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1. Introduction

Data classification is an important data mining technique with a wide variety of applications to
classify the different kinds of data that exist practically in all aspects of our life. It has been recognized
as a critical topic in machine learning and data mining.

We begin by reviewing the history of various mathematical models and related techniques used for
this purpose. Convex bilevel optimization problem plays an important role in real-world applications.
It can be applied to data classification, see for example [1–4]. The convex bilevel optimization problem
consists of the constrained minimization problem known as the outer level,

min
u∈Λ

φ(u), (1.1)
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where H is a real Hilbert space, φ : H → R is a strongly convex differentiable function, and Λ is a
nonempty set of minimizers of the inner level given by

arg min
u∈Rm

{ϕ(u) + ψ(u)}, (1.2)

where ϕ : Rm → R is convex differentiable function such that ∇ϕ is Lϕ-Lipschitzian and ψ ∈ Γ0(H),
the set of proper lower semicontinuous convex functions from H to R. Problems (1.1) and (1.2) are
labeled as a bilevel optimization problem.

Furthermore, the solution of (1.2) can be restated as the problem of finding û ∈ Λ such that

0 ∈ ∇ϕ(û) + ∂ψ(û). (1.3)

Parikh and Boyd [5] introduced the proximal gradient technique for solving (1.3), that is, û is a
solution of (1.3) if and only if û ∈ F(T ) where T is the prox-grad mapping defined by

T B proxtψ(I − t∇ϕ),

for t > 0, and F(T ) is the set of fixed points of T . It is well-known that if t ∈ (0, 2
Lϕ

), then T is
nonexpansive and F(T ) = arg min

u∈Rm
{ϕ(u) + ψ(u)}. We also note that the set of all common fixed points

of Tn = proxcn
ψ(I − s∇ϕ) is the set of minimizers of the inner level problem (1.2).

Furthermore, u ∈ F(T ) is a solution for problem (1.1) if u satisfies the condition

〈∇φ(u), v − u〉 ≥ 0, ∀v ∈ F(T ).

Hereafter, we would like to give some background on iteration methods for finding a fixed point of
the nonexpansive mapping T , that is, finding a point u∗ ∈ C such that Tu∗ = u∗.

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and C be a nonempty
closed convex subset of H . One of the most popular iterative methods for finding a fixed point of a
nonexpansive mapping is the Mann iteration, which was first introduced by Mann [6]. Later, Reich [7]
modified it to the general version

un+1 = λnun + (1 − λn)Tun, ∀n ≥ 1, (1.4)

where u1 ∈ H and {λn} is a real sequence in [0, 1]. He proved the weak convergence of (1.4) under the
condition

∑∞
n=1 λn(1 − λn) = ∞.

Later, Halpern [8] introduced an iterative method known as the Halpern iteration for finding a fixed
point of nonexpansive mappings in real Hilbert spaces. His algorithm was given in the following form:

un+1 = λnu0 + (1 − λn)Tun, ∀n ≥ 1, (1.5)

where u0, u1 ∈ C and {λn} ⊂ [0, 1]. Under some condition on {λn}, he established a strong convergence
theorem of (1.5) when u0 = 0. Later, Reich [9] extended the Halpern iteration (1.5) to uniformly
smooth Banach spaces.

In 1974, by modifying the Mann iteration, Ishikawa [10] introduced the Ishikawa iteration process
as follows: {

vn = (1 − λn)vn + λnTvn,

un+1 = (1 − δn)un + δnTvn, ∀n ≥ 1,
(1.6)

where u1 ∈ H and {λn}, {δn} ⊂ [0, 1].
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Moudafi [11] demonstrated a viscosity approximation method for a nonexpansive mapping in 2000,
which was defined as

un+1 = λn f (un) + (1 − λn)Tun, ∀n ≥ 1, (1.7)

where u1 ∈ H , {λn} ⊂ [0, 1], and f is a contraction mapping. He proved that, under certain conditions,
{un} generated by (1.7) converges strongly to x ∈ F(T ).

By modification of the Ishikawa iteration, Agarwal et al. [12] presented the S-iteration process as
follows: {

vn = (1 − λn)un + λnTun,

un+1 = (1 − δn)Tun + δnTvn, ∀n ≥ 1,
(1.8)

where {λn}, {δn} ⊂ [0, 1] and x1 is arbitrarily chosen. Furthemore, they demonstrated that the
convergence behavior of the S-iteration is better than the iterations of Mann and Ishikawa.

Now, we would like to give some background on iteration methods to find a common fixed point of
a countable family of a nonexpansive mapping {Tn}.

Aoyama et al. [13] demonstrated a Halpern type iteration

un+1 = λnu + (1 − λn)Tnun, ∀n ≥ 1, (1.9)

where {λn} ⊂ [0, 1] and u1 and u ∈ C are arbitrarily chosen. Further, they showed that, under some

condition on {λn}, xn → x ∈
∞⋂

n=1
F(Tn).

Thereafter, Takahashi [14] demonstrated the iteration process

un+1 = λn f (un) + (1 − λn)Tnun, ∀n ≥ 1, (1.10)

where {λn} ⊂ [0, 1], and established a strong convergence theorem of (1.10) under some constraint
on {λn}.

In 2010, Klin-eam and Suantai [15] introduced the following algorithm:{
vn = λn f (un) + (1 − δn)Tnun,

un+1 = (1 − δn)vn + δnTnvn, ∀n ≥ 1,
(1.11)

where {λn} ⊂ [0, 1] and u1 ∈ C, and showed that, under certain conditions, {un} generated by (1.11)
converges strongly to a common fixed point of Tn.

