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1. Introduction

In this present paper, we consider the tempered fractional differential system (FDS) made of the
fractional differential equation

CDγ,λ,ga+ u(t) = f (t, u(t)), t ∈ [a, b], (1.1)

subject to the initial conditions(
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a
= uk, k ∈ {0, 1, . . . , n − 1}, (1.2)
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where CDγ,λ,ga+ (·) is the tempered Caputo fractional derivative of order γ ∈ (n − 1, n], for a given n ∈ N,
with respect to the smooth kernel g, where λ ≥ 0.

The study of fractional differential equations is an important topic and has attracted a large number
of researchers to this field. By considering differential equations, where the differential operator has an
arbitrary real positive order, we gain a more realist description of many life phenomena. For example,
we mention applications in physics [1, 2], control theory [3], finance [4], electrical engineering [5],
optics [6], medicine [7, 8], epidemiology [9], etc. Due to the complexity of many systems, different
fractional operators are used in order to obtain a better description of the studied object. Thus, we
believe it is important to present new results involving general forms of fractional derivatives, in a way
that we may later consider particular cases of such operators depending on the given system.

Over the last few years, significant research on properties like the existence, uniqueness, stability,
and attractivity of solutions of fractional differential equations has been done. This is due to the fact
that fractional calculus is a consolidated field, where new formulations of fractional derivatives and
fractional integrals are studied. This allows researchers to address new types of problems and even
problems that have already been discussed via classical derivatives (ordinary and partial). What is
expected when investigating a certain property of solutions of a fractional differential equation is that,
in the end, new results are compared with the integer case and it is possible to highlight the novelties
and advantages.

In 2019, Li et al. [10], motivated by biological questions and Jacobi’s predictor-correction,
investigated the well-posedness and numerical algorithm for a class of tempered fractional ordinary
differential equations. At the time, the authors investigated such properties in the sense of tempered
fractional derivatives of Caputo and Riemann-Liouville.

In 2020, Obeidat et al. [11] developed the theory, properties, and applications of a new technique
in tempered fractional calculus called the tempered fractional natural transform method. In this work,
they tackled a problem of tempered fractional linear and nonlinear ordinary and partial differential
equations in Caputo and Riemann-Liouville senses. We can also mention the important work discussed
by Sultana et al. [12], which deals with a class of tempered fractional integro-differential equations of
the Caputo type, and a comparative study of three numerical schemes: linear, quadratic, and quadratic-
linear schemes. There are numerous other works on fractional differential equations in the sense
of tempered derivatives. However, the majority of them only address classical tempered fractional
derivatives.

Motivated by the works above, in order to discuss and propose new results for fractional calculus
and the theory of fractional differential equations in the “tempered” sense, in this paper we extend
the notions of the tempered fractional derivatives in the Riemann-Liouville and Caputo senses to a
new class of fractional operators, and investigate the existence and uniqueness of the solution for the
fractional tempered differential system (1.1)–(1.2) in [a, b]. On the other hand, we also investigate
the attractivity of solutions for (1.1) and (1.2) in [0,∞) through the Schauder fixed point theorem,
Arzelà-Ascoli theorem, and Hausdorff measure of non-compactness.

A natural and expected consequence in the theory of fractional calculus is that the integer case
is obtained when γ = n ∈ N. In fact, with the new extensions of the Riemann-Liouville tempered
fractional integral and the Caputo and Riemann-Liouville tempered fractional derivatives with respect
to another function presented here, we can recover the integer case. On the other hand, it is worth noting
that, from the particular choice of function g and parameter λ in the Caputo and Riemann-Liouville
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tempered fractional derivatives with respect to another function, it is possible to obtain numerous
particular cases, according to [10, 13–19] and the references therein.

The primary contributions of this work are outlined as follows:

(1) We establish the existence and uniqueness of solutions for a system of fractional differential
equations, subject to initial conditions, under the general form of a fractional derivative.

(2) We illustrate the convergence of Picard’s method, demonstrating its effectiveness in solving the
aforementioned system.

(3) We investigate the stability of the system, considering variations in the functions, initial
conditions, or fractional order.

(4) Under additional assumptions, we provide a proof of the existence of at least one attractive
solution within the system.

The structure of the paper is as follows: in Section 2 we introduce the new notions of fractional
tempered derivatives with respect to an arbitrary smooth kernel in the Riemann-Liouville and Caputo
senses and establish some properties that are useful for the proofs of our results. In Section 3 we prove
the results on the existence and uniqueness of the solution of a fractional differential system involving
the Caputo fractional tempered derivative with respect to an arbitrary smooth kernel and we analyze
the continuous data dependence of the Cauchy problem solution. Section 4 provides conditions that
guarantee that the fractional problem under study admits at least one attractive solution. We finalize
the paper with a conclusion section.

2. Preliminaries

Motivated by the concept of fractional derivatives with respect to another function [13,15,16,18,20]
and tempered fractional derivatives [10, 14, 17], we present new definitions of fractional operators
combining these two ideas.

