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Abstract: We prove a weighted L” boundedness of Marcinkiewicz integral operators along surfaces
on product domains. For various classes of surfaces, we prove the boundedness of the corresponding
operators on the weighted Lebsgue space LP(R" XR™, w;(x)dx, w,(y)dy), provided that the weights w,
and w, are certain radial weights and that the kernels are rough in the optimal space L(log L)(S"! x
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weighted L? inequalities extend as well as generalize previously known L” boundedness results.
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1. Introduction and statement of results

Let R*(n > 2) be an n-dimensional Euclidean space, S"! the unit sphere in R" equipped with
normalized Lebesgue measure do, and set R, = (0, o0). Furthermore, we let y’ = Y e S™! for y#0

Iyl
and let Q € L'(S"!) be a homogeneous function of degree zero on R” that satisfies
f 1 Qy)do(y') = 0. (1.1)
sn-
The classical Marcinkiewicz integral operator introduced by E. M. Stein in [1] is given by
r oy Farl
! t
pan=| [| [ re-n2B ol 5 (1.2)
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When Q € Lip,(S"')(0 < a < 1), Stein [1] proved that uq maps LP(R") into LP(R") for all 1 < p < 2.
In [2], A. Benedek, A. Calderén, and R. Panzone proved that ug is bounded on L? forall 1 < p < oo
provided that Q € C! (S"‘l). In [3], Walsh proved that uq is bounded on L?>(R") under the weak

condition Q € L(log" L)%(S”‘l). Moreover, he showed that the L? boundedness of uq may fail if
the condition Q € L(log" L)2(S"™") is replaced by Q € L(log L)z=¢(S""") for some & > 0. In 2002,
Al-Salman et al. [4] improved Walsh’s result by showing that the condition Q € L(log* L)%(S”‘l) is
also sufficient for the L” boundedness of uq for all p € (1, 00). For further results and background
information about the operator pq, we refer readers to [4-9] and references therein, among others.

In 1990, Torchinsky and Wang studied the L” boundedness of the operator pg on weighted spaces.
In fact, they showed in [10] that ugq is bounded on LP(w) (1 < p < 00) if Q € Lip,(S™ ) (0 < a < 1)
and w € A, (the Muckenhoupt weight class, see [11]). Subsequently, Ding et al. [12] proved that pq
is bounded on L”(w) for p € (1, o) provided that Q € L9(S"!),q > 1, and w? € Ap(R™). In [13],
Lee et al. proved a weighted norm inequality for uq under the assumption that Q is in the Hardy
space H'(S"™!) and the weight w is in the class A;(R") of radial weights introduced by Duoandikoetxea
in [14]. In [15], Al-Salman studied weighted inequalities of the generalized operator

l

I 2 g
Haw(F)) = f flx- 200 g ] (1.3)
e T4 2

where V¥ : (0, c0) — R is a smooth function satisfying the following growth conditions

()| < C, (1) > Cpt* 2, (1.4)
C3t7! < |9/ (1) < Cyt?™! (1.5)

for some d # 0 and ¢ € (0, 00) where Cy, C,, C3, and Cy4 are positive constants independent of 7. We
shall let G be the class of all smooth mappings ¥ : (0, c0) — R that satisfy the growth conditions (1.4)—
(1.5). It is clear that G contains all power functions *(a # 0). It is shown in [15] that oy is bounded
on LP(w) for p € (1, o) provided that w € AL and that Q is in the optimal space L(log* L)2(S"1). Here,
we remark that for any ¢ > 1 and 0 < @ < 1, the following inclusions hold and that they are proper

Lip,(S"™ c LY(S™™) ¢ Llog L)(S"™) ¢ H'(S™™),

and
L(log" L)*(S"™) ¢ L(log* L)"(S"™™) whenever r < s.

In [8], Ding considered the analogy of the operator uq on the product domain setting. For QQ €
LY(S™! x §™1) satisfying

f Q', ydow') = f Q(,V)do(W') =0, (1.6)
gn-1 gm-1

Q(tx, sy) = Q(x,y), forany ¢, s > 0, (L.7)

consider the Marcinkiewicz integral operator on the product domains U, defined by

dt’ d
Uaf(x,y) = U [ el zztmf)] : (1.8)
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where .
Feote = [ [ farmuy = el dudy (19)

A,s")

and
A, s) ={(u,v) e R* X R™ : |u| < 2" and |v| < 2*).

