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Abstract: This paper presents a stochastic vector-borne epidemic model with direct transmission and
media coverage. It proves the existence and uniqueness of positive solutions through the construction
of a suitable Lyapunov function. Immediately after that, we study the transmission mechanism of
vector-borne diseases and give threshold conditions for disease extinction and persistence; in addition
we show that the model has a stationary distribution that is determined by a threshold value, i.e., the
existence of a stationary distribution is unique under specific conditions. Finally, a stochastic model
that describes the dynamics of vector-borne diseases has been numerically simulated to illustrate our
mathematical findings.
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1. Introduction

Vector-borne disease seriously threatens global health, and it is usually caused by vector-borne
parasites, viruses, and bacteria that transmits pathogens between humans or from animals to humans.
According to the World Health Organization, the disease accounts for 17% of all infectious and has
caused 700,000 deaths annually [1]. Despite scientific and technological advances and the growing
influence in all regions, vector-borne diseases remain one of the leading causes of global disease.
Mathematical modeling has become an essential method for studying epidemics. Since the first attempt
to model malaria transmission by Ross [2] and subsequent modifications by MacDonald [3], a series of
vector-borne disease models have been proposed [4—7]. Various disease models based on influencing
factors (e.g., time delay, vaccination, age structure, etc.) have been extensively studied [8—11].

It is commonly known that direct and indirect transmissions are two significant ways that various
diseases are spread. Although vector-borne diseases are mainly transmitted by vectors, i.e., indirect
transmission, vector-borne diseases are often transmitted directly through blood transfusions, organ
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transplantation, laboratory exposure, or mother-to-baby during pregnancy, childbirth, or breastfeeding.
Furthermore Zika can be transmitted through sexual contact [12]. Thus, direct transmission plays a
vital role in the dynamics of vector-borne diseases and has attracted widespread attention [13—16]. In
the deterministic model proposed by Wei et al. [16], the host population is assumed to be divided into
three subpopulations, i.e., susceptible, infected, and recovered individuals. The infected individuals
will not relapse once recovered, i.e., the recovered individuals will not become susceptible or infected.
Let S(7),I(t), and R(#) be the numbers of susceptible, infected, and recovered individuals at time ?.
The vector population is divided into two parts, i.e., susceptible and infected vectors, denoted by M(¢)
and V(¢) as the corresponding numbers at time t. The newly recruited vectors are susceptible when
vertical transmission is ignored. On the other hand, media coverage is a crucial factor in the control of
the spread of epidemics [17]. The media helps people to understand the progress of an epidemic and
provide beneficial guidance [18]. Many scholars have studied the impact of media coverage on disease
transmission from the perspective of mathematical modeling [19, 20].

Based on the above discussion, we introduce media coverage into the epidemic model and
investigate the dynamics of vector-borne diseases with direct transmission. Let 5; be the transmission
rate without media intervention, and $,1/(m + I) be the effect of media coverage on transmission,
where 8, > 3, and m measures how quickly people react to media reports [21]. During the spread of
the vector-borne epidemic, two transmission rates can lead to the susceptible becoming infected : the
rate denoted by 53 from an infected vector to a susceptible person, and the one denoted by 4 from an
infected person to a susceptible vector. We propose a vector-borne model with direct transmission and
media coverage as follows

I S SV
ds = Al—(ﬁl— P2 ) _ BV s an,
m+l/1+al 1+a,V
,821) S BiSV
I= - - I
d ((1 m+1 l+a/11+l+a2V w+di+ylldr,
dR = (yI - d,R) dt, (1.1)
MI
dM:(Az— Pa —dzM)dt,
l+a3l
dv:(ﬁ“MI —dzv)dt,
1+ a3

where A; is a recruitment rate, d; (i = 1,2), and u are the natural, and disease-related death rates of
people and vector population, @; (i = 1,2,3) denotes the saturated constants during different
transmission processes, and 7y is the recovery rate of infected people. Here, 8,51, 535SV, and S,M1
measure the contagiousness of the vector-borne disease, and 1/(1 + a1), 1/(1 + a,V), and 1/(1 + a31)
reflect the behavioral change of susceptible individuals. The basic reproduction number is

— __BiA B3BatiAs . . . .
Ry = 73 o T ddd’ which determines whether the epidemic occurs. If Ry < 1, system (1.1)
Ay

has a unique disease-free equilibrium E, = (3—1', 0,0, A O). This represents no infected individuals in
either population. If Ry > 1, then model (1.1) has two equilibria: a disease-free equilibrium E, and an
endemic equilibrium E* = (S*, I, R*, M*, V*). This means that some individuals of both populations
have been infected.

In the real world, random fluctuations are essential to ecosystems [22—-24]. Random factors, such
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as temperature and humidity, inevitably affect the epidemic’s spread. Many stochastic models have
been studied in recent years [25-27]. Considering the complex environmental changes, Liu and Jiang
claimed that the random perturbation may depend on the square of the state variables S and 7 in the
system [28,29]. Recently, nonlinear perturbations have received much attention [30-32]. In addition
to this, sometimes ecosystems are also affected by violent random perturbations such as typhoons and
tsunamis. To reflect reality better, Levy jumps were introduced into the model [33,34]. However, this
noise differs in detail and often leads to different results. It is worth noting that in the model of vector-
borne diseases, Jovanovi¢ and Krsti¢ [35] proposed that the random perturbation is proportional to the
distance. Ran et al. [36] studied the dynamics of a stochastic vector-borne model with age structure and
saturation incidence, considering the environmental noise on the mosquito bite rate and transmission
rate between vector and host. Son and Denu [37] provided another stochastic vector-borne model with
direct transmission, in which environmental noise affects the mortality of hosts and vectors. We did
not want to add complex perturbations to make the model unmanageable; simple perturbations are
more likely to reveal the inherent nature of the model. In our work, suppose that the environmental
white noise is proportional to the number of subpopulations [38,39]. Next, we extend the deterministic
model (1.1) to a stochastic model. The recovered class is decoupled from the others in the model and
then neglected. Then, we propose the following stochastic model

