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Abstract: We prove a weighted Lp boundedness of Marcinkiewicz integral operators along surfaces
on product domains. For various classes of surfaces, we prove the boundedness of the corresponding
operators on the weighted Lebsgue space Lp(Rn×Rm, ω1(x)dx, ω2(y)dy), provided that the weights ω1

and ω2 are certain radial weights and that the kernels are rough in the optimal space L(log L)(Sn−1 ×

Sm−1). In particular, we prove the boundedness of Marcinkiewicz integral operators along surfaces
determined by mappings that are more general than polynomials and convex functions. Also, in
this paper we prove the weighted Lp boundedness of the related square and maximal functions. Our
weighted Lp inequalities extend as well as generalize previously known Lp boundedness results.
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1. Introduction and statement of results

Let Rn(n ≥ 2) be an n-dimensional Euclidean space, Sn−1 the unit sphere in Rn equipped with
normalized Lebesgue measure dσ, and set R+ = (0,∞). Furthermore, we let y′ =

y
|y|
∈ Sn−1 for y , 0

and let Ω ∈ L1(Sn−1) be a homogeneous function of degree zero on Rn that satisfies∫
Sn−1
Ω(y′)dσ(y′) = 0. (1.1)

The classical Marcinkiewicz integral operator introduced by E. M. Stein in [1] is given by

µΩ( f )(x) =


∞∫
−∞

∣∣∣∣∣∣
∫
|y|<2t

f (x − y)
Ω(y′)
|y|n−1 dy

∣∣∣∣∣∣2 dt
22t


1
2

. (1.2)
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When Ω ∈ Lipα(Sn−1)(0 < α ≤ 1), Stein [1] proved that µΩ maps Lp(Rn) into Lp(Rn) for all 1 < p ≤ 2.
In [2], A. Benedek, A. Calderón, and R. Panzone proved that µΩ is bounded on Lp for all 1 < p < ∞
provided that Ω ∈ C1

(
Sn−1

)
. In [3], Walsh proved that µΩ is bounded on L2(Rn) under the weak

condition Ω ∈ L(log+ L)
1
2 (Sn−1). Moreover, he showed that the L2 boundedness of µΩ may fail if

the condition Ω ∈ L(log+ L)
1
2 (Sn−1) is replaced by Ω ∈ L(log L)

1
2−ε(Sn−1) for some ε > 0. In 2002,

Al-Salman et al. [4] improved Walsh’s result by showing that the condition Ω ∈ L(log+ L)
1
2 (Sn−1) is

also sufficient for the Lp boundedness of µΩ for all p ∈ (1,∞). For further results and background
information about the operator µΩ, we refer readers to [4–9] and references therein, among others.

In 1990, Torchinsky and Wang studied the Lp boundedness of the operator µΩ on weighted spaces.
In fact, they showed in [10] that µΩ is bounded on Lp(ω) (1 < p < ∞) if Ω ∈ Lipα(Sn−1) (0 < α ≤ 1)
and ω ∈ Ap (the Muckenhoupt weight class, see [11]). Subsequently, Ding et al. [12] proved that µΩ
is bounded on Lp(ω) for p ∈ (1,∞) provided that Ω ∈ Lq(Sn−1), q > 1, and ωq′ ∈ Ap(Rn). In [13],
Lee et al. proved a weighted norm inequality for µΩ under the assumption that Ω is in the Hardy
space H1(Sn−1) and the weight ω is in the class ÃI

p(Rn) of radial weights introduced by Duoandikoetxea
in [14]. In [15], Al-Salman studied weighted inequalities of the generalized operator

µΩ,Ψ( f )(x) =


∞∫
−∞

∣∣∣∣∣∣
∫
|y|<2t

f (x − Ψ(|y|)y′)
Ω(y′)
|y|n−1 dy

∣∣∣∣∣∣2 dt
22t


1
2

, (1.3)

where Ψ : (0,∞)→ R is a smooth function satisfying the following growth conditions

|Ψ(t)| ⩽ C1td, |Ψ′′(t)| ⩾ C2td−2, (1.4)

C3td−1 ≤ |Ψ′(t)| ≤ C4td−1 (1.5)

for some d , 0 and t ∈ (0,∞) where C1,C2,C3, and C4 are positive constants independent of t. We
shall let G be the class of all smooth mappingsΨ : (0,∞)→ R that satisfy the growth conditions (1.4)–
(1.5). It is clear that G contains all power functions tα(α , 0). It is shown in [15] that µΩ,Ψ is bounded
on Lp(ω) for p ∈ (1,∞) provided that ω ∈ ÃI

p and thatΩ is in the optimal space L(log+ L)
1
2 (Sn−1). Here,

we remark that for any q > 1 and 0 < α ≤ 1, the following inclusions hold and that they are proper

Lipα(Sn−1) ⊂ Lq(Sn−1) ⊂ L(log L)(Sn−1) ⊂ H1(Sn−1),

and
L(log+ L)s(Sn−1) ⊂ L(log+ L)r(Sn−1) whenever r < s.

In [8], Ding considered the analogy of the operator µΩ on the product domain setting. For Ω ∈
L1(Sn−1 × Sm−1) satisfying ∫

Sn−1
Ω(u′, .)dσ(u′) =

∫
Sm−1
Ω(., v′)dσ(v′) = 0, (1.6)

Ω(tx, sy) = Ω(x, y), for any t, s > 0, (1.7)

consider the Marcinkiewicz integral operator on the product domainsUΩ defined by

UΩ f (x, y) =


∞∫
−∞

∞∫
−∞

∣∣∣Ft′,s′( f )(x, y)
∣∣∣2 dt′ ds′

22(t′+s′)


1
2

; (1.8)
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where

Ft′,s′( f )(x, y) =
∫ ∫
Λ(t′,s′)

f (x − u, y − v)
Ω(u′, v′)
|u|n−1 |v|m−1 du dv (1.9)

and
Λ(t′, s′) = {(u, v) ∈ Rn × Rm : |u| ≤ 2t′ and |v| ≤ 2s′}.

Ding proved that UΩ is bounded on L2(Rn×Rm) when Ω satisfies the additional assumption of
Ω ∈ L(log+ L)2(Sn−1×Sm−1), i.e.,∫

Sn−1

∫
Sm−1
|Ω(u′, v′)|

(
log(2 + |Ω(u′, v′)|

)2 dσ(u′)dσ(v′) < ∞.

In 2002, Chen et al. [7] improved the result of Ding and showed that UΩ is bounded on
Lp(Rn×Rm) (1 ≤ p < ∞) under the same condition on Ω. Later, Choi [16] proved that the L2

boundedness ofUΩ still holds under the very weak conditionΩ ∈ L(log L)(Sn−1×Sm−1). Subsequently,
Al-Qassem et al. [17] substantially improved Choi’s result by showing that UΩ is bounded on
Lp(Rn×Rm) for all 1 < p < ∞ under the same condition Ω ∈ L(log L)(Sn−1 × Sm−1). Moreover,
they proved that the condition Ω ∈ L(log L)(Sn−1 × Sm−1) is nearly optimal in the sense that the L2

boundedness may fail if the function is assumed to be in L(log L)α(Sn−1 × Sm−1)\L(log L)(Sn−1 × Sm−1)
for any α < 1. For further results for Marcinkiewicz integral operators on product domains, we
cite [16–22], among others.