Ding proved that Uq is bounded on L?>(R"XR™) when Q satisfies the additional assumption of
Q e L(log* L*(S"'xS™ ™), i.e.,

f f QG V)| (log2 + Q@' ,V)|)* do-(u')do (V') < co.
S”_l Sm—l

In 2002, Chen et al. [7] improved the result of Ding and showed that Ug is bounded on
L’(R"XR™) (1 < p < oo) under the same condition on Q. Later, Choi [16] proved that the L>
boundedness of U still holds under the very weak condition Q € L(log L)(S"~! x $"~!). Subsequently,
Al-Qassem et al. [17] substantially improved Choi’s result by showing that Uq is bounded on
LP(R"XR™) for all 1 < p < oo under the same condition Q € L(log L)(S"! x S™!). Moreover,
they proved that the condition Q € L(log L)(S*! x $™!) is nearly optimal in the sense that the L2
boundedness may fail if the function is assumed to be in L(log L)*(S"~' x S" ")\ L(log L)(S"~! x $"1)
for any @ < 1. For further results for Marcinkiewicz integral operators on product domains, we
cite [16-22], among others.

Motivated by the work in [15] and [18], we consider the weighted L” boundedness of the
Marcinkiewicz integral operator on product domains along surfaces. For suitable mappings ©,Y¥ :
[0, 00) — R, consider the Uq ¢y given by

dards' |’
Ugowf(x y)—U [ It zzztmf)] : (1.10)

Q /, ’
FY(f)(x,y) = f f Fx— @Qubu, y = PV #du dv, (1.11)

A(,s")

where

and A(?, ") = {(u,v) € R”" xR™ : |u| < 2" and |v| < 2%}. By specializing to the case ®(¢) = ¥(¢) = ¢,
the operator reduces to the classical Marcinkiewicz integral operator U on product domains. Integral
operators on product domains along surfaces have been considered by several authors. For background
information, we advise the readers to consult [17-23] and references therein.

In order to state our results in this paper, we recall the definition of radial weights AQ(R”) introduced
in [14]:

Definition 1.1. Let w(t) > 0; and w € LIOC(RJr). For 1 < p < oo, we say that w € A,(R,) if there is a
positive constant C such that, for any interval I C R,

p-1
(|I|_1 fw(t)dt) (III_1 fw(t)_vlldt) < C < oo.
i i
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We say that w € A;(R,) if there is a positive constant C such that
W) <Cw() for a.e.teR,,

where w* is the Hardy-Littlewood maximal function of w on R,.
Definition 1.2. Let 1 < p < co. We say that w € A,(R,) if

w(x) = vi(|xl) va(lx)' 7,

where either v; € A;(R,) is decreasing or vl.2 eAI(Ry), i=1,2.

Definition 1.3. For 1 < p < oo, we let

AP(RJr) = {w(x) = w(x]) : w@) >0, w) € L' (R,) and *(@) € A, (R}

loc

Let A;(R“) be the weight class defined by exchanging the cubes in the definition of A, for all n-
dimensional intervals with sides parallel to coordinate axes. It is well known that A,(R;) € A,(R;)
(see [24]). Moreover, if w(t) € AP(RJr), then w(|x|) is the Mukenhoupt weighted class A,(R") whose
definition can be found in [14]. We let AY, =A,N A;.

We shall need the following lemma:

Lemma 1.4. If 1 < p < oo, then the weight class A;(RQ has the following properties:

(i) Al c AL ,if 1 < py < py < oo

(ii) For any w € A;, there exists an € > 0 such that w'*¢ € A;;

(iii) For any w € A and p > 1, there exists an £ > O such that p —& > l and w € A

(iv) w € Al if and only if '™ € AL,

I .
p-e’

For any weights w; and w,, we let LP(R" X R™, w(x)dx, w,(y)dy) (1 < p < o) be the weighted L?
space associated with the weight w; and w;, 1.e., LP(R" X R™, w;(x)dx, w,(y)dy) = LP (w1, w,) consists
of all measurable functions f with ||f]|1r(w, v, < o0, Where

Allroon = ( f fR @I 0 e0) dxdy)p . (1.12)

In light of the above discussion, the following natural question arises:
Question: Let Uq oy be given by (1.8) and assume that Q € L(log L)(S"™! x S™') satisfying (1.6)—
(1.7). Assume that ®,¥ € G, w; € A;(R”) and w, € A;(Rm) for some 1 < p < oo. Is Ug oy bounded
on LP(wy, wy)?

In the following we shall answer the above question in the affirmative. In fact, we shall prove that
the weighted L” boundedness holds for various classes of mappings ® and ‘P.

Theorem 1.5. Suppose that Q € L(log L)(S™! x S™1) satisfying (1.6)—(1.7), w, € Aé(R”), and w, €
A;(Rm). If Y € G, then Uqow is bounded on LP (w1, w,) for 1 < p < oo,

We remark here that, by specializing to the case ®(f) = W(f) = ¢, we obtain that the classical
operator Ug is bounded on L”(w;, w;) for 1 < p < oo. This result, as far as we know, is not known
previously. We shall prove in this paper that the weighted boundedness in Theorem 1.5 holds for a
more mappings ®@ and Y. In order to state our second result, we recall the following class of mappings
introduced in [5]:

AIMS Mathematics Volume 9, Issue 4, 8386—-8405.
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Definition 1. 6. A function ¢ : [0, c0) — R is said to belong to the class PC,(d) (d > 0) if there exist
A € R, a polynomial P, and ¢ € C**'[0, o) such that

