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Abstract: In this paper, we improved recent results on the existence of solutions for nonlinear
fractional boundary value problems containing the Atangana-Baleanu fractional derivative of order
¢ € (1,2). We also derived the exact relations between these fractional boundary value problems and
the corresponding fractional integral equations in infinite dimensional Banach spaces. We showed that
the continuity assumption on the nonlinear term of these equations is insufficient, give the derived
expression for the solution, and present two results about the existence and uniqueness of the solution.
We examined the case of impulsive impact and provide some sufficiency conditions for the existence
and uniqueness of the solution in these cases. We also demonstrated the existence and uniqueness of
anti-periodic solution for the studied problems and considered the problem when the right-hand side
was a multivalued function. Examples were given to illustrate the obtained results.

Keywords: AB fractional derivative; fractional differential inclusions; instantaneous impulses;
solutions and anti-periodic solutions
Mathematics Subject Classification: 26A33, 34A08

1. Introduction

It has been recognized that the dynamics of complex real-world problems are better described
using fractional calculus. Fractional calculus has many applications in engineering [1-7], in
environmental, and biological studies [8—12]. As an extension to Newtonian derivatives, researchers
have proposed different concepts of fractional derivatives and integrals, each of which generalizes the
concept of differentiation and integration of integer order. The best known fractional operators are
those of Riemann-Liouville and Caputo. These operators use a singular kernel. The problems arising
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from the presence of singular kernel were overcome by introducing fractional operators with non
singular kernels. Caputo et al. [13] proposed a definition based on the exponential function. Atangana
and Baleanu [14] generalized the Caputo fractional operators using kernels based on the
Mittag-Lefller function.

Although Atangana and Baleanu’s derivative is not the left inverse of the corresponding Atangana
and Baleanu’s integral ( Lemma 2.1 and Remark 2.1 below), there are many applications of Atangana
and Baleanu’s fractional derivative to differential equations [15-19]. Many researchers obtained
results regarding the existence of solutions for fractional differential equations and inclusions
involving Atangana and Baleanu derivative in finite dimensional spaces [20-24]. Recently, Al
Nuwairan et al. [25] investigated the existence of solutions for non-local impulsive differential
equations and inclusions with Atangana and Baleanu derivative of order { € (0,1) in infinite
dimensional spaces.

Impulsive differential equations and impulsive differential inclusions have been an object of
interest with wide applications to physics, biology, engineering, medicine, industry, and technology.
The impulsive differential equations provide appropriate models for processes that change their state
rapidly and cannot be modeled using the ordinary differential equations. An example of such a
process is the motion of an elastic ball bouncing vertically on a surface. The moments of the impulses
are the times when the ball touches the surface and rapidly changes its velocity. For some applications
of impulsive differential equations, we see [26,27]. Xu et al. [28] studied the exponential stability of
stochastic nonlinear delay systems subject to multiple periodic impulses. For further results on the
existence of solutions or mild solutions for impulsive differential equations and inclusions, we refer
to [29-33].

Kaslik et al. [34] showed that unlike the integer order derivative, the fractional-order derivative
of a periodic function cannot be a function with the same period. This implies the non-existence of
periodic solutions for a wide class of fractional-order differential systems on bounded intervals. Thus,
much attention has been devoted to the study of anti-periodic solutions or S -asymptotically w-periodic
solution. Fractional differential equations with anti-periodic conditions have been applied to the study
of blood flow, chemical engineering, underground water flow, and population dynamics. The anti-
periodic solutions to various fractional differential equations and inclusions are investigated by several
authors [35—40] and papers cited therein. Very recently, Abdeljawad et al. [41] proposed a higher-order
extension of Atangana—Baleanu fractional operators. For more recent results on fractional differential
equations, we refer the reader to [42—44].

Notation 1.1. Throughout this paper, we use the following notation:

e Forb > 0,let J = [0,b] Cc R. Let m be a natural number, 0 < k <m,N, = {k,k+1,...,m},0 =
Lo <t} <<y <13+ <y = bbe apartition of J, Jy = [0,¢], and J; = (i, tes1], kK € Ny

E is a reflexive real Banach space, 79, z; are elements of E.

AC(J, E) 1s the Banach space of absolutely continuous functions from J to E.
H'((a,b), E) is the Sobolev space {z € L*((a,b),E) : 7 € L*((a, b), E)}.

PC(J, E) is the Banach space defined as
PC(J,E)={z:J > E,ze H(J,,E): z(¢) and z(¢;) exist with z() = z(¢;)}, Yk € Ny}
The norm on PC(J, E) is given by ||z|lpce) = suplllz@)l| : ¢ € J}.
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e PCH'(J,E) = {z € PC(J,E) : 2y, € H'((tt 1), E), Yk € Ny},
e PCHX(J,E) = {z € PC(J, E) : 7}, € H'(tis i), E), ¥k € N1 ).
The spaces PCH'(J, E) and PCH?(J, E) are Banach spaces endowed with the norms

llzll pcrr ey = maxillzy w6 : kK € Ny}, t=1,2.

Recently, it was shown in [20,21,23] that the following fractional differential equation:

{ ABCDg’LZ(L) =w(), L € J, (1.1)

2(0) = z0.2(b) = 2
is equivalent to the fractional integral equation:

- 2 b
z2(t) = zZo+ “a 5 ) - b;\EI(f —g)l) w(s)ds

ug - e f
—bM(g“— D) f b—-1s5)Y"ws)ds + ——— M({ D w(s)ds

f (t — ) w(s)ds, (1.2)

M(é“— 1)F(§)

where £ € (1,2) and ABCDgJ is the Atangana-Baleanu fractional derivative in the Caputo sense of order
¢ with lower limit at O, w : J — R is continuous function satisfying w(0) = 0 and z,, z; are fixed points.
We claim that the assumption of continuity of w is not enough as it does not assure that the function z
in Eq (1.2) satisfies z7 € H'((0, b)). Thus, it does not guarantee that z has Atangana-Baleanu fractional
derivative of order ¢. Without differentiability, z would not be a solution for Eq (1.1).

In this paper, we provide

(1) A more precise result regarding the relation between the fractional differential equation (1.1) and
the fractional integral equation (1.2) in a real Banach space E (Lemma 3.1).

(2) Two results (Theorems 3.1 and 3.2) concerning the existence and uniqueness of solutions for the
following boundary value problem containing Atangana-Baleanu fractional derivative

{ ABCDE 20) = W), L 1< L <2, (13)

2(0) = z0,2(b) = z1,
where f(0,z(0)) =0

(3) A formula (given in Lemma 4.1) for the relation between the boundary value problem

ABCDg’Lz(L) =w(), t € J,
z(a) = 20,7'(a) = zy

and the integral equation

4

72ty = zo+(@—a

_ N2
ey el ACRURTE
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2-¢ S
TME-D Jy MO M({—l)l"({)f(a S wls)ds
2= [ S

M- W(S)d”M@ 1>r<§>f(‘ s, Led

(4) A formula for the solutions to the following impulsive boundary value problem involving
Atangana-Baleanu fractional derivative of order ¢ € (1,2):

ABCDg’Lu(L) = f(,,z(),c € J —{t1,t0, ..., t),
2(0) = 2, Z(0) = zy,

) = 2(;) + I(z(y)), i € Ny,

2) = 2) + Lz(Y)), i € Ny,

(1.4)

where £(0,z(0)) = 0, and I, I, : E — E are continuous functions (Lemma 4.2). We also establish

two results concerning the existence and uniqueness of the solution of (1.4) (Theorems 4.1
and 4.2).

