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1. Introduction

Let X and Y be Banach spaces. The spaces of compact operators K(X,Y) is the one of the most
important spaces of Banach space theory. Many mathematicians have investigated the nature of K(X,Y)
and their duals [1–5]. In particular, Feder and Saphar proved the following theorem.

Theorem 1.1. Suppose X∗∗ or Y∗ has the Radon-Nikodým property. For every ϕ ∈ K(X,Y)∗ and
ε > 0, there are (x∗∗n ) ⊂ X∗∗ and (y∗n) ⊂ Y∗ such that ϕ(T ) =

∑∞
n=1 x∗∗n T ∗(y∗n) for all T ∈ K(X,Y) where∑∞

n=1 ∥x
∗∗
n ∥∥y

∗
n∥ < ∥ϕ∥ + ε.

Lima and Oja applied this theorem to solve the famous metric approximation problem [6]. The
first author of this work provided the generalized representation of K(X,Y)∗ concerning Feder and
Saphar’s theorem and the topological property of K(X,Y)∗, in the case that X∗∗ or Y∗ has the weak
Radon-Nikodym property (weak RNP) [7].

Theorem 1.2. Let X and Y be Banach spaces such that X∗∗ or Y∗ has the weak Radon-Nikodým
property. Then, for all ϕ ∈ K(X,Y)∗, there exist a sequence (((xn

i )∗∗)mn
i=1)∞n=1 in X∗∗ and a
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sequence (((yn
i )∗)mn

i=1)∞n=1 in Y∗ such that

ϕ(T ) = lim
n→∞

mn∑
i=1

(xn
i )∗∗(T ∗((yn

i )∗))

for all T ∈ K(X,Y). Moreover, we have

lim sup
n

mn∑
i=1

∥(xn
i )∗∗∥∥(yn

i )∗∥ ≤ ∥ϕ∥.

Our aim in this paper is to provide the more general representation of K(X,Y)∗ concerning Feder
and Saphar’s theorem and the topological property of K(X,Y)∗. The main results are :

(1) If Y is separable,K(X,Y)∗ can be represented by the integral operator and the elements of C[0, 1].
(2) If X∗∗ has the weak RNP, K(X,Y)∗ can be represented by the trace of some tensor products.

To prove the main theorems, we shall use the technique of two-trunk tree in Banach space which
Lima and Oja developed [8]. Our paper is organized as follows : In Section 2, we introduce the
concepts of two-trunk tree in Banach space. Then, for given Banach spaces X and Y , we provide the
representation of K(X,Y)∗ in the case that Y is separable (see Theorem 2.4). In Section 3, we provide
the new characterization of the weak RNP (see Theorem 3.2). By using this, we present the improved
form of the representation of K(X,Y)∗ compared to Theorem B. Our conclusion follows in Section 4.

2. Dual spaces of compact operator spaces: Separable case

In this section, we provide the representation of K(X,Y)∗ when Y is separable. We need some
lemmas and definitions. Let F(X,Y) be the space of finite rank operators. For S ∈ F (X,Y), let

∥S ∥N0 := inf
{ l∑

n=1

∥x∗n∥∥yn∥ : S =
l∑

n=1

x∗n ⊗ yn

}
.

As usual, L(X,Y) is the space of bounded linear operators, and I is the space of integral operators.
The space of Pietsch integral operators from X into Y with Pietsch integral norm ∥ · ∥P is denoted
by P(X,Y). Note that if T is a Pietsch integral operator, then T is an integral operator. Also, it is
known that I(X,Y) = P(X,Y) if Y is a dual space. We denote by S m

τc
−→ R as m → ∞ in L(X,Y)

if for every compact subset K0 of X and every ε > 0, there exists N ∈ N such that for all m ⩾ N,
supx∈K0

∥S m(x) − R(x)∥ ≤ ε.

Lemma 2.1. ( [9], p. 102, Lemma 1) Let X, Y, and Z be Banach spaces. For every S ∈ F (X,Y) and
every R ∈ I(Y,Z), we have

∥RS ∥N0 ≤ ∥R∥I∥S ∥.