Motivated by the work in [15] and [18], we consider the weighted Lp boundedness of the
Marcinkiewicz integral operator on product domains along surfaces. For suitable mappings Φ,Ψ :
[0,∞)→ R , consider theUΩ,Φ,Ψ given by

UΩ,Φ,Ψ f (x, y) =


∞∫
−∞

∞∫
−∞

∣∣∣FΦ,Ψt′,s′ ( f )(x, y)
∣∣∣2 dt′ ds′

22(t′+s′)


1
2

; (1.10)

where

FΦ,Ψt′,s′ ( f )(x, y) =
∫ ∫
Λ(t′,s′)

f (x − Φ(|u|)u′, y − Ψ(|v|)v′)
Ω(u′, v′)
|u|n−1 |v|m−1 du dv, (1.11)

and Λ(t′, s′) = {(u, v) ∈ Rn × Rm : |u| ≤ 2t′ and |v| ≤ 2s′}. By specializing to the case Φ(t) = Ψ(t) = t,
the operator reduces to the classical Marcinkiewicz integral operatorUΩ on product domains. Integral
operators on product domains along surfaces have been considered by several authors. For background
information, we advise the readers to consult [17–23] and references therein.

In order to state our results in this paper, we recall the definition of radial weights ÃI
p(Rn) introduced

in [14]:

Definition 1.1. Let ω(t) ≥ 0; and ω ∈ L1
loc(R+). For 1 < p < ∞, we say that ω ∈ Ap(R+) if there is a

positive constant C such that, for any interval I ⊆ R+,(
|I|−1

∫
I
ω(t)dt

) (
|I|−1

∫
I
ω(t)−

1
p−1 dt

)p−1

≤ C < ∞.
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We say that ω ∈ A1(R+) if there is a positive constant C such that

ω∗(t) ≤ C ω(t) for a. e. t ∈ R+,

where ω∗ is the Hardy-Littlewood maximal function of ω on R+.
Definition 1.2. Let 1 ≤ p ≤ ∞. We say that ω ∈ Ãp(R+) if

ω(x) = ν1(|x|) ν2(|x|)1−p,

where either νi ∈ A1(R+) is decreasing or ν2
i ∈ A1(R+), i = 1, 2.

Definition 1.3. For 1 < p < ∞, we let

Āp(R+) = {ω(x) = ω(|x|) : ω(t) > 0, ω(t) ∈ L1
loc(R+) and ω2(t) ∈ Ap(R+)}.

Let AI
p(Rn) be the weight class defined by exchanging the cubes in the definition of Ap for all n-

dimensional intervals with sides parallel to coordinate axes. It is well known that Āp(R+) ⊆ Ãp(R+)
(see [24]). Moreover, if ω(t) ∈ Āp(R+), then ω(|x|) is the Mukenhoupt weighted class Ap(Rn) whose
definition can be found in [14]. We let ÃI

p = Ãp ∩ AI
p.

We shall need the following lemma:
Lemma 1.4. If 1 < p < ∞, then the weight class ÃI

p(R+) has the following properties:
(i) ÃI

p1
⊂ ÃI

p2
, if 1 ≤ p1 < p2 < ∞;

(ii) For any ω ∈ ÃI
p, there exists an ε > 0 such that ω1+ε ∈ ÃI

p;
(iii) For any ω ∈ ÃI

p and p > 1 , there exists an ε > 0 such that p − ε > 1 and ω ∈ ÃI
p−ε;

(iv) ω ∈ ÃI
p if and only if ω1−p′ ∈ ÃI

p′ .

For any weights ω1 and ω2, we let Lp(Rn ×Rm, ω1(x)dx, ω2(y)dy) (1 < p < ∞) be the weighted Lp

space associated with the weight ω1 and ω2, i.e., Lp(Rn × Rm, ω1(x)dx, ω2(y)dy) = Lp(ω1, ω2) consists
of all measurable functions f with ∥ f ∥Lp(ω1,ω2) < ∞, where

∥ f ∥Lp(ω1,ω2) =

("
Rn×Rm

| f (x, y)|p ω1(x)ω2(y) dx dy
) 1

p

. (1.12)

In light of the above discussion, the following natural question arises:
Question: Let UΩ,Φ,Ψ be given by (1.8) and assume that Ω ∈ L(log L)(Sn−1 × Sm−1) satisfying (1.6)–
(1.7). Assume that Φ,Ψ ∈ G, ω1 ∈ ÃI

p(Rn) and ω2 ∈ ÃI
p(Rm) for some 1 < p < ∞. Is UΩ,Φ,Ψ bounded

on Lp(ω1, ω2)?
In the following we shall answer the above question in the affirmative. In fact, we shall prove that

the weighted Lp boundedness holds for various classes of mappings Φ and Ψ.

Theorem 1.5. Suppose that Ω ∈ L(log L)(Sn−1 × Sm−1) satisfying (1.6)–(1.7), ω1 ∈ ÃI
p(Rn), and ω2 ∈

ÃI
p(Rm). If Φ,Ψ ∈ G, thenUΩ,Φ,Ψ is bounded on Lp(ω1, ω2) for 1 < p < ∞.

We remark here that, by specializing to the case Φ(t) = Ψ(t) = t, we obtain that the classical
operator UΩ is bounded on Lp(ω1, ω2) for 1 < p < ∞. This result, as far as we know, is not known
previously. We shall prove in this paper that the weighted boundedness in Theorem 1.5 holds for a
more mappings Φ and Ψ. In order to state our second result, we recall the following class of mappings
introduced in [5]:

AIMS Mathematics Volume 9, Issue 4, 8386–8405.
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Definition 1. 6. A function ψ : [0,∞) → R is said to belong to the class PCλ(d) (d > 0) if there exist
λ ∈ R, a polynomial P, and φ ∈ Cd+1[0,∞) such that

(i)ψ(t) = P(t) + λφ(t)
(ii) P(0) = 0 and φ( j)(0) = 0 for 0 ⩽ j ⩽ d
(iii)φ( j) is positive nondecreasing on (0,∞) for 0 ⩽ j ⩽ d + 1.

(1.13)

say that In fact, we prove the following:

The class PCλ(d) was introduced in [5]. It is shown in [5] that the class ∪d≥0PCλ(d) properly
contains the class of polynomials Pd of degree less than or equal d as well as the class of convex
increasing functions. Examples of functions in ∪d≥0PCλ(d) that are neither convex nor polynomial are
widely available. A particular example is the function θ(t) = −t2 + t2 ln(1+ t). Our second result in this
paper is the following:

Theorem 1.7. Suppose that Ω ∈ L(log L)(Sn−1 × Sm−1) satisfying (1.6)–(1.7), ω1 ∈ ÃI
p(Rn), and

ω2 ∈ ÃI
p(Rm). If Φ ∈ PCλ(d), Ψ ∈ PCα(b) for d, b > 0 and λ, α ∈ R, then UΩ,Φ,Ψ is bounded on

Lp(ω1, ω2) for 1 < p < ∞ with Lp bounds independent of λ, α ∈ Rand the coefficients of the particular
polynomials involved in the standard representations of Φ and Ψ.

We remark here that; Theorem 1.7 is the analogy of Theorem 1.3 [15] in the product domain
setting. On the other hand, Theorem 1.7 is a generalization of the corresponding result in [18]. More
specifically, if ω1(x) = ω2(x) = 1, then Theorem 1.7 reduces to Theorem 1.3 in [18].