(5) The sufficient conditions for the existence of anti-periodic solution to the following impulsive
differential equation involving Atangana-Baleanu fractional derivative of order { € (1,2)

ABcDg’Lz(L) = f(t,z()),t e J — {1, t2, ... st}
2(0) = —=z(b), Z'(0) = —=Z'(D),

) = 2(g) + Li(z(y)), i € Ny,

2 = 2) + I2(), i € Ny,

(1.5)

where f(0, z(0)) = 0, (Theorem 5.1).

(6) The sufficient conditions for the existence of solutions to the impulsive differential inclusion

ABCDg,Lz(L) € F(t,z(1),t € J —{t1,t2, ..., L},
2(0) = z9, Z(0) = zy,

) = 2() + 1(z(1))), i € Ny,

2 = 2@) + L)), i € Ny,

(1.6)

where F is a multi-valued function satisfying F (0, zy) = {0} (Theorem 6.1).

Remark 1.1. Previously, the authors in [29] had investigated problems (1.3) and (1.4) with the
Atangana-Belearn derivative replaced with Caputo’s. Also in [29, 40] problems (1.5) and (1.6) were
studied using Caputo derivative without impulses. Saha et al. [42] established the existence of
solutions for problem (1.1) in finite dimensional spaces with the boundary conditions
2(0) = 70,*8¢ Dy,z(b) = z;. Indeed, the vast majority of published research on the existence of
solutions to differential equations involving Atangana-Baleanu fractional derivative are restricted to
finite-dimensional spaces [20-24,45,46]. Up to the authors knowledge, there has been no published
research on anti-periodic solutions.

The contribution of this paper can be summarized as follows:

AIMS Mathematics Volume 9, Issue 4, 10386—-10415.



10390

(1) In Lemma 3.1, we obtained a precise relationship between the fractional differential
Equation (1.1) and the corresponding integral Equation (1.2). We showed in detail that the
continuity assumption on the nonlinear term, used earlier, e.g., Theorem 3.6 in [21] and
Lemma 2 in [23], is insufficient and should be replaced with the requirement that w lies in the
space H!((a, b), E).

(2) As to our knowledge, Theorem 5.1 showing the existence of an anti-periodic solution for the
impulsive fractional differential equation (1.5), with Attange-Baleanu fractional derivative of
order £ € (1,2), has not previously appeared in literature.

(3) To our knowledge, there has been no published results on the existence of solutions for impulsive
differential equations containing Atangana-Baleanu fractional derivative of order { € (1, 2), or on
the existence of anti-periodic solutions for differential equations containing Atangana-Baleanu
fractional derivative.

The paper is organized as follows. In the second section, we recall the basic facts and concepts
needed for the following sections. In Section 3, we present two existence and uniqueness results for the
solution to problem (1.3). Section 4 studies the existence and uniqueness of solutions to problem (1.4),
and Section 5 is devoted to showing the existence of solutions to problem (1.5). In Section 6, we prove
the existence of solutions for problem (1.6). Three examples are given in the last section to illustrate
the obtained results.

2. Preliminaries and notations

Definition 2.1. [14, 19] Let a < b be two real numbers, and { € (0,1). The Atangana-Baleanu
fractional derivative for a function z € H'((a, b), E) in the Caputo sense and in the Riemann-Liouville
sense of order £ with lower limit at a are defined by

—x)¢
ABCDE (1) = (§)f ()E(( —{G {x) )d’ el

and

M©) d —{(t - x)
ABRDg’LZ(L) (i)’df (x)Eg(%)dx, L€ J,

where M({) > 0 is a normalized function satisfying M(0) = M(1) = 1, and E; = E, is the Mittag-
Leffler function given by:

N M
Eg,ﬁw—;r@“ﬁ), BeR, ueC.

Definition 2.2. [14, 19] Let a < b be two real numbers, and { € (0,1). The Atangana-Baleanu
fractional integral for a function z € H'((a, b), E) of order ¢ with lower limit at a is given by

A OE L §Z( ) + Lz(x)(L —x) Ydx, te J.

o .
M) MOI() Ja

The following lemma was proved in [14, 19] for E = R. It can be generalized to a Banach space E
with little changes in the proof.
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Lemma 2.1. Letz € H'((a,b), E), { € (0,1) and ¢ € J.
i. “PRDL (*PIe,2(0) = 2(0) and *PIG (PRI 2(0) = 2.

.o L—a ¢
ii. APCDL(PIL20) = 20) - W@ E (HE).

iii. 5L, (ABCLS 2(0) = z(0) — z(a).

iv. ABRDZ,LZ(L) —ABC D Z(L) + M(OZ(CI)E ( it (a)l)'

v. 4BRDC ¢ = cEg(l%Z{(L — a)¥),AB¢ D}, ,c = 0, for a constant c.

Remark 2.1. Note that the second assertion of Lemma 2.1 implies that “5° D5 (215 z(1)) # z(1), unless
z(a) = 0. Thus, we can not drop the assumption that (0, z(0)) = O in problems (1.3)—(1.5) and that
F(0,zp) = 0 in problem (1.6).

Definition 2.3. [14,19] Let € (n,n+1),n € Nand z : [a,b] — E with ¥ € H'((a, b), E). The left
Atangana-Baleanu fractional derivative of z, in the Caputo sense and in the Riemann-Liouville sense
of order ¢ with lower limit at a are defined by

ABC Dg’L ) = ABC Dg—Ln 2"
ME=1D (" e ~( (- x)@-"))
-¢-mJ. " (x)E@‘”’( v
and
ABRDg’[Z(L) — ABRDg;nZ(n)(L)
ME-n) d (*, ~( W)=
) P wEe ( —¢-n )™

Definition 2.4. [14,19] Let € (n,n + 1),n € Nand z : [a,b] — E with z™ € H'((a, b), E). The left
Atangana-Baleanu fractional integral for z, of order ¢ with lower limit at a, is defined by

ABIE 2(0) = I B2
As in [20,22], one can prove the following lemma.

Lemma 2.2. Let f € (1,2)and z : J — E with 2’ € H'((a, b), E). For any ¢ € [a, b],

(1) ABRDE, (AP15,2(0)) = 2(0)-

2) ABCDg’L (ABIiLZ(L)) _ABC D[ 1( L( (ABI(LIZ(L)))) _ABC Dg;l (ABIg;lz(L))

= 20 — 2A@E - ().

(3) 815, (Y DS 2(0) = 2(0) — co — c1(t - a).

We end this section by listing some assumptions that are used later.