Bl \ SI BiSV
dS:A—( _ ) _ — &S |dt + o, SdB, @),
B m+Il/1+al 1+aV : o 1@
I\ SI SV
dI = (1— P ) + BV a1 di + oaldBao).
m+1)1+al 1+a,V
i (1.2)
dM = |A, - Ps —dzM)dt+0'3MdB3(t),
1+ a3zl
MI
qv = [P dgv) dt + o, VABy(1),
1+CL’3I

where B;(t) (i = 1,2, 3,4) denotes independent standard Brownian motions, o; (i = 1,2, 3, 4) represents
the white noise intensity, and the remaining parameters are the same as in model (1.1).

The rest of this paper is organized as follows. Section 2 reviews some basic concepts and valuable
lemmas used later. The uniqueness and positivity of the solution are proved in Section 3. Section 4
provides sufficient conditions for determining whether a disease is extinct. In Section 5, we explore
the persistence in the mean. In Section 6, we prove the existence of a unique ergodic stationary
distribution under certain conditions. In Section 7, we validate the results of analysis through
numerical simulations. A brief conclusion is given in the last section.

2. Preliminaries

Let (Q,.#,P) be a complete probability space with a filtration {.%#},5, that satisfies the usual
conditions (i.e., it is increasing and right continuous while .%, contains all P-null sets). Denote
R} = {yeR":y;>0,1<i<n}. Consider an n-dimensional stochastic differential equation of the
following form [40]

dy(r) = f(y(1), ndt + g(y(1), NdB(7) 2.1)
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with the initial value y(0) = y, € R”, where B(¢) denotes an n-dimensional standard Brownian motion
defined on the complete probability space (Q,.%#,{%};s,P). Define a differential operator .Z of
Eq (2.1) as follows

2

ij 8y,0y] '

& = g - Z:f(y t)a% * % 2. |87 00200

i,j=1

If .% acts on a nonnegative function ¥ € C>! (R" X [t, o] ; R,), then
1
LY G.1) = V0.0 + K02 0F 0.0 + 5 wace | g7 00,0, Dg 0. 0]

where ¥, = %, V= (%, e, %), Vyy = (%)M". By 1t6’s formula, it follows that
n i0Yj

dV (0,0 = LV (0, ndt + V,(y(1), Dg(y(1), ndB(®),  y(r) € R".

Lemma 1. (Strong law of large numbers, [41]) Let M = {M,},5, be a real- valued continuous local
martingale vanishing at t = 0. Then

M
im(M, M), = o a.s. = lim L —0. as.
{—o00 t—00 <M5M>t
<M9M>t
t

. M,
<o as. = lim— =0. a.s.

t—00

lim sup

t—00

Let Y(#) be a regular time-homogeneous Markov process in R” in the following form

k
dY(®) = a(Y)dt + Z odB;(1),

i=1
where the diffusion matrix A(Y) = (b;;(y)) and b;;(y) = Z’r‘zl aﬁ(y)af(y).

Lemma 2. [42] The Markov process Y(¢) has a unique stationary distribution 7(-) if there is a bounded
domain D € R" with a regular boundary and the following holds

(i) There is a positive number M such that szzl bii(y)éi&j > M|E)?,y € D, & € R,

(i) There exists a nonnegative C? -function ¥ such that ¥ is negative for any R" \ D; then

T
P{nms,upl f F(Y()dt = f f(y)ﬂ(dy)}: 1.
T—o0 T 0 R

3. Uniqueness and positivity of solution

Theorem 1. For a given initial value Y(0) = (S(0),1(0), M(0),V(0)) € R* , the solution
Y(t) = (S(0),1(t), M(t), V(¢)) of model (1.2) is unique on ¢ > 0 and will maintain in R? with
probability one.
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Proof. For a given initial value (S (0), 1(0), M(0), V(0)) € Rﬁt, the coeflicient in the model (1.2) satisfies
the local Lipschitz continuity condition. Hence, there is a unique local solution when ¢t € [0, 7,),
where 7, is the explosion time [43,44]. To obtain the global property of the solution, we need to prove
that 7, = oo almost surely (a.s.). Suppose that ky > 1 is sufficiently large such that S (0), /(0), M(0) and
V(0) all lie within the interval [1/ko, ko]. For each integer k > k, define a stopping time

7 = inf{t € [0, 7,) : min{S (1), [(¢), M(2), V()} < 1/k or max{S(¢),I(t), M(t), V(t)} > k}, 3.1

where () is an empty set and inf () = co. It can be seen that 7; increases as k — oo and 7o, = limy_,, 7%
with 0 < 7, < 7, a.s. In other words, if 7, = oo a.s. does not hold, there must exists constants 7, k; > 0
and € € (0, 1) such that P {r, < T} > e for all k > k;. Define a C*>-function W : R* — R, and

WS @), 1(1), M), V() =(S(®) — 1 =1logS () + (I() — 1 —log I(¢)) + (M(t) — 1 — log M(¢))

(3.2)
+ (V@) — 1 —log V(t)).