@)y () = P(1) + Ap(1)
(i) P(0) =0 and ¢ (0)=0 for 0< j<d (1.13)
(iii) ¢V is positive nondecreasing on (0,00) for 0< j<d+ 1.

say that In fact, we prove the following:

The class PC,(d) was introduced in [5]. It is shown in [5] that the class U;»0PC,(d) properly
contains the class of polynomials #, of degree less than or equal d as well as the class of convex
increasing functions. Examples of functions in U;»0#C,(d) that are neither convex nor polynomial are
widely available. A particular example is the function () = —> + > In(1 + ). Our second result in this
paper is the following:

Theorem 1.7. Suppose that Q € L(log L)(S"' x S™ 1Y satisfying (1.6)—(1.7), w, € A;(R”), and
wy € AQ(R’"). If ® € PCi(d),Y € PC,(b) for d, b > 0 and A, @ € R, then U oy is bounded on
LP (w1, wy) for 1 < p < oo with LP bounds independent of A, a € Rand the coefficients of the particular
polynomials involved in the standard representations of ® and V.

We remark here that; Theorem 1.7 is the analogy of Theorem 1.3 [15] in the product domain
setting. On the other hand, Theorem 1.7 is a generalization of the corresponding result in [18]. More
specifically, if w;(x) = wy(x) = 1, then Theorem 1.7 reduces to Theorem 1.3 in [18].

We point out here that the method employed in this paper is based on interpolation between good
L? estimates and crude L? estimates. The L? estimates depend heavily on the nature of the involved
surface. This is clearly expressed interns of the obtained oscillatory estimates. On the other hand,
the L? estimates depend on proving the boundedness of the corresponding maximal functions. The
the method employed can be used to study the weighted L” boundedness of more general classes of
Marcinkiewicz integral operators along surfaces.

Throughout this paper, the letter C will stand for a constant that may vary at each occurrence, but it
is independent of the essential variables.

2. Weighted estimates for certain square and maximal functions

This section is devoted to obtaining weighted estimates of certain square functions and maximal
functions. For positive real numbers a and b and a Schwartz function ® € S(R" x R™), we let

1

S(D,a,b(f)(x’ )’) = [f f |(Da’,b“ * f(X, )’)|2dfds] (21)

Dy ps(x,y) =a " b D(a"x,b"y).
It can be observed here that if ®(x,y) = @V (x)®?(y) and f(x,y) = fi(x)f>(y), then

where

S 0.ap()XY) = S o0, (f))S 02 4 (2) ()
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where S ¢, and S ¢, are the square functions in the one parameter setting defined in [15]. Thus, by
Lemma 2.1 in [15], it follows that for two Muckenhoupt weights w;, w, € A,, we have

”S@,a,b(fle)”LP(wl,wz) < Cp ”fl||Ll’(w1)||f2||Ll’(a)2) = Cp||f1f2||L/’(w1,w2)- (22)

Therefore, it is natural to question if (2.2) holds for general ® € S(R” X R™) and f € L”(w;, w;). In the
following lemma, which is analogues to Lemma 2.1 in [15], we answer this question in the affirmative:
Lemma 2.1. Given a, b > 2 and let ¥, 6 be C™ functions on R that satisfy the following conditions:

4 5 4 5b
(1) supp(¥) € [5— Tal and supp(0) C 5 4]
l//

T W] ( )

Let Y e S(R" x R™) be given by T(&,1) = w(&2). 6(In?) and let S, be the square function S+
given by (2.1) with ® is replaced by T. Then, for 1 < p < o0, w; € A,(R"), and w, € A,(R"), there
exists a constant C,, independent of a, b such that

(ii

< —ll for all u and / > 0 where C; is independent of a and b.
u

”S 'Y',a,b(f)”Ll’(wl,wz) < Cp ”f”Ll’(w],wz)' (23)

Proof: For (£,17) € R" X R™, let

Map(&,1, 15 8") = Y& 1) = y(la” €7) 6(1b* ).

By the assumption (ii), we have

f’aa ma,b(é‘:’ n, l”sl) 2
0&”
U'aﬁmw@ it

for every multi-index a, 8 with |a/, |8| > 0, where C,, Cp are constants independent of a and b. We set

dr ] < Co 1™ 2.4)

and

=

s'] < Cglnl™ (2.5)

K(x,y,1,5) =Ty v (x,y) = a™ b Y@ x,b7"y).

Then, by (2.4)—(2.5), and a vector-valued analogy of the argument in [25, p. 245-246], we obtain

f 0" K(x,y,t,s") 2
8 P
oo

f.o P K(x,y,t,5") 2d
0y
\—o0

AIMS Mathematics Volume 9, Issue 4, 8386—-8405.
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for || < 1 and |B| < 1 where C is a constant independent of a and b.