Assumptions 2.1. Let f : J X E — E be a function, we assume the following:

AIMS Mathematics Volume 9, Issue 4, 10386-10415.
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— (Ay) : For any 6 > O there is Ls > 0 such that for any x,y € E with ||x|| < 4, |[y|| < ¢ and any
s,t € J, we have

f (e, x) = f(s, I < |s = o + Ls [lx = yll.

— (Ay) : There is o > 0 such that for any x,y € E, we have

1f (e, x) = fe, I < ollx = yll, Ve € J.

— (A3) : For every i € Ny, the functions I, I, : E — E are continuous, compact and there exist
positive constants h; , h; (i = 1,2, ..,m) such that

ILCON < hillxdl, Vx € E. and || < Billxl, ¥ x € E.

— (Ay) : For every i € Ny, there exists positive constants d; , i7;, such that

and

Wi(x) = LIl < 6illx = yll, ¥ x € E,

[0 = To)|| < millx = I,V x € E.

3. Existence solutions of problem (1.3)

2.1)

(2.2)

(2.3)

In this section, we stat and prove the relationship between the fractional differential Equation (1.1)
and the fractional integral Equation (1.2) in a reflexive Banach space E .

Lemma 3.1. Let £ € (1,2).

(1) If w: J — E is continuous and z : J — E is a solution to Eq (1.1), then z satisfies the integral

equation (1.2).

(2) If w € H'((0,b), E) with w(0) = 0 and z satisfies Eq (1.2), then 77 € H'((0,b),E) and z is a
solution to Eq (1.1).

Proof.

(1) By applying ABIg,L to both sides of Eq (1.1) and using the definition of ABIg’L, the third assertion of
Lemma 2.2, and Definition (2.4), we obtain that for any ¢ € [0, b]

z(1)

co + ey +18 Ig[w(L)

AB -1
co+ ey + 1o, ( Ig’t w(t))

1-( -1 -1 _
Co+Lc) + Lﬂﬁw@ + ﬁ[&;lwaﬂ
[i -1
M- 1)w(s)ds + M@ = 1)IO’LW(L)
"2
o M -1)

co + ey +

(-1
M({—l)l“(g’)fow(s)([ s)°ds.

co+ ey + w(s)ds +

From the boundary conditions z(0) = zy and z(b) = z;, it follows that ¢y = z; and

AIMS Mathematics
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b
_ —¢ _ ol
71 =20+ bcy + ; M({ — 1)w(s)d s+ M({ I)F(g“) f w(s)(b — 5)°" ds,

i.e.,

4 20 b2-¢ - -1
Cl—z - Z—j; mW(S)ds—me(s)(b_s) ds. (3.2)

Substituting the values of ¢ and ¢ into (3.1), we obtain

_amtnb-y  2-9 (7 ) ’ -1
Z(L) = b - bM(g — 1) W(S)dS - m W(S)(b - S) ds.

_ ol
M({ 1>f WSS + 5 1>r<§>f W) = s)ds.

(2) Assume that w € H'((0,b), E) with w(0) = 0, and that Eq (1.2) holds. Clearly z(0) = z, and
z(b) = z;. Moreover,

2 - ' -1 '
72(t) = co +tey + W_ﬂ) ) w(s)ds + mfo w(s)(t — s)°"ds, 3.3)
where ¢y = zp and ¢, is given by (3.2). Since ¢ > 1, Eq (3.3) gives us that
7)) =c + %W(O Mi{ 11)10{ W), for a.e. 1€ J, (3.4)

where Ioi_l is the Riemann-Liouville fractional integral of order £ — 1. Since w € H'(J,E),
{—1¢€(0,1), and E is reflexive, w has a Bochner integrable derivative w’ almost everywhere, and

w(s) = w(0) + f w (x)dx, Vs e w.
0
This implies that

Ioi_lw(L) =

1 L_{—2 _1 L_g—zfs/
F(é—l)fo(L s) W(S)dS_F({—l)fO(L s) [ ) W(x)dx]ds,

1e., Ioi_lw(t) is the primitive of a Bochner integrable function, hence is absolutely continuous.
Thus Eq (3.4) is valid for every ¢ € J. Moreover,

;fw,(t) -1
M -1) M- 1)de

giving us that 7 € H'((0, b), E). Equation (3.2) implies

D) = < 1 w(),

z2(1) = ¢co + 1cy +18 IgLW(L), L€ J.

Finally, by the second assertion of Lemma 2.2,
ABC DS 2(0) ="BC D APIS w(v) = w(t) — w(0)E, (F52— ”“ ) =w(), teJ.

O

AIMS Mathematics Volume 9, Issue 4, 10386-10415.
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Remark 3.1. Note that
(1) The first assertion of Lemma 3.1 has been proved in Lemma 2 in [23] for the case where E = R.

(2) The solution formula of problem (1.1) does not follow from the first assertion of Lemma 3.1, nor
from Lemma 2 in [23].

(3) The assumption w(0) = 0 cannot be omitted in the second assertion of Lemma 3.1 since

—(Z - D!
ABCDg, PTG w() = w) — w(O)E{_I(&) # w(o).

2-¢
(4) If w is continuous and not in H'((0, b), E), then Eq (3.4) does not imply the existence of z®.

Therefore, without the assumption w € H'((0, b), E), there is no guarantee that ABCDg z(1) exists.

(5) Lemma 3.1 gives a more accurate statement of Lemma 2 in [23] and generalizes it to the infinite
dimensional case.

The results in Lemma 3.1 can be summarized as follows.

Lemma 3.2. Let w € H'((0, b), E) with w(0) = 0. A function z : J — E is a solution of problem (1.1)
if and only if

_ Wa—z0) 2= [° - =
() = zo+ 5 PMC 1) w(s)ds DM = 1)F({) f (b— 5" w(s)ds
2 — 2-4 ' o
M({ ) w(s)ds —M(g“ Do) f([ $)° T w(s)ds. 3.5

Theorem 3.1. Let f : /X E — E be a function. If (A;) holds, then problem (1.3) has a unique solution
provided that f(0, zyp) = 0 and there is r > 0 such that

b2 - (¢ - Db*
llzoll + llz1ll + 2 (b + rL, + {1 £(0,0)|]) [M(g ) + M = 1)1_({)] (3.6)
Proof. Define T : C(J,E) — C(J, E) by
- - b
TOW = g b;\EI(é . )1)fo (s 2onds
_ L({ - 1) b -l
—bM(g— DIQ) f b -5 f(s,z2(s))ds + ———— M({ ff(s z(8))ds
I _ ¢l
M((— 1)1"({) f(t 8§ f(s,z(s))ds. (3.7

Using the Schauder fixed point theorem, we will show that 7" has a unique fixed point. Set By = {z €
CLE) :Naleye < rh

e Step 1: T(By) C By. Let z € By. It follows that from (A;)
If @,z < 11f (e, 2(0) = fO, 0)ll + 11£(0, 0)

AIMS Mathematics Volume 9, Issue 4, 10386—-10415.
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b+ Lzl + [1£(0, 0)]
b+rL, +If©O,0), Y el (3.8)

INIA

From (3.6)—(3.8), one has

IT @O

IA

Lot
llzo(1 — Z) + EZI”

[ — - 4
+2(b+rL, +1|£(0,0)) b2 - ¢) + € - b

(M -1 M- DI)

IA

lIzoll + llz1l »
b2-4 (- Db
(M -1) M- DI

+2(b +rL, +1£(0,0))

< 7,

showing that 7'(By) C By.

e Step 2: T(By) is equicontinuous. Let z € By and ¢,¢ + A € J. Using (3.7), we obtain

Alzy - A2-0) b +rL, 0,0
T 0 -Teo < A=), §>(M+(§r_ 1+)||f< )
A = 1)(b + rL, +11£(0,0)I)p* L AQ= Db+ rL, + (10, Ol
{M({ - DID) M -1)
=D+ LA IFOOD[ [
+ M- DT [ j; t+1-3) (L—9)"ds|.