Let λ ≥ 0, n ∈ N, γ ∈ (n − 1, n], and g ∈ Cn([a, b],R), such that g′(t) > 0 for all t ∈ [a, b].
For a given integrable function u ∈ L1([a, b],R), its tempered (left-sided) fractional integral of order

γ with respect to the function g is defined as

Iγ,λ,ga+ u(t) = e−λtIγ,ga+ (eλtu(t)) =
e−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτu(τ) dτ,

where Γ denotes the Gamma function and Iγ,ga+ is the fractional integral of order γ with respect to the
function g (cf. [15]). In what follows, Dγ,ga+ and CDγ,ga+ represent the (left-sided) Riemann-Liouville
and Caputo fractional derivatives of order γ with respect to the kernel g, respectively (cf. [13]). The
tempered (left-sided) Riemann-Liouville and Caputo fractional derivatives of order γ with respect to
the kernel g are defined, respectively, as

Dγ,λ,ga+ u(t) = e−λtDγ,ga+ (eλtu(t)), (2.1)

where n = [γ] + 1, and
CDγ,λ,ga+ u(t) = e−λt CDγ,ga+ (eλtu(t)), (2.2)
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where n = [γ] + 1 if γ < N, and n = γ if γ ∈ N. Thus, given γ < N,

CDγ,λ,ga+ u(t) =
e−λt

Γ(n − γ)

∫ t

a
g′(τ)(g(t) − g(τ))n−γ−1

(
1

g′(τ)
d
dτ

)n

(eλτu(τ)) dτ,

and for γ ∈ N,
CDγ,λ,ga+ u(t) = e−λt

(
1

g′(t)
d
dt

)n

(eλtu(t)).

Observe that

Dγ,λ,ga+ u(t) = e−λt

(
1

g′(t)
d
dt

)n (
eλtIn−γ,λ,ga+ u(t)

)
and that

CDγ,λ,ga+ u(t) = In−γ,λ,ga+

(
e−λt

(
1

g′(t)
d
dt

)n (
eλtu(t)

))
.

By Lemmas 1 and 2 from [13], we may conclude that

CDγ,λ,ga+ (e−λt(g(t) − g(a))σ) = e−λt Γ(σ + 1)
Γ(σ + 1 − γ)

(g(t) − g(a))σ−γ, σ > n − 1,

and
CDγ,λ,ga+ (e−λtEγ(K(g(t) − g(a))γ)) = Ke−λtEγ(K(g(t) − g(a))γ), K ∈ R,

where Eγ denotes the one parameter Mittag-Leffler function

Eγ(t) =
∞∑

k=0

tk

Γ(kγ + 1)
.

The class of functions that we will consider is the set of absolute continuous functions of order n
defined as

ACn
g([a, b],R) =

u : [a, b]→ R
∣∣∣∣ ( 1

g′(t)
d
dt

)n−1

u ∈ AC([a, b],R)

 .
Starting with the formula (cf. [13, Theorem 3])

CDγ,ga+ (eλtu(t)) = Dγ,ga+

eλtu(t) −
n−1∑
k=0

(g(t) − g(a))k

k!

(
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a

 ,
multiplying both members of the last equality by e−λt, we deduce that

CDγ,λ,ga+ u(t) = Dγ,λ,ga+ u(t) − e−λt
n−1∑
k=0

Dγ,ga+

(
(g(t) − g(a))k

k!

) (
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a

= Dγ,λ,ga+ u(t) − e−λt
n−1∑
k=0

(g(t) − g(a))k−γ

Γ(k + 1 − γ)

(
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a
,
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and so, if (
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a
= 0, ∀k ∈ {0, 1, . . . , n − 1},

then
CDγ,λ,ga+ u(t) = Dγ,λ,ga+ u(t).

Theorem 2.1. If u ∈ AC([a, b],R), then

CDγ,λ,ga+ I
γ,λ,g
a+ u(t) = u(t), ∀t ∈ [a, b],

and if u ∈ ACn
g([a, b],R), then

Iγ,λ,ga+
CDγ,λ,ga+ u(t) = u(t) − e−λt

n−1∑
k=0

(g(t) − g(a))k

k!

(
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a
, ∀t ∈ [a, b].

Proof. The formulae are a direct consequence of Theorems 4 and 5 from [13]. □

3. Tempered fractional differential systems

Consider the tempered fractional differential system (FDS):

CDγ,λ,ga+ u(t) = f (t, u(t)), t ∈ [a, b], (3.1)

with (
1

g′(t)
d
dt

)k

(eλtu(t))
∣∣∣∣
t=a
= uk, k ∈ {0, 1, . . . , n − 1}, (3.2)

where n = [γ] + 1 if γ < N and n = γ if γ ∈ N, u ∈ ACn
g([a, b],R), f : [a, b] × R → R is a continuous

function, and uk are the initial values, for k ∈ {0, 1, . . . , n − 1}.

Theorem 3.1. Function u is a solution of the fractional differential system (3.1)–(3.2) if and only if

u(t) = Iγ,λ,ga+ f (t, u(t)) + e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!
.

Proof. The proof is a direct consequence of Theorem 2.1 and the formula

CDγ,λ,ga+ (e−λt(g(t) − g(a))k) = e−λt · CDγ,ga+ (g(t) − g(a))k = 0, ∀k ∈ {0, 1, . . . , n − 1}.

□

Next, we prove that under certain assumptions, the initial value problem (3.1)–(3.2) has a unique
solution.

Theorem 3.2. Suppose that:

(1) there exists a positive constant M such that

| f (t, u1) − f (t, u2)| ≤ M|u1 − u2|, ∀t ∈ [a, b] ∀u1, u2 ∈ R,
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(2) there exists a positive real ϵ such that [a, a + ϵ] ⊆ [a, b] and

Λ :=
M

Γ(γ + 1)
(g(a + ϵ) − g(a))γ < 1.

Then, problem (3.1)–(3.2) has a unique solution on the space ACn
g([a, a + ϵ],R).

Proof. Define F : ACn
g([a, a + ϵ],R)→ ACn

g([a, a + ϵ],R) as

F(u) : t → Iγ,λ,ga+ f (t, u(t)) + e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!
.

