountain pass for semilinear elliptic problems in unbounded domains, Calc. Var., 4 (1996), 121-137. http://doi.org/10.1007/BF01189950
12. X. Feng, Ground state solution for a class of Schrödinger-Poisson-type systems with partial potential, Z. Angew. Math. Phys., 71 (2020), 37. http://doi.org/10.1007/s00033-020-1254-4
13. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^{N}, P. Roy. Soc. Edinb. A, 129 (1999), 787-809. http://doi.org/10.1017/S0308210500013147
14. L. Jeanjean, S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equ., 11 (2006), 813-840. http://doi.org/10.57262/ade/1355867677
15. H. Liu, Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent, Nonlinear Anal. Real, 32 (2016), 198-212. http://doi.org/10.1016/j.nonrwa.2016.04.007
16. F. Y. Li, Y. H. Li, J. P. Shi, Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent, Commun. Contemp. Math., 16 (2014), 1450036. http://doi.org/10.1142/S0219199714500369
17. F. Y. Li, Y. H. Li, J. P. Shi, Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term, Calc. Var., 56 (2017), 134. http://doi.org/10.1007/s00526-017-1229-2
18. A. Paredes, D. N. Olivieri, H. Michinel, From optics to dark matter: A review on nonlinear Schrödinger-Poisson systems, Physica D, 403 (2020), 132301. http://doi.org/10.1016/j.physd.2019.132301
19. A. Pomponio, A. Azzollini, P. d'Avenia, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791. http://doi.org/10.1016/j.anihpc.2009.11.012
20. S. Pekar, Untersuchungen über Die Elektronentheorie Der Kristalle, Berlin: Akademie Verlag, 1954. http://doi.org/10.1515/9783112649305
21. P. Pucci, J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.
22. D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. http://doi.org/10.1016/j.jfa.2006.04.005
23. W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162. https://doi.org/10.1007/BF01626517
24. M. Willem, Minimax theorems, Boston: Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1
25. J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391-6401. http://doi.org/10.1016/j.na.2012.07.008
26. J. Zhang, Z. Lou, Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth, J. Math. Phys., 62 (2021), 011506. http://doi.org/10.1063/5.0028510
27. J. Zhang, W. Zou, The critical case for a Berestycki-Lions theorem, Sci. China Math., 57 (2014), 541-554. http://doi.org/10.1007/s11425-013-4687-9
28. J. J. Zhang, W. Zou, A Berestycki-Lions theorem revisited, Commmun. Contemp. Math., 14 (2012), 1250033. http://doi.org/10.1142/S0219199712500332
29. J. J. Zhang, J. M. do Ó, M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028. http://doi.org/10.1142/S0219199716500280
30. L. Zhao, F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 70 (2009), 2150-2164. http://doi.org/10.1016/j.na.2008.02.116
31. Q. F. Zhang, K. Chen, S. Q. Liu, J. M. Fan, Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system, AIMS Mathematics, 6 (2021), 7833-7844. http://doi.org/10.3934/math. 2021455
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