Since { =1 > 0,||IT(2)(+ ) —-T(@)@I| — 0 when 4 — 0, independently of z, proving the
assertion.

e Step 3: Forn > 1, let B, = convT (B,_1), and B = N5 B,.

Let B, B, be as defined above, then the set B is a non empty compact subset of C(J, E). It follows
from Step 1, that B, € B,_;, n > 1. By Cantor intersection property [47], it is enough to show that

r}i_{g)(C(J,E)(Bn) =0, (3.9)

where y ¢k 1s the Hausdorff measure of noncompactness on C(J, E) [48].

Let n > 1 be a fixed natural number and & > 0. By Lemma 3 in [49], there exists a sequence (zx),
k > 1 in B,_; such that

xcu.e)(Bn) = xcupT (Bu-1) < 2xcupfiT(@) 1 k= 1} + & (3.10)
Since B, is equicontinuous, inequality (3.10) becomes

Xeus(By) < 2maxye(T(@)O k> 1) +&. (3.1D)

AIMS Mathematics Volume 9, Issue 4, 10386—-10415.
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Let ¢ € J be fixed. In view of (3.8)
1/ (¢, () = f(& eI < Ly Nlzn(0) = 22O, YR, m € N.

It follows that
YElf(L,z() k> 1} < Lyplz(l) c k> 1} (3.12)

We also have that

Wzi—z20)  U2-9

T@)W = 20+ —7 T bME -

f f(s,z(s8))ds

___@=D f b = (s, (s + —2— b f fs,zes))ds
M= DTQ) ME=1) Jo

- > - e

M@_muhfas)fmmwﬂs (3.13)

Since £ > 1, Egs (3.12) and (3.13) give

’ 22-9L, 26" - DL,
M@ k> 1) < fxE{zk(s):kzuds[( 0 -1 }
0

MZ-1) M- DIQ)

bre—ou+2w4@—nu
MZ-1) M- DIQ

Using (3.11) and (3.14), we obtain that

2-¢ ¥
ME -1 ME-1TQ)

]XC(J,E)(Bn—l)- (3.14)

Xcu.e)(B,) < 4bL, [ :|XC(J,E)(Bn—1)a ¥n € N.

This inequality yields that

2-¢ , ¥¢-D ]H (3.15)

Xcwr(Bn) < xep)(Bo4bL, [ M -1) M- DLQ)

The inequality in (3.6) implies that 4bL, [ 24 + -0 | < 1 and thus, (3.15) implies (3.9).

e Step 4: The function 75 : B — B is continuous. Assume that z, — z in B. Note that forn > 1
and ¢ € J, we have

-z 2-0 (°

Tz)W = 20+ b M-, (s, z,(8))ds,
uw-n ’ 1
‘mfo(b—S) J (s, za(s))ds + M(( ff(s zu(5))ds
-1

- - ' _ -1
+M(§ - D) Jo (L= 5)°" f(s5,2a(5))dss.

Using (A;),{ > 1, the inequality (3.8), and the Lebesgue dominated convergence theorem, we
obtain that 7'(z,) — T(2).
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It follows from Steps (1) to (4) and Schauder’s fixed point theorem that there is z € B such that
z = T(z). That is,
i—z0) 2= (7

z0) = 20+ b _bM(f—l) w(s)ds

o ww-H _ ol
bM({—l)F({)f(b s) w(s)Bs+M(£: 1)j.w(s)a's

s _ ¢l
M(Z—I)F(Z)f (¢ = sFwis)ds,

where w(t) = f(¢,z(1)), t € J.
Next, we show that this function z is a solution for problem (1.3). By Lemma 3.1, it is sufficient to
show that w € H'(J, E). Since £ > 1, then

’ - g g - -1
7(t) = ———w(t) + ——I7 w(t),t € J.
M -1) M- 1)
From (A), w is absolutely continuous, and since E is reflexive, the function t — Ig;]w(t) is absolutely
continuous. Hence w € H'(J, E).
To show the uniqueness of the solution, let z,v € C(J, E) be two solutions for problem (1.3) and
t € J. Since z, v are solutions, it follows from (A;) that

ITOO-TOOI < ~==4) f 12D = Fs, I
¢ = ME-DJ, T ’
K- 1)

b
+m f LG5, 2(5)) — F(s. vl

fllf(s 2(8)) = f(s,v(9))llds

M((
I VS|
M({— 1)r(§) f (=) lf (s, 2(s) = f(s, v(9))llds
L.(2- {) rbl 1({— 1)
< M({ f ”Z(S)) - V(S)“d + ML ||Z(S)) - v(s)llds

Lr(2 - {) _ ¢l _
+M({ N f llz($)) — v($)llds + —M({ DrQ) f(t $)° lz(s)) — v(s)lldss.
Hence,
L(2-0b LD~ 1) L(2-0b L& = 1b*
llz(0) —v@Il < mHZ—V” + m”z—vﬂ M@ - 1) ————|lz—vI[ + mHZ—V”

2L,2-0b 2L - Db*
llz — Il - )
M-1) M -1DIQ)
Since ¢ is arbitrary, it follows that
2L,(2-0)b N 2L,(& — Db*
M(-1)  ME-DrQ|

< 1, consequently, ||z = V|lcyg) = 0, and z = v. O

Iz = Vllcwe) < llz = Vleur) [

2LC-Db 2L, ({=1)b*
M(Z-1) M(-DI'@)

Inequality (3.6) implies
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In the following, another existence and uniqueness result for solutions of problem (1.3) is obtained.
Replacing the assumption (A;) by (A,) simplifies the inequality (3.6) enabling us to use the Banach
fixed point theorem for contraction mappings instead of the Schauder fixed point.

Theorem 3.2. Let f : JXE — E. If (A,) is satisfied, then problem (1.3) has a unique solution provided
that £(0,z9) = 0 and
2bo(2 - 0) N 205 - 1o
M -1) M -DI()
Proof. Consider the function 7 : C(J,E) — C(J, E) defined by (3.7). Let z,v € C(J, E). For any ¢ € J,

< 1. (3.16)

1T -TWOI < M(g fllf(s 2(s)) = f(s,2(s))llds

b 1(4—1)
MU 1)r(4)

M({ - f 1F (5. 2(s)) — F(s, 2(s)ds

+L
M - DI)

Since ¢ > 1, this inequality together with (A2) imply that

f 1f(s,2(5)) = f(s,2(s)llds

| (= YIS (s, 2(5)) = (5, 2(5))llds.