Now, let
gT,a,b(f)(x’ Y) = |Ta",bf, * f(x, )’)|,
gra()x,.) =T = fx, ), (2.8)
and
grp(N)y) =L = fC Y. (2.9)
Then,
81.ab(F)(X, ) < gr.a(grs(S)(x, y). (2.10)
By Plancherel’s theorem, we obtain
g r.a ()X, Mir2@ny < ClIfllz2gmy (2.11)
and
||g‘r,b(f)(-,)’)||L2(Rn) <C ||f||L2(Rn)- (2.12)

Hence, by the Corollary on page 205 in [25], and (2.4), (2.6), and (2.11), we have

1g1.a()x Wwi(x)dx < C f 1), DI wi(x) dx (2.13)
Rﬂ

R}l

for wi(x) € A,(R").

Thus, by (2.13) and following similar arguments as in [26], we get

Ngra(HE I Wi way) dx < € . (NG YIPwi(x) wa(y)d.x. (2.14)

R’

for each y € R™ with C independent of y. Then, by integration over R”, we get

f g.a(F) (0 I w1 (X) waly) dxdy < C f f A Pwi (D wa)dxdy. (215
R JR? n

Rm

By repeating the argument between (2.13) and (2.15) for gv,(f)(.,y), and replacing x by y, we get

ff |g‘r,b(f)(x’y)|pWl(x)WZ(Y)dXdy<Cff (), IPwi(x) wa(y)dx dy. (2.16)
R JR™ R? JR™

Finally, by (2.10), inequality (2.3) follows vector-valued analogues of the argument in the proof of the
Theorem 3 in [26, p. 128], and (2.15)—(2.16). This ends the proof of Lemma 2.1.
Now, for Q € L'(S"™! x $™~!) and suitable mappings ®, ¥ : (0, o) — R, we define the family of
measures {0 g gy 4 - ', 5" € R} by
, , Q ’ 4
f fdog owapr =a ' b~ f fx—D(up)u',y — () v’)M dudy. (2.17)
RexR™

|u|n—1 |V|m—1
|u<a”
[vl<b®

AIMS Mathematics Volume 9, Issue 4, 8386—-8405.
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We let Mg o, w4, be the maximal function corresponding to the family {oq ¢ w7 ,v 1 1, " € R}, ie.,

Mo, o, wap(f)(x,y) = sup |0'Q, o, wa b * f( )’)| . (2.18)

t',s’eR

Then, we have the following lemma:

Lemma 2.2. Suppose that Q € L'(S"! x S™Y) satisfying (1.7). For a,b > 2 and suitable ®,¥ :
(0,00) — R, let Mo o, wqp be the maximal function defined by (2.18). Suppose that (i) ®,¥Y € G;
or (ii) ® € PCy(d)), ¥ € PCy(d>) for d\, d, > 0 and A, @ € R. Then, for 1 < p < oo and w, €
AR, wy € Ap)(R™), there exists a constant C, independent of Q, a, and b such that

IMa,0,9.06(lLr@w) < Cp QL 11 f1lr@1,00)- (2.19)

Proof: We shall start by verifying (2.19) under assumption (i1) on the functions @ and ‘Y. Notice that

Ma, o, wap(f) £ Ma, o, w(f) = sup |0'Q, 0w 2v * f(X, )’)| . (2.20)

t',s’eR
Thus, it is enough to show that
IMa,0,w(Ollrwiw) < Cp QL 11 lzr@r.wm)- (2.21)

We define the one parameter maximal functions

, Qv
Mo w(f)(,y) = sup |2~ FCy =)D gy
s'eR [v]<25’ vl
and
, Q' -
Mao(f)(x,) = sup 27 S0 Dy, ) )
r'eR lu|<2? |ua]
Then,
Maow(f)(x,y) £ Mao(Maw(f)(,y)(x, ). (2.22)
By polar coordinates, we have
Mo < [ 1060 My f3)do ) 223
gm-1

where
2?
M) = sup2 [ IfCoy = W0 ar
0

Now, we have

25
M () < 3127 sup2 ) [ Ify = w0 W
=0

s’eR
25" =j-1

AIMS Mathematics Volume 9, Issue 4, 8386—-8405.
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< cZz f[sup flf( y—r v’)ldr} (2.24)

1
= Csup— f lfC,y—=rV)ldr'; (2.25)

>0

where (2.24) follows by change of variables and (1.4). By (8) in [14] and since w; € A »(R™), we get
M (e < Cpllfllzown)s (2.26)
where C, is a constant independent of v'. By a similar argument, for w; € A,(R"), we get
Mo (Dl < Cpllf e, (2.27)

where

1 cS
Mg (f)(x,.) < C sup S flf(x —tu')|dt.