We point out here that the method employed in this paper is based on interpolation between good
L2 estimates and crude Lp estimates. The L2 estimates depend heavily on the nature of the involved
surface. This is clearly expressed interns of the obtained oscillatory estimates. On the other hand,
the Lp estimates depend on proving the boundedness of the corresponding maximal functions. The
the method employed can be used to study the weighted Lp boundedness of more general classes of
Marcinkiewicz integral operators along surfaces.

Throughout this paper, the letter C will stand for a constant that may vary at each occurrence, but it
is independent of the essential variables.

2. Weighted estimates for certain square and maximal functions

This section is devoted to obtaining weighted estimates of certain square functions and maximal
functions. For positive real numbers a and b and a Schwartz function Φ ∈ S(Rn × Rm), we let

S Φ,a,b( f )(x, y) =


∞∫
−∞

∞∫
−∞

|Φat , bs ∗ f (x, y)|2dtds


1
2

(2.1)

where
Φat , bs(x, y) = a−nt b−msΦ(a−tx, b−sy).

It can be observed here that if Φ(x, y) = Φ(1)(x)Φ(2)(y) and f (x, y) = f1(x) f2(y), then

S Φ,a,b( f )(x, y) = S Φ(1),a( f1)(x)S Φ(2),b( f2)(y)

AIMS Mathematics Volume 9, Issue 4, 8386–8405.
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where S Φ(1),a and S Φ(2),b are the square functions in the one parameter setting defined in [15]. Thus, by
Lemma 2.1 in [15], it follows that for two Muckenhoupt weights ω1, ω2 ∈ Ap, we have

∥S Φ,a,b( f1 f2)∥Lp(ω1,ω2) ≤ Cp ∥ f1∥Lp(ω1)∥ f2∥Lp(ω2) = Cp∥ f1 f2∥Lp(ω1,ω2). (2.2)

Therefore, it is natural to question if (2.2) holds for general Φ ∈ S(Rn ×Rm) and f ∈ Lp(ω1, ω2). In the
following lemma, which is analogues to Lemma 2.1 in [15], we answer this question in the affirmative:
Lemma 2.1. Given a, b > 2 and let ψ, θ be C∞ functions on R that satisfy the following conditions:

(i) supp(ψ) ⊆
[

4
5a
,

5a
4

]
and supp(θ) ⊆

[
4

5b
,

5b
4

]
.

(ii)

∣∣∣∣∣∣dlψ

dul (u)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣dlθ

dul (u)

∣∣∣∣∣∣ ≤ Cl

ul for all u and l ≥ 0 where Cl is independent of a and b.

Let Υ ∈ S(Rn × Rm) be given by Υ̂(ξ, η) = ψ(|ξ|2). θ(|η|2) and let S Υ,a,b be the square function S Υ,a,b
given by (2.1) with Φ is replaced by Υ. Then, for 1 < p < ∞, ω1 ∈ Ap(Rn), and ω2 ∈ Ap(Rm), there
exists a constant Cp independent of a, b such that

∥S Υ,a,b( f )∥Lp(ω1,ω2) ≤ Cp ∥ f ∥Lp(ω1,ω2). (2.3)

Proof: For (ξ, η) ∈ Rn × Rm, let

ma,b(ξ, η, t′, s′) = Υ̂(ξ, η) = ψ(|at′ ξ|2) θ(|bs′ η|2).

By the assumption (ii), we have
∞∫
−∞

∣∣∣∣∣∂α ma,b(ξ, η, t′, s′)
∂ξα

∣∣∣∣∣2 dt′


1
2

≤ Cα |ξ|
−α (2.4)

and 
∞∫
−∞

∣∣∣∣∣∣∂β ma,b(ξ, η, t′, s′)
∂ηβ

∣∣∣∣∣∣2 ds′


1
2

≤ Cβ |η|
−β (2.5)

for every multi-index α, β with |α|, |β| ≥ 0, where Cα, Cβ are constants independent of a and b. We set

K(x, y, t′, s′) = Υat′ ,bs′ (x, y) = a−nt′ b−ms′ Υ(a−t′ x, b−s′y).

Then, by (2.4)–(2.5), and a vector-valued analogy of the argument in [25, p. 245–246], we obtain
∞∫
−∞

∣∣∣∣∣∂α K(x, y, t′, s′)
∂ xα

∣∣∣∣∣2 dt′


1
2

≤ C |x|−n−|α|, (2.6)


∞∫
−∞

∣∣∣∣∣∣∂β K(x, y, t′, s′)
∂ yβ

∣∣∣∣∣∣2 ds′


1
2

≤ C |y|−m−|β|, (2.7)
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for |α| ≤ 1 and |β| ≤ 1 where C is a constant independent of a and b.

Now, let
gΥ,a,b( f )(x, y) = |Υat′ ,bs′ ∗ f (x, y)|,

gΥ,a( f )(x, .) = |Υat′ ∗ f (x, .)|, (2.8)

and
gΥ,b( f )(., y) = |Υbs′ ∗ f (., y)|. (2.9)

Then,
gΥ,a,b( f )(x, y) ⩽ gΥ,a(gΥ,b( f ))(x, y). (2.10)

By Plancherel’s theorem, we obtain

∥gΥ,a( f )(x, .)∥L2(Rm) ≤ C ∥ f ∥L2(Rm) (2.11)

and
∥gΥ,b( f )(., y)∥L2(Rn) ≤ C ∥ f ∥L2(Rn). (2.12)

Hence, by the Corollary on page 205 in [25], and (2.4), (2.6), and (2.11), we have∫
Rn
|gΥ,a( f )(x, .)|pw1(x) dx ⩽ C

∫
Rn
|( f )(x, .)|p w1(x) dx (2.13)

for w1(x) ∈ Ap(Rn).

Thus, by (2.13) and following similar arguments as in [26], we get∫
Rn
|gΥ,a( f )(x, y)|p w1(x) w2(y) dx ⩽ C

∫
Rn
|( f )(x, y)|pw1(x) w2(y)dx. (2.14)

for each y ∈ Rm with C independent of y. Then, by integration over Rm, we get∫
Rm

∫
Rn
|gΥ,a( f )(x, y)|p w1(x) w2(y) dx dy ⩽ C

∫
Rm

∫
Rn
|( f )(x, y)|pw1(x) w2(y)dx dy. (2.15)

By repeating the argument between (2.13) and (2.15) for gΥ,b( f )(., y), and replacing x by y, we get∫
Rn

∫
Rm
|gΥ,b( f )(x, y)|p w1(x) w2(y) dx dy ⩽ C

∫
Rn

∫
Rm
|( f )(x, y)|pw1(x) w2(y)dx dy. (2.16)

Finally, by (2.10), inequality (2.3) follows vector-valued analogues of the argument in the proof of the
Theorem 3 in [26, p. 128], and (2.15)–(2.16). This ends the proof of Lemma 2.1.