Obviously, W is a non-negative function. Applying It6’s formula to Eq (3.2) yields

(1_51)( PR L BsSV _dls)+10%

dW(S (1), 1(t), M(1), V(1)) = mil T+ ol 1+aV 2

/31 SI B3SV 1,
122 + —u+di+I|+ =
)(('81 m+11+a11 I +aV Wrdity) 272
1 BaMI 1,
1-—=|(A, - M|+ =
i M)( T val ® )+2(T3
BaMI 1
+ 1_‘_/)(1+a31—d2V +§o"2l dt+ o (S - 1)dB(t)

+o0,( — l)de(l) +03(M—1)dBs(t) + o3 (V — 1)dB4(l)
=ZLWdt+ o, (S —1)dBi(t) + 0o (I = 1)dBy(t) + 03 (M — 1) dBs(t)
+ 04 (V= 1)dB4(1),

where W : Rt — R, can be written in the following form

LW ), 1(1), M(1), V(1))

1 ,BI SI B3SV 1,
=||1-—< - -d\S |+ =
( S)( ~ - m+1 1+l l+aV ) 271

(1——)((ﬁ1 ’81) ST BSY +(,u+d1+y)1)+%0'§

m+I'l1+al 1+aV

1 BMI 1 BaMI 1,
1——|(A, - — M - — _ i
+( M)( > Trad ) 2 3+( V)(1+a3l sz)Jrza“

Bi B Ba Bil BV
<A+ A +2d +2dp + — + — 4+ — +v+ +
! z ! 2 i (0% (%) THEY 1+ al 1+a,V
Vv I MI 1 1 1 1
__BS __BS P + =01+ =03+ ~Os + O
l+ail (A+aV)I l1+a3l (+a)V 2 2 2 2
Bi  Bs  Ba
<A+ M +2d+2dy+ —+—+—+pu+y+ + + + = K.
1 2 1 et e @ H+y 20'1 20'2 20'3 20'4 - K
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Hence, we have

dW(S (1), I(), M(1), V(1)) <kdt + o1 (S — DdB;(t) + oo(I — D)dBy(t) + o5(M — 1)dB; ()

(3.3)
+ 04(V — 1)dBy(1).
Integrate both sides of Eq (3.3) from O to 7, A T'. It is easy to get that
Tk AT
f dW (S (u), I(u), M(uw), V(1))
0 (3.4)

Tk AT Tk AT
Sf Kdu+f {O'](S—l)dBl+O'2(I—1)ng +O'3(M—1)dB3+O'4(V—1)dB4}.
0 0

Setting Q = {1, < T'} for k > k; and by using Eq (3.1), we get that P(€);) > €. Further, every w from Q
is associated with at least one among S (1, w), I(1y, w), M (1, w), and V(1y, w) that is equal to k or 1/k.
Hence, W(S (1), I(t¢), M(7}), V(1)) 1s not less than k — 1 — log k or % — 1 + logk. That is to say,
1 1
W(S (ti), 1(7i), M(71), V(1)) = (k= 1 = log k) A (% —1-log ?' (3.5)
Combining Egs (3.4) and (3.5), we have
W(S(0),1(0), M(0), V(0)) + k(1 A T) = E[law)W(S (Ti), I(Ti), M(1x), V(Ti))]
1 1
>ek—1—-loghk)AN(=—-1-1og—
> €( 0gh) A (7 0g )

where 1, denotes an indicator function of set Q. Letting k — oo leads to the following contradiction

oo > W(S(0),1(0), M(0), V(0)) + k(tx AT) = 0.
It implies that 7, = co a.s. The proof is complete.

It is clear that model (1.1) has a disease-free equilibrium Ey = (A,/d,0,A,/d,,0) whereby the
disease tends to become extinct within the time limit. However, there is no disease-free equilibrium
in the stochastic version of the model, which requires other ways to consider its extinction. Define a

threshold value . A
A
%g — ﬁ 1 + ﬁ4 2
mi+02/2\ d, d>

), o, = min{o,, 04}.

4. Disease extinction

2\ 2 3y 4
oVo; (o VO'2

Theorem 2. Assume that d; > -2 and d, > 2. Let (S(0), (1), M(2), V(1)) be the solution of
system (1.2) with any initial value (S (0), 7(0), M(0), V(0)). If %g < 1, then

log(I +V 2
lim sup % < (;11 + %)(%g ~1)<0, as.
11—
Moreover,
1 [ A 1 [
lim= | Sudu= =1, lim- | Iwdu=0 as.,
t—oo 0 dl t—o00 0

t

1 A 1 [
lim - | Mudu = d—z, lim- | Vwdu=0  as.

t—oo f 0 2 t—oo 0
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Proof. According to Reference [45], we have

im S® — 4im 1D i MO i YO s, .1

t—ooo  f t—oo f t—o0 t t—oo  f

[ SwdBi@w) [ 1wdByw) [ M(u)dBs(u)
lim =— =lim = lim

t—00 t t—00 t t—00 t

"V(u)dB
= lim M =0 as.. (4.2)

t—00

We integrate both sides of the proposed model (1.2) and obtain

SW-5©)  10-10) _, _d prdity [ o [
; + ; Al—T S( )du ffol(u)du+7v[0‘5'(u)d31(u)

+ & f 1(0)dBy(u).
t Jo

It is obvious that

1 A (ditu+y) [ o (" oy (7
th( )du _d_l_d—lt I(u)du+E£S(u)dBl(t)+E£I(u)dBZ(t) w3

0 1 1
S —-S50) 1) -1(0)
dt dit '
From Egs (4.1) and (4.2), the limit of Eq (4.3) given by
1 [ A d !
lim= | S@du= "2 fim LAY f Iu)du). 4.4)
t—oo f 0 d] t—0oo dlt 0

Similarly, we integrate on both sides of the last two equations of the model (1.2). Hence,

M(t) — M(0) N V() - V(0) N (f M(u)du + f V(u)du) + —f M(u)dBs(u)

t t

+ & f V(u)dBu(u).
r Jo

Combining (4.1) and (4.2), we can get the following equation

1 A 1
lim — Vu)du = — — lim — M(u)du. 4.5
t—oo 0 dZ t—oo 0
On the other hand, by Itd’s formula, it follows that
BaMI BSV Bl SI
dlog(I +V) = r+ -
o+ V) = T T mna s T B T T ana s ™
r o2 i dr + ! dB, (1) + v dBy(1)
-  E— oOr— o
(1 V)2 Ty vy T+vo? TVt
I 1%
- d —d dt.
(u+d + 7’)1 V 2Trv v
BaMI S+ V) I 1%
< dt + di+ 22— aB )+ 22— 4Bt
S +V) ’8(1 +V) 5 T3y B0+ B0
I+V , (I +V)?
— M1

l’_ -
1+ v T 0 vy
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The last term here uses the inequality 21V < (I + V)?. Integrate on both sides of the equation and divide
it by ¢. Thus,