5>0

Thus, by (2.23), (2.26), and Minkowski’s inequality, we get
IMa, e (Nl < Cp QUL 1/ lzrwn)- (2.28)
Similarly, for w; € A,(R"), we get

IMa,0(Dllrw) < Cp QI @) (2.29)

Now, by (2.28) and following a similar argument as in [26], we have

. Ma s ())VIP wi(x) wa(y) dy < CI€ | fR NG w1 ) wa(y) dy, (2.30)

for x € R” where C is a constant independent of x. Then, by integration with respect to x, we get

f f Mase (A )" w16 way) dxdy < C 12l f P () wa)dxdy.  (231)
R JRM R»

Rm

Thus, by following a similar argument as in (2.30)—(2.31) on Mg ¢, replacing x by y, we get

fRn fR Mao(£)Cx9)I" wix) wa(y) dxdy < chnLlf FaPwi)wa)dxdy.  (232)

R JR™

Thus, by (2.22), we have

IMa,0,v(Nllrwrwn < Cp 1LY 1f1lLrewn)- (2.33)

Hence, (2.19) follows by (2.20) and (2.33). This ends the proof of (2.19) under assumption (ii) on
the functions ® and ¥. To prove (2.19) under assumption (i) on the functions ® and ¥, we follow a

AIMS Mathematics Volume 9, Issue 4, 8386—-8405.
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similar argument as above and make use of estimates developed in the proof of Lemma 2.2 in [15]. We
omit the details. This ends the proof of the lemma.
Next, we prove the following weighted inequalities for square functions:

Lemma 2.3. Suppose that ||Q||;1 < 1. Suppose also that a, b, ¥, ®, and X are as in Lemma 2.2. Let
For t,s € R, let 00q ¢ w4p be given by (2.17) where t' and s" are replaced by t and s, respectively.
Assume that (i) ®,¥Y € G; or (ii) ® € PC,(d,), ¥ € PC,(d,) for d,, dy > 0 and A, a« € R. Then, for
l<p<o,jkeZ w € A;(R”), and w, € A;(Rm), and there exists a constant C, independent of
a, b, j, k, and Q such that

1

ff'o-g’q)’\y’al’bs % Tat+j,bs+k * f(x, y)'zdt dS < C ||f||Ll’(w1,w2)~ (234)

o0 LP(wy,w2)

Proof: Notice that

SUp [0q. 0, war b * Vi poer * fX, y)| = Moo w.ap(Tari pot % )X, Y)

t,s€R

< MQ’ @, ¥,a,b (Sup Tat-#j’bﬁ»k % f|) (x, y)

t,s€ER

Next, by Lemma 2.2, we have

Sup |0-Q’ O, ¥,a b *k Tawj’b.wk * f(x, y)|
t,s€R

Mo, 0. 9.ap (SUP [Cres e * f(x, y)

t,s€R

LP(w1,w2)

< (2.35)

LP(wy,w2)

<C sup |Ta’+j,b“+k * f(x, y)l

t,s€R LP(w1,w2)

Now, by duality, choose a non-negative function g(x, y) with ||g]| W7y S 1 such that
2

1-p/
v’ /
L (a)1 R

[ee) (o8]
f f |O-Q’q)’ly’ar’bx Ly poek * f(X, y)| dtds
o0 =00

LP(wy,w2)

< ff ffl(TQ,(l),‘P,agbs * Tat+j’bs+k *f(x’y)| g(X,y)dtdsdxdy

IR “oo ~oo (2.36)

<C ff ff Tar+j,bs+k * f(xa y)| Su%'@'g’qy’lp’ar’bs * g(x, y)|) dtdsdxdy
t,8€

RAXR™ —co0 —o0

< [1]

R*XR™ —00 —0c0

Yaei pser * f(, y)| Ma, 0 w.ap(@)(—x,—y)dt dsdxdy,
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where g(x,y) = g(—x, —y). Thus, by Lemma 2.1, (2.36), and Holder’s inequality, we get

w0 oo
ff|0'g,q>,\y,af,bs # L gre poee 3 f (X, )’)|
0 —o0

00 oo
W
o0 —o0

By an application of Lemma 2.2, we get

Lwrw) (2.37)

Ta’*'j,b”k * f(.x, y)| dtdr

LP(wy,w2)

s d=p! 1-py
Lp(wlp,wzp)

[So NN o]

fflO'Q’ D, V,al b * Tat*—j’b.wk * f(x, y)| dtdr

|

Hence, by interpolation between (2.35) and (2.38) in a vector-valued setting, we get

Lr(erw2) (2.38)

L oei povic % f(x, y)| dtds

LP(wy,w2)

1

[SolENe )

2
ff|0—9’d)’\y’“t’bs k Ta’*'j,b“’k * f(x, y)| dt ds

<C ||f||LP(w1,w2)’

where the last inequality is obtained by Lemma 2.1. This completes the proof of Lemma 2.3.

L (wy,w2)

(2.39)
TaH—j’bH—k * f(.x, y)|2 dtds

L (wy,w2)

3. Preliminary estimates

This section is establish some preliminary estimates that are needed to prove our results.