Polyak [16] developed an inertial methodology for improving the convergence behavior of the
method. From that time on, the inertial methodology was frequently employed to accelerate the
convergence behavior of methods, such as the fast iterative shrinkage-thresholding algorithm (FISTA)
defined as follows: 

vn = Tun,

tn+1 =
1+
√

1+4t2n
2 ,

θn = tn−1
tn+1

,

un+1 = vn + θn(vn − vn−1),∀n ≥ 1,

(1.12)

where u1 = v0 ∈ R
m, t1 = 1, and T = proxλg(I − λ∇ f ) for λ > 0. FISTA was introduced by Beck and

Teboulle [17], and they applied it to solve some image restoration problems where it was shown that
the performance of FISTA was better than the existing methods in the literature.
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A new accelerated viscosity algorithm (NAVA) was proposed by Puangpee and Suantai [18] for
finding a common fixed point of {Tn}. It was defined as follows:

vn = un + θn(un − un−1),
wn = (1 − σn)vn + σnTnvn,

un+1 = λn f (un) + δnTnvn + γnTnwn, ∀n ≥ 1,
(1.13)

where u0, u1 ∈ H, and {σn}, {λn}, {δn}, and {γn} ⊂ (0, 1). Moreover, they obtained a strong convergence
theorem of (1.13) under certain control conditions.

Polyak [19] also highlighted how multi-step inertial methods can accelerate optimization
approaches, despite the fact that neither the convergence nor the rate outcome of such multi-step inertial
methods are proven in [19].

After that, Q. L. Dong et al. [20] presented the general inertial Mann algorithm as follows:
vn = un + θn(un − un−1),
wn = un + ζn(un − un−1),

un+1 = (1 − γn)vn + γnT (wn)
(1.14)

for each n ≥ 1, where {θn} ⊂ [0, θ], {ζn} ⊂ [0, ζ] with θ1 = ζ1 = 0, and θ, ζ ∈ [0, 1).
From here on, we would like to give a some direct methods to solve problem (1.1), namely,

the Bilevel Gradient Sequential Averaging Method (BiG-SAM) and the inertial Bilevel Gradient
Sequential Averaging Method (iBiG-SAM).

In 2017, Sabach and Shtern [21] presented the BiG-SAM process (Algorithm 1) as follows:

Algorithm 1 BiG-SAM

Input: u1 ∈ R
m, λn ∈ (0, 1), ι ∈ (0, 1

Lϕ
) and s ∈ (0, 2

Lφ+σ
).

For n ≥ 1 :
Compute:  vn = proxιg(un − ι∇Lϕ(un)),

un+1 = λn(un−1 − s∇φ(un)) + (1 − λn)vn.

They showed that un → u where u is a solution of (1.1) and (1.2).
Later, Shehu et al. [22] introduced iBiG-SAM (Algorithm 2) by utilizing an inertial technique with

BiG-SAM as follows:
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Algorithm 2 iBiG-SAM

Input: u0, u1 ∈ R
m, α ≥ 3, λn ∈ (0, 1), ι ∈ (0, 2

Lϕ
), s ∈ (0, 2

Lφ+σ
] such that {λn} and {εn} satisfying the

Assumption 1.1.
For n ≥ 1 :
Choose: θn ∈ [0, θ̄n] with θ̄n defined by

θ̄n B

 min{ n−1
n+α−1 ,

εn
‖un−un−1‖

} if un , un−1,
n−1

n+α−1 otherwise.

Compute: 
vn = un + θn(un − un−1),
tn = proxιψ(vn − ι∇ϕ(vn)),
wn = vn − s∇φ(vn),
un+1 = λnwn + (1 − λn)tn.

They proved a strong convergence theorem of Algorithm 2 under Assumption 1.1 as follows:

Assumption 1.1. Suppose {λn}
∞
n=1 ⊂ (0, 1) and {εn}

∞
n=1 are positive sequences that satisfy the following

conditions:

(1) limn→∞ λn = 0 and
∑∞

n=1 λn = ∞.

(2) εn = o(λn) , i.e., limn→∞(εn/λn) = 0.

Motivated by ongoing research in this area, we are interested in introducing a new accelerated
algorithm for solving convex bilevel optimization problems and applying it to solve data
classification problems.

The following describes the way this paper is organized: Section 2 contains some fundamental
definitions and helpful lemmas. The main results of this work are presented in Section 3. In this part,
we provide a new accelerated algorithm for solving convex bilevel optimization problems and prove
its strong convergence theorem. In Section 4, we also use our main finding to solve data classification
problems. Finally, Section 5 contains a conclusion of our work.

2. Materials and methods

Throughout this paper, let C be a nonempty closed convex subset of real Hilbert space H , and let
T : C → C be a mapping. Let the strong and weak convergence of {un} to u ∈ H be denoted by un → u
and un ⇀ u, respectively. A point u ∈ C is said to be a fixed point of T if Tu = u, and the set of all
fixed points of T is denoted by F(T ).

A set C is said to be convex if αu + (1 − α)v ∈ C for all u, v ∈ C and α ∈ [0, 1].

Definition 2.1. Let f : H → R̄. Then, the function f is convex on C if

f (λu + (1 − λ)v) ≤ λ f (u) + (1 − λ) f (v), ∀u, v ∈ C and λ ∈ (0, 1).
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Definition 2.2. A function f : H → R is strongly convex with constant σ > 0 if for any u, v ∈ H and
λ ∈ [0, 1],

f (λu + (1 − λ)v) ≤ λ f (u) + (1 − λ) f (v) − σ
2 λ(1 − λ)‖u − v‖2.

Definition 2.3. For a scalar-valued function f : Rm → R, the derivative of f at ū is denoted by
∇ f (ū) ∈ Rm and is defined as

lim
‖h‖→0

f (ū + h) − f (ū) − 〈∇ f (ū), h〉
‖h‖

= 0.

A function f is differentiable if it is differentiable at every u ∈ Rm.

Definition 2.4. Let f : Rm → R be convex differentiable. The gradient of f at u denoted by ∇ f (u), is
defined by

∇ f (u) B


∂ f (u)
∂u1
...

∂ f (u)
∂un

.
Hereafter, we will recall some important definitions, lemmas, and propositions that will be used to

prove our main results.

Definition 2.5. If there exists τ ≥ 0 such that

‖Tu − Tv‖ ≤ τ‖u − v‖, ∀u, v ∈ C,

T : C → C is said to be Lipschitzian.

In the above inequality, if 0 ≤ τ < 1 , T is called a contraction, and if τ = 1, T is called
nonexpansive. It is known that F(T ) is closed and convex if T is nonexpansive.

Definition 2.6. Let u ∈ H . An element u∗ ∈ C is said to be a metric projection of u on C if

‖u∗ − u‖ ≤ ‖v − u‖, ∀v ∈ C,

and u∗ is denoted by PCu.