1 B I 1 (7 I
—log(/ <- — M
" og( +V)_th(u)du+ f (wydu + — f fo Ty
1 t0_2
- - —dr— - du,
tj; 2 tfo'ul .

where ¢ = min{u + d, + 7y, d»}, 0. = min{o,, 04}, and = max{f;, 33}. From Eqs (4.4) and (4.5), we
can get

A (di+p)

1 ! A 1 ([T
- log(l + V) <6, (—1 - dlt ) I(u)du) + 4 (d_2 - L V(u)du)

1 I 1 I 1 (" o? 1
+ - dB,(u) + — dB4(u) — — ~dt — — du.
t,£021+v 2() tfom‘l+v +() tfoz tfo'ulu

According to Lemma 1, it is obtained that

L A
lim (- f oy - f = as. 4.7)
t—oo \ | 0 I+V t 0 I+V

By using Eqs (4.6) and (4.7), we have

lim su

t—00

log(I +V :
p¥S (,ul + O;)(%’g -1)<0, a.s.

It means that lim,_o, L [ I(w)du = 0 and lim,_, L [ V(u)du = 0, a.s. Combining Eqs (4.4) and (4.5),
it is obvious that

1
lim — S(u)du = —, lim — f Mu)du = —, a.s..

t—oo t—oo

The proof is complete.

5. Persistence in the mean of the disease

The most interesting aspect in the study of epidemic modeling is the extinction and persistence of
the epidemic; in the previous section we studied disease extinction and in this section we will show
that diseases are persistent in the mean.

% and dy > J2% 1f

Theorem 3. Assume that d; > >

%S 9. A%Azdfdg(ﬁ] — 32)B3B4 + %(0’% + O'% +O'§ +O'i) .
= >
! Ad; +3dy +pu+y ’
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then for any given initial value (S(0), 1(0), M(0), V(0)) € Ri, the solution of system (1.2) has the
following properties

1 [ A
(i) lim — f S (w)du > . as.
=0 T o d\ +pi/ay + Ba/as
(i)l 1flM< Y > —2
ii) lim — wdu > ————,  a.s..
—ea f o dy + B4/ s

t

1 1 [ 4d, + 3dr + u +
Gii)lim — | TGodu +Tim = | Vdu > 1 TR TRy
=0 o i—eo t ) B1 + Pa+dias +diay) A (B3 + daaz)

Proof. (1) From the first equation of system (1.2) integrating the above inequality and dividing both
sides by ¢, we get

S() - 5(0) 1 f t( B21(1) ) S@iw , 1 " BS )V (w) J
i A\ - - B2,
0

“A -~ _
: T O+m)1+adw™ 1), TraaVw
1 ! A
-- f dlS(u)du—? f S (u)dB, (w).
0

0

(%} - 1), as..

In view of Theorem 1, for any initial value (S (0), 1(0), M(0), V(0)) € R?, there is a unique global
solution (S (¢), I(¢), M(r), V(1)) € Rﬁ‘r. Thus,

SO=50 0 sz a,- L[S0, L [BSW,, )

t g a; t

f d\S(wydu. (5.1)
0

Through the strong law of large numbers for local martingales, we have
NOEN( !
lim (% + ? f S(u)dBl(u)) =0 as.,
—00 0

which together with Eq (5.1) yields

1 [ A
lim— | S@udu> ! as..
-t Jo di+Bi/ar + B/

This is the required assertion (i).
(i1) From the third equation of system (1.2), integrating the above inequality and dividing both sides
by t, we get

MO-MO) 1 [ pMwIe 1" o [
f —A2 t )y 1—}—(13[(1,{) du " fov dgM(l/l)dI/t " jo‘ M(u)dB3(u)
Then
M+? fo M(u)ng(u)ZAz—% fO ﬁ“f—f”)du—% fo dy M(u)du. (5.2)

According to the strong law of large numbers of local martingales, we have

lim

t—o0

(MO 2 " pamo) =0 as.
0
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which together with Eq (5.2) yields

1 [ As
lim — M(u)du > _— - as.
o0 f dy + B4/ a3

This is the required assertion (ii).
(ii1) First, define a function W,(S,1,V) = —=InS —In/—In M —1In V. According to the [t6’s formula:

dW,(r) = gWg(I)dt — 01 dB(t) — 05 dBy(t) — 03 dB3(t) — 04 dBy(t),

where

SI_ BsSV

1
LWy(t) = —
2D m+11+a11 1+a,V

- ais|

s\A

1 ,821 SI RSV
- (et d + I
1(( m+1 1+a11+1+a2V (e ‘+7))
1 BaMI 1 ,84MI 1
A 1 1 I
M B _(,32 ) N 33 vd

s l+al m+I'l+al 1+apV
BSV Bl

_1(1+a2\/)_( _m+1)

Ny Bul BaMI

S
d
1+a/11+( 1tu+y)

1
—di(L+ o) +dy(1+ V) + dy(1+ asl) +dy(1+ en]) = 5 (o} + 03 + 03+ 03)

A A BaMI BSV
< d diay)l bar)V — — - — —
<@Bi +fa + diaz +dia)] + (B3 + dyan) 2 M Vl+a) I1+a,V)

S Ay
_(ﬁl _B2) +a1[—§—d2(1+a2V) d1(1+a31) d1(1+a11)

1
+(4d1+3d2+,u+y)—§(0'%+0'§+0'§+0'i)

S(ﬂ] + 64+ diaz + dyay)l + (ﬁ3 + dya,)V — 92/A%A2d%d2(ﬁ] —ﬁz)ﬂ3ﬁ4

1
+(4d1+3d2+u+y)—5(0’%+0’%+0'§+0'Z).