IS b
IT@O-TEOI < 3= f 1269 = vl + 7 [ ) = vlds
2boc(2 =) 264 - Do ]
—vllds.
< |Nems * v 1
Thus,
2b0(2-¢0) 265 - D)o
IT(2) =TIl < [ M =1) + M - 1)F(§)] llz = VIl
Using (3.16), we obtain that 7 is contraction, and hence has a unique fixed point. O

4. Existence of solutions for problem (1.4)

The following lemmas will be used for deriving an existence result for solutions of problem (1.4).
Lemma 4.1.

(1) If w : J — E is continuous , a € [0, b),z: J — E be such that 77 € H'((0, b), E) and

{ ABCDO{LZ(L) =w(), t € J, 4.1)

z(a) = 20, Z(a) = 21,
then for any ¢ € J,

4

2ty = zo+@—a

_ N2
ey el CRER
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_ 2-¢ _{;1 ‘ gl
w&nf”mswwmmfms)mm

2-¢ ‘ -1 N
+M(§—1)LW(S)dS+M(§ 1)F({)f<t $)°* " w(s)ds.

4.2)

2) Ifa € [0,b),w : J — E be continuous with w(0) = 0 and z : J — E are such that (4.2) holds, then

7 € H'((0, b), E) and z is a solution for (4.1).
Proof.

(1) Apply ABlg’L on both side of the equation ABCDOiZ(L) = w(t);t € [0,b]. As in the proof of first

assertion of Lemma 3.1, we obtain for any ¢ € [0, b]

2 _ L
zZ(t) = co + e + M _41) | w(s)ds + MI(L — ) w(s)ds.

Using the boundary conditions z(a) = zy,7'(a) = z;, we obtain

2 _ (1
Co =2Z9—acy — an ; w(s)ds — M(§ — 1)1“({) f(a — ) 'w(s)ds,

and

— ¢ {- ‘ a2
“”IM&UW)M&MMMLMS)WW'
This gives that
— o 2- 4 - 2
1 =2 —M(g“— 1)w( a) — M@ - 1)1_(5_ D f (a—s)""“w(s)ds.

From (4.3) and (4.4), we obtain

co = z0-—alz — 2-¢ w(a) — il f (a— s *w(s)ds]

M ~-1) M -DI¢ -1

_2_5 ‘ 5= _ -l
M&DLM” Mgmmfws)wm

Substituting the values of ¢y and c;into z(¢), we obtain

¢ w(a) — ‘- (a — ) 2w(s)ds]

2
M -1) M - 1)F({— 1)

5 -1
M&DIMMSM&MWIWS)WW

__2-¢ - V)

”“MWMM)M&MWM @z ]
2-¢ (" e

M({ N w(s)ds + M({ — 1)F(§) L(L 8§ w(s)ds

Z2() = zo—alz -

4.3)

(4.4)

4.5)
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_ N et SNV ¢-1 )
= zo+ (—a)z M@ = 1)W(a) MZ-DIC-1) f:(a $)° " w(s)ds]
2- f ¢ _ f— Y|
M- Jy VT Mo f(“ s

2z [ e
R Jy " g J, 9 s

Hence, Eq (4.2) is verified.

(2) Suppose that w : J — E be continuous function with w(a) = 0 and Eq (4.2) holds. Clearly
z(a) = zp and Z'(a) = z;. As in the proof of second assertion of Lemma 3.1, we can show that
7 € H'((0,b),E). For any ¢ € [a, b], we have

ABC Dg’LZ(L) _ ABC D( 1 40
- amcp- 1z, — e _51;;@ — a(a = 9 2w(s)ds
Mig AT —§1>r<§ =y f = 9 w(5)d)0
= D5, (Mi{ 50+ e =Dre=T f o zw(s)ds) “

—(1 =9
= ABCDg;‘(ABlgfw(L)):W(L)—w(O)El_g(—(l e )

2-¢

= w().
O

Remark 4.1. Following the same method, used in the above proof, a generalization of Theorem 4
in [21] can be derived for any Banach space.

Lemma 4.2. If w € PCH'(J, E) with w(0) = 0 and z : J — E be a function satisfying

k k . 9 _ "
W = e +leza;»+Z<z—zi>1i<z<t;>>+W_{D [ wisas

-

m f (t — ) 'w(s)ds, where « € Ji, k € Ny, (4.6)

then z € PCH?*(J, E) and satisfies the impulsive fractional differential equation:

ABCDOiZ(L) =w), t€J —{u,t, .. stm)s
2(0) = z0, Z(0) = z1,

2(¢) = 2(¢) + I(z(w)), i€ Ny,

() =26 + Iizw)), i€ N,

4.7)

Note that for k = 0, in Eq (4.6), the sum Zf;l is an empty sum and conventionally, equals zero.
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Proof. For any ¢ € Jj,
2-¢
M —-1) Jo

Clearly, z(0) = zp, Z(0) = z;. Since w € PCH'(J,E) and w(0) = 0, it follows by the second
statement of Lemma 4.1, that z is a solution for the fractional differential equation:

zZ(t) =z + 171 +

L é« -1 L N
w(s)ds + —M(f— D) f(; w(s)(t — 8)* " ds. 4.8)

ABCDOiz(L) =w(t), t € Jy,
2(0) = 20, 2(0) = z;.

Let us define a function v on J; = (¢4, 2] by:
v() = z(7) + Li(z(7))

— 7 _
thﬂﬂm+mwm—M@fnmm—M@fm@_Dflwwfwwm]

RS IR & B C
M&Dﬁ”MSM&mmfm S wis)ds

2-¢ [* el
+M({— D j(; w(s)ds + M((— I)F({) f(L S w(s)ds. 4.9)

From the second assertion of Lemma 4.1, v is a solution for the fractional differential equation:

2(e7) = z2(y) + L)), (4.10)

{ ABCDOiz(L) =wQ), t € Jy,
2@} = 20@) + L))

Let ¢ € J;. We show that, v(¢) = z(¢). From Eq (4.8), it follows that

2 — é/ L] L L] o
M&nﬁ”m”mpmmﬁw D w(s)ds

() =z0+uz +

and

ooy 2-¢ 4 _ o2
Z(tl)—Zl+M(§_1)W(t1) M({—l)l“(g—l)f(“ $)° " w(s)ds.