The function PC is called the metric projection of H onto C and it is well-known that PC is
nonexpansive. Moreover,

〈u − PCu, v − PCu〉 ≤ 0, (2.1)

holds for all u ∈ H and v ∈ C. More information and properties of PC can be found in [23].
For finding a common fixed point of a family of nonexpansive {Tn}, we need some important

conditions, one of which is the NST- condition introduced by Nakajo et al. [24].
Let {Tn} and T be two families of nonexpansive mappings of H into itself with ∅ , F(T) ⊂⋂∞

n=1 F(Tn) where F(T ) is the set of all common fixed points of each T ∈ T. We say that {Tn} satisfies
NST- condition (I) with T if for each bounded sequence {un}

lim
n→∞
‖un − Tnun‖ = 0⇒ lim

n→∞
‖un − Tun‖ = 0, ∀T ∈ T.

In particular, if T = {T }, then {Tn} is said to satisfy NST- condition (I) with T .
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Definition 2.7. Let ψ ∈ Γ0(H) and t > 0 . The proximitor of tψ at v ∈ H , denoted by proxtψ(v), is
defined as

proxtψ(v) = arg min
u∈H

{
ψ(u) +

‖u − v‖2

2t

}
.

The forward-backward operator T of ϕ and ψ with respect to t is denoted by T B proxtψ(I − t∇ϕ).
Futhermore, if t ∈ (0, 2/Lϕ), where Lϕ is the Lipschitz gradient of ϕ, it is generally known that T is
nonexpansive.

The following lemma is required to prove our main results.

Lemma 2.8. [25, 27] The following holds with u,w ∈ H and any arbitrary real number λ ∈ [0, 1] :

(1) ‖λu + (1 − λ)w‖2 = λ‖u‖2 + (1 − λ)‖w‖2 − λ(1 − λ)‖u − w‖2;

(2) ‖u ± w‖2 = ‖u‖2 ± 2〈u,w〉 + ‖w‖2;

(3) ‖u + w‖2 ≤ ‖u‖2 + 2〈w, u + w〉.

The following equality holds for all u, v,w ∈ H by utilizing Lemma 2.8 (1):

‖αu + βv + γw‖2 =α‖u‖2 + β‖v‖2 + γ‖w‖2 − αβ‖u − v‖2 − βγ‖v − w‖2 − αγ‖u − w‖2, (2.2)

where α, β, γ ∈ [0, 1] with α + β + γ = 1.

Lemma 2.9. [26] Let ψ ∈ Γ0(H), and ϕ : H → R be convex differentiable such that ∇ϕ is Lϕ-
Lipschitzian with Lϕ > 0. Let {cn} ⊂ (0, 2/Lϕ) and c ∈ (0, 2/Lϕ) such that cn → c. Define Tn B

proxcnψ(I − cn∇ϕ), then {Tn} satisfies NST-condition (I) with T , where T B proxcψ(I − c∇ϕ).

Lemma 2.10. [18] Let T be a nonexpansive mapping, and {Tn} be a family of nonexpansive mappings
such that ∅ , F(T ) ⊂

⋂∞
n=1 F(Tn). For any subsequences {k} of {n}, if {Tn} satisfies NST-condition (I)

with T , then {Tk} also satisfies NST-condition (I) with T .

Proposition 2.11. [21] Let φ be a strongly convex differentiable function from Rm into R with
parameter σ > 0 such that ∇φ is Lφ-Lipschitzian. Define Ts B I − s∇φ, where I is the identity
mapping. Then, Ts is a contraction for all s ≤ 2

Lφ+σ
, that is

‖u − s∇φ(u) − (v − s∇φ(v))‖ ≤

√
1 −

2sσLφ
σ + Lφ

‖u − v‖, ∀u, v ∈ Rm.

Lemma 2.12. [28] Let T : H → H be a nonexpansive mapping with F(T ) , ∅. Then, I − T is
demiclosed at zero, that is

‖un − Tun‖ → 0⇒ u ∈ F(T ),

for any sequences {un} ∈ H such that un ⇀ u ∈ H .

Lemma 2.13. [29, 30] Let {pn}, {ξn} be sequences of nonnegative real numbers, {αn} a sequence
in [0, 1], and {qn} a sequence of real numbers such that

pn+1 ≤ (1 − αn)pn + αnqn + rn,

for all n ∈ N. If the following conditions hold,
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(1)
∑∞

n=1 αn = ∞;

(2)
∑∞

n=1 rn < ∞;

(3) lim supn→∞ qn ≤ 0;

then limn→∞ pn = 0.

Lemma 2.14. [31] Let {ϑn} be a real sequence of numbers that does not decrease at infinity in such
a way that there is a subsequence {ϑni} such that ϑnk < ϑnk+1 for all k ∈ N. Define the sequence
{π(n)}n≥n0 by

π(n) := max{ j ≤ n : ϑ j < ϑ j+1},

where n0 ∈ N such that { j ≤ n0 : ϑ j < ϑ j+1} , ∅. Then, the following hold:

(1) π(n0) ≤ π(n0 + 1) ≤ . . . and π(n)→ ∞;

(2) ϑπ(n) ≤ ϑπ(n)+1 and ϑn ≤ ϑπ(n)+1 for all n ≥ n0.

3. Results

In this part, we propose a new accelerated algorithm for finding a common fixed point of a
family of nonexpansive mappings in H by using the two-step inertial methodology with the viscosity
approximation method. Second, we establish a strong convergence theorem under relevant conditions.

To do this, we start by introducing a new two-step inertial algorithm for estimating a solution for a
common fixed point problem (Algorithm 3).

Throughout this section, let {Tn} be a family of nonexpansive mappings onH into itself. Let f be a
τ-contraction mapping onH with τ ∈ (0, 1), {ηn} ⊂ (0,∞), and {λn}, {δn}, {ιn} ⊂ (0, 1).

Algorithm 3 Two-step Inertial and Viscosity Algorithm
Initialize : Take u1, u0, u−1 ∈ H . Let {µn} ⊂ (0,∞) and {ρn} ⊂ (−∞, 0).
For n ≥ 1 :
Set

θn =

min{µn,
ηnλn

‖un−un−1‖
} if un , un−1;

µn otherwise.