Now, for Ω ∈ L1(Sn−1 × Sm−1) and suitable mappings Φ,Ψ : (0,∞) −→ R, we define the family of
measures {σΩ,Φ,Ψ,at′ ,bs′ : t′, s′ ∈ R} by∫

Rn×Rm
f dσΩ,Φ,Ψ,at′ ,bs′ = a−t′ b−s′

"
|u|<at′

|v|<bs′

f (x − Φ(|u|) u′, y − Ψ(|v|) v′)
Ω(u′, v′)
|u|n−1 |v|m−1 dudv. (2.17)
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We letMΩ,Φ,Ψ,a,b be the maximal function corresponding to the family {σΩ,Φ,Ψ,at′ ,bs′ : t′, s′ ∈ R}, i.e.,

MΩ,Φ,Ψ,a,b( f )(x, y) = sup
t′, s′∈R

∣∣∣σΩ,Φ,Ψ,at′ ,bs′ ∗ f (x, y)
∣∣∣ . (2.18)

Then, we have the following lemma:
Lemma 2.2. Suppose that Ω ∈ L1(Sn−1 × Sm−1) satisfying (1.7). For a, b > 2 and suitable Φ,Ψ :
(0,∞) −→ R, let MΩ,Φ,Ψ,a,b be the maximal function defined by (2.18). Suppose that (i) Φ,Ψ ∈ G;
or (ii) Φ ∈ PCλ(d1), Ψ ∈ PCα(d2) for d1, d2 > 0 and λ, α ∈ R. Then, for 1 < p < ∞ and ω1 ∈

Ap)(Rn), ω2 ∈ Ap)(Rm), there exists a constant Cp independent of Ω, a, and b such that

∥MΩ,Φ,Ψ,a,b( f )∥Lp(ω1,ω2) ≤ Cp ∥Ω∥L1 ∥ f ∥Lp(ω1,ω2). (2.19)

Proof: We shall start by verifying (2.19) under assumption (ii) on the functions Φ and Ψ. Notice that

MΩ,Φ,Ψ,a,b( f ) ≤ MΩ,Φ,Ψ( f ) = sup
t′, s′∈R

∣∣∣σΩ,Φ,Ψ,2t′ ,2s′ ∗ f (x, y)
∣∣∣ . (2.20)

Thus, it is enough to show that

∥MΩ,Φ,Ψ( f )∥Lp(ω1,ω2) ≤ Cp ∥Ω∥L1 ∥ f ∥Lp(ω1,ω2). (2.21)

We define the one parameter maximal functions

MΩ,Ψ( f )(·, y) = sup
s′∈R

∣∣∣∣∣∣2−s′
∫
|v|<2s′

f (., y − Ψ(|v|) v′)
Ω(·, v′)
|v|m−1 dv

∣∣∣∣∣∣ ,
and

MΩ,Φ( f )(x, ·) = sup
t′∈R

∣∣∣∣∣∣2−t′
∫
|u|<2t′

f (x − Φ(|u|) u′, .)
Ω(u′, ·)
|u|n−1 du

∣∣∣∣∣∣ .
Then,

MΩ,Φ,Ψ( f )(x, y) ≤ MΩ,Φ(MΩ,Ψ( f )(·, y)(x, ·). (2.22)

By polar coordinates, we have

MΩ,Ψ f (·, y) ≤
∫
Sm−1

|Ω(·, v′)| MΨ,v′ f (·, y)dσ(v′), (2.23)

where

MΨ,v′( f )(., y) = sup
s′∈R

2−s′
2s′∫

0

| f (·, y − Ψ(r′)v′)|dr′.

Now, we have

MΨ,v′( f )(., y) ≤
∞∑
j=0

2− j

sup
s′∈R

2−s′+ j

2s′− j∫
2s′− j−1

| f (., y − Ψ(r′)v′)|dr′
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≤ C
∞∑
j=0

2− j

sup
z>0

1
z

cz∫
0

| f (., y − r′ v′)|dr′

 (2.24)

= C sup
z>0

1
z

cz∫
0

| f (., y − r′ v′)|dr′; (2.25)

where (2.24) follows by change of variables and (1.4). By (8) in [14] and since ω2 ∈ Ãp(Rm), we get

∥MΨ,v′( f )∥Lp(ω2) ≤ Cp ∥ f ∥Lp(ω2); (2.26)

where Cp is a constant independent of v′. By a similar argument, for ω1 ∈ Ãp(Rn), we get

∥MΦ,u′( f )∥Lp(ω1) ≤ Cp ∥ f ∥Lp(ω1), (2.27)

where

Mφ,u′( f )(x, .) ≤ C sup
s>0

1
s

cs∫
0

| f (x − t u′)|dt.

Thus, by (2.23), (2.26), and Minkowski’s inequality, we get

∥MΩ,Ψ( f )∥Lp(ω2) ≤ Cp ∥Ω∥L1 ∥ f ∥Lp(ω2). (2.28)

Similarly, for ω1 ∈ Ãp(Rn), we get

∥MΩ,Φ( f )∥Lp(ω1) ≤ Cp ∥Ω∥L1∥ f ∥Lp(ω1). (2.29)

Now, by (2.28) and following a similar argument as in [26], we have∫
Rm
MΩ,ϕ( f )(x, y)|p w1(x) w2(y) dy ⩽ C ∥Ω∥L1

∫
Rm
| f (x, y)|pw1(x) w2(y) dy, (2.30)

for x ∈ Rn where C is a constant independent of x. Then, by integration with respect to x, we get∫
Rn

∫
Rm

∣∣∣MΩ,Ψ( f )(x, y)
∣∣∣p w1(x) w2(y) dx dy ⩽ C ∥Ω∥L1

∫
Rn

∫
Rm
| f (x, y)|pw1(x) w2(y)dx dy. (2.31)

Thus, by following a similar argument as in (2.30)–(2.31) onMΩ,Φ, replacing x by y, we get∫
Rn

∫
Rm
|MΩ,Φ( f )(x, y)|p w1(x) w2(y) dx dy ⩽ C ∥Ω∥L1

∫
Rn

∫
Rm
| f (x, y)|pw1(x) w2(y)dx dy. (2.32)

Thus, by (2.22), we have

∥MΩ,Φ,Ψ( f )∥Lp(ω1,ω2) ≤ Cp ∥Ω∥L1 ∥ f ∥Lp(ω1,ω2). (2.33)

Hence, (2.19) follows by (2.20) and (2.33). This ends the proof of (2.19) under assumption (ii) on
the functions Φ and Ψ. To prove (2.19) under assumption (i) on the functions Φ and Ψ, we follow a
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similar argument as above and make use of estimates developed in the proof of Lemma 2.2 in [15]. We
omit the details. This ends the proof of the lemma.

Next, we prove the following weighted inequalities for square functions:
Lemma 2.3. Suppose that ∥Ω∥L1 ≤ 1. Suppose also that a, b, Ψ, Φ, and Υ are as in Lemma 2.2. Let
For t, s ∈ R, let σΩ,Φ,Ψ,a,b be given by (2.17) where t′ and s′ are replaced by t and s, respectively.
Assume that (i) Φ,Ψ ∈ G; or (ii) Φ ∈ PCλ(d1), Ψ ∈ PCα(d2) for d1, d2 > 0 and λ, α ∈ R. Then, for
1 < p < ∞, j, k ∈ Z, ω1 ∈ ÃI

p(Rn), and ω2 ∈ ÃI
p(Rm), and there exists a constant Cp independent of

a, b, j, k, and Ω such that

∥∥∥∥∥∥∥∥∥

∞∫
−∞

∞∫
−∞

|σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)|2dt ds


1
2
∥∥∥∥∥∥∥∥∥

Lp(ω1,ω2)

≤ C ∥ f ∥Lp(ω1,ω2). (2.34)

Proof: Notice that

sup
t,s∈R

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣ =MΩ,Φ,Ψ,a,b(Υat+ j, bs+k ∗ f )(x, y)

≤ MΩ,Φ,Ψ,a,b

(
sup
t,s∈R

∣∣∣Υat+ j, bs+k ∗ f
∣∣∣) (x, y).