Function F is well-defined since(
1

g′(t)
d
dt

)n−1 1
Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτu(τ) dτ

=
1

Γ(γ − n + 1)

∫ t

a
g′(τ)(g(t) − g(τ))γ−neλτu(τ) dτ.

Also, F is a contraction map since, given two functions u1, u2 ∈ ACn
g([a, a + ϵ],R),

∥F(u1) − F(u2)∥ ≤ max
t∈[a,a+ϵ]

e−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ| f (τ, u1(τ)) − f (τ, u2(τ))| dτ

≤ max
t∈[a,a+ϵ]

M
e−λt

Γ(γ + 1)
∥u1 − u2∥(g(t) − g(a))γeλt ≤ Λ∥u1 − u2∥.

Then, the desired result follows from the Banach fixed point theorem. □

We remark that we can actually prove that there exists a global solution for the Cauchy
problem (3.1)–(3.2). In fact, let u⋆1 be the local solution on the interval [a, a + ϵ1]. Using the same
ideas, we can prove the existence and uniqueness of a solution u⋆2 on an interval [a+ ϵ1, a+ ϵ2] ⊆ [a, b].
Repeating the procedure, we obtain at the end the global solution u : [a, b]→ R.

Theorem 3.3. Suppose that there exists a positive constant M such that

| f (t, u1) − f (t, u2)| ≤ M|u1 − u2|, ∀t ∈ [a, b] ∀u1, u2 ∈ R.

Define the sequence of functions um : [a, b]→ R by

u0(t) = e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!

and

um+1(t) = Iγ,λ,ga+ f (t, um(t)) + e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!
. (3.3)

Then, the sequence (um)m converges uniformly to a function u that is a solution of the Cauchy
problem (3.1)–(3.2). Moreover,∣∣∣∣∣∣∣u(t) − e−λt

n−1∑
k=0

uk (g(t) − g(a))k

k!

∣∣∣∣∣∣∣ ≤ max
t∈[a,b]
| f (t, u0(t))| ·

Eγ(M(g(t) − g(a))γ) − 1
M

, ∀t ∈ [a, b].
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Proof. First, we prove using mathematical induction that, for all m ∈ N0,

|um+1(t) − um(t)| ≤ max
t∈[a,b]
| f (t, u0(t))| ·

Mm

Γ((m + 1)γ + 1)
(g(t) − g(a))(m+1)γ.

For m = 0 the proof is obvious. On the other hand, for each m ∈ N0, and recalling the following
property of the Beta function:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

,

we obtain

|um+2(t) − um+1(t)| ≤
e−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ| f (τ, um+1(τ)) − f (τ, um(τ))| dτ

≤
Me−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ|um+1(τ) − um(τ)| dτ

≤
Me−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ max

t∈[a,b]
| f (t, u0(t))|

×
Mm

Γ((m + 1)γ + 1)
(g(τ) − g(a))(m+1)γ dτ

≤ max
t∈[a,b]
| f (t, u0(t))|

Mm+1

Γ(γ)Γ((m + 1)γ + 1)

×

∫ t

a
g′(τ)(g(t) − g(τ))γ−1(g(τ) − g(a))(m+1)γ dτ

= max
t∈[a,b]
| f (t, u0(t))|

Mm+1

Γ(γ)Γ((m + 1)γ + 1)
(g(t) − g(a))γ−1

×

∫ t

a
g′(τ)

(
1 −

g(τ) − g(a)
g(t) − g(a)

)γ−1

(g(τ) − g(a))(m+1)γ dτ

= max
t∈[a,b]
| f (t, u0(t))|

Mm+1

Γ(γ)Γ((m + 1)γ + 1)
(g(t) − g(a))(m+2)γ

×

∫ 1

0
(1 − s)γ−1s(m+1)γ ds

= max
t∈[a,b]
| f (t, u0(t))|

Mm+1

Γ(γ)Γ((m + 1)γ + 1)
(g(t) − g(a))(m+2)γB(γ, (m + 1)γ + 1)

= max
t∈[a,b]
| f (t, u0(t))| ·

Mm+1

Γ((m + 2)γ + 1)
(g(t) − g(a))(m+2)γ,

which ends the proof for the desired formula. Thus, for all t ∈ [a, b] and for all m ∈ N0,

|um+1(t) − um(t)| ≤ max
t∈[a,b]
| f (t, u0(t))| ·

Mm

Γ((m + 1)γ + 1)
(g(b) − g(a))(m+1)γ,

and so, applying the Weierstrass M-test, we conclude that the series
∑∞

m=0(um+1(t)− um(t)) is uniformly
convergent on the interval [a, b]. Let u : [a, b]→ R be the function

u(t) =
∞∑

m=0

(um+1(t) − um(t)) + e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!
.
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Observe that for each j ∈ N,

j−1∑
m=0

(um+1(t) − um(t)) + e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!
= u j(t).

Since
| f (t, u j(t)) − f (t, u(t))| ≤ M|u j(t) − u(t)|, ∀t ∈ [a, b],

we conclude that the sequence of functions ( f (·, u j(·))) j also converges uniformly to f (·, u(·)).
From (3.3), and doing m→ ∞, we conclude that u is a solution for the Cauchy problem (3.1)–(3.2).

To prove the last formula, simply observe that∣∣∣∣∣∣∣u(t) − e−λt
n−1∑
k=0

uk (g(t) − g(a))k

k!

∣∣∣∣∣∣∣ ≤
∞∑

m=0

max
t∈[a,b]
| f (t, u0(t))| ·

Mm

Γ((m + 1)γ + 1)
(g(t) − g(a))(m+1)γ

= max
t∈[a,b]
| f (t, u0(t))| ·

Eγ(M(g(t) − g(a))γ) − 1
M

.