ζn =

max{ρn,
−ηnλn
‖un−un−1‖

} if un , un−1;
ρn otherwise.

Compute 
vn = un + θn(un − un−1) + ζn(un−1 − un−2),
wn = ιn f (vn) + (1 − ιn)Tnvn,

un+1 = (1 − λn − δn)vn + λnTnwn + δnTnvn.

Next, we prove a strong convergence theorem of Algorithm 3.
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Theorem 3.1. Let T : H → H be a nonexpansive mapping with F(T ) , ∅. Assume that ∅ ,
F(T ) ⊂

⋂∞
n=1 F(Tn) such that {Tn} satisfies NST-condition (I) with T . Let {un} be a sequence generated

by Algorithm 3 such that the following additional conditions hold:

(1) limn→∞ ηn = 0,

(2) limn→∞ ιn = 0 and
∑∞

n=1 ιn = ∞,

(3) 0 < a < λn for some a ∈ R,

(4) 0 < b < δn < λn + δn < c < 1 for some b, c ∈ R,

then the sequence {un} → u ∈ F(T ) such that u = PF(T ) f (u).

Proof. Let u ∈ F(T ) such that u = PF(T ) f (u). First, we show that {un} is bounded. According to the
definitions of vn and wn, we obtain

‖vn − u‖ = ‖un + θn(un − un−1) + ζn(un−1 − un−2) − u‖
≤ ‖un − u‖ + θn‖un − un−1‖ + |ζn|·‖un−1 − un−2‖,

(3.1)

and
‖wn − u‖ = ‖ιn f (vn) + (1 − ιn)Tnvn − u‖

≤ ιn‖ f (vn) − f (u)‖ + ιn‖ f (u) − u‖ + (1 − ιn)‖Tnvn − u‖
≤ ιnτ‖vn − u‖ + ιn‖ f (u) − u‖ + (1 − ιn)‖vn − u‖
= (1 − (1 − τ)ιn)‖vn − u‖ + ιn‖ f (u) − u‖
≤ ‖vn − u‖ + ιn‖ f (u) − u‖.

(3.2)

We also know from (3.1) and (3.2) that

‖un+1 − u‖ = ‖λnTnwn + δnTnvn + (1 − λn − δn)vn − u‖
≤ λn‖Tnwn − u‖ + δn‖Tnvn − u‖ + (1 − λn − δn)‖vn − u‖
≤ λn‖wn − u‖ + δn‖vn − u‖ + (1 − λn − δn)‖vn − u‖
= λn‖wn − u‖ + (1 − λn)‖vn − u‖
≤ λn((1 − (1 − τ)ιn)‖vn − u‖ + ιn‖ f (u) − u‖)

+(1 − λn)‖vn − u‖
= (1 − (1 − τ)λnιn)‖vn − u‖ + λnιn‖ f (u) − u‖
≤ (1 − (1 − τ)λnιn)‖un − u‖

+(1 − (1 − τ)λnιn)[θn‖un − un−1‖+|ζn|·‖un−1 − un−2‖]
+λnιn‖ f (u) − u‖

= (1 − (1 − τ)λnιn)‖un − u‖
+(1 − τ)λnιn

(1−(1−τ)λnιn)
(1−τ)ιn

·
θn
λn
‖un − un−1‖

+(1−τ)λnιn[ (1−(1−τ)λnιn)
(1−τ)ιn

·
|ζn |

λn
‖un−1−un−2‖+

‖ f (u)−u‖
1−τ ].

(3.3)

In accordance with Assumption (1) and the definition of θn and ζn, we have

θn

λn
‖un − un−1‖ → 0 and

|ζn|

λn
‖un−1 − un−2‖ → 0 as n→ ∞.

Then, positive constants M1,M2 exist such that

θn

λn
‖un − un−1‖ ≤ M1 and

|ζn|

λn
‖un−1 − un−2‖ ≤ M2.
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From (3.3), we have

‖un+1 − u‖ ≤ (1 − (1 − τ)λnιn)‖un − u‖
+(1 − τ)λnιn

ξ

1−τ ·
θn
λn
‖un − un−1‖

+(1 − τ)λnιn[ ξ

1−τ ·
|ζn |

λn
‖un−1−un−2‖+

‖ f (u)−u‖
1−τ ]

≤ (1 − (1 − τ)λnιn)‖un − u‖ + (1 − τ)λnιn[ ξ(M1+M2)+‖ f (u)−u‖
1−τ ]

≤ max{‖un − u‖, ξ(M1+M2)+‖ f (u)−u‖
1−τ }

...

≤ max{‖u1 − u‖, ξ(M1+M2)+‖ f (u)−u‖
1−τ },

where ξ = sup{ 1−(1−τ)λnιn
ιn

}. As a result, {un} is bounded. Moreover, {vn}, {wn}, { f (un)}, and {Tnvn} are all
bounded.

Using Lemma 2.8 (2), we also have

‖vn − u‖2 = ‖un + θn(un − un−1) + ζn(un−1 − un−2) − u‖2

≤ ‖un−u‖2+2θn〈un−u, un−un−1〉+2ζn〈un−u, un−1−un−2〉

+‖θn(un − un−1) + ζn(un−1 − un−2) − u‖2

≤ ‖un−u‖2+2θn〈un−u, un−un−1〉+2ζn〈un−u, un−1−un−2〉

+θ2
n‖un − un−1‖

2 + 2θnζn〈un − un−1, un−1 − un−2〉

+ζ2
n‖un−1 − un−2‖

2

≤ ‖un − u‖2 + 2θn‖un − u‖·‖un − un−1‖

+2 |ζn|·‖un − u‖·‖un−1 − un−2‖ + θ2
n‖un − un−1‖

2

+2θn|ζn|·‖un − un−1‖·‖un−1 − un−2‖+ζ
2
n‖un−1 − un−2‖

2.