Definition 2.1. Let X be a Banach space. We say that a system ((xk,2n)2n

k=0)∞n=0 of elements of X is a
two-trunk tree in X if for all n = 0, 1, . . . and k = 1, 2, . . . , 2n − 1

xk,2n =
1
2

x2k−1,2n+1 + x2k,2n+1 +
1
2

x2k+1,2n+1 ,

x0,2n = x0,2n+1 + x1,2n+1 ,

x2n,2n =
1
2

x2n+1−1,2n+1 + x2n+1,2n+1 .
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The ℓ1-tree space ℓtree
1 (X) consists of all two-trunk tree x = (xk,2n) = ((xk,2n)2n

k=0)∞n=0 in X such that

∥x∥ := sup
n

2n∑
k=0

∥xk,2n∥ < ∞.

By [8], ℓtree
1 (X) is a Banach space.

The scaling function φ : R → R is defined by φ(t) = 1 + t for t ∈ [−1, 0], φ(t) = 1 − t for
t ∈ [0, 1], and φ(t) = 0 for t < [−1, 1]. The functions gk,2n , n = 0, 1, . . . , k = 0, 1, . . . , 2n are defined by
φ(2nt − k), t ∈ [0, 1]. Then, gk,2n satisfies the following:

gk,2n(
k
2n ) = 1, gk,2n(

j
2n ) = 0, j , k,

gk,2n(
j

2n+1 ) = 0, j < {2k − 1, 2k, 2k + 1},

gk,2n(
j

2n+1 ) = 1, j = 2k,

gk,2n(
j

2n+1 ) =
1
2
, j ∈ {2k − 1, 2k + 1}.

Then, it is clear that ((gk,2n)2n

k=0)∞n=0 is a two-trunk tree in C[0, 1].

Theorem 2.1. ( [8], Theorem 3.2) Let X be a Banach space. Then, P(C[0, 1], X) is isometrically
isomorphic to ℓtree

1 (X), by mapping

T → ((Tgk,2n)2n

k=0)∞n=0,T ∈ P(C[0, 1], X).

The inverse mapping
((xk,2n)2n

k=0)∞n=0 → T

is given by

T f = lim
n

2n∑
k=0

f (
k
2n )xk,2n , f ∈ C[0, 1].

Now, we are in a position to state our main theorem.

Theorem 2.2. Suppose that Y is separable. If ϕ ∈ (K(X,Y), ∥ · ∥)∗, then there exists R ∈ I(C[0, 1], X∗∗)
such that

ϕ(U) = lim
m

2m∑
k=0

R(gk,2m)(U∗i∗(δk,2m)), for every U ∈ K(X,Y),

where i : Y → C[0, 1] is an isometry and supm
∑2m

k=0 ∥R(gk,2m)∥X∗∗ = ∥ϕ∥ and δk,2m ∈ C[0, 1]∗ is given by
δk,2m( f ) = f ( k

2m ) for all f ∈ C[0, 1].

Proof. Since Y is separable, there exists an isometry i : Y → C[0, 1]. Thus, the map
J1 : K(X,Y) → K(X,C[0, 1]) defined by J1(T ) = iT is an isometry. Let
J2 : K(X,C[0, 1]) → Kad j(C[0, 1]∗, X∗) := {T ∗ : T ∈ K(X,C[0, 1])} be the isometry via J2(T ) = T ∗.

Since C[0, 1] has the metric approximation property, K(X,C[0, 1]) = F (X,C[0, 1])
∥·∥

, and so
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Kad j(X,C[0, 1]) = Fad j(X,C[0, 1])
∥·∥

, which is isometrically isomorphic to the injective tensor product
C[0, 1]⊗̂εX∗ via the canonical isometry J3.

K(X,Y)
J1
−→ K(X,C[0, 1])

J2
−→ Kad j(C[0, 1]∗, X∗)

J3
−→ C[0, 1]⊗̂εX∗.

Let J := J3J2J1. Now, suppose that ϕ ∈ (K(X,Y), ∥ · ∥)∗. Then, ϕJ−1 ∈ (J(K(X,Y)), ∥ · ∥ε)∗. Choose a
Hahn-Banach extension ϕ̂J−1 ∈ (C[0, 1]⊗̂εX∗)∗ of ϕJ−1. Let

ψ : I(C[0, 1], X∗∗)→ (C[0, 1]⊗̂εX∗)∗

be the canonical isometry ( [10], Section 3). Let R := ψ−1(ϕ̂J−1) ∈ I(C[0, 1], X∗∗). By the well-known
results of Grothendieck ( [2], p.99), we have P(C[0, 1], X∗∗) = I(C[0, 1], X∗∗) as Banach spaces. Then,
by Theorem 2.3, we have