□

Example 3.1. Consider the following fractional differential system:

CD0.8,4,g
0+ u(t) =

1
2

u(t), t ∈ [0, 1], u(0) = 1.

The solution is the function

u(t) = e−4tE0.8

(
(g(t) − g(0))0.8

2

)
.

The Picard’s iterations are

u0(t) = e−4t, um+1(t) = I0.8,4,g0+
um(t)

2
+ u0(t).

In Figure 1 we compare the exact solution with the first three Picard’s iterations (Figure 1a) and the
obtained error |u(t) − u j(t)|, j = 0, 1, 2 (Figure 1b). The kernel is the function g(t) =

√
t + 1, t ∈ [0, 1].

(a) Solutions (b) Errors

Figure 1. The Picard iterations with respect to the kernel g(t) =
√

t + 1, t ∈ [0, 1].
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The following two theorems show that, under certain assumptions, small perturbations in the initial
data do not significantly affect the solution of the fractional tempered differential system (3.1)–(3.2).

Theorem 3.4. Let f , h : [a, b] × R → R be two continuous functions and u, v ∈ ACn
g([a, b],R) be two

functions such that 
CDγ,λ,ga+ u(t) = f (t, u(t)), t ∈ [a, b],

(
1

g′(t)
d
dt

)k
(eλtu(t))

∣∣∣∣
t=a
= uk, k ∈ {0, 1, . . . , n − 1},

and 
CDγ,λ,ga+ v(t) = h(t, v(t)), t ∈ [a, b],

(
1

g′(t)
d
dt

)k
(eλtv(t))

∣∣∣∣
t=a
= vk, k ∈ {0, 1, . . . , n − 1},

where uk, vk, k ∈ {0, 1, . . . , n − 1} are given real numbers. If

(1) there exists a real L > 0 such that

|h(t, v1) − h(t, v2)| ≤ L|v1 − v2|, ∀t ∈ [a, b] ∀v1, v2 ∈ R,

(2) there exists a continuous function η : [a, b]→ R+0 such that

| f (t, u(t)) − h(t, u(t))| ≤ η(t), ∀t ∈ [a, b],

then

|u(t) − v(t)| ≤ θ(t) + e−λt
∫ t

a

∞∑
k=1

Lk

Γ(kγ)
g′(τ)(g(t) − g(τ))kγ−1eλτθ(τ) dτ, (3.4)

where

θ(t) := Iγ,λ,ga+ η(t) + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k.

Proof. By Theorem 3.1 we conclude that

u(t) = Iγ,λ,ga+ f (t, u(t)) + e−λt
n−1∑
k=0

uk

k!
(g(t) − g(a))k

and

v(t) = Iγ,λ,ga+ h(t, v(t)) + e−λt
n−1∑
k=0

vk

k!
(g(t) − g(a))k.

Observe that

|u(t) − v(t)| ≤ Iγ,λ,ga+ | f (t, u(t)) − h(t, u(t))| + Iγ,λ,ga+ |h(t, u(t)) − h(t, v(t))| + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k

≤ θ(t) + L · Iγ,λ,ga+ |u(t) − v(t)| = θ(t) +
Le−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ|u(τ) − v(τ)| dτ.
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Denoting w(t) := |u(t) − v(t)|, we get

w(t) ≤ θ(t) +
Le−λt

Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτw(τ) dτ,

and, therefore,

eλtw(t) ≤ eλtθ(t) +
L
Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτw(τ) dτ.

Using the Gronwall inequality [21] we conclude that

eλtw(t) ≤ eλtθ(t) +
∫ t

a

∞∑
k=1

Lk

Γ(kγ)
g′(τ)(g(t) − g(τ))kγ−1eλτθ(τ) dτ,

proving the desired inequality:

|u(t) − v(t)| ≤ θ(t) + e−λt
∫ t

a

∞∑
k=1

Lk

Γ(kγ)
g′(τ)(g(t) − g(τ))kγ−1eλτθ(τ) dτ.

□

Remark 3.1. We remark that:

(1) If λ = 0, Theorem 3.4 reduces to Theorem 6 of [22].
(2) Under the hypotheses of Theorem 3.4, we deduce the following two inequalities that are useful in

the proof of Corollarys 3.1 and 3.2.

(a) Since

|u(t) − v(t)| ≤ ||θ||∞ + ||θ||∞ ·
∞∑

k=1

Lk

Γ(kγ)

∫ t

a
g′(τ)(g(t) − g(τ))kγ−1 dτ

= ||θ||∞ ·

∞∑
k=0

(L(g(t) − g(a))γ)k

Γ(kγ + 1)
,

then
|u(t) − v(t)| ≤ ||θ||∞ · Eγ (L(g(t) − g(a))γ). (3.5)

(b) Since

||θ||∞ ≤ Iγ,λ,ga+ ||η||∞ + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k

= e−λt ||η||∞
Γ(γ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ dτ + e−λt

n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k,

then

||θ||∞ ≤
||η||∞
Γ(γ + 1)

(g(t) − g(a))γ + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k. (3.6)

The following result shows that small changes in the initial conditions of the tempered fractional
initial value problem (3.1)–(3.2) lead to small changes in the solution.
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Corollary 3.1. Suppose that the assumptions of Theorem 3.4 hold. If f = h, then for all t ∈ [a, b],

|u(t) − v(t)| ≤ e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k · Eγ (L(g(t) − g(a))γ).