Lemma 3.1. Let Q € L*(S"' x ™) satisfying (1.6)—(1.7) with ||Qll; < 1 and ||Q|, < A for some
A > 2. Suppose that ®,Y € G with powers dy,d, in (1.4)—(1.5). Fort, s € R, let 0' CDT) be the measure
defined via the Fourier transform by

A (D) i@l £+ Py ny S V')
Oprs &m) = oo ff T W ———dudv, 3.1
T(A!,A%)
where
T(A, A = {(u,v) e R" X R™" : A7 < |u| < A" and A*™' < || < A®). (3.2)
Then, there exists € € (0, %) such that
G & <1 (33)
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G Em] < € JAN g T At | T G4
FE@E )| < € 1AM g TR AR | TR (3.5)
Gl (€] < € AN g A | 3.6
FEN@E )| < C 1AM g AL g TRz 3.7)

where the constant C is independent of A, s, and ¢.
Proof: We shall assume that dy, d, > 0. The other cases follows by similar argument. The estimate (3.3)
is clear. To see the estimate (3.4), notice that

orVE )| < f fs - 10G V)1 8(A, @, E)g(A, W, m)do(W)do (V) (3.8)

where
1

g4 0.0 = | [ s,
%

and g(A, ¥, n) has similar definition as g(A, @, ). By integration by parts along with the assumptions
(1.4)—(1.5), and the observations g(A, ®,¢) < 1 and g(A, ¥, n) < 1, there exists € € (0, %) such that

A, 0,8 < CIAME-u'[* (3.9)
gAY, ) < CIA® -V |, (3.10)

By (3.8), (3.9)—(3.10), Holder’s inequality, and assumption on €2, we have
FO0E )| < AIAY &7 1A o CC,, (3.11)

where 1

1
2 2
C.= sup ( f i€ o |_28d0'(u’)) sup ( f In -V |_28d0'(V')) )
{'JGS”_I Sn—l U,GS”’_I Sm—l

Since & < 1/2, we have C, < co. Thus, by (3.9)—(3.10), (3.8), and an interpolation, we get

1 & &
G (€| < ATEEIAN g EEA A R C

which implies (3.4) since A@ < 2. To verify (3.5), we first notice that

AS
1 N
yx f (@™ — 1) dr| < min(1, C1|A" p1}, (3.12)
s—1
which by interpolation implies
s
yx f (e @ — 1) dr| < ClA™ 7, (3.13)

s—1
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By the cancellation property (1.6), Holder’s inequality, the assumption on €2, (3.9), and (3.13), we have

Q. (', V)
A (‘D ) e (@uh&u "+P(vDnv) —iQ(|ul) §.u
Oars (&, 77)| Ares ff —e )luln L |ypm-1 dudv

(A!,A%)

< ClA®p f f Q' V)| g(A, @, &)do (' )do (V)
S”_l Sm—l

< ClIA% |12 S| ( f

Sn—]

8(A, @, )P da(u'))

< CIA® I |1Q1, S| IA" €17 sup ( f e rkda(u'))
Sn=

£esrl
< CA|IA®S nF|AD &7, (3.14)

where the last inequality follows by the same reasoning for C, above. Thus, (3.5) follows by (3.14),
(3.3), and an interpolation. The verifications of other estimates follows by a similar argument with
minor modifications. We omit the details. This completes the proof of the lemma.

Now, by the same argument as in [18], we have the following lemma:
Lemma 3.2. Let Q € L*(S"' x S™Y) satisfying (1.6)—(1.7) with ||Qll;, < 1 and |Q|, < A for some
A>2. Let ® € PCy(d,), ¥ € PC,(d) for dy, d, > 0 and A, a € R. Suppose that

Q(w) = P(w) + g1 (w) and Y(2) = 0@) + apa(2),

where P, Q, ¢1, and ¢, are as in the definition of the spaces PC,(d;) and ¥ € PC,(d,). Fort, s € R, let
oY) _(0,0) _(PY) (P,0)

Tprs s Oats»Oarssand o, 7 be the measures defined by (3.1) with proper modifications. Then,
@) o'l < €

(i) [FEYE | < C 1 (A [ Tmmm7 |a o, (A | TEeEr

(i) [0 ) - T En)| < C gAY T Jagaa ] T

N S
(iv) |afq®t‘i‘)(§ n) — a:XD Q)(g ,7)| <C |/1(p1(At—l)é:| ARG | o gy (A”) nlm :

()|

Thors Em) - E;P;‘?(f M) = Fagy ) + T E )
< ClApi (A E7%7 agy(A") gl o7

VD[FLYEm) - TLYE | < Clagi A )§|2'°=2A
WiD[FL Y&, n) - T2 @E )| < C lapa(A%) 77 |
where C is independent of « and (¢, 1) € (R",R™).