(3.4)

Using Lemma 2.8 (3) and (3.4), we have

‖un+1 − u‖2 = ‖λnTnwn + δnTnvn + (1 − λn − δn)vn − u‖2

≤ λn‖Tnwn − u‖2+δn‖Tnvn − u‖2+(1−λn−δn)‖vn − u‖2

≤ λn‖wn − u‖2 + δn‖vn − u‖2 + (1 − λn − δn)‖vn − u‖2

= λn‖wn − u‖2 + (1 − λn)‖vn − u‖2

= λn‖ιn f (vn) + (1 − ιn)Tnvn − u‖2 + (1 − λn)‖vn − u‖2

≤ λn‖ιn( f (vn) − f (u)) + (1 − ιn)(Tnvn − u)‖2

+2λnιn〈 f (u) − u,wn − u〉 + (1 − λn)‖vn − u‖2

≤ λn[ιn‖ f (vn) − f (u)‖2 + (1 − ιn)‖Tnvn − u‖2]
+2λnιn〈 f (u) − u,wn − u〉 + (1 − λn)‖vn − u‖2

≤ λnιnτ‖vn − u‖2 + λn(1 − ιn)‖vn − u‖2

+2λnιn〈 f (u) − u,wn − u〉 + (1 − λn)‖vn − u‖2

= (1 − (1 − τ)λnιn)‖vn − u‖2 + 2λnιn〈 f (u) − u,wn − u〉
= (1 − (1 − τ)λnιn)

[
‖un − u‖2+2θn‖un − u‖·‖un − un−1‖

+2 |ζn|·‖un − u‖·‖un−1 − un−2‖ + θ2
n‖un − un−1‖

2

+2θn|ζn|·‖un−un−1‖·‖un−1−un−2‖+ζ
2
n‖un−1−un−2‖

2
]

+2λnιn〈 f (u) − u,wn − u〉.

(3.5)

Since
θn‖un − un−1‖ = λn ·

θn
λn
‖un − un−1‖ → 0
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and
|ζn|·‖un−1 − un−2‖ = λn ·

|ζn |

λn
·‖un−1 − un−2‖ → 0

as n→ ∞, there exist positive constants M3,M4 such that

θn‖un − un−1‖ ≤ M3,

|ζn|·‖un−1 − un−2‖ ≤ M4.

It follows from (3.5) that

‖un+1 − u‖2 ≤ (1 − (1 − τ)λnιn)‖un − u‖2

+(1 − (1 − τ)λnιn)θn‖un − un−1‖

×(2‖un − u‖ + θn‖un − un−1‖ + |ζn|·‖un−1 − un−2‖)
+(1 − (1 − τ)λnιn) |ζn|·‖un−1 − un−2‖

×(2‖un − u‖+|ζn|·‖un−1 − un−2‖)
+2λnιn〈 f (u) − u,wn − u〉

≤ (1 − (1 − τ)λnιn)‖un − u‖2

+(1−(1−k)λnιn)
[
5M5θn‖un−un−1‖+3M5 |ζn|·‖un−1−un−2‖

]
+2λnιn〈 f (u) − u,wn − u〉

≤ (1 − (1 − τ)λnιn)‖un − u‖2

+(1−τ)λnιn
[

5M5ξ

1−τ ·
θn
λn
‖un−un−1‖+

3M5ξ

1−τ ·
|ζn |

λn
‖un−1−un−2‖

+ 2
1−τ〈 f (u) − u,wn − u〉

]
,

(3.6)

where M5 = max{sup
n
‖un − u‖,M3,M4}. From (3.6), we set

pn B ‖un − u‖2, αn B (1 − τ)λnιn

and
qn B

5M5ξ

1−τ θn‖un−un−1‖+
3M5ξ

1−τ |ζn|·‖un−1−un−2‖ + 2
1−τ〈 f (u) − u,wn − u〉.

Hence, we obtain
pn+1 ≤ (1 − αn)pn + αnqn. (3.7)

After that, we examine the following two cases:
Case 1. Assume there is an n0 ∈ N such that the sequence {‖un − u‖}n≥n0 is nonincreasing. As a result,
{‖un − u‖} converges since it has boundaries from below by 0. We infer that

∑∞
n=1 αn = ∞, by using

Assumptions (2) and (3). Then, using Lemma 2.13, we assert that

lim sup
n→∞

〈 f (u) − u,wn − u〉 ≤ 0.

Indeed, by (3.2), we have

‖wn − u‖2 − ‖vn − u‖2 ≤ (‖vn − u‖ + ιn‖ f (u) − u‖)2 − ‖vn − u‖2

= 2ιn‖vn − u‖·‖ f (u) − u‖ + ι2n‖ f (u) − u‖2.
(3.8)
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By Lemma 2.8 (1), (3.4), and (3.8), we have

‖un+1 − u‖2 = ‖λnTnwn + δnTnvn + (1 − λn − δn)vn − u‖2

≤ λn‖Tnwn − u‖2+δn‖Tnvn − u‖2+(1−λn−δn)‖vn − u‖2

−δn(1−λn−δn)‖vn − Tnvn‖
2

≤ λn‖wn − u‖2 + δn‖vn − u‖2 + (1 − λn − δn)‖vn − u‖2

−δn(1 − λn − δn)‖vn − Tnvn‖
2

= λn‖wn − u‖2 + (1 − λn)‖vn − u‖2

−δn(1 − λn − δn)‖vn − Tnvn‖
2

≤ λn[‖wn − u‖2 − ‖vn − u‖2]
+‖un − u‖2 + 2θn‖un − u‖·‖un − un−1‖

+2 |ζn|·‖un − u‖·‖un−1 − un−2‖ + θ2
n‖un − un−1‖

2

+2θn|ζn|·‖un−un−1‖·‖un−1−un−2‖+ζ
2
n‖un−1−un−2‖

2

−δn(1 − λn − δn)‖vn − Tnvn‖
2

≤ 2λnιn‖vn − u‖·‖ f (u) − u‖ + λnι
2
n‖ f (u) − u‖2

+‖un − u‖2 + 2θn‖un − u‖·‖un − un−1‖

+2 |ζn|·‖un − u‖·‖un−1 − un−2‖ + θ2
n‖un − un−1‖

2

+2θn|ζn|·‖un−un−1‖·‖un−1−un−2‖+ζ
2
n‖un−1−un−2‖

2

−δn(1 − λn − δn)‖vn − Tnvn‖
2.