We integrate the above inequality in the interval (0, ¢), divide it by ¢, and take the limit to 7. Thus,

1
0<- 92/A$A2d12d2(ﬁ1 —BBsBi+ (4 +3dy + p+y) - 5 (0} + 03+ 0% +03)

! !
i Bt Bt s v i) (4000 4 im M f V()du (5.3)
0

t—00 t 0 t— o0
! ! ! t

| 1 1 1
—lim - 01 dB](I/l) — lim — () de(I/t) — lim — g3 dB3(I/t) — lim ; (o) dB4(I/t)

t—oo f 0 t—o0 0 t—o0 0 t—o0 0
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According to the law of large numbers for a martingale,

1 (" 1 [ 1 (! 1 ("
lim — oy dB;(u) = lim " f 05 dB,(u) = lim " f 03 dB;3(u) = lim " f o4 dBs(u) = 0.
[—o0 0 —o0 0 —oc0 0

t—oo 0

It follows that Eq (5.3) becomes

! !
im B+ Pat dias + i) f I(w)du + lim M f Vwdu
0 0

t—o0 t t—00

1
> 92/A$A2d12d2(51 —BBsBs — (4dy +3dy + 1+ ) + 5 (et +03+03+03) as.

The proof is complete.
6. Stationary distribution

The ergodic property for an epidemic model means that the stochastic model has a unique stationary
distribution that forecasts the permanence of the epidemic in the future. That means the disease persists
for all time regardless of the initial condition [46].

In this section, we provide a sufficient condition for the existence of a stationary distribution in the
model (1.2). Denote

B = minl S, B), B =~

r

i/wl | i/(ﬁl BB BNA,
4 ’ 4 = r 4 P

B3 4 Ba _ 1yv4 2 Bi B Ba
a—2+a—3,andr2_521.:10-1.+4d1+2d2+,u+y+a—]+a—2+—

@z’

where ry = 1 31 02+2d+3ds +pu+y + % +
Theorem 4. If %’g > 1, then model (1.2) has a unique stationary distribution n(-) with ergodicity.
Proof. The diffusion matrix for model (1.2) is given by
oﬁS 2.0 0 0

0 0'%12 0 0

0 0 cr%M 20

0 0 0 O'i v?

Denote M = min 410282, o2, o M?, 2 V2. Tt follows that
(S.LMV)eDcR4 101 P 3 4

4
> bi(S. LM V)EE) = 0188 + FIEE + O3P8 + IR > M

ij=1

for (S,1,M,V) € D.& = (£1.62,65,&) € R*, where D = (1,k) x (+.k) x (£.k) x (£.k) and k is a

sufficiently large integer. Therefore, the condition (i) in Lemma 2 is satisfied. Next, we prove the
condition (ii) in Lemma 2. Let

Y =—logS —logM —logV —log I + a»d,V,
Yy =—logS —logM —logV + (a; + a3)(S + 1),

1
Vs =—logS —logM, V= m(S +1+ M+ V)2
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2 0.2
Denote 4; = (% = 1) (i=1,2), 02 =01 Vo3 Vo3 Vol b=2d +pu+y+52 + 2 + B 708 and
d = d, A d,. We construct a C2-function ¥ : Ri — R as follows

V (S, I, M, V)= 0% + O, % + Vs + i,

where @; (i = 1,2) denotes sufficiently large positive constants satisfying —©4; + F, < -3, —O,1, +
F; <-2,and

1 1 0+ 1)o?
F,= sup {E(a2d2ﬁ4)2M2 - = (d - M) (S9+2 + 192+ M2 + V9+2) +b+ B},

(S,I,M,V)eR* 2 2

1 0+ 1)o?
Fy= sup {®1a2d2ﬁ4MI - = (d - g) (72 + 172+ M™2 + V) 1 b+ B} ,
(S,1,M,V)eR* 2 2

0+ 1)o?

5 )(S +I+M+V)"+2}<oo,

1
B= sup {(A1+A2)(S +I+M+V)9”__(d_
(S.IM,V)eR* 2

Here, 6 is a positive constant satisfying that d > (6 + 1)0%/2. It means that

liminf  ¥(S,I,M,V) = c

k—00,(S,I,M,V)ER\D

and ¥ (S,1,M,V) is a continuous function. Then the function v (S,1, M, V) must have a minimum
point (5 I, M, \7) € R, Further, we construct a nonnegative C>-function ¥ : R — R, in the following
form

vV (S,I,M,V) =6, +@2”//2+”f/3+%—“/7(§,1_,1\71,‘7).

Applying It6’s formula to 7] , we get

"W/l:_Sl[/\l_dls_(ﬁ1 321+m)1f(;1 lfc‘;V] 07%
_%[_(dl+ﬂ+wl+(’81 ’821+m)1f; 1+a2V] %%
i | G - [ | 5 - Sy
=7 ;\_Sl - % ~ B =By +Sa11 - % - (16322‘;)1 " (1€4Z§)v t ol +arV)
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ol o o3 o3
L+ 24 3+—+2d1+3d2+(u+y)+'ﬁ+&+&+azd2ﬁ4Ml
2 2 2 2 a; @
B =BBBuNAy o oy o3 o
<=7 +—+—=+—=+—=—+2d +3dr + (u+
= \/4(1+0111)(1+a31) 2 T T T L ury)
+&+&+&+a{2d2ﬁ4MI
@ @ @3
1 ST SV o
.,%"//:——A—dS—( ) O
? S[l 1S = |A '821+m 1+l ﬁ1+azv] 2
1 SI o2
—— |-, +u+ I+( ) + =2
I[(l HANHB '821+m I +al 1+a/2V} 2
1 MI ol 1 MI o
A, - — M|+ —doV |+ 22
M[‘ P o % ] 2 V[ﬂ41+a31 2] 2
—di(a + a3)] —di(a1 + @3)S — (u+y)a1 + a3)l
Al A2 S Al ﬁzSV B4MI
<o 2 - i - —di(l+anl
<= w6 ﬂ2)1+a11 2§ 1+ (1 +asDV (+aD
ol o3 o3 o}
—di(l+as)+ =2+ 2+ 2 +—+4a’1+2dz+(y+y)+’ﬁ+’ﬁ B
2 2 2 2 a; @ Q3