Next, by Lemma 2.2, we have∥∥∥∥∥∥sup
t,s∈R

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣∥∥∥∥∥∥

Lp(ω1,ω2)

≤

∥∥∥∥∥∥MΩ,Φ,Ψ,a,b
(
sup
t,s∈R
|Υat+ j, bs+k ∗ f (x, y)|

)∥∥∥∥∥∥
Lp(ω1,ω2)

≤ C

∥∥∥∥∥∥sup
t,s∈R
|Υat+ j, bs+k ∗ f (x, y)|

∥∥∥∥∥∥
Lp(ω1,ω2)

.

(2.35)

Now, by duality, choose a non-negative function g(x, y) with ∥g∥Lp′ (ω1−p′
1 ,ω

1−p′
2 ) ≤ 1 such that

∥∥∥∥∥∥∥∥
∞∫
−∞

∞∫
−∞

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣ dt ds

∥∥∥∥∥∥∥∥
Lp(ω1,ω2)

≤

"
Rn×Rm

∞∫
−∞

∞∫
−∞

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣ g(x, y)dt ds dx dy

≤ C
"
Rn×Rm

∞∫
−∞

∞∫
−∞

∣∣∣Υat+ j, bs+k ∗ f (x, y)
∣∣∣ (sup

t,s∈R
|σΩ,Φ,Ψ,at ,bs ∗ g(x, y)|

)
dt dsdx dy

≤ C
"
Rn×Rm

∞∫
−∞

∞∫
−∞

∣∣∣Υat+ j, bs+k ∗ f (x, y)
∣∣∣ MΩ,Φ,Ψ,a,b(g̃)(−x,−y) dt ds dx dy,

(2.36)
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where g̃(x, y) = g(−x,−y). Thus, by Lemma 2.1, (2.36), and Hölder’s inequality, we get∥∥∥∥∥∥∥∥
∞∫
−∞

∞∫
−∞

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣
∥∥∥∥∥∥∥∥

Lp(ω1,ω2)

≤

∥∥∥∥∥∥∥∥
∞∫
−∞

∞∫
−∞

∣∣∣Υat+ j, bs+k ∗ f (x, y)
∣∣∣ dt dr

∥∥∥∥∥∥∥∥
Lp(ω1,ω2)

∥∥∥MΩ, φ, ϕ,a,b(g̃)
∥∥∥

Lp′ (ω1−p′
1 ,ω

1−p′
2 )

.

(2.37)

By an application of Lemma 2.2, we get∥∥∥∥∥∥∥∥
∞∫
−∞

∞∫
−∞

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣ dt dr

∥∥∥∥∥∥∥∥
Lp(ω1,ω2)

≤ C

∥∥∥∥∥∥∥∥
∞∫
−∞

∞∫
−∞

∣∣∣Υat+ j, bs+k ∗ f (x, y)
∣∣∣ dtds

∥∥∥∥∥∥∥∥
Lp(ω1,ω2)

.

(2.38)

Hence, by interpolation between (2.35) and (2.38) in a vector-valued setting, we get∥∥∥∥∥∥∥∥∥

∞∫
−∞

∞∫
−∞

∣∣∣σΩ,Φ,Ψ,at ,bs ∗ Υat+ j, bs+k ∗ f (x, y)
∣∣∣2 dt ds


1
2
∥∥∥∥∥∥∥∥∥

Lp(ω1,ω2)

≤ C

∥∥∥∥∥∥∥∥∥

∞∫
−∞

∞∫
−∞

∣∣∣Υat+ j, bs+k ∗ f (x, y)
∣∣∣2 dtds


1
2
∥∥∥∥∥∥∥∥∥

Lp(ω1,ω2)
≤ C ∥ f ∥Lp(ω1,ω2),

(2.39)

where the last inequality is obtained by Lemma 2.1. This completes the proof of Lemma 2.3.

3. Preliminary estimates

This section is establish some preliminary estimates that are needed to prove our results.

Lemma 3.1. Let Ω ∈ L2(Sn−1 × Sm−1) satisfying (1.6)–(1.7) with ∥Ω∥1 ≤ 1 and ∥Ω∥2 ≤ A for some
A > 2. Suppose that Φ,Ψ ∈ G with powers d1, d1 in (1.4)–(1.5). For t, s ∈ R, let σ(Φ,Ψ)

A,t,s be the measure
defined via the Fourier transform by

σ̂(Φ,Ψ)
A,t,s (ξ, η) =

1
At+s

"
Γ(At ,As)

e−i(Φ(|u|) ξ.u′+Ψ(|v|) η.v′) Ωκ(u
′, v′)

|u|n−1 |v|m−1 du dv, (3.1)

where
Γ(At, As) = {(u, v) ∈ Rn × Rm : At−1 < |u| ≤ At and As−1 < |v| ≤ As}. (3.2)

Then, there exists ε ∈ (0, 1
2 ) such that∣∣∣σ̂(Φ,Ψ)

A,t,s (ξ, η)
∣∣∣ ≤ 1 (3.3)

AIMS Mathematics Volume 9, Issue 4, 8386–8405.



8397∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ C |Ad1t ξ |
− ε

2 log2 A |Ad2 s η |
− ε

2 log2 A ; (3.4)∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ C |Ad1t ξ |
− ε

2 log2 A |Ad2 s η |
ε

2 log2 A (3.5)∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ C |Ad1t ξ |
ε

2 log2 A |Ad2 s η |
− ε

2 log2 A (3.6)∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ C |Ad1t ξ |
ε

2 log2 A |Ad2 s η |
ε

2 log2 A (3.7)

where the constant C is independent of A, s, and t.
Proof: We shall assume that d1, d2 > 0. The other cases follows by similar argument. The estimate (3.3)
is clear. To see the estimate (3.4), notice that∣∣∣σ̂(Φ,Ψ)

A,t,s (ξ, η)
∣∣∣ ≤ ∫

Sn−1

∫
Sm−1
|Ω(u′, v′)| g(A,Φ, ξ)g(A,Ψ, η)dσ(u′)dσ(v′) (3.8)

where

g(A,Φ, ξ) =

∣∣∣∣∣∣∣∣∣∣
1∫

1
A

e−iΦ(Atr) ξ.u′dr

∣∣∣∣∣∣∣∣∣∣ ,
and g(A,Ψ, η) has similar definition as g(A,Φ, ξ). By integration by parts along with the assumptions
(1.4)–(1.5), and the observations g(A,Φ, ξ) ≤ 1 and g(A,Ψ, η) ≤ 1, there exists ε ∈ (0, 1

2 ) such that

g(A,Φ, ξ) ≤ C |Ad1t ξ · u′ |−ε (3.9)
g(A,Ψ, η) ≤ C |Ad2 s η · v′ |−ε. (3.10)

By (3.8), (3.9)–(3.10), Hölder’s inequality, and assumption on Ω, we have∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ A|Ad1t ξ|−ε|Ad2 s η |−εCC̃ε, (3.11)

where

C̃ε = sup
ξ
′
∈Sn−1

(∫
Sn−1
|ξ
′

· u′ |−2εdσ(u′)
) 1

2

sup
η
′
∈Sm−1

(∫
Sm−1
|η
′

· v′ |−2εdσ(v′)
) 1

2

.