(3.9)

This implies that

δn(1 − λn − δn)‖vn − Tnvn‖
2 ≤ 2λnιn‖vn − u‖·‖ f (u) − u‖ + λnι

2
n‖ f (u) − u‖2

+‖un − u‖2 − ‖un+1 − u‖2

+θn‖un − un−1‖

×(2‖un − u‖ + θn‖un − un−1‖ + 2 |ζn|·‖un−1 − un−2‖)
+ |ζn|·‖un−1 − un−2‖(2‖un − u‖ + |ζn|·‖un−1 − un−2‖).

(3.10)

Assumptions (2) and (4), as well as the convergence of the sequences {‖un − u‖} and the fact that
θn‖un − un−1‖ → 0 and |ζn|·‖un−1 − un−2‖ → 0, imply that

‖vn − Tnvn‖ → 0 as n→ ∞. (3.11)

Since {Tn} satisfies NST-condition (I) with T , we obtain

‖vn − Tvn‖ → 0 as n→ ∞. (3.12)

As a result of the definition of vn and wn, we have

‖vn − wn‖ = ‖vn − ιn f (vn) − (1 − ιn)Tnvn‖

≤ ιn‖ f (vn) − vn‖ + (1 − ιn)‖Tnvn − vn‖.
(3.13)

We can conclude from (3.11) and Assumption (2) that

‖vn − wn‖ → 0 as n→ ∞. (3.14)
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By definition of un+1, we have

‖un+1 − vn‖ ≤ ‖un+1 − Tnvn‖ + ‖Tnvn − vn‖

= ‖λnTnwn + δnTnvn + (1 − λn − δn)vn − Tnvn‖

+‖Tnvn − vn‖

≤ λn‖Tnwn − Tnvn‖ + (1 − λn − δn)‖Tnvn − vn‖

+‖Tnvn − vn‖

≤ λn‖wn − vn‖ + (2 − λn − δn)‖Tnvn − vn‖,

(3.15)

which implies
‖un+1 − vn‖ → 0 as n→ ∞. (3.16)

We can also conclude the following fact from the definition of vn:

‖vn − un‖ = θn‖un − un−1‖ + |δn|·‖un−1 − un−2‖ → 0 as n→ ∞. (3.17)

Hence,
‖un+1 − un‖ ≤ ‖un+1 − vn‖ + ‖vn − un‖. (3.18)

Set
V = lim sup

n→∞
〈 f (u) − u,wn − u〉. (3.19)

So, there is a subsequence {wnk} of {wn} such that

V = lim
k→∞
〈 f (u) − u,wnk − u〉. (3.20)

Because {wnk} is bounded, there must be a subsequence {wn′k
} of {wnk} that satisfies wn′k

⇀ w ∈ H .
We can assume wnk ⇀ w and (3.20) hold without losing generality.

We may conclude from (3.14) that vnk ⇀ w, and we obtain that w ∈ F(T ) by using that fact and
Lemma 2.12. Furthermore, we obtain the following fact by using u = PF(T ) f (u) and (2.1):

V = lim
k→∞
〈 f (u) − u,wnk − u〉 = 〈 f (u) − u,w − u〉 ≤ 0. (3.21)

Hence,
V = lim sup

n→∞
〈 f (u) − u,wn − u〉 ≤ 0, (3.22)

which implies lim sup
n→∞

qn≤0 by using θn‖un − un−1‖→0 and |ζn|·‖un−1 − un−2‖→0.

Using Lemma 2.13, we can conclude that un → u.
Case 2. Assume that for any n0, the sequence {‖un − u‖}n≥n0 is not monotonically nonincreasing. We
define

ϑn := ‖un − u‖2.

So, there is a subsequence {ϑnk} of {ϑn} such that ϑnk < ϑnk+1 for all k ∈ N. We define π : {n : n ≥
n0} → N, by

π(n) := max{ j ∈ N : j ≤ n, ϑ j < ϑ j+1}.

For any n ≥ n0, we have ϑπ(n) ≤ ϑπ(n)+1 by Lemma 2.14, that is

‖uπ(n) − u‖ ≤ ‖uπ(n)+1 − u‖. (3.23)
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As in Case 1, by applying (3.23) we obtain
δπ(n)(1 − λπ(n) − δπ(n))‖vπ(n) − Tπ(n)vπ(n)‖

2

≤ 2λπ(n)ιπ(n)‖vπ(n) − u‖·‖ f (u) − u‖ + λπ(n)ι
2
π(n)‖ f (u) − u‖2

+‖uπ(n) − u‖2 − ‖uπ(n)+1 − u‖2

+θπ(n)‖uπ(n) − uπ(n)−1‖

×(2‖uπ(n) − u‖+θπ(n)‖uπ(n)−uπ(n)−1‖+2
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1−uπ(n)−2‖)
+
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1−uπ(n)−2‖(2‖uπ(n)−u‖+
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1 − uπ(n)−2‖)
≤ 2λπ(n)ιπ(n)‖vπ(n) − u‖·‖ f (u) − u‖ + λπ(n)ι

2
π(n)‖ f (u) − u‖2

+θπ(n)‖uπ(n) − uπ(n)−1‖

×(2‖uπ(n) − u‖+θπ(n)‖uπ(n)−uπ(n)−1‖+2
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1−uπ(n)−2‖)
+
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1−uπ(n)−2‖(2‖uπ(n)−u‖+
∣∣∣ζπ(n)

∣∣∣·‖uπ(n)−1 − uπ(n)−2‖),

(3.24)

which implies
‖vπ(n) − Tπ(n)vπ(n)‖ → 0 as n→ ∞. (3.25)

Similar to the proof in Case 1, we get

‖vπ(n) − wπ(n)‖ → 0, (3.26)

‖uπ(n)+1 − vπ(n)‖ → 0, (3.27)

and
‖vπ(n) − uπ(n)‖ → 0, (3.28)

as n→ ∞, and so
‖uπ(n)+1 − uπ(n)‖ → 0 as n→ ∞. (3.29)

As in Case 1, we then demonstrate that lim sup
n→∞

〈 f (u) − u,wπ(n) − u〉 ≤ 0. Set

V = lim sup
n→∞

〈 f (u) − u,wπ(n) − u〉. (3.30)