(B1 —BBPsNINy, 02 05 o5 o
— 84 +—+—=+—=+—=—+4d, +2d, + (u +
\/ 41+ asV) p Ty T Tyt uty)

B B B

ay a 0/3’

1 ST % o1
LYV =——|A ( ) -~ + L
. S[l Pr= '821+m 1+a41 31+a/2V 2
1 A B MI +a§
M| P lra P 2
Al A Bi  Bs By oito3
<———-——+4+2d+pu+ +—+—+— _—,
B S M PTRTY (0%} an 2

LV=(S +1+ M+ V)" A, —dl(s +I1+R) —(u+Y)I+A,—dry(M+V)]

o? o2 o2 o
+ @+ DS +1+M+ V)9[7152+ 7312 + 73M2 + 7“1/2]

<SS +I1+M+V" YA +A) =S +T+R+M+ V)" (d, Ady)

1
+§(9+1)(S +I+M+VPo* (S +1+M+ V)

6+ 1)o?
<(s +I+M+V)9+1(A1+A2)—(d—(+T)O-

1{ O+ 10>
<B-—-|d- "
= 2( 2

)(S +1+ M+ V)2

)(Sa+2 + 19+2 + M9+2 + V9+2),
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where

@ + 1)o?

1
B= sup {(A1+A2)(S+I+M+V)H+1—§(d— 3

(S,I,M,V)eR:

Thus, it follows that

o’ + 02
;M/s—@lrl(%g—1)—@2@(%5—1)+2d1+y+y+ﬁ—‘+ﬁ—3 ﬁ—4+%
an a3

1 6+ 1)0? A A
+81(a/2d2,84)MI+B—§(d——( +2)0- )(SG'J“2+16'+2+M9+2+V9+2)——1——2

A closed subset is defined as follows:

1
:{(S,I,M,V)eRi:e<S <—e<I<
€

m|—

1 1}
€<M<_’E<V<_9
€ €

where € > 0 represents sufficiently small constants satisfying the following conditions

- + F5 <1,
€
2 [(B1 = B2)BsBaNA, o1e
—0,r3(7 -+ F, + < -1,
17l \/4(1+a/6)(1+a/6) )+

11 0+ a2\ (1)
H+@1 (de2ﬁ4)—2—— d—g - < —1,
€ 2 2 €

A
-2 4 F <,
€

-+ F; < -1,

5| (B1 = B2)B3BaATA,
- @2”(8\/ 41+ ase)

11 6+ o2\ 1\
H+ 0 (2dofs) = — 5 d—ﬂ - <-1
€ 2 2 €

)(S +I+M+V)9+2}<oo.

S M’

6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

where H is a constant and is determined later. Denote Y = (S,I, M, V). We divide Ri \ D into the

following eight cases

={YeR},0<S <é}, D, ={Y eR},0<1<¢€},
D3_{YeR1,S>§,e<M<§,e<1<g}, Dy={YeRLI>Le<M<ly
Ds={Y eR},0< M < ¢}, Ds={Y €eR},0<V <g,},
D;={YeR},1<Me<I<1 Dg={YeR},1<Ve<M<ie<I<li]
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Now, we will prove that ZV(S,1, M,V) < —1 on Rﬁ \ D; this is equivalent to proving that it is valid
on the above eight subsets.

Case 1. When (S, 1, M, V) € D;, we can get

o+ 02
3%s2d1+,u+y+'ﬁ+ﬁ—4+&+ 2 1 0, (@adsfps) MI
a1 (0%} (0%) 2

2
+B_l(d_%

> )(SE)+2 + 192+ M . V9+2) _ ﬁ

S

A A

<——+F<—+F;,

S €

where
1 0+ 1)0?
Fs; = sup {®1a2d2ﬁ4MI - = (d - g) (Sg+2 + 19+2 + Z‘/[G-'—2 + V9+2) +a+ B} .
(S,I,M,V)eR* 2 2

According to Eq (6.1), we have that Z7(S,I,M,V) < —1 for any (S,1, M, V) € D;.
Case 2. When (S,I,M,V) € D,, we have

5 2O BN gy B T
N (a2d2,324)2 M? LB % (d— (6 +21)0'2)(S0+2 LI 4 M Ve+2) + g
<- @1r3(7</i'(811 ;ijﬁf‘fiﬁ) -D+2di+pu+y+ ’g—ll + ’g—i + ’g—‘; + U%;Ug
+ M +B—%(d— G +21)o-2)(S9+2 LI P V9+2)+ %
<o DL

where

1 1 0+ 1)o?

F,= sup {—(azdzﬁ4)2M2 - = (d - ﬂ) (S9+2 + 172+ MO+ V6'+2) +a+ B} )
(S,I,M,V)eR* 2 2 2

Given Eq (6.2), we get that 7 (S,I,M,V) < —1 for any (S,1, M, V) € D,.