Since ε < 1/2, we have C̃ε < ∞. Thus, by (3.9)–(3.10), (3.8), and an interpolation, we get∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ A
1

2 log2 A |Ad1t ξ|
− ε

2 log2 A |Ad2 s η |
− ε

2 log2 A C,

which implies (3.4) since A
1

2 log2 A < 2. To verify (3.5), we first notice that

1
As

∣∣∣∣∣∣∣∣∣
As∫

As−1

(
e−iΨ(Asr) η.v′ − 1

)
dr

∣∣∣∣∣∣∣∣∣ ≤ min{1,C1|Ad2 s η |}, (3.12)

which by interpolation implies

1
As

∣∣∣∣∣∣∣∣∣
As∫

As−1

(
e−iΨ(Asr) η.v′ − 1

)
dr

∣∣∣∣∣∣∣∣∣ ≤ C|Ad2 s η |ε. (3.13)
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By the cancellation property (1.6), Hölder’s inequality, the assumption onΩ, (3.9), and (3.13), we have

∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ 1
At+s

∣∣∣∣∣∣∣∣∣
"
Γ(At ,As)

(
e−i(Φ(|u|) ξ.u′+Ψ(|v|) η.v′) − e−iΦ(|u|) ξ.u′

) Ωκ(u′, v′)
|u|n−1 |v|m−1 du dv

∣∣∣∣∣∣∣∣∣
≤ C|Ad2 s η |ε

∫
Sn−1

∫
Sm−1
|Ω(u′, v′)| g(A,Φ, ξ)dσ(u′)dσ(v′)

≤ C|Ad2 s η |ε ∥Ω∥2
∣∣∣Sm−1

∣∣∣ (∫
Sn−1
|g(A,Φ, ξ)|2 dσ(u′)

) 1
2

≤ C|Ad2 s η |ε ∥Ω∥2
∣∣∣Sm−1

∣∣∣ |Ad1t ξ|−ε sup
ξ
′
∈Sn−1

(∫
Sn−1
|ξ
′

· u′ |−2εdσ(u′)
) 1

2

≤ CA|Ad2 s η |ε|Ad1t ξ|−ε, (3.14)

where the last inequality follows by the same reasoning for C̃ε above. Thus, (3.5) follows by (3.14),
(3.3), and an interpolation. The verifications of other estimates follows by a similar argument with
minor modifications. We omit the details. This completes the proof of the lemma.

Now, by the same argument as in [18], we have the following lemma:
Lemma 3.2. Let Ω ∈ L2(Sn−1 × Sm−1) satisfying (1.6)–(1.7) with ∥Ω∥1 ≤ 1 and ∥Ω∥2 ≤ A for some
A > 2. Let Φ ∈ PCλ(d1), Ψ ∈ PCα(d2) for d1, d2 > 0 and λ, α ∈ R. Suppose that

Φ(w) = P(w) + λφ1(w) and Ψ(z) = Q(z) + αφ2(z),

where P,Q, φ1, and φ2 are as in the definition of the spaces PCλ(d1) and Ψ ∈ PCα(d2). For t, s ∈ R, let
σ(Φ,Ψ)

A,t,s , σ(Φ,Q)
A,t,s , σ

(P,Ψ)
A,t,s , and σ(P,Q)

A,t,s be the measures defined by (3.1) with proper modifications. Then,
(i) ∥σ(Φ,Ψ)

A,t,s ∥ ≤ C;

(ii)
∣∣∣σ̂(Φ,Ψ)

A,t,s (ξ, η)
∣∣∣ ≤ C |λ φ1 (At−1) ξ |−

1
2 (d1+1) log2 A |αφ2 (As−1) η |−

1
2 (d2+1) log2 A ;

(iii)
∣∣∣σ̂(Φ,Ψ)

A,t,s (ξ, η) − σ̂(P,Ψ)
A,t,s (ξ, η)

∣∣∣ ≤ C
∣∣∣λφ1(At) ξ

∣∣∣ 1
2 log2 A

∣∣∣αφ2(As−1)η
∣∣∣− 1

2(d2+1) log2 A ;

(iv)
∣∣∣σ̂(Φ,Ψ)

A,t,s (ξ, η) − σ̂(Φ,Q)
A,t,s (ξ, η)

∣∣∣ ≤ C
∣∣∣ λ φ1(At−1) ξ

∣∣∣− 1
2 (d1+1) log2 A |αφ2(As) η|

1
2 log2 A ;

(v)

∣∣∣σ̂(Φ,Ψ)
A,t,s (ξ, η) − σ̂(P,Ψ)

A,t,s (ξ, η) − σ̂(Φ,Q)
A,t,s (ξ, η) + σ̂(P,Q)

A,t,s (ξ, η)
∣∣∣

≤ C|λφ1(At) ξ|
1

2 log2 A |αφ2(As) η|
1

2 log2 A ;

(vi)
∣∣∣σ̂(Φ,Q)

A,t,s (ξ, η) − σ̂(P,Q)
A,t,s (ξ, η)

∣∣∣ ≤ C |λφ1(At) ξ|
1

2 log2 A ;

(vii)
∣∣∣σ̂(P,Ψ)

A,t,s (ξ, η) − σ̂(P,Q)
A,t,s (ξ, η)

∣∣∣ ≤ C |αφ2(As) η|
1

2 log2 A ,

where C is independent of κ and (ξ, η) ∈ (Rn,Rm).
We end this section by the following estimates contained in the argument in [18].

Lemma 3.3. Let Ω ∈ L2(Sn−1 × Sm−1) satisfying (1.6)–(1.7) with ∥Ω∥1 ≤ 1 and ∥Ω∥2 ≤ A for some
A > 2. Suppose that P(w) =

∑d1
k=0 ck,1 wk and Q(z) =

∑d2
k=0 ck,2 zk are polynomials of degrees d1 and d2,

respectively. For 0 ≤ l ≤ d1 and 0 ≤ s ≤ d2, let

Pl(w) =
l∑

k=0

ck,1 wk and Qo(z) =
o∑

k=0

ck,2 zk
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with the convention that
∑
j∈∅
= 0. For t, s ∈ R, 0 ≤ l ≤ d1, and 0 ≤ o ≤ d2, let σ (l,o)

A,t,s be defined by (3.1)

where Φ andΨ are replaced by Pl and Qo, respectively. For 0 ≤ l ≤ d1, 0 ≤ o ≤ d2, let σ (l,o)
A,t,s = σ

(Pl,Qo)
A,t,s .

Then, for 1 ≤ l ≤ d1 and 1 ≤ o ≤ d2, we have
(i)∥σ(l,o)

A,t,s∥ ≤ C;

(ii)
∣∣∣σ̂(l,o)

A,t,s(ξ, η)
∣∣∣ ≤ C |cl,1Al(t−1) l! ξ|−

1
2 l log2 A | co,2 (Ao(s−1) o!η|−

1
2 o log2 A ;

(iii)
∣∣∣σ̂(l,o)

A,t,s(ξ, η) − σ̂(l−1,o)
A,t,s (ξ, η)

∣∣∣ ≤ C |cl,1 Altξ|
1

2 log2 A |co,2 Ao(s−1) o! η|−
1

2 o log2 A ;

(iv)
∣∣∣σ̂(l,o)

A,t,s(ξ, η) − σ̂(l,o−1)
A,t,s (ξ, η)

∣∣∣ ≤ C
∣∣∣cl,1 Al(t−1) l! ξ

∣∣∣− 1
2 l log2 A

∣∣∣co,2Aos η
∣∣∣ 1

2 log2 A ;

(v)

∣∣∣σ̂(l,o)
A,t,s(ξ, η) − σ̂(l−1,o)

A,t,s (ξ, η) − σ̂(l,o−1)
A,t,s (ξ, η) + σ̂(l−1,o−1)

A,t,s (ξ, η)
∣∣∣

≤ C |cl,1Alt ξ|
1
κ+1 |co,2 Aos η|

1
2 log2 A ;

(vi)
∣∣∣σ̂(l,o−1)

A,t,s (ξ, η) − σ̂(l−1,o−1)
A,t,s (ξ, η)

∣∣∣ ≤ C |cl,1 Alt ξ|
1

2 log2 A ;

(vii)
∣∣∣σ̂(l−1,o)

A,t,s (ξ, η) − σ̂(l−1,o−1)
A,t,s (ξ, η)

∣∣∣ ≤ C
∣∣∣co,2Aos η

∣∣∣ 1
2 log2 A ,

where C is independent of A and (ξ, η) ∈ (Rn,Rm).