There exists a subsequence {wπ(t)} of {wπ(n)} such that wπ(t) ⇀ w ∈ H and

V = lim
t→∞
〈 f (u) − u,wπ(t) − u〉. (3.31)

By Lemma 2.10, {Tπ(t)} satisfies NST-condition (I) with T . Due to inequality (3.24), ‖vπ(t) −

Tπ(t)vπ(t)‖ → 0, and we obtain
‖vπ(t) − Tvπ(t)‖ → 0 as t → ∞. (3.32)

As in Case 1, we can conclude from (3.25) that vπ(t) ⇀ w, and w ∈ F(T ). Using u = PF(T ) f (u)
and (2.1), we obtain

V = lim
t→∞
〈 f (u) − u,wπ(t) − u〉 = 〈 f (u) − u,w − u〉 ≤ 0. (3.33)

Then,
V = lim sup

n→∞
〈 f (u) − u,wπ(n) − u〉 ≤ 0. (3.34)

Since ϑπ(n) ≤ ϑπ(n)+1, and from (3.6) along with (1 − τ)λπ(n)ιπ(n) > 0, we obtain
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‖uπ(n) − u‖2 ≤ 5M5ξ

1−τ
θπ(n)

λπ(n)
‖uπ(n) − uπ(n)−1‖

+
3M5ξ

1−τ
|ζπ(n)|
λπ(n)
‖uπ(n)−1 − uπ(n)−2‖

+ 2
1−τ〈 f (u) − u,wπ(n) − u〉.

(3.35)

From θπ(n)

λπ(n)
‖uπ(n) − uπ(n)−1‖ → 0, |ζπ(n)|

λπ(n)
‖uπ(n)−1 − uπ(n)−2‖ → 0, and (3.34), we obtain

lim sup
n→∞

‖uπ(n) − u‖2 ≤ 0,

and so ‖uπ(n) − u‖ → 0 as n→ ∞.
This implies by (3.29) that ‖uπ(n)+1 − u‖ → 0 as n→ ∞. From Lemma 2.14 (2), we get ϑn ≤ ϑπ(n)+1,

that is,
‖un − u‖ ≤ ‖uπ(n)+1 − u‖ → 0 as n→ ∞.

Therefore, un → u. �

For solving the problem (1.1), we assume the following assumptions:

Assumption 3.2. Let Φ be the set of all solutions of problem (1.1) where

(1) φ : Rm → R is strongly convex with parameter σφ > 0,

(2) φ is a continuously differentiable function such that ∇φ is Lipschitz continuous with constant Lφ.

For solving the problem (1.2), we assume:

Assumption 3.3. Let Λ be a nonempty set of minimizer of problem (1.2).

(1) ϕ : Rm → R is convex and continuously differentiable, and ∇ϕ is Lipschitz continuous with
constant Lϕ,

(2) ψ ∈ Γ0(Rm).

Next, we will present an algorithm (Algorithm 4) for solving problem (1.1).

Algorithm 4 Two-step Inertial Forward-Backward Algorithm

Input : cn ∈ (0, 2
Lϕ

), s ∈ (0, 2
Lφ+σ

).
Initialize : Take u1, u0, u−1 ∈ R

m. Let {µn} ⊂ (0,∞) and {ρn} ⊂ (−∞, 0).
For n ≥ 1 :
Set

θn =

min{µn,
ηnλn

‖un−un−1‖
} if un , un−1;

µn otherwise.

ζn =

max{ρn,
−ηnλn
‖un−un−1‖

} if un , un−1;
ρn otherwise.

Compute
vn = un + θn(un − un−1) + ζn(un−1 − un−2),
wn = ιn(I − s∇φ)(yn) + (1 − ιn) proxcnψ(I − cn∇ϕ)vn,

un+1 = (1 − λn − δn)vn + λn proxcnψ(I − cn∇ϕ)wn + δn proxcnψ(I − cn∇ϕ)vn.
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Theorem 3.4. Let φ be a function satisfying Assumption 3.2, and ϕ and ψ be functions satisfying
Assumption 3.3. Let {cn} ⊂ (0, 2

Lϕ
) and c ∈ (0, 2

Lϕ
) such that cn → c as n → ∞. Let {un} be a sequence

generated by Algorithm 4 with the same conditions as in Theorem 3.1. Then, un → u ∈ Φ.

Proof. Set Tn = proxcnψ(I − cn∇ϕ),T = proxcψ(I − c∇ϕ) and f = I − s∇φ. In addition, we know that Tn

and T are nonexpansive mappings. We also know from Lemma 2.9 that Tn satisfie NST-condition (I)

with T . According to Proposition 2.11, f is contraction with constants τ =

√
1 − 2sσLφ

σ+Lφ
and s ≤ 2

Lφ+σ
.

Theorem 3.1 clearly demonstrates that un → u ∈ F(T ), where u = PF(T ) f (u). We next claim that u ∈ Φ.
By using (2.1), we have for any v ∈ F(T )

〈 f (u) − u, v − u〉 ≤ 0,
〈(I − s∇φ)(u) − u, v − u〉 = 0,

〈−s∇φ(u), v − u〉 = 0,
〈∇φ(u), v − u〉 ≥ 0.

(3.36)

Therefore, u is a solution of problem (1.1). �

4. Application in data classifications

In this section, we utilize our algorithm as a machine learning algorithm for data classification of
Parkinson’s disease and diabetes, and compare its effectiveness with BiG-SAM and iBiG-SAM.

Let {(xk, tk) ∈ Rn × Rm : k = 1, 2, . . . , s} be a training set with s samples, with xk representing
an input and tk representing a target. The mathematical model of single-layer feedforward neuron
networks (SLFNs) is given by

ok =

h∑
j=1

α jg(〈ω j, xk〉 + b j), k = 1, 2, . . . , s,

where ok is an output of ELM for SLFNs, h is the number of hidden nodes, g is an activation function,
b j is the bias, and α j and ω j are the weight vectors connecting the j-th hidden node with the output and
input node, respectively.