By substituting the values of z(¢;) and z'(:) into Eq (4.9), we obtain

2 - 4 -1 L
YO = wtunt W_gl) ; w(s)ds + m‘fo w(s)(t — $)*ds

2_
+h@f»+@—@krw——£¥wm>

M -1)
- c L
- l)r(g_ 1)f (0 =) w(s)ds + 1) - mc-n"
4 o
T ), @9 o
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2= (™ =1 el
TMe-nJ, MO M@ - l)r@) JACERAE
2= -1 el
M({ D W(s)ds + M(Zj I)F({) f(L )T w(s)ds
_ 2 - ‘
= zo+wz + L) + (= e)i(z()) + W_{I) f w(s)ds
0
+L
M( - DIZ)
Therefore, v(t) = z(¢), Y € J;. Since
W) = 2) = L&), and Z(]) - Z()) = iz(W)),

then z is a solution for the fractional differential equation (4.10). By repeating the above steps for
Ji; k € N», the proof follows. O

L(L — ) tw(s)ds. “4.11)
0

Definition 4.1. A function z € PCH?*(J,E) is said to be a solution for problem (1.4) if it has left
Atangana-Baleanu fractional derivative of order { on each Ji, k € N; and satisfies Eq (4.6).

In the following theorem, we provide an existence result for problem (1.4).

Theorem 4.1. Let f : J X E — E with f(0,z,) = 0 and I,I, : E > E (i € N)) be functions. If
both Assumptions (A;) and (Aj3) are satisfied, then problem (1.4) has a unique solution provided that
f(0,z9) = 0, and there is r > 0 such that

@-0b (- Db
M —-1) M- DI+ 1)

lizoll + & (llzall + rhm(1 + b) + (b + rL, + ||£(0, 0)I[) [ <r (412

where & = max{Y", h; , X", hy).

Proof. Using Schauder’s fixed point theorem, we show that the function R : PC(J,E) — PC(J,E)
given by

k k

RO = 20+ i+ Y HEG)+ D= o)) + e -
i=1 i=1

+L

M( - DT

has a fixed point. Set By = {z € PC(J, E) : ||zllpc(sr) < r}. The remainder of the proof is similar to the
steps used in proving Theorem (3.1), so we give it in outline.

o Stepl: Letze Bpand ¢ € Ji, k =0,1,2,..,m. Using (2.1), (3.8) , (4.12), and (4.13), we obtain
thatforc e Ji,k=1,2,..,m,

- f f(s,z(s))ds

(t — ) f(s,2(s5))ds, where ¢ € Ji, k € Ny, (4.13)
0

- — DE
@-0b - Dpb

IRQOII < llzoll + bllzi|l + rmh(1 + b) + (b + rL, +||£(0,0)]}) MC-1  MZ-DTC+ D)

< r

from which we deduce that R(By) C By.
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e Step 2: Let Z = R(By). We claim that Z is equicontinuous on every Ji, k € Ny = {0, 1,2, .., m}. Let
k € Ny be fixed, z € By and ¢,¢ + A € J;. Using (4.13), we get

2 A2
IR(2)(¢ + D) = R@OI < /1(||21||+M(§ 1£(0, Zo)||) M((g 41)) (b+rL, +1£(0,0)[)
(=D b+ L, +11£©.0)l) IV
+ M~ DTQ) i [(L+/l s) (t—1) ]ds

Since { — 1 > 0, we have ||R(z)(t + 1) — R(2)(0)|| = 0 as 4 — 0, independently of z.

e Step 3: We show that B = N, B, is non-empty and compact in PC(J,E), where
B, = conv(R(B,-1)),Yn > 1. By Step 1, it follows that B,,n > 1 is a decreasing sequence of
non-empty, closed convex and bounded subsets of PC(J, E), and hence it is sufficient to show
that

,}i_)f{)lOXPC(J,E)(Bn) =0, (4.14)

where y pc g 1s the Hausdorff measure of noncompactness on PC(J, E).

Let n > 1 be a fixed natural number and € > 0. In view of Lemma 3 in [49], there exists a

sequence (zx),k > 1 in B,_; such that

xecup(Bn) = xecupyR(Bu-1) < 2xpcupiR(z) i k> 1} + &
2 _max X,{R(zk)u k>1}+e,

.....

where y; is the Hausdorff measure of noncompactness on C(J;,E). Since R(B,_i) is
equicontinuous, the above inequality becomes

Xpepp)(By) < 2 max sup y{R(zo)(0) : k> 1} + (4.15)

""" LEJ,

where y is the the Hausdorff measure of noncompactness on E. Since [;,1;,i = 0,..,m, are
compact, we have

D @) k= 1= ) - )Tz ) k=11 =0
i=1 i=1

Thus, as in (3.12)

S (g—l)bé“)

YRz : k> 1} SXC(J,E)(Bn—OLr(M(g ) M-I/

from which,

2-¢ @Y )]‘

B,) < By) | L,
xpeuE)(By) < Xrcue o>[ ( MEZ=1) " MZ=DrQ

Inequality (4.12) insures that L, ( e+ M(éill))ll’f( {)) < 1, and Eq (4.14) follows.
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e Step 4: The function R : B — Bis c_ontinuous. Let z, — zin B and y, = R(z,). The proof
follows from the continuity of both 1;,1; ;i = 0,1,2,..,m, by following the same arguments in
Step 4 of the proof of Theorem (3.1).

As a result of Steps (1) to (4) and Schauder’s fixed point theorem, there is z € B € PC(J, E) such that
7 = R(2).

To show the uniqueness of the solution, let z and v be two solutions for problem (1.4). For ¢ € J,
we have

Lr(z - é/)b Lrb(({ - 1)
MC-1) iljlo) llz(s) = v()ll + M= DI iLlJIO) llz(s) = v()l
[Lr(z - g)b + Lr(§ - 1)bZ ]

M -1 M- DI

llz(@) = vOIl <

IA

sup [lz(s) = v(s)ll

s€Jy

Thus,

sup [|z(s) — v(s)|| < sup ||z(s) — v(s)I|

se€Jy se€Jy

|:Lr(2_é/)b + Lr({_ l)b( ]
ME-1)  M-DIO|

The inequality (4.12) gives

L2-0b L,(; - Db -
ME-1) M- DI

Thus, sup,, llz(s) — v($)Il = 0, and hence z(s) = v(s), Vs € Jo.
Assume that ¢ € J;. Because z(¢) = v(¢)), it yields that,

1.

lz0) = vl < @) = HEE) + @ = wILEE)) = HEE))
T sup () = (o)l + % sup () = (0
%__?f S;SJI(? llz(s) = v(s)Il + % Ssg}j llz(s) = v()l
< supleo) - [ S s |
As above, we obtain that z(t) = v(t),V ¢ € J;. By continuing in the same manner, we show that
=V O

Next, we show that replacing the Assumptions (A;), and (A3) in Theorem 4.1 by (A,), and (A4)
simplifies (4.12). In fact this enable us to apply Banach fixed point theorem for contraction mappings
instead of Schauder fixed point.

Theorem 4.2. Let f : J X E — E such that f(0,z9) = 0 and [, I, : E > E (i € Ny) be functions. If
Assumptions (A,) and (A4) are satisfied, then problem (1.4) has a unique solution provided that

oQ-0b o~

4.16
MZ-1)  MZ-DIC+1D) (+16)

Zm:((si +bn;) +
P
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Proof. Let R : PC(J,E) — PC(J,E), be function given by Eq (4.13), and z,v € PC(J, E). For each
Lt € Ji; k € Ny, we have

64 ), TR=0b o — Dbt
MZ-1) ME-DI(¢+1)

Thus, R is contraction. By applying Banach fixed point theorem, we obtain that R has a unique fixed
point, and such point is a solution for problem (1.4). O

IR = RGO <

llz — V||PC(J,E)-

5. Existence of solutions for problem (1.5)

To obtain the sufficient conditions for the existence of anti-periodic solution for problem (1.5), we
consider the following problem:

ABCDOiz(L) =w(), teJ—{t1,t,..., L},
2(0) = —z(b), 7' (0) = =Z'(b),

2y = 2) + 1i(z(w), i € Ny,

() = 7)) + I(z(w)), i € N.