4. Proof of results

This section is devoted for the proofs of Theorems 1.5 and 1.7. To this end, we prove the following
proposition:
Proposition 4.1. Suppose that Ω ∈ L2(Sn−1 × Sm−1) satisfying (1.6)–(1.7) with ∥Ω∥1 ≤ 1 and that
∥Ω∥2 ≤ A for some A > 2. Suppose also that ω1 ∈ ÃI

p(Rn) and ω2 ∈ ÃI
p(Rm), 1 < p < ∞. Assume

that the mappings Φ,Ψ satisfies (i) Φ,Ψ ∈ G; or (ii) Φ ∈ PCλ(d1), Ψ ∈ PCα(d2) for d1, d2 > 0 and
λ, α ∈ R. Then, for 1 < p < ∞, we have∥∥∥UΩ,Φ,Ψ( f )

∥∥∥
Lp(ω1,ω2)

≤
(
log2 A

)
Cp ∥ f ∥Lp(ω1,ω2) (4.1)

with constants Cp independent of A.
Proof: We shall prove (4.1) under the assumption (ii) on the mappings Φ and Ψ. The proof under the
assumption (i) follows by similar argument with minor modifications. We write Φ and Ψ as

Φ(w) = P(w) + λφ1(w) and Psi(z) = Q(z) + αφ2(z), (4.2)

where P and Q are polynomials of degrees d1 and d2 as in the statement of Lemma 3.3. We let
{ck,1}, {ck,2}, Pl,Qo, and σ (l,o)

A,t,s be as in Lemma 3.3. Let σ (d1+1,d2+1)
A,t,s be the measure σ(Φ,Ψ)

A,t,s in Lemma 3.1.
By simple change of variables, we have

UΩ,Φ,Ψ( f )(x, y) =
(
log2 A

)
UA,Φ,Ψ f (x, y), (4.3)

where

UA,Φ,Ψ f (x, y) =
(∫ ∞

−∞

∫ ∞

−∞

∣∣∣F(Φ,Ψ)
A,t,s ( f )(x, y)

∣∣∣2 2−2(log2 A)(t+s)dt ds
) 1

2

, (4.4)

F(Φ,Ψ)
A,t,s ( f )(x, y) =

∫ ∫
Λ(At ,As)

f (x − Φ(|u|)u′, y − Ψ(|v|)v′)
Ω(u′, v′)
|u|n−1 |v|m−1 du dv,
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and
Λ(At, As) = {(u, v) ∈ Rn × Rm : |u| ≤ At and |v| ≤ As}.

Thus, to prove (4.1), it suffices to show that∥∥∥UA,Φ,Ψ( f )
∥∥∥

Lp(ω1,ω2)
≤ Cp ∥ f ∥Lp(ω1,ω2) (4.5)

with constant Cp independent of A. Let {σ(l,o)
A,t,s : 0 ≤ l ≤ d1, 0 ≤ o ≤ d2} be as in Lemma 3.3. Notice

that
σ̂(0,0)

A,t,s = σ̂
(0,d2+1)
A,t,s = σ̂(d1+1,0)

A,t,s = 0. (4.6)

Following the same arguments in [18], for 1 ≤ l ≤ d1, 1 ≤ o ≤ d2, 1 < p < ∞, j, k ∈ Z, ω1 ∈ ÃI
p(Rn),

and ω2 ∈ ÃI
p(Rm), we can find linear transformations Ll : Rn→ Rn and Qs : Rm→ Rm and measures

{τ(l,o)
A,t,s : t, s ∈ R, } such that∣∣∣̂τ(l,o)

A,t,s(ξ, η)
∣∣∣ ≤ C |AltLl(ξ)|

− 1
2 βl log2 A |AosQo(η)|−

1
2 δo log2 A ; (4.7)∣∣∣̂τ(l,s)

A,t,s(ξ, η) − τ̂(l−1,o)
A,t,s (ξ, η)

∣∣∣ ≤ C |Alt Ll(ξ)|
1

2 log2 A |AosQo(η)|−
1

2 δo log2 A ; (4.8)∣∣∣̂τ(l,s)
A,t,s(ξ, η) − τ̂(l,o−1)

A,t,s (ξ, η)
∣∣∣ ≤ C

∣∣∣Alt Ll(ξ)
∣∣∣− 1

2 βl log2 A |AosQo(η)|
1

2 log2 A ; (4.9)∣∣∣̂τ(l,s)
A,t,s(ξ, η) − τ̂(l−1,o)

A,t,s (ξ, η) − τ̂(l,s−1)
A,t,s (ξ, η) + τ̂(l−1,s−1)

A,t,s (ξ, η)
∣∣∣

≤ C |Alt Ll(ξ)|
1

2 log2 A |AosQo(η)|
1

2 log2 A ;
(4.10)

∣∣∣̂τ(l,o−1)
A,t,s (ξ, η) − τ̂(l−1,o−1)

A,t,s (ξ, η)
∣∣∣ ≤ C |Alt Ll(ξ)|

1
2 log2 A ; (4.11)

∣∣∣̂τ(l−1,o)
A,t,s (ξ, η) − τ̂(l−1,o−1)

A,t,s (ξ, η)
∣∣∣ ≤ C |AosQo(η)|

1
2 log2 A ; (4.12)∥∥∥∥∥∥∥∥∥


∞∫
−∞

∞∫
−∞

|τ(l,o)
A,t,s ∗ Υat+ j, bs+k ∗ f (x, y)|2dt ds


1
2
∥∥∥∥∥∥∥∥∥

Lp(ω1,ω2)

≤ C p∥ f ∥Lp(ω1,ω2); (4.13)

and
d1+1∑
l=1

d2+1∑
o=1

τ(l,o)
A,t,s = σ

(d1+1,d2+1)
A,t,s ; (4.14)

where

βl =

{
d1 + 1, l = d1 + 1;
l, l , d1 + 1,

and

δo =

{
d2 + 1, o = d2 + 1;
o, o , d2 + 1.

Thus, by (4.14) and Minkowski’s inequality, we obtain that

∥∥∥UA,Φ,Ψ( f )
∥∥∥

Lp(ω1,ω2)
≤ Cp

d1+1∑
l=1

d2+1∑
o=1

∥∥∥S A,l,o( f )
∥∥∥

Lp(ω1,ω2)
; (4.15)
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where

S A,l,o( f )(x, y) =
(∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣(τ(l,o)
A,t,s ∗ ( f )(x, y)

)∣∣∣∣2 dtds
) 1

2

.

