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Abstract: This paper focuses on a SIRS infectious model of nonlocal dispersal adopted with
age structure. We primarily investigate the existence and nonexistence of traveling wave solutions
connecting the disease-free equilibrium state and the endemic equilibrium state. To be more precise,
we obtain the existence of traveling wave solutions by constructing suitable upper and lower solutions
and then applying Schauder’s fixed point theorem when R0 > 1 and c > c∗. In addition, we prove the
nonexistence of traveling wave solutions by applying the Laplace transform for R0 > 1 and 0 < c < c∗.
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1. Introduction

Population dynamic models with age structure have a long history from articles of Lotka [16] in
1907 and Sharp and Lotka [24] in 1911. The first nonlinear age-structured model was proposed
by Gurtin and MacCamy [18] in 1974. The theory of traveling wave solutions of reaction-diffusion
systems has attracted much attention due to its significant nature in biology, chemistry, epidemiology
and physics. Ducrot and Magal [3] researched the existence of traveling wave solutions for infection-
age structured model with local diffusion by the methods of upper-lower solutions and Schauder’s fixed
point theorem. More recently, the traveling wave solutions of age-structured models received a lot of
interest in the literature and we refer to [3–5, 26, 29] for more results about this topic.

The article is devoted to the study of traveling wave solutions of the nonlocal dispersal SIRS
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epidemic model with age structure

∂

∂t
S (t, x) = d[J ∗ S (t, x) − S (t, x)] − S (t, x)

∫ A

0
β(a)i(t, a, x)da + δR(t, x),

∂

∂t
i(t, a, x) +

∂

∂a
i(t, a, x) = d[J ∗ i(t, a, x) − i(t, a, x)] − γi(t, a, x),

∂

∂t
R(t, x) = d[J ∗ R(t, x) − R(t