Proof. If f = h, then we may take η(t) = 0, for all t ∈ [a, b]. From inequalities (3.5) and (3.6) it follows
that

|u(t) − v(t)| ≤ ||θ||∞ · Eγ (L(g(t) − g(a))γ) ≤ e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k · Eγ (L(g(t) − g(a))γ),

proving the desired result. □

The next result shows that if the two systems of Theorem 3.4 have the same initial conditions and
functions f and h are arbitrarily close, then the respective solutions are also arbitrarily close.

Corollary 3.2. Suppose that the assumptions of Theorem 3.4 hold. If uk = vk, k = 0, 1, . . . , n − 1, then
for all t ∈ [a, b],

|u(t) − v(t)| ≤
||η||∞
Γ(γ + 1)

(g(t) − g(a))γ · Eγ

(
Le−λa.(g(t) − g(a)

)γ
).

Proof. From inequalities (3.5) and (3.6) it follows that

|u(t) − v(t)| ≤ ||θ||∞ · Eγ (L(g(t) − g(a))γ) ≤
||η||∞
Γ(γ + 1)

(g(t) − g(a))γ · Eγ (L(g(t) − g(a))γ),

as desired. □

To finalize this section, we show the dependence of the solution of the fractional differential
system (3.1)–(3.2) on the order of the fractional derivative.

Theorem 3.5. Let f : [a, b] × R→ R be a continuous function such that

| f (t, u) − f (t, v)| ≤ L|u − v|, ∀t ∈ [a, b] ∀u, v ∈ R.

Let ϵ ∈ (0, γ−n+1) and uk, vk, k ∈ {0, 1, . . . , n−1} be fixed real numbers. Suppose that u ∈ ACn
g([a, b],R)

is such that 
CDγ,λ,ga+ u(t) = f (t, u(t)), t ∈ [a, b],

(
1

g′(t)
d
dt

)k
(eλtu(t))

∣∣∣∣
t=a
= uk, k ∈ {0, 1, . . . , n − 1},

and v ∈ ACn
g([a, b],R) satisfies the system

CDγ−ϵ,λ,ga+ v(t) = f (t, v(t)), t ∈ [a, b],

(
1

g′(t)
d
dt

)k
(eλtv(t))

∣∣∣∣
t=a
= vk, k ∈ {0, 1, . . . , n − 1}.
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Then, for all t ∈ [a, b],

|u(t) − v(t)| ≤ β(t) + e−λt
∫ t

a

∞∑
k=1

( LΓ(γ)
Γ(γ − ϵ)

)k 1
Γ(kγ)

g′(τ)(g(t) − g(τ)kγ−1eλτβ(τ) dτ,

where

β(t) := max
t∈[a,b]
| f (t, u(t))| ·

∣∣∣∣ (g(t) − g(a))γ

Γ(γ + 1)
−

(g(t) − g(a))γ

γΓ(γ − ϵ)

∣∣∣∣
+max

t∈[a,b]
| f (t, v(t))| ·

∣∣∣∣ (g(t) − g(a))γ

γΓ(γ − ϵ)
−

(g(t) − g(a))γ−ϵ

Γ(γ − ϵ + 1)

∣∣∣∣ + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k.

Proof. From Theorem 3.1 it follows that

|u(t) − v(t)| ≤
∣∣∣∣Iγ,λ,ga+ f (t, u(t)) − Iγ−ϵ,λ,ga+ f (t, v(t))

∣∣∣∣ + e−λt
n−1∑
k=0

|uk − vk|

k!
(g(t) − g(a))k.

Since ∣∣∣∣Iγ,λ,ga+ f (t, u(t)) − Iγ−ϵ,λ,ga+ f (t, v(t))
∣∣∣∣

≤ e−λt
∣∣∣∣( 1
Γ(γ)

−
1

Γ(γ − ϵ)

) ∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ f (τ, u(τ)) dτ

∣∣∣∣
+e−λt 1

Γ(γ − ϵ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ| f (τ, u(τ)) − f (τ, v(τ))| dτ

+e−λt
∣∣∣∣ 1
Γ(γ − ϵ)

∫ t

a
g′(τ)

(
(g(t) − g(τ))γ−1 − (g(t) − g(τ))γ−ϵ−1

)
eλτ f (τ, v(τ)) dτ

∣∣∣∣
≤ max

t∈[a,b]
| f (t, u(t))|

∣∣∣∣ (g(t) − g(a))γ

Γ(γ + 1)
−

(g(t) − g(a))γ

γΓ(γ − ϵ)

∣∣∣∣
+e−λt L

Γ(γ − ϵ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ|u(τ) − v(τ)| dτ

+max
t∈[a,b]
| f (t, v(t))|

∣∣∣∣ (g(t) − g(a))γ

γΓ(γ − ϵ)
−

(g(t) − g(a))γ−ϵ

Γ(γ − ϵ + 1)

∣∣∣∣,
we can conclude that

|u(t) − v(t)| ≤ β(t) +
Le−λt

Γ(γ − ϵ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ|u(τ) − v(τ)| dτ,

and, therefore,

eλt|u(t) − v(t)| ≤ eλtβ(t) +
L

Γ(γ − ϵ)

∫ t

a
g′(τ)(g(t) − g(τ))γ−1eλτ|u(τ) − v(τ)| dτ.

Applying the Gronwall inequality [21] we get

|u(t) − v(t)| ≤ β(t) + e−λt
∫ t

a

∞∑
k=1

( LΓ(γ)
Γ(γ − ϵ)

)k 1
Γ(kγ)

g′(τ)(g(t) − g(τ)kγ−1eλτβ(τ) dτ,

as desired. □
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Now, we present an example that illustrates the usefulness of Theorem 3.5.