The hidden-layer output matrix denoted by H, is given by

H =


g(〈ω1, x1〉 + b1) · · · g(〈ωh, x1〉 + bh)

...
. . .

...

g(〈ω1, xs〉 + b1) · · · g(〈ωh, xs〉 + bh)


s×h

.

The target of standard SLFNs is to approximate these s sample with zero means, that is,
s∑

k=1
|ok−tk| =

0. Then, there exists α j, ω j, and b j such that

tk =

h∑
j=1

α jg(〈ω j, xk〉 + b j), k = 1, 2, . . . , s.

We could derive the following simple equation from the s equations above:

Hu = T, (4.1)
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where u = [αT
1 , · · · , α

T
h ]T ,T = [tT

1 , · · · , t
T
s ]T .

For solving ELM, it is necessary to calculate only the u that satisfies (4.1) with random ω j and b j.
If there is a pseudo-inverse H+ of H, u = H+T is the solution of (4.1). If H+ does not exists, we can
obtain a solution in terms of the least squares problem, that is,

min
u
‖Hu − T‖22. (4.2)

In machine learning, model fitness plays an essential role for training set accuracy. We cannot
employ an overfitting model to predict unknown data; instead, we utilize the most common technique
known as the least absolute shrinkage and selection operator (LASSO). It is formulated as

min
u
‖Hu − T‖22 + λ‖u‖1, (4.3)

where ‖ · ‖1 is the l1-norm defined by ‖(x1, . . . , xn)‖1 =
n∑

i=1
|xi|, and λ > 0 is a regularization parameter.

We may simplify problem (4.3) to problem (1.2) by setting ϕ(u) B ‖Hu − T‖22 and ψ(u) B λ‖u‖1. For
problem (1.1), we set φ B 1

2‖u‖
2
2 with Lφ = 1 and σφ = 1.

In this experiment, we aim to classify the datasets of the Parkinson’s disease and diabetes from UCI
and Kaggle, respectively.
Parkinson’s disease dataset. [33] There are 195 examples in this dataset, all of which have 22 features.
We classified two types of data in this dataset.
Diabetes dataset. [34] There are 768 examples in this set, all of which have 8 features. We classified
two types of data in this dataset.

In this experiment, we establish the default settings by selecting the most advantageous choice for
any parameter of each algorithm in order to reach the best level of performance, as follows:

(1) For inner level: ∇ϕ(u) = 2HT (Hu − T ) and Lϕ = λmax(H∗H), the maximum eigenvalue of H∗H.

(2) For Algorithm 1 (BiG-SAM) and Algorithm 2 (iBiG-SAM):

ι =
1
Lϕ

and λn =
1
n
.

(3) For Algorithm 4 (our algorithm):

λn = 0.5 + 1
33n , δn = 0.9 − λn, ιn = 1

33n , cn = 1
Lϕ
,

ηn = 33·1020

n , µn = n−1
n+α−1 , ρn = −0.0001.

(4) For all algorithms:

• Regularization parameter: λ = 10−5.

• Hidden nodes: h = 30.

• n = 500, α = 3, and s = 0.01.

• 10-fold cross-validation.
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8493

The following experiment uses the Parkinson’s disease and diabetes disease datasets. We compare
the effectiveness of Algorithms 1, 2, and 4 at the 500th iteration, as shown in Tables 1 and 2.

Table 1. The efficacy of each algorithm at the 500th iteration with 10-fold CV on the
Parkinson’s disease dataset.

Algorithm 4 BiG-SAM iBiG-SAM
acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 86.93 94.74 85.80 94.74 85.80 94.74
Fold 2 86.29 75.00 86.29 75.00 86.29 75.00
Fold 3 86.86 85.00 86.86 85.00 86.86 85.00
Fold 4 88.57 85.00 87.43 85.00 87.43 85.00
Fold 5 84.57 95.00 84.00 95.00 84.00 95.00
Fold 6 86.86 85.00 86.86 85.00 86.86 85.00
Fold 7 88.07 78.95 87.50 78.95 87.50 78.95
Fold 8 85.23 89.47 84.66 89.47 84.66 89.47
Fold 9 87.50 84.21 85.80 84.21 85.80 84.21

Fold 10 84.66 89.47 84.66 84.21 84.66 84.21
Average acc. 86.55 86.18 85.98 85.66 85.98 85.66

Table 2. The efficacy of each algorithm at the 500th iteration with 10-fold CV on the diabetes
dataset.

Algorithm 4 BiG-SAM iBiG-SAM
acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 77.46 67.11 77.02 67.11 77.02 67.11
Fold 2 76.12 71.43 75.40 71.43 75.40 71.43
Fold 3 78.15 74.03 77.13 74.03 77.28 74.03
Fold 4 75.69 68.83 74.24 67.53 74.24 67.53
Fold 5 74.38 77.92 73.23 77.92 73.23 77.92
Fold 6 74.53 84.42 73.81 83.12 73.81 83.12
Fold 7 76.56 76.62 76.12 74.03 76.12 74.03
Fold 8 75.83 79.22 75.54 79.22 75.83 79.22
Fold 9 75.11 79.22 75.11 76.62 75.11 76.62

Fold 10 75.58 75.00 73.70 68.42 73.70 68.42
Average acc. 75.94 75.38 75.13 73.94 75.17 73.94

The results of Tables 1 and 2 reveal that Algorithm 4 provides a better accuracy for data
classification than the others.

5. Conclusions

We provide a new two-step inertial accelerated algorithm in this paper. First, we analyze the
convergence behavior of this algorithm and establish the strong convergence theorem under relevant
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conditions. Next, we utilize our algorithm as a machine learning algorithm to solve data classification
problems of some noncommunicable diseases and compare its efficacy with BiG-SAM and iBiG-SAM.
We find that our algorithm outperforms BiG-SAM and iBig-SAM in terms of accuracy. In our future
work, we would like to employ our proposed algorithm as a machine learning algorithm for prediction
and classification of some noncommunicable diseases collected from the Sriphat Medical Center,
Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, and we also aim to build new
innovations in the form of web applications/mobile applications/computer systems for data prediction
and classification of noncommunicable diseases. These applications will have benefits for hospitals,
communities, and citizens in terms of screening and preventing noncommunicable diseases.
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