Case 3. When (S, 1, M, V) € D3, we have that

o+ 02
Z”//Sd1+,u+)/+'ﬁ+é+é+ L2+ 0, (adsffs) MI

a a3 @ 2
+B— % (d _® +21)0'2 (Se+2 L L V9+2)
<H + 0, (aadsfs) é _ % g w)(é)m
<H + 0, (ardsBs) é - % d- %) (é)m,
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where H = dy+pu+y+2 + 2 4+ &4 3+B and, from Eq (6.3), we have that Z¥(S,1, M, V) < -1

for any (S,1,M,V) € D;.
Case 4. When (S,I, M, V) € D,, then

2
+ O
f”//SZd1+,u+y+ﬁ—l+ﬁ—4+ﬁ—3 2+ 6, (@adofs) MI
(0%} (0%) 2

1 (9 + 1)0-2 0+2 0+2 0+2 0+2
E(d_T)(S + 1"+ M7+ V )

. | 041 b 1 0+2
<H+ 0 (adfs) 5 = 5 (d - ﬁ) (E)

+B -

2 2

1V 1 0+ Do2\ (1)
=H + 0, (a2d>B4) (Z) 3 (d - %) (2) .

Again, from Eq (6.3), we find that Z 7 (S,1, M, V) < —1 for any (S,I, M, V) € D,.
Case 5. When (S,1, M, V) € Ds, we have

2
o
w/gzd1+u+y+@+§—“+% ‘2 2+ 0 (aadoBs) M1
ay 3 2
+B_1 d—w (SB+2+19+2+M9+2+V9+2)_&
2 2 M

As Ay
<——+F3<——+F3
M €

By means of Eq (6.4) we obtain that £ 7 (S,1, M, V) < —1 for any (S, I, M, V) € Ds.
Case 6. When (S, 1, M, V) € D¢, we can get

-D+2d +pu+ +—+—+—
Hrayy PR T et T

LYV < - @zrz(Si/('Bl ~ PIBiBATA B By By o1+03

6+ 1)o?

1
+@(Q’2d2,84)MI+B—E(d— >

)(S6+2 + 16+2 + M9+2 + V0+2)

4(1 + ae) O a3 2

— AZ 2+ 5
5—@2”2(8§/(ﬂ1 BBy 2—1)+2d1+ﬂ+y+’ﬁ+& Bs  Tit T

1 0+1
+ O (2dr)B4) MI + B — 5 (d - %) (Se+2 + 192+ MO*? 4 VM)

s|(B1 = B2)BsBaNT Az
S-@zl’z(g\/ 4(1+a’6) - 1)+F3.

By Eq (6.5), we have that 7' (S,1,M,V) < —1 for any (S,1, M, V) € Dg.
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Case 7. When (S, I, M, V) € D, it follows that

o +0?
,%7/32d1+,u+y+ﬁ—l+ﬁ—4+ﬁ—3+ S

+ O (2drffs) M1

[04] (0%} (0%)) 2
1 (9 + 1)0-2 6+2 0+2 6+2 6+2
+B—§(d—T)(S + 17+ MT+V )
Bi  PBs B Tito;

1
<d\+p+y+—+—+—=+ + 01 (2dofs) =
€

1
a a3 a

1 @+ D2\ (1)
*B‘z("‘T)(z)

11 @+ o\ (1)
<H + 0y (mdfs) - — 5 [d - ———]|=] .
€ 2 2 €

Using Eq (6.6), we have that 7 (S,I,M,V) < —1 for any (S,1,M,V) € D;.
Case 8. When (S,1, M, V) € Dg, then

o+ o2
3”//§2d1+,u+y+ﬁ_l+ﬁ_4+ﬁ_3+ 1 3

+ O (a2d2ffs) M1

a a3 @ 2
+B— %(d— (0 +21)0'2)(Se+2+19+2+M9+2+V9+2)
52d1+ﬂ+7+§—1+§—1+§—2+0%;a§+@1(C¥2dzﬁ4)é
1 6+ o2\ (1\"*?
R O [
<H + 6, (azdzm)é - %(d_ w)(é)ez

Again using Eq (6.6), we have that 7 (S,1,M,V) < —1 for any (S, 1, M, V) € Ds.

In Cases 1-8, we have chosen sufficiently small values of € such that Z7(S,I,M,V) < —1 for
any (S,I,M,V) € D; (i = 1,2,...,8). Thus, £V (S,I,M,V) < —1 for all (S, LM,V) € R¥\D. Then,
the condition (ii) in Lemma 2 is satisfied. According to Lemma 2, we can obtain that system (1.2) is
ergodic and has a unique stationary distribution. This completes the proof.

7. Numerical simulations

Numerical simulations are presented to support our theoretical findings of the model (1.2) and
reveal the impact of media coverage on the spread of disease. Using the Milstein method mentioned
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by Higham [47], we consider the discretized equations as follows:

I; S SV
B> ) B )At

m+l)]1+al; 1+aV;

Sivi :Si+(Al _dISi_(,BI -
+ S,-(a1 VAL + %S,-(g“fi - I)At),
:Ii+(( - Bad; ) Si; N B3SiVi

Ii+1
m+1;)1+al; 1+ayV;

—(dy +u+ y)li) At

0_2
+1; (az VAtL; + i (G -1) At) :

BaM;I; o3 >
My = M; + (A, — — dyM; | At + M| o3 VAL + =M, (531. - I)At :
1+ asl; 2
BaMi1; Jor L Th
Vii=V,+ —d,Vi|At+ V; Atly; + —V; .—1)At],
* (1 + asl; 2 T4 44 2 (§4l )

where the time increment At > 0 and {y;, {5, (3, {4i» are mutually independent Gaussian random
variables which follow the distribution N(0, 1) fori =0, 1,2, ..., n.

Vector-borne diseases with two transmission routes may be more likely to become endemic than
diseases with one transmission route. Therefore, we tend to choose lower transmission rates and
recruitment when numerically modeling disease extinction.