We end this section by the following estimates contained in the argument in [18].
Lemma 3.3. Let Q € L*(S"!' x ™) satisfying (1.6)—(1.7) with ||Q|l;, < 1 and ||Q|, < A for some
A > 2. Suppose that P(w) = ZZI:O cri W and Q(z) = ZZio cra 2* are polynomials of degrees d; and ds,
respectively. For 0 <[ < dy,and 0 < s < d,, let

[ 0

Piw) = D ciw’ and  Q,(2) = ) ciad

k=0 k=0
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with the convention that )} = 0. Fort, se R,0<[<d;,and 0 <0 < d,, let O'X’f)s be defined by (3.1)

jeb ”
where ® and W are replaced by P, and Q,,, respectively. For0 <1< d;, 0 <o < d,, leto
Then, for1 <! <d;and 1 <0 < d,, we have

: L, .

Dlle{ 2 < C;

.. o _ 1 _ 1

(ii) |O-X’;)l(§’ 77)| <C |cl’1Al(H) 11 ¢ 7ToA | e,y (A°G=D olp| zoom

ey | (] 1 1
(iii) |0_1(41,;Jl(§’ n) — O-les’O)(f’ 77)| <C |Cl,1 Alté:lzlong |C0’2 A°G=1) 51 nl Zology A »

() |00 6.m) 42,6 | < C ey AD 1 T |, 0 g
v) |5'Xf,1(§ 1) — TO:X;L’O)(&’ n) ji‘l(t]:” &)+ b\_i‘l,—t,l;o—l) & 77)|

<C |cl,1Alt ElT |epp A% |22

(Vi)|&£‘l:i;1)(§, n - EX;’IS’O_I)(f, 77)| < C e All flm;

1
(V11)|6_~X—tlso)(§’ 77) _ EX;}S’O—D(& 77)| <C C(),ZAOS n Mo 4
where C is independent of A and (¢,77) € (R",R™).

Loy _ _(P,Q)
Ats O-A,t,s .

4. Proof of results

This section is devoted for the proofs of Theorems 1.5 and 1.7. To this end, we prove the following
proposition:
Proposition 4.1. Suppose that Q € L*(S"' x S™") satisfying (1.6)—(1.7) with ||Q||; < 1 and that
|1, < A for some A > 2. Suppose also that w, € Af,(R”) and w, € AQ(R’"), 1 < p < oo. Assume
that the mappings ®©,¥ satisfies (i) ®,¥Y € G, or (ii) ® € PC,(d,), ¥ € PC,(d») for d,, d, > 0 and

A, @ € R. Then, for 1 < p < oo, we have

||(LIQ,<D,\P(f)||Lp(wl’w2) < (logy A) Cp 1/l r (. @D

with constants C,, independent of A.
Proof: We shall prove (4.1) under the assumption (ii) on the mappings @ and Y. The proof under the
assumption (i) follows by similar argument with minor modifications. We write ® and ¥ as

O(w) = P(w) + Ap;(w) and Psi(z) = Q(z) + aps(2), 4.2)

where P and Q are polynomials of degrees d; and d, as in the statement of Lemma 3.3. We let

{ce1)s ez}, P Q,, and O'X’f)s be as in Lemma 3.3. Let af{dﬁl’dﬁl) be the measure O'XD;T) in Lemma 3.1.

By simple change of variables, we have

Uaow()(x,y) = (logy, A) Usewf(x,y), 4.3)
where 1
Uroxwf(x,y) = ( f f |FO Y ((, y)|2 27200 M) gy gg| (4.4)
, o Q')
ﬁ?wmw:fj‘ fx = @(uu,y =P —————dudv,
A(A",A5) lu|"=1 v
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and
AL, AY) = {(u,v) e R"XR" : |u| < A" and |v| < A®}.

Thus, to prove (4.1), it suffices to show that

U0 oy om S Co oo (4.5)

with constant C, independent of A. Let {O’X:i)s :0<1<d,0<o0<d}beasin Lemma 3.3. Notice

that
—~(0,0) _ —~(0,dp+1) _ —~(d;+1,0) _
O-A,t,x - O-A,t,s - O-A,t,x = 0. (46)

Following the same arguments in [18], for 1 <[ <d|, 1 <o <d),1 <p< oo, jk€eZ w; € Aé(R”),
and w, € A;(Rm), we can find linear transformations L; : R"— R" and Q; : R”— R" and measures
{TX:Z)S :t, s € R,} such that

— 1 1
719 €| < C IATL(E) Ton A2 Q, ()| Foeir 4.7)
J —L0 ! os —%.
[F00 € =750 E )| < C AT Li@) e 1A% Q, ()| e (4.8)
_ e os 1
Than&m) =Ty V€ m)| < C AT Li@)| TR AT Q, () (4.9)
Them =T T EM =T E T Em) @.10)
< C A" L&)\ |A% Q, ()| 7227 '
Turs (G =Ty VEm| < C A" L7 (4.11)
—1.0 —lo— os .
FLL2@En =700 @ )| < € 1A Q)T (4.12)
(o) (o) l
f f 807 % Lo oo % f(x, y)dt ds < Cpllfllrterwn: (4.13)
00— LP(wy,w2)
and
d|+1 d2+1
DU = o, (4.14)
=1 o=1
where
,3: d+1, [l=d +1;
! l, [+d +1,
and
5 = d+1, o=d,+1;
¢ o, o#d,+1.
Thus, by (4.14) and Minkowski’s inequality, we obtain that
di+1 dy+1
120wl 0y < Co ,Z‘ Zl IS 40 (4.15)
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where