Note that problem (5.1) can be obtained from (4.7) by setting zo = —z(b) and z; = —z'(b) . Therefore,
the solution of (5.1) is given by Eq (4.6) after substituting the values of zy and z;.

5.1

Lemma 5.1. Let w € PCH'(J, E) with w(0) = 0. The solution function of problem (5.1) is given by
Eq (4.6), where 7, z; are given as follows:

_ be-0 b e
e AR

_%mem—zgw—%ﬁwm

1 2-¢ (0 f e .
2M(§—l) W(S) S—Em ( —S) W(s) S, ( . )
and
=S T 2-¢ - o
2= l;ll(z(ti )+ M7 - )w(b) M((—l)l"(g f(b s) w(s)ds] (5.3)

Proof. Using Eq (4.6) and the boundary conditions z(0) = —z(b), z’(0) = —z'(b), we obtain

e N Ty - 27E ¢ _ 2
Z“ZI;WW)M&MM)mpmwwfws)mm

So, Eq (5.3) is verified. Moreover,

29 = —lzo+ba+ ) L@+ Y (b —))
i=1 i=1
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2= (" (-1 L
M({ N w(s)ds + m j(; (b —s)""w(s)ds],
i.e.,
-1 i u —
0 = lba+ Z L) + ) (b= )T
i i=1
2= (" -1
M({ - w(s)ds + M({ l)l"({) f (b —5)"""w(s)ds].
This equation along with Eq (5.3) lead to
. b2-0) b(¢ - -2
= ame-ntOr FHE - Ty f (b= sy i)
1 m
-3 Z ) = 5 Z(b 21
1 2-¢ (7 1 el
ST, O 1>r<4> f (b= W]

By substituting the values of zy and z; into Eq (4.6), we obtain the following

Corollary 5.1. Let w € PCH'(J, E) with w(0) = 0. The solution of system in (5.1) is given by:

_ (b _2=¢ b ¢ N L 2-¢
() = (4 2)M(§—1) ()+( )f(b $)° " w(s)ds 2M({—1) w(s)ds

g7y f =97 wlsds = 5 Z’ CONES: Zl @) - Za WTIET)

+ Y L(z)) + (t—ti)7i<z<z;)>+; f w(s)ds
Z Z M-
m f (L — )" "w(s)ds, where (€ J;,k € Np. (5.4)

As a result of Corollary 5.1, we state the following definition.

Definition 5.1. A function z € PCH?*(J,E) is said to be a solution for problem (1.5) if it has left
Atangana-Baleanu fractional derivative of order { on each J;, where k € Ny, and satisfies the integral
equation:

W = (g—é) Mz £ r, (b>>+(———) f (b~ 975, 2Nds ~ 57— T f F(s,2(5))ds
1 -1 ¢ _
sz (b= s)" f(s,z(8))ds — = ;L’(Z(Li ))
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b
_ZZ (2(6)) — —Z(t D))
=1 i=1

+ZL~(Z(LZ)) + Z(t — W) + M( a f f(s,2(s))dss
i=1
m f (. — )5 £(s,2(s))ds, where ¢ € J;, k € N,. (5.5)

Theorem 5.1. Under the assumptions of Theorem 4.2, problem (1.5) has a unique solution provided

that
ob ob? 2002 -0) 3obt 7b
[7+2(g—1)+ MZ-1) = 2 M(g—l)r(§+1)225 ZZ

Proof. Consider the function R : PC(J, E) — PC(J, E) defined as:

(5.6)

¢

R@© = (__E)M(g

-5 - e
2M(§ 1)ff(s z(s))ds 2M(§—1)F(4,’)f( )" f(s,2(5))ds

- ZL.(Z(L;)) Zm: Liz() - = Z(t — W)
i=1

i=1

(b, 2(b) + G5 f (b= 552 f(s,2(5))ds

+ZI(Z(L )+Z(t WD)

i=1

—1 L — ¢!
+M({ D j(; f(s,z(s))ds + M -DIQ j(:(L $) 7 f(s,z(s))ds,
where ¢ € Ji, k € Ny. (5.7)

Letz,ve PC(J,E),t € Ji,k € N;. By the assumptions (A,), (A4), and above equality, we have

ob obt ob 2-( obt -1
RO -ROOI = 15+ 570+ Tt s T e
R S T R R e ot s W ()
2L Z; 2 2 - T me-rg e
B [0' ob® . 2002 - ) . 30bt -1
) 2(5— 1) M -1) 2 MZ-Dr¢+1
3 m m
> Illz = vll.
e ON,

This equation along with (5.6) shows that R is a contraction. Therefore, problem (1.5) has a unique
solution. O
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6. Existence of solutions for problem(1.6)

Definition 6.1. Let A and A be two normed spaces. A multi-valued function G : A — 2F with
non-empty closed, bounded and convex values is called p-Lipschitz if

MG(x) =G <pllx=ylla, ¥x,y € A,

where h is the Hausdorff distance.
For information about the multi-valued functions, we refer the reader to [50].

Lemma 6.1. ( [51], Theorem 7) Let (Q, >, ) be a o— finite measure space and (7, d) be a metric
space. If G : T — 2F"@RY e [1, 00) is a p-Lipschitz multi-valued function with non-empty, closed,
convex, bounded and decomposable values, then there is single-valued function f : T — 2" @R guch
that f(¢) € G(t),a.e, and ||f(z) — fWIl £ & pllz = Vllr@rn, Yz,v € T, where &; 1s a positive real
number.

In the following theorem, we provide sufficient conditions for the existence of solutions of
problem (1.6).

Theorem 6.1. Let F : J x L*(J,R) — 25U be an p-Lipschitz multi-valued function with non-empty,
closed, convex, bounded and decomposable values, and II; - [*(J,R) — L*(J,R),i € N; be functions
such that

I11:(0) = LI < 6 llx =yl ¥ x € LA, R), Vi € Ny,

and B B
|[7:x) = TO)|| < millx = yII, ¥ x € L*(J,R), Yi € Ny,

where ¢; , i7;, are positive real numbers, then problem (1.6) has a solution provided that F(0, zo) = {0}

and
k

ErpQ=0b o= Db
;(5,-+m)+ MC 1) + MC-DICTD <1 6.1

Proof. Let E = L*(J,R). The set T = J x E is a complete metric space, where d((t1, x), (t2, X2)) =
lt; — 62| + ||x1 — x2||[g. By Lemma 6.1, there exists f : J X E — E satisfying f(¢, x) € F(t, x), a.e., and

1/ (@, %) = f(s; DI < &F p(e = sl + llx = ylle), Y&, x),(s,y) € T.