Now, by a similar argument as in [27], choose two collections of C∞ functions {ϖ(l)
i }i∈Z and {ϖ(o)

i }i∈Z

on (0,∞) satisfying the following properties:

supp(ϖ(l)
i ) ⊆

[
A−l(i+1), A−l(i−1)

]
and supp(ϖ(o)

i ) ⊆
[
A−o(i+1), A−o(i−1)

]
; (4.16)

0 ≤ ϖ(l)
i , ϖ

(o)
i ≤ 1; (4.17)∑

i∈Z

ϖ(l)
i )(u) =

∑
i∈Z

ϖ(o)
i )(u) = 1; (4.18)∣∣∣∣∣∣∣d

rϖ(l)
i

dur (u)

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣d

rϖ(o)
i

dur (u)

∣∣∣∣∣∣∣ ≤ Cr

ur , (4.19)

where Cr is independent of A. Define the measures {υ(l)
i : i ∈ Z} on Rn and {υ(o)

i : i ∈ Z} on Rm by

(̂υ(l)
i )(x) = ϖ(l)

i (|x|2) and (̂υ(o)
i )(y) = ϖ(o)

i (|y|2).

By (4.18), we immediately obtain

̂(τ(l,o)
A,t,s ∗ f )(ξ, η) = τ̂(l,o)

A,t,s(ξ, η) . f̂ (ξ, η)
∑
j∈Z
υ̂(l)

j (ξ) .
∑
i∈Z
υ̂(o)

i (η)

= τ̂(l,o)
A,t,s(ξ, η) . f̂ (ξ, η)

∑
j∈Z
υ̂(l)
⌊t⌋+ j(ξ) .

∑
i∈Z
υ̂(o)
⌊s⌋+i(η),

(4.20)

where ⌊t⌋ is the greatest integer function such that t − 1 < ⌊t⌋ < t, and similarly for ⌊s⌋ (see [6, 20]).
Hence, by taking the inverse Fourier transform for (4.20), we get

(τ(l,o)
A,t,s ∗ f )(x, y) =

∑
j∈Z

∑
i∈Z

(
υ(l)
⌊t⌋+ j ⊗ υ

(o)
⌊s⌋+i

)
∗ τ(l,o)

A,t,s ∗ f (x, y). (4.21)

Thus, by (4.21), we obtain
S A,l,o( f )(x, y) ≤ C

∑
j∈Z

∑
i∈Z

I(l,o)
A,i, j( f )(x, y) (4.22)

where

I(l,o)
A,i, j( f )(x, y) =

(∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣(υ(l)
⌊t⌋+ j ⊗ υ

(s)
⌊s⌋+i

)
∗ τ(l,o)

A,t,s ∗ f (x, y)
∣∣∣∣2 dt ds

) 1
2

. (4.23)

By (4.7)–(4.12) and the Plancherel theorem, we get

∥I(l,o)
A,i, j( f )∥2 ≤ Θi, j ∥ f ∥2, (4.24)

where

Θi, j =



2
is+ jl
l+ j , if i, j ≤ −2;

2−i− j, if i, j ≥ 3;
2

i− jl
l , if i ≤ −2 and j ≥ 3;

2
−is+ j

s , if i ≥ 3 and j ≤ −2;
1, if i ≥ −2 and j ≤ 3.
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Next, by (4.13), for 1 < p < ∞ and ω1 ∈ ÃI
p(Rn), ω2 ∈ ÃI

p(Rm), there exists a positive constant Cp

independent of i, j, and A such that

∥I(l,o)
A,i, j( f )∥Lp(ω1,ω2) ≤ Cp ∥ f ∥Lp(ω1,ω2). (4.25)

Now, we have three cases:
Case 1. p > 2. Choose a q > p and ε > 0, such that ω1+ε

1 ∈ ÃI
p(Rn) ⊂ ÃI

q(Rn) and ω1+ε
2 ∈ ÃI

p(Rm) ⊂
ÃI

q(Rm). Thus, by (4.25) we get

∥I(l,o)
A,i, j( f )∥Lq(ω1+ε

1 ,ω1+ε
2 ) ≤ Cp ∥ f ∥Lq(ω1+ε

1 ,ω1+ε
2 ), (4.26)

which when combined with (4.24) and the interpolation theorem with change of measures, we have

∥I(l,o)
A,i, j( f )∥Lp(ω1,ω2) ≤ C1−γ Θ

γ
i, j∥ f ∥Lp(ω1,ω2) (4.27)

for 0 < γ < 1 and p > 2.
Case 2. 1 < p < 2. Choose a 1 < q < p and ε > 0 such that ω1 ∈ ÃI

p(Rn), ω2 ∈ ÃI
p(Rm) and

ω1+ε
1 ∈ ÃI

q(Rn), ω1+ε
2 ∈ ÃI

q(Rm). Thus, by (4.25) we get

∥I(l,o)
A,i, j( f )∥Lq(ω1+ε

1 ,ω1+ε
2 ) ≤ Cp ∥ f ∥Lq(ω1+ε

1 ,ω1+ε
2 ) (4.28)

for some positive constant Cp independent of A. Then, by the same argument as in Case 1, we
obtain (4.27) for 0 < γ < 1 and 1 < p < 2.
Case 3. p = 2. We choose ε > 0 such that ω1+ε

1 ∈ ÃI
2(Rn), ω1+ε

2 ∈ ÃI
2(Rn). Then, we follow a similar

argument as in the previous two cases and get

∥I(l,o)
A,i, j( f )∥Lp(ω1,ω2) ≤ C1−γ Θ

γ
i, j∥ f ∥Lp(ω1,ω2) (4.29)

for 0 < γ < 1 and p = 2.
Finally, by (4.15), (4.22), and (4.27)–(4.29), we get (4.5). This completes the proof of Proposition 4.1.

Proof (of Theorem 1.5): Assume that Ω ∈ L(log L)(Sn−1 × Sm−1). We write Ω as

Ω(x, y) =
∞∑

k=0

θkΩk(x, y), (4.30)

where Ωk satisfies (1.6)–(1.7), ∥Ωκ∥1 ≤ 4, ∥Ωk∥2 ≤ 22(k+1), and the estimate

∞∑
k=0

(k + 1) θκ ≤ ∥Ω∥L(log L)(Sn−1×Sm−1). (4.31)

By (4.30) and Minkowski’s inequality, we have

∥∥∥UA,Φ,Ψ( f )
∥∥∥

Lp(ω1,ω2)
≤

∞∑
k=0

θk

∥∥∥U22(k+1),Φ,Ψ( f )
∥∥∥

Lp(ω1,ω2)
.
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Thus, by Proposition 4.1 with A = 22(k+1), we have

∥∥∥UA,Φ,Ψ( f )
∥∥∥

Lp(ω1,ω2)
≤

∞∑
k=0

log2(22(k+1))θk ∥ f ∥Lp(ω1,ω2)

=

 ∞∑
k=0

2(k + 1)θk

 ∥ f ∥Lp(ω1,ω2)

≤ 2∥Ω∥L(log L)(Sn−1×Sm−1) ∥ f ∥Lp(ω1,ω2) .

This completes the proof.

Proof (of Theorem 1.7): The proof follows a similar argument as in the proof of Theorem 1.5. We omit
the details.

5. Conclusions

In this paper, we proved the weighted Lp boundedness of Marcinkiewicz integral operators along
surfaces. We considered surfaces that are determined by functions satisfying some growth conditions
or mappings that are more general than polynomials and convex functions. We proved the weighted
Lp boundedness of related square functions and maximal functions. The argument in this paper can be
used to treat more general integral operators. This shall be the topic of future research.
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