- (lo) 2 :
SA,l,u(f)(x,y):(f f TA”*(f)(x,y))' dtds) _

Now, by a similar argument as in [27], choose two collections of C* functions {wl(.l)},-ez and {wﬁ”)}iez
on (0, co) satisfying the following properties:

Supp(wgl)) C [A—I(i+1)’A—l(i—1)] and supp(wgo)) C [A—o(i+l)’A—o(i—l)] . (4.16)
0<a, @ <1; (4.17)
> aNw =Y o) = 1; (4.18)
i€Z i€Z
d' o (1) rw(_o) C
W), || s (4.19)

where C, is independent of A. Define the measures {v; e Z} on R" and {v, © . ;e Z} on R™ by
W) = @ (xP) and @7)) = ().
By (4.18), we immediately obtain
@05 PED =TEm. fEmn z REGEPED

(4.20)
=740 E . fEn) z A[?m(f) zaf‘jo(n)

where |7] is the greatest integer function such that t — 1 < [¢] < ¢, and similarly for |s] (see [6,20]).
Hence, by taking the inverse Fourier transform for (4.20), we get

@ @ = 30 3 (0 ®ell)) » 7+ o) @21)

JEZ i€Z

Thus, by (4.21), we obtain

SatoF3) < C 3 1) y) (4.22)
JEZ i€Z
where |
2 2
1), y) = ( f f vl @ ul.) * T £ )| dtds) . (4.23)
By (4.7)—-(4.12) and the Plancherel theorem, we get
IOl < O 11 o (4.24)
where

2T i< -2

2750 if i, j > 3,

0, = 2#, if i<-2and j>3;
—is+j

27, ifi>3and j<-2;
1, ifi>-2and j<3.
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Next, by (4.13), for 1 < p < oo and w; € A;(R”), w, € A;(R’"), there exists a positive constant C,,
independent of 7, j, and A such that

Iﬁlltoi(f)”L"(wl ,w2) < C ||f||L1’(w1 w2)* (425)

Now, we have three cases:
Case 1. p > 2. Choose a ¢ > p and £ > 0, such that w;** € AL(R") c Al(R") and w,** € AL(R™) C
Al(R™). Thus, by (4.25) we get

IS Moty < Cop lflzaopse otiey, (4.26)

which when combined with (4.24) and the interpolation theorem with change of measures, we have

SO v < €7 O Nl wn 4.27)

forO<y<landp>2.
Case2. 1 < p <2 Chooseal < g < pandeé& > 0 such that w; € A;(R”), w, € A;(R’") and
w** € AL(R"), wy** € AL(R™). Thus, by (4.25) we get

I P Mot esy < Cop lflzaopss otiey (4.28)

for some positive constant C,, independent of A. Then, by the same argument as in Case 1, we
obtain (4.27)forO <y <land1 < p <?2.

Case 3. p = 2. We choose & > 0 such that w!** € AL(R"), wl™ € AL(R"). Then, we follow a similar
argument as in the previous two cases and get

IS M1 < €7 OL Nl (4.29)

forO<y<1landp=2.
Finally, by (4.15), (4.22), and (4.27)—(4.29), we get (4.5). This completes the proof of Proposition 4.1.

Proof (of Theorem 1.5): Assume that Q € L(log L)(S"~! x S™!). We write Q as
Qx,y) = > B Qu(x,y), (4.30)
=0

where Q; satisfies (1.6)—(1.7), |l < 4, |Q%]l> < 2***D, and the estimate

D e+ 1), < 11Qll1g0g Lyer1emt- (4.31)

By (4.30) and Minkowski’s inequality, we have

(o)

||(L(A,<1>,‘P(f)||u(wl,w2) < Z O ||(Uzz<k+1>,cb,\y(f)||y,(wl’wz) .

k=0
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Thus, by Proposition 4.1 with A = 22**D_we have

[Unas Pl s € 1025 Nl
(w1,w2)
k

=0
Z 2(k + 1)9k] 11 2oy .00)
k=0

—

<

\®]

121 aog Lysm1xsm=1) 11 Lr(@r wn) -

This completes the proof.

Proof (of Theorem 1.7): The proof follows a similar argument as in the proof of Theorem 1.5. We omit
the details.

5. Conclusions

In this paper, we proved the weighted L” boundedness of Marcinkiewicz integral operators along
surfaces. We considered surfaces that are determined by functions satisfying some growth conditions
or mappings that are more general than polynomials and convex functions. We proved the weighted
L? boundedness of related square functions and maximal functions. The argument in this paper can be
used to treat more general integral operators. This shall be the topic of future research.
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