R( f ) = lim
m

2m∑
k=0

δk,2m( f )R(gk,2m), f ∈ C[0, 1],

and ∥ϕ∥ = ∥R∥I = ∥R∥P = supm
∑2m

k=0 ∥R(gk,2m)∥X∗∗ . For each m ∈ N, let S m =
∑2m

k=0 δk,2m ⊗R(gk,2m). From
Theorem 2.3, it is clear that S m converges to R pointwisely in I(C[0, 1], X∗∗). Moreover, by ( [8], proof
of Theorem 3.2), we have

∥S m∥I = ∥S m∥P =

2m∑
k=0

∥R(gk,2m)∥X∗∗ ≤ ∥R∥I.

Or, put Pm =
∑2m

k=0 δk,2m ⊗ gk,2m . Then, Pm is a projection from C[0, 1] into C[0, 1] with ∥Pm∥ = 1. Since
S m = RPm for all m, by Lemma 2.1 we have ∥S m∥I ⩽ ∥S m∥N0∥R∥I .

For every V ∈ I(C[0, 1], X∗∗), we denote by [ψ(V), · ] the dual action on C[0, 1]⊗̂εX∗. Now, let
U ∈ K(X,Y). Since ψ is an isometric isomorphism and S m converges to R pointwisely, we have

lim
m

[ψ(S m), J(U)] = [ψ(R), J(U)].

For every m ∈ N, by the definition of J and the dual action [ψ(·), · ] on C[0, 1]⊗̂εX∗, we have

[ψ(S m), J(U)] =
2m∑
k=0

R(gk,2n)((iU)∗δk,2m).

By the above arguments, we have the desired equation that

ϕ(U) = ϕJ−1(J(U))

= ψψ−1(ϕ̂J−1)(J(U))
= [ψ(R), J(U)]
= lim

m
[ψ(S m), J(U)]

= lim
m

2m∑
k=0

R(gk,2n)((iU)∗δk,2m)

= lim
m

2m∑
k=0

R(gk,2n)(U∗i∗δk,2m).
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LetKw∗(X∗,Y) be the space of weak∗-to-norm continuous compact operators from X∗ to Y . We provide
the similar theorem in Kw∗(X∗,Y).

Theorem 2.3. Suppose that Y is separable. If ϕ ∈ (Kw∗(X∗,Y), ∥·∥)∗, then there exists R ∈ I(C[0, 1], X∗)
such that

ϕ(U) = lim
m

2m∑
k=0

i∗(δk,2m)(UR(gk,2m)), ∀U ∈ Kw∗(X∗,Y),

where i : Y → C[0, 1] is an isometry and supm
∑2m

k=0 ∥R(gk,2m)∥X∗ = ∥ϕ∥ and δk,2m ∈ C[0, 1]∗ is given by
δk,2m( f ) = f ( k

2m ) for all f ∈ C[0, 1].

Proof. Since Y is separable, there exists an isometry i : Y → C[0, 1]. Thus, the map
J1 : K(X,Y) → K(X,C[0, 1]) defined by J1(T ) = iT is an isometry. Recall that if a Banach space B
has the approximation property (AP), then for every Banach space Z, we have
Kw∗(Z∗, B) = Fw∗(Z∗, B)

∥·∥

. Since C[0, 1] has AP, we have Kw∗(X∗,C[0, 1]) = Fw∗(X∗,C[0, 1])
∥·∥

, which
is isometric to the injective tensor product C[0, 1]⊗̂εX via the isometry J2.

Kw∗(X∗,Y)
J1
−→ Kw∗(X∗,C[0, 1])

J2
−→ C[0, 1]⊗̂εX.