Example 3.2. Let γ = n ∈ N and f (t, u) = u, for all t ∈ [0, 1]. Clearly, f satisfies the condition of
Theorem 3.5. Let ϵ ∈ (0, 1) be fixed. For the following two fractional differential systems

CDn,2,g
0+ u(t) = u(t), t ∈ [0, 1],

(
1

g′(t)
d
dt

)k
(e2tu(t))

∣∣∣∣
t=0
= uk, k ∈ {0, 1, . . . , n − 1},

(3.7)


CDn−ϵ,2,g

0+ v(t) = v(t), t ∈ [0, 1],

(
1

g′(t)
d
dt

)k
(e2tv(t))

∣∣∣∣
t=0
= uk, k ∈ {0, 1, . . . , n − 1},

(3.8)

one gets

β(t) = max
t∈[0,1]
|u(t)| ·

∣∣∣∣ (g(t) − g(0))n

Γ(n + 1)
−

(g(t) − g(0))n

nΓ(n − ϵ)

∣∣∣∣ + max
t∈[0,1]
|v(t)| ·

∣∣∣∣ (g(t) − g(0))n

nΓ(n − ϵ)
−

(g(t) − g(0))n−ϵ

Γ(n − ϵ + 1)

∣∣∣∣.
It is clear that for each t ∈ [0, 1], β(t)→ 0 when ϵ → 0. Therefore, by Theorem 3.5, we may conclude
that |u(t) − v(t)| → 0 when ϵ → 0, for all t ∈ [0, 1], proving that for small parameter ϵ the solution of
the ordinary differential system (3.7) approximates the solution to the fractional tempered differential
system (3.8).

4. Attractivity of solutions

In this section, we investigate the attractivity of solutions of the fractional tempered differential
equation

CDγ,λ,g0+ u(t) = f (t, u(t)), t ∈ [0,∞), (4.1)

subject to the initial conditions(
1

g′(t)
d
dt

)k

(eλtu(t))|t=0 = uk, k ∈ {0, 1, ..., n − 1} , (4.2)

where n − 1 < γ < n, u ∈ ACn
g([0,∞),R), and f : [0,∞) × R → R is a continuous function. We will

assume, from now on, that the function g is unbounded from above and that

lim
t→∞

e−λt(g(t) − g(0))n−1 = 0.

Definition 4.1. [23] A solution u of the fractional tempered system (4.1)–(4.2) are called attractive if
u(t)→ 0 as t → ∞.

Function u is a solution of the fractional tempered differential system (4.1)–(4.2) if and only if

u(t) = e−λt
n−1∑
k=0

uk (g(t) − g(0))k

k!
+

e−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ f (τ, u(τ))dτ. (4.3)
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To investigate the attractivity of a solution, we will first present the following hypotheses, namely:

(H1) there exist L ≥ 0, δ > 0, and β ∈ (γ, n) such that

eλt| f (t, u)| ≤ L(g(t) − g(0))−β|u|δ,

for all t ∈ (0,∞) and for all u ∈ R;

(H2) there exists a constant κ > 0 such that for any bounded set E ⊂ R,

µ ( f (t, E)) ≤ κµ(E), (4.4)

for t > 0 and µ(·) is the Hausdorff measure of non-compactness.
For any u ∈ C([0,∞),R) and given m ∈ N, define the operator A as follows:

(Au)(t) = e−λt
n−1∑
k=0

uk

(
(g(t) − g(0)) + 1

m

)k

k!
+

e−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ f (τ, u(τ))dτ,

for t ∈ [0,∞).
Since n − 1 < γ < β < n, we can choose a γ̃ > 0 sufficiently small and δ ∈ R such that

γ + γ̃ − n < 0, n − β − γ̃δ > 0, and γ + γ̃ − β − γ̃δ < 0.

Let T > 0 such that

e−λt
n−1∑
k=0

uk

(
(g(t) − g(0)) + 1

m

)k

k!
+

LΓ (γ)Γ (1 − β − γ̃δ)
Γ (1 + γ − β − γ̃δ)

(g(t) − g(0))γ+γ̃−β−γ̃δ ≤ 1,

for t ≥ T.
Define the set Sγ̃g as follows:

Sγ̃g =
{
u ∈ C([0,∞),R) :

∣∣∣(g(t) − g(0))γ̃u(t)
∣∣∣ ≤ 1, for t ≥ T

}
.

Note that Sγ̃g , ∅ and Sγ̃g is a closed, convex, and bounded subset of C ([0,∞),R).
Next we present some auxiliary lemmas, needed for our main result of this section. Let Ω be a

Banach space.

Lemma 4.1. [24] The set H ⊂ C([0,∞),Ω) is relatively compact if and only if the following
conditions hold:

(1) for any K > 0, the functions inH are equicontinuous on [0,K];

(2) for any t ∈ [0,∞),H(t) = {u(t) : u ∈ H} is relatively compact in Ω;

(3) limt→∞ |u(t)| = 0 uniformly for u ∈ H .

Lemma 4.2. Assume that (H1) holds. Then {Au : u ∈ Sγ̃g} is equicontinuous and lim
t→∞
| (Au) (t) | = 0

uniformly for u ∈ Sγ̃g.
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Proof. Let ε > 0. Since γ − β − γ̃δ < 0, there exists a sufficiently large T1 > 0 such that

e−λt
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!
<
ε

4

and
Le−λtΓ (1 − β − γ̃δ)
Γ (1 + γ − β − γ̃δ)

(g(t) − g(0))γ−β−γ̃δ <
ε

4
,

for t ≥ T1. For any u ∈ Sγ̃g and t1, t2 ≥ T1 yields

| (Au) (t2) − (Au) (t1)| ≤ e−λt1
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t1) − g(0)) + 1

m

)k

k!