By applying Theorem (4.2), the following fractional boundary problem

ABcDg’Lz(L) = f(t,z(),t € J = {1, 00, .o s U},
2(0) = z9, 2(0) = z1,

2t) = z2() + Ki(z(¢;)), i =1,2,...,m,
7)) =7 + K(z()), i=1,2,...,m.

has a solution. Since f(i, x) € F(i, x) a.e, we have ABCDg’Lz(L) e F(t,z()) a.e. for t€J —{t1,t0,... L)
which completes the proof. O
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Example 6.1. Let E = L*[0, 7], € (1,2), J = [0,1] and zy : [0, 7] — R be the zero function. Define
f:JXE — Eby

sinw
fw,9)m) = —= +A°(); we J, ¢ € E, n€ (0,7, (6.2)
\r
where A > 0. Thus, (0, z0)(7) = 0;Yn € [0, ]. For any ¢;,5, € E = L*[0, ] and any w;,w, € J, we
have

1

T 1 2
f ﬁ'(sm wy = sinw,) + 22(s7() — §§(n))|2d77)

0
7T

fwi,61) = fwa, €)llezpon = (

1

1 . ' % T 2
( L sinw - smvvzlzdn) +A( f ) —g§<n>|2dn)
0 \/% 0

< [sinw; —sinwy|+ 4 ( f I(s1(m) + 62(m) (s1() — gz(n))lzdn)
0

< wi=wal+ A< ¢+ 62,61 — 6 >

< wip = wol + Allst + sall st — <2l

< wi = waol + Al + lIs2D st = sl

Thus, (A)) is satisfied with Ls; = 246. By applying Theorem 3.1, we have that if there is » > 0 such
that

Q-0 __«-D
M =1 " ME-1DTQ)

then there is a unique function z : [0, 1] — L?[0, x| satisfying the boundary value problem

Izl + 2(1 + 24r%) <r, (6.3)

MPEDG2(0(s) = M+ G2(s), e, € E, s €[0,7], 64
2(0) = z0,2(1) = z1,
(see relation (3.6)).
The inequality (6.3) is equivalent to
4awr* = r + ||zl + 2w < 0, (6.5)
where w = -8 4 (D

M(@-1) = ME-DIQ:
If 16 2 w(|lz1|| + 2w) < 1, then the equation 4wAr* — r + ||z;]| + 2w = 0 has two positive solutions,

namely

1 - V1 =164w(|z;]] + 2w)
= and r
8w 8w

1+ V1 —=16Aw(|zi]] + 2w)
ry 5 = .

Therefore, (6.5) will be satisfied for r € (ry, r;). Thus, inequality (6.3) has a solution provided the
following inequality
16 2 w(||zill + 2w) < 1 (6.6)

holds. The last inequality will hold if we choose A sufficiently small.
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Example 6.2. Let E = L?[0, 7], € (1,2), J = [0, 1]. Define f : J x E — E by:

fw,¢)(n) = sm_w +osing(n); we J, ¢ E, ne|0,n], (6.7)
\r

where, o > 0. Let z, : [0, 7] — R, be the zero function and z; € L*[0, 7] be a fixed function. Note that
£(0,z0)(@) = 0, ¥n € [0, 7). For every g1, ¢, € E = L*[0, 7] and every w;,w, € J, we have

Ifw, ¢1) = fw, &2)ll120.71 U( fo |sin ¢ (17) — sin §‘2(77)|2d77)

U(f ls1(m7) — §2(77)|2d77) =ollsi — S‘2||L2[o,zr]
0

ollsr - 5‘2||L2[0,n]-

IA

IA

Thus, (A») is satisfied. By applying Theorem 3.2, there is a unique z : [0, 1] — L?[0, x] such that
7 € H'((0,1), L*[0, ]) and 7 satisfies the boundary value problem:

ABCDg,LZ(L)(T]) = L\‘/‘; + vsin(z(0)n), ¢ € [0, 11,17 € [0, 7], 68)

2(0) = zo, 2(1) = z1,

provided the following condition is satisfied
2002-0 -V _, ©9)

+
M -1) M- DI)
The last inequality holds by choosing o sufficiently small.

Example 6.3. Let E, , J, f as be in Example 6.2, ¢y = 0,¢; = % and ¢, = 1. Define I,(x) = A Projg(x),
fl(x) = A Proj;(x),¥x € E, where A > 0, K and Z are convex and compact subset of L>[0, 7] and A > 0.
Then, (A,) is satisfied. Also, (2.2) and (2.3) are verified with 6; = n; = A. By applying Theorem 4.2,

the problem

(ABCDng(L))(n) = W +vsin(z(On), ¢ € [0, 1] - {0, 3}, 7 € [0, 7],
2(0) = z0, Z(0) =z,

20) = ) + Bz, (©-10)
Z() = 2() + LGz,
has a solution provided that
Sy DA Gl S A (k) 6.11)

<1
M -1 ME-DIC+1)
This inequality will hold by choosing o~ and A sufficiently small.

In a similar manner, many examples of the application of Theorems 5.1 and 6.1 can be provided.
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7. Discussion and conclusions

The relationships between some boundary value problems involving the Atangana-Baleanu
fractional derivative (AB) of order { € (1,2) and the corresponding fractional integral equations were
obtained in infinite dimensional Banach spaces with or without impulses. We showed that the
continuity assumption on the nonlinear term is insufficient and must be replaced by membership in
the space H'((a,b),E). The sufficient conditions for the existence of solutions for differential
equations and inclusions involving AB fractional derivative in the presences of instantaneous impulses
in infinite dimensional Banach spaces were established. Additionally, the sufficient conditions for the
existence and uniqueness of solutions and anti-periodic solutions for differential equations and
inclusions containing AB fractional derivative of order { € (1,2) in the presences of instantaneous
impulses in infinite dimensional Banach spaces were obtained.

The major contributions of this work can be summarized as follows:

(1) A modified formula for relationship between the solution of problem (1.1) and the corresponding
integral equation (1.2) is derived.

(2) A new class of boundary value for differential equations and inclusions containing AB derivative
with instantaneous impulses in infinite dimensional Banach spaces were formulated with and
without impulsive effects.

(3) The existence/uniqueness of solutions and anti-periodic solutions for the considered problems
and the corresponding inclusions were proved.

We provide methods to deal with differential equations and differential inclusions in infinite
dimensional Banach spaces. 1.e., to extend the results in [19-24,45,46] to infinite dimensional spaces.
The methods used in this paper can help researchers to generalize many of the results cited above in
the presence of impulsive effects, infinite dimensional Banach spaces, and when the right hand side of
the equation is a multi-valued function. We suggest the following topics for future research

e Study the existence of S -asymptotically w-periodic solutions for problems (1.3) and (1.4).
e Extend the recent work by Saha et al. [42] to infinite dimensional Branch spaces.

e Generalize the present work to the case where the Atangana and Baleanu’s derivative is replaced
by the Atangana and Baleanu’s derivative with respect to another function.
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