Let J := J2J1. Then, ϕJ−1 ∈ (J(Kw∗(X∗,Y)), ∥ · ∥ε)∗. Choose a Hahn-Banach extension
ϕ̂J−1 ∈ (C[0, 1]⊗̂εX)∗ of ϕJ−1. Let ψ : I(C[0, 1], X∗) → (C[0, 1]⊗̂εX)∗ be the canonical
isometry ( [10], Section 3). Let R := ψ−1(ϕ̂J−1) ∈ I(C[0, 1], X∗). By the well-known results of
Grothendieck ( [2], p. 99), we have P(C[0, 1], X∗) = I(C[0, 1], X∗) as Banach spaces. Then, by
Theorem 2.3, we have

R( f ) = lim
m

2m∑
k=0

δk,2m( f )R(gk,2m), f ∈ C[0, 1],

and ∥ϕ∥ = ∥R∥I = ∥R∥P = supm
∑2m

k=0 ∥R(gk,2m)∥X∗ . For each m ∈ N, let S m =
∑2m

k=0 δk,2m ⊗ R(gk,2m). From
Theorem 2.3, it is clear that S m converges to R pointwisely in I(C[0, 1], X∗) and ∥S m∥ ≤ ∥R∥I . Then
we obtain that S m

τc
−→ R as m→ ∞. Moreover, by ( [8], proof of Theorem 3.2), we have

∥S m∥I = ∥S m∥P =

2m∑
k=0

∥R(gk,2m)∥X∗ ≤ ∥R∥I.

For every V ∈ I(C[0, 1], X∗), denote by [ψ(V), · ] the dual action on C[0, 1]⊗̂εX. Now, let U ∈ K(X,Y).
Since ψ is isometric isomorphism and S m converges to R pointwisely, we have

lim
m

[ψ(S m), J(U)] = [ψ(R), J(U)].

For every m, by the definition of J and the dual action [ψ(·), · ] on C[0, 1]⊗̂εX∗,

[ψ(S m), J(U)] =
2m∑
k=0

δk,2m(iUR(gk,2m)).
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By the above arguments, we have

ϕ(U) = ϕJ−1(J(U))

= ψψ−1(ϕ̂J−1)(J(U))
= [ψ(R), J(U)]
= lim

m
[ψ(S m), J(U)]

= lim
m

2m∑
k=0

δk,2m(iUR(gk,2m))

= lim
m

2m∑
k=0

i∗(δk,2m)(UR(gk,2m)).

Now, suppose X is separable. Using the proof (b) of ( [7], Corollary 4.4), we obtain the following.

Proposition 2.1. Suppose that X is separable. If ϕ ∈ (Kw∗(X∗,Y), ∥ · ∥)∗, then there exists
R ∈ I(C[0, 1],Y∗) such that

ϕ(U) = lim
m

2m∑
k=0

R(gk,2m)(Ui∗(δk,2m)), ∀U ∈ Kw∗(X∗,Y),

where i : X → C[0, 1] is an isometry, supm
∑2m

k=0 ∥R(gk,2m)∥Y∗ = ∥ϕ∥, and δk,2m ∈ C[0, 1]∗ is given by
δk,2m( f ) = f ( k

2m ) for all f ∈ C[0, 1].

3. Dual spaces of compact operator spaces: The weak Radon-Nikodym property case

In this section, we provide the representation of K(X,Y)∗ when X∗∗ has the weak RNP. We need
some definitions. First, we introduce the definition of weak RNP. To do this, we have to define weakly
integrable functions. Let (Ω,Σ, µ) be a finite complete measure space. We recall that a µ-measurable
function f : Ω → X is said to be weakly integrable with respect to µ if the function x∗ f is integrable
for every x∗ ∈ X∗. We say that the weakly integrable function f is Pettis integrable if the Dunford
integral

∫
E

f dµ belongs to X for every E ∈ Σ. A Banach space X has the weak RNP if for each finite
complete measure space (Ω,Σ, µ) and each µ-continuous X-valued countably additive vector measure
m : Σ→ X of bounded variation, there exists a Pettis integrable function f : Ω→ X such that

m(E) =
∫

E
f dµ, ∀E ∈ Σ.

Musial proved that a Banach space X contains no isomorphic copy of ℓ1 if and only if X∗ has the weak
RNP [11].