+e−λt2
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t2) − g(0)) + 1

m

)k

k!

+
e−λt1

Γ (γ)

∫ t1

0
g′(τ)(g(t1) − g(τ))γ−1eλτ | f (τ, u(τ))| dτ

+
e−λt2

Γ (γ)

∫ t2

0
g′(τ)(g(t2) − g(τ))γ−1eλτ | f (τ, u(τ))| dτ

<
ε

4
+
ε

4
+

Le−λt1

Γ (γ)

∫ t1

0
g′(τ)(g(t1) − g(τ))γ−1(g(τ) − g(0))−β−δγ̃dτ

+
Le−λt2

Γ (γ)

∫ t2

0
g′(τ)(g(t2) − g(τ))γ−1(g(τ) − g(0))−β−δγ̃dτ

<
ε

4
+
ε

4
+ Le−λt1 Γ (1 − β − γ̃δ)

Γ (1 + γ − β − γ̃δ)
(g(t1) − g(0))γ−β−γ̃δ

+Le−λt2 Γ (1 − β − γ̃δ)
Γ (1 + γ − β − γ̃δ)

(g(t2) − g(0))γ−β−γ̃δ

<
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Then, we have
| (Au) (t2) − (Au) (t1)| < ε.

On the other hand, for 0 ≤ t1 < t2 ≤ T1 yields

| (Au) (t1) − (Au) (t2)| ≤

∣∣∣∣∣∣∣∣e−λt1
n−1∑
k=0

uk

(
(g(t1) − g(0)) + 1

m

)k

k!
− e−λt2

n−1∑
k=0

uk

(
(g(t2) − g(0)) + 1

m

)k

k!

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ e−λt1

Γ (γ)

∫ t1

0
g′(τ)(g(t1) − g(τ))γ−1eλτ f (τ, u(τ))dτ

−
e−λt2

Γ (γ)

∫ t2

0
g′(τ)(g(t2) − g(τ))γ−1eλτ f (τ, u(τ))dτ

∣∣∣∣∣∣ .
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Clearly, as t2 → t1, the first modulus of the right hand side goes to zero, and e−λt2 → e−λt1 . So, to prove
the desired lemma, it is enough to prove that∫ t2

0
g′(τ)(g(t2) − g(τ))γ−1eλτ f (τ, u(τ))dτ→

∫ t1

0
g′(τ)(g(t1) − g(τ))γ−1eλτ f (τ, u(τ))dτ,

as t2 → t1. Let
M = sup

t∈[0,t2]

u∈Sγ̃g

eλt| f (t, u(t))|.

Since ∣∣∣∣∣∣
∫ t2

t1
g′(τ)(g(t2) − g(τ))γ−1eλτ f (τ, u(τ))dτ

∣∣∣∣∣∣ ≤ M(g(t2) − g(t1)γ)
γ

,

which goes to zero as t2 → t1, it is enough to prove that, in the limit,∫ t1

0
g′(τ)(g(t2) − g(τ))γ−1eλτ f (τ, u(τ))dτ→

∫ t1

0
g′(τ)(g(t1) − g(τ))γ−1eλτ f (τ, u(τ))dτ,

that is, ∫ t1

0
g′(τ)

[
(g(t2) − g(τ))γ−1 − (g(t1) − g(τ))γ−1

]
eλτ f (τ, u(τ))dτ→ 0.

This fact can be proven observing that∣∣∣∣∣∣
∫ t1

0
g′(τ)

[
(g(t2) − g(τ))γ−1 − (g(t1) − g(τ))γ−1

]
eλτ f (τ, u(τ))dτ

∣∣∣∣∣∣
≤

M
[
(g(t2) − g(0))γ − (g(t2) − g(t1))γ − (g(t1) − g(0))γ

]
γ

.

Similarly, for T1 ∈ (t1, t2), we get

|(Au)(t2) − (Au)(t1)| ≤ |(Au)(t2) − (Au)(T1)| + |(Au)(T1) − (Au)(t1)| → 0,

as t2 → t1.
Thus,

{
Au : u ∈ Sγ̃g

}
is equicontinuous. Now, we show lim

t→∞
|(Au)(t)| = 0 uniformly for u ∈ Sγ̃g.

Indeed, we have

|(Au)(t)| ≤ e−λt
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!
+

Le−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1(g(τ) − g(0))−β−δγ̃dτ

≤ e−λt
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!
+ e−λt LΓ (1 − β − γ̃δ)

Γ (1 + γ − β − γ̃δ)
(g(t) − g(0))γ−β−γ̃δ, (4.5)

which goes to zero for t → ∞.
Therefore, lim

t→∞
|(Au)(t)| = 0 uniformly for u ∈ Sγ̃g. □

Lemma 4.3. Suppose (H1) holds. Then, A maps Sγ̃g into Sγ̃g and is continuous on Sγ̃g.
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Proof. The proof of this result will be presented in two steps.
Step 1. A takes Sγ̃g into Sγ̃g.
For u ∈ Sγ̃g and using Lemma 4.1, it follows that Au ∈ C([0,∞),R). Using the same argument as

the inequality (4.5), we conclude that that

|Au(t)| ≤ e−λt
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!
+

Le−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1(g(τ) − g(0))−β−δγ̃dτ

≤ e−λt
n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!
+

Le−λtΓ (1 − β − γ̃δ)
Γ (γ + 1 − β − γ̃δ)

(g(t) − g(0))γ−β−δγ̃.