Example 1. Let A; = 100, A, = 100, 8; = 0.000012, 8, = 0.0000018, B3 = 0.000039, B84 = 0.000039,
a; = 0.13, a, = 0.15, a3 = 0.15, u = 0.13, ¥y = 0.13,d; = 0.1, d, = 0.1, m = 20, oy = 0.025,
o, =0.25, 03 =0.03, 04 = 0.26, u; = min{u + d; +y,d>}, 0. = min{o, 04}, f = max{B;, 53}, and the
initial values (S (0), 1(0), M(0),V(0)) = (1000, 15, 1000, 50). So
1 BA1  Balsy

RS = +

0 /11+0'Z/2(d1 d>

According to Theorem 2, the solution of the stochastic model (1.2) will eventually approach zero;
this means that the disease will die out almost surely. And, from Figure 1, it is observed that the
number of infected individuals tends to zero.

) ~0.594 < 1.

1200 T T T T 60

50 m

800 - i
s
—
M 30

1000

600 |- r
v \
400 1 20
200 [ 1 10 L
0 . . . 0 .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
time t time t

Figure 1. The disease became extinct in both groups at initial values (S (0), 1(0), M(0), V(0))
=(1000, 15, 10000, 50).
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Example 2. We keep the parameters the same as in Example 1, except that A; = A, = 500, 5; = 0.01
and,B3 = ﬁ4 = 0.001. Then

9 A Aad3dy(By — B)BBs + 3 (0} + 0 + 03 + 0F)
B = ~3.555> 1
! 4d, +3dr +u +y ' '

Theorem 3 implies that the disease is persistent in the mean. Interestingly, in Figure 2, it is clear
that the number of infected individuals is higher than that of susceptible individuals.

8000 T T T T 1200

7000

1000 -
6000
800 -
5000

4000 - 600

3000 F g
400 ]

2000 /

200
1000

0 ° 0 L L L L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
time t time t

Figure 2. The disease persists in both groups at initial values (S (0), 1(0), M(0), V(0)) =
(500, 500, 500, 500).

Example 3. Choose the parameters A; = 35000, A, = 30000, 8, = 0.05, 8, = 0.000002, 55 = 0.069,
Bs = 0.069, a; = 0.1, a; = 0.12, a3 = 0.12, u = 0.23,y = 0.2, d, = 0.5, d, = 0.058, m = 100,
o1 =0.015,0, =0.018, 03 = 0.018, o4 = 0.02, the initial values u; = min{u+d; +v, d>}, o0 = min{o,
o4}, B = max{B, B3}, and the initial values (S (0), 1(0), M(0), V(0)) = (20000, 2000, 20000, 2000).
Using the parameters

- AZA 2 2 2 2

4 2 2272 oo a
- AZA 2 2 2 2

4 2 2272 o o a

we can obtain that 5 = {#;,%;} ~ 49.720 > 1 and the conditions of Theorem 4 are satisfied.
Figure 3 shows the histograms of solutions of model (1.2) with white noise. Theoretical conclusions
and numerical simulations indicate that the disease will eventually prevail and persist for a long time.
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Figure 3. Histograms with 100 bins generated from 50,000 simulations of the model (1.2),

x10*
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where the red curves are the probability density functions.

3 4

V,

t

x10*

Example 4. Given 8, = 0, different transmission rates Sy, =0, 0.02, 0.05, 0.08, 0.12. When the
transmission rate 8; = 0.05, we select that 5,=0, 0.006, 0.01, 0.012, 0.016, 0.02. The rest parameters
are the same as in the Example 1. Figure 4 shows that as 8; changes from 0, it significantly impacts
the system. As f3, increases, the numbers of infections decreases. This shows that the existence of
direct transmission via this transmission route has an significant influence on disease transmission,
and that reducing the rate of human-to-human contact through media coverage can reduce the scale of

vector-borne infectious diseases.

%10

12

8,=0
s3|=0.02

8,=0.05

3,=0.08

B,=0.12 |

[\

I 1
/WV\J/J}\\/‘\J\«/\\#\/M’W} \A\/\\w\/ﬂf‘ N‘M\/
7"/”\/\,\/\/\%%«,\/\/\/\,%%

0

500

1000

1500
time t

2000

2500

3000

x10*

Y A
,’ﬁa‘ W \vrw/\/'\«‘\

n i
I ‘"\Mﬂ

N

| Iy
r\‘

) \w{w\/v

3,20

3,=0.006

3,70.012
£,=0.016

——— $,=0.02

0

500

1000

1500
time t

2000

2500 3000

Figure 4. The number of individuals infected given different parameters 8, and 3, .
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8. Conclusions

This paper presented a direct transmission model that is saturated with stochastic vector-borne
disease incidence and the associated dynamical behavior. We obtained the positive definiteness and
uniqueness of the solution to the stochastic model. Then, we established sufficient conditions for the
extinction of the disease in two populations. Furthermore, we have proven the uniqueness and
existence of an ergodic stationary distribution of the model when %, > 1 by choosing a suitable
stochastic Lyapunov function.

On the other hand, from the simulation, we found that the disease under the condition of an
increasing transmission rate ; showed an increasing transmission scale. It reflected that direct
transmission i.e., the transmission route, has a critical influence on the spread of vector-borne
diseases. In addition, we observed in the numerical experiments that there is indeed an effect on the
number of the infected by increasing the value of the 3,. This also validates the inhibitory impact of
media coverage on the spread of the disease.

Finally, reviewing the model we built, we have found that model (1.1) becomes the classical SIR
model with media coverage if we set 83 = B4 = 0. This means that the disease can be endemic in
the host population if there is no transmission pathway from the vector to the host. The threshold
parameters obtained in this study do not explain this phenomenon. Some algorithms that guarantee the
positivity of the solution are more useful when numerical simulations are performed [48,49]. We leave
these issues for future research.
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