Now, we provide the definition of p-integral and p-nuclear operators. Let K be a compact
topological space and BK be the σ-algebra of Borel sets on K. Recall that if T : C(K) → X is a
bounded linear operator, then µ : BK → X∗∗ is called the representing measure for the operator T if

AIMS Mathematics Volume 9, Issue 4, 9682–9691.
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µ(E) = T ∗∗(χE). The vector sequence {xn} in X is weakly p-summable if the scalar sequences {x∗(xn)}
are in ℓp for every x∗ ∈ X∗. We denote by

ℓw
p (X)

the set of all such sequences in X. A Banach space operator u : X → Y is called p-integral (1 ⩽ p ⩽ ∞)
if there are a probability measure µ and bounded linear operators a : Lp(µ) → Y∗∗ and b : X → L∞(µ)
such that QYu = aipb where ip : L∞(µ) → Lp(µ) and QY : Y → Y∗∗ is the canonical isometric
embedding. A Banach space operator u : X → Y is called strictly p-integral (1 ⩽ p ⩽ ∞) if there is
a probability measure µ and bounded linear operators a : Lp(µ) → Y and b : X → L∞(µ) such that
u = aipb. A Banach space operator u : X → Y is called p-nuclear (1 ⩽ p < ∞) if there are operators
a ∈ L(ℓp,Y), b ∈ L(X, ℓ∞) and a sequence λ ∈ ℓp such that

u = aMλb,

where Mλ : ℓ∞ → ℓp : (ξn)→ (λnξn). We define the p-nuclear norm as

νp(u) := inf ∥a∥ · ∥Mλ∥ · ∥b∥,

the infimum being extended over all factorizations above. We denote by

Np(X,Y)

the space of all p-nuclear operators from X into Y with the norm νp. Throughout the rest of the paper,
p∗ is the Hölder’s conjugate of p, i.e., 1/p + 1/p∗ = 1.

Now, we provide a new characterization of the weak RNP property for the dual version.

Theorem 3.1. X∗ has the weak RNP if and only if R ∈ I(C(K), X∗), then R ∈ Np(C(K), X∗) for all
p > 1. That is, there exist (z∗n) ∈ ℓp(C(K)∗) and (x∗n) ∈ ℓw

p∗(X
∗) such that

R =
∞∑

n=1

z∗n ⊗ x∗n

and the series converges in L(C(K), X∗).

Proof. Suppose that if R ∈ I(C(K), X∗), then R ∈ Np(C(K), X∗) for all p > 1. Take any
R ∈ I(C(K), X∗) and p > 1. Then, R is p-nuclear. It is clear that R is compact. By ( [7], Lemma 3.1),
X∗ has the weak RNP.

Conversely, suppose that X∗ has the weak RNP. Let R : C(K) → X∗ be an integral operator and
p > 1. By ( [10], Proposition 5.28), the representing measure µ is a vector measure of bounded
variation with values in X∗ and R = S ◦ J where J : C(K) → L1(|µ|1) is the natural injection and
S : L1(|µ|1)→ X∗ is a bounded linear operator via

S ( f ) =
∫

K
f d|µ|, ∀ f ∈ L1(|µ|1).

By the assumption, we have ℓ1 ⊈ X, and µ has a relatively compact range by Lemma 3.53 in [12].
By ( [12], Proposition 3.56), S is completely continuous. Also, since J is a Piesch integral operator, J
is strictly p-integral. By ( [13], p.124), R is p-nuclear.

AIMS Mathematics Volume 9, Issue 4, 9682–9691.



9689

Now, we are in a position to state our main theorem.

Theorem 3.2. Suppose that X∗∗ has the weak RNP. If ϕ ∈ (K(X,Y), ∥ · ∥)∗, then there exists (z∗n) ∈
ℓp(C(K)∗) and (x∗∗n ) ∈ ℓw

p∗(X
∗∗) such that

ϕ(U) =
∞∑

n=1

x∗∗n ((U∗i∗(z∗n)) for every U ∈ K(X,Y),

where K = BY∗ and i : Y → C(K) by

i(y)(y∗) = δy(y∗) = y∗(y),∀y∗ ∈ BY∗

is an isometry and the series
∞∑

n=1

z∗n ⊗ x∗∗n

converges in L(C(K), X∗∗).

Proof. Suppose that X∗∗ has the weak RNP. Let K be BY∗ . Then K is weak∗ compact subset of Y∗.
Define i : Y → C(K) by

i(y) = δy(y∗) = y∗(y),∀y∗ ∈ BY∗ .

Then, i is the canonical isometry of Y into C(K). Thus the map J1 : K(X,Y) → K(X,C(K)) defined
by J1(T ) = iT is an isometry. Let J2 : K(X,C(K)) → Kad j(C(K)∗, X∗) := {T ∗ : T ∈ K(X,C(K))} be
the isometry via J2(T ) = T ∗. Since C(K) has the metric approximation property,
K(X,C(K))) = F (X,C(K)))

∥·∥

and so Kad j(X,C(K))) = Fad j(X,C(K)))
∥·∥

which is isometrically
isomorphic to the injective tensor product C(K)⊗̂εX∗ via the canonical isometry J3.