Then, choosing T1 > 0 sufficiently large, from the previous inequality we conclude that

∣∣∣(g(t) − g(0))γ̃(Au)(t)
∣∣∣ ≤ e−λt(g(t) − g(0))γ̃

n−1∑
k=0

∣∣∣uk
∣∣∣ ((g(t) − g(0)) + 1

m

)k

k!

+
Le−λtΓ (1 − β − γ̃δ)
Γ (γ + 1 − β − γ̃δ)

(g(t) − g(0))γ−β−δγ̃+γ̃

≤ 1,

for t ≥ T1.
Thus, we have |(g(t) − g(0))γ̃Au(t)| ≤ 1, so ASγ̃g ⊂ S

γ̃
g.

Step 2. A is continuous on Sγ̃g.
Now, for u j, u ∈ S

γ̃
g, j = 1, 2, 3, ..., with lim

i→∞
u j = u we prove Au j → Au as j → ∞. For all ε > 0,

there exists T2 > 0 large enough such that, for all t ≥ T2,

e−λt
n−1∑
k=0

∣∣∣uk
j − uk

∣∣∣ ((g(t) − g(0)) + 1
m )

)k

k!
<
ε

2

and
e−λt2L

Γ (1 − β − γ̃δ)
Γ (γ + 1 − β − γ̃δ)

(g(T2) − g(0))γ−β−δγ̃ <
ε

2
.

Then, for t > T2, the following relation holds:

|
(
Au j(t) − Au(t)

)
| ≤ e−λt

n−1∑
k=0

∣∣∣uk
j − uk

∣∣∣ (g(t) − g(0) + 1
m )k

k!

+
e−λt

Γ(γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ

{
| f (τ, u j(τ))| + | f (τ, u(τ))|

}
dτ

≤ e−λt
n−1∑
k=0

∣∣∣uk
j − uk

∣∣∣ (g(t) − g(0) + 1
m )k

k!

+2Le−λt Γ (1 − β − γ̃δ)
Γ (γ + 1 − β − γ̃δ)

(g(t) − g(0))γ−β−δγ̃

<
ε

2
+
ε

2
= ε.
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For 0 < t ≤ T2, we have that

|
(
Au j(t) − Au(t)

)
|

≤ e−λt
n−1∑
k=0

∣∣∣uk
j − uk

∣∣∣ (g(t) − g(0) + 1
m )k

k!

+
e−λt

Γ(γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ

{
| f (τ, u j(τ)) − f (τ, u(τ))|

}
dτ. (4.6)

Applying the limit with j → ∞ on both sides of Eq (4.6) and using the Lebesgue dominated
convergence theorem yields |

(
Au j(t) − Au(t)

)
| → 0. Thus

∥∥∥Au j − Au
∥∥∥ → 0 as j → ∞ so A is

continuous. □

We are now able to present the main result of this section, which ensures that our problem has at
least one attractive solution, under some conditions.

Theorem 4.1. Assume (H1) and (H2) hold. Then, the tempered fractional problem (4.1)–(4.2) admits
at least one attractive solution.

Proof. First, note that A : Sγ̃g → S
γ̃
g is bounded and continuous (see Lemma 4.3). Furthermore, we

know that
{
Au : u ∈ Sγ̃g

}
is equicontinuous and lim

t→∞
|Au(t)| = 0 uniformly for u ∈ Sγ̃g (see Lemma 4.2).

It remains to be verified that for any t ∈ [0,∞),
{
Au : u ∈ Sγ̃g

}
is relatively compact in R by using (H2)

(see [24]). Therefore, by Schauder fixed point theorem, the operator A has a fixed point um ∈ S
γ̃
g with

um(t) → 0 as t → ∞. Applying a similar method as the one given in [24], we can prove that (um(t))m

is relatively compact. Using the Arzelà-Ascoli theorem [25], (um(t))m has a uniformly convergent
subsequence (ump)p. Moreover, (ump)p satisfies

ump(t) = e−λt
n−1∑
k=0

uk

[
(g(t) − g(0)) + 1

mp

]k

k!
+

e−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ f (τ, ump(τ))dτ. (4.7)

Let u∗(t) = lim
p→∞

ump(t), (t , 0). The Lebesgue dominated theorem with Eq (4.7) yields

u∗(t) = e−λt
n−1∑
k=0

uk
[
(g(t) − g(0))

]k

k!
+

e−λt

Γ (γ)

∫ t

0
g′(τ)(g(t) − g(τ))γ−1eλτ f (τ, u∗(τ))dτ, (4.8)

with t ∈ [0,∞), so u∗ is an attractive solution for the tempered fractional problem. □

5. Conclusions

In this work we studied fractional differential equations in the presence of a generalized fractional
derivative, which involves an arbitrary kernel g and an exponential decay. Using the Banach fixed point
theorem, an existence and uniqueness result is obtained. Moreover, a numerical procedure to determine
approximations of the solution is given, based on Picard’s iterations. The stability of solutions is
considered, as an application of the considered fractional Gronwall inequality. We end with the study of
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the attractivity of solutions of the fractional differential system. After proving some auxiliary lemmas,
we deduce the desired result as a consequence of the Schauder fixed point theorem and the Arzelà-
Ascoli theorem.

As a potential direction for future research, it would be valuable to investigate numerical algorithms
designed to handle such derivatives. While numerical methods exist to address problems involving
fractional derivatives with respect to an arbitrary kernel g, to the best of our knowledge, a general
procedure for dealing with this generalized tempered fractional derivative remains absent.
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