K(X,Y)
J1
−→ K(X,C(K))

J2
−→ Kad j(C(K)∗, X∗)

J3
−→ C(K)⊗̂εX∗.

Let J := J3J2J1. Now, suppose that ϕ ∈ (K(X), ∥ · ∥)∗. Then ϕJ−1 ∈ (J(K(X,Y)), ∥ · ∥ε)∗. Choose a
Hahn-Banach extension ϕ̂J−1 ∈ (C(K)⊗̂εX∗)∗ of ϕJ−1. Let

ψ : I(C(K), X∗∗)→ (C(K)⊗̂εX∗)∗

be the canonical isometry ( [10], Section 3). Let R := ψ−1(ϕ̂J−1) ∈ I(C(K), X∗∗). By the well-known
results of Grothendieck ( [2], p. 99), we have P(C(K), X∗∗) = I(C(K), X∗∗) as Banach spaces. Then,
by Theorem 3.1, there exist (z∗n) ∈ ℓp(C(K)∗) and (x∗∗n ) ∈ ℓw

p∗(X
∗∗) such that

R =
∞∑

n=1

z∗n ⊗ x∗∗n

converges in L(C(K), X∗∗). Then, we have

R( f ) =
∞∑

n=1

z∗n( f )x∗∗n , ∀ f ∈ C(K).
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For each m ∈ N, let S m =
∑m

n=1 z∗n⊗x∗∗n . From Theorem 2.3, it is clear that S m converges to R pointwisely
in I(C(K), X∗) and ∥S m∥ ≤ ∥R∥I . Then, we obtain that S m

τc
−→ R as m→ ∞.

For every V ∈ I(C(K), X∗∗), denote by [ψ(V), · ] the dual action on C(K)⊗̂εX∗. Now, let U ∈
K(X,Y). Since ψ is an isometric isomorphism and S m converges to R pointwisely, we have

lim
m

[ψ(S m), J(U)] = [ψ(R), J(U)].

For every m ∈ N, by the definition of J and the dual action [ψ(·), · ] on C(K)⊗̂εX∗,

[ψ(S m), J(U)] =
m∑

n=1

x∗∗n ((iU)∗(z∗n)).

Hence, we have

ϕ(U) = ϕJ−1(J(U))

= ψψ−1(ϕ̂J−1)(J(U))
= [ψ(R), J(U)]
= lim

m
[ψ(S m), J(U)]

=

∞∑
n=1

x∗∗n ((iU)∗(z∗n)).

4. Conclusions

In this work, we provide new representations of the dual of a space of compact operators K(X,Y)
under the separable condition of Y or weak RNP condition of X∗∗. The dual of K(X,Y) can be
represented by the integral operator and the elements of C[0, 1] if Y is separable. On the other hand,
the dual of K(X,Y) can be represented by the trace of some tensor products if X∗∗ has the weak RNP.
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12. S. Okada, W. Ricker, E. A. Sánchez Pérez, Optimal domain and integral extension of operators, In:
Operator theory: Advances and applications, Springer, 2008. https://doi.org/10.1007/978-3-7643-
8648-1

13. J. Distel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge university press, 1995.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 4, 9682–9691.

http://dx.doi.org/https://doi.org/10.1007/BF02757132
http://dx.doi.org/https://doi.org/10.1016/0022-1236(79)90042-9
http://dx.doi.org/https://doi.org/10.1007/BF01432152
http://dx.doi.org/https://doi.org/10.1007/s00208-005-0656-0
http://dx.doi.org/https://doi.org/10.4064/sm210-3-5
http://dx.doi.org/https://doi.org/10.1016/j.jfa.2010.07.017
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-3903-4
http://dx.doi.org/https://doi.org/10.1007/978-3-7643-8648-1
http://dx.doi.org/https://doi.org/10.1007/978-3-7643-8648-1
http://creativecommons.org/licenses/by/4.0

	Introduction
	Dual spaces of compact operator spaces: Separable case
	Dual spaces of compact operator spaces: The weak Radon-Nikodym property case
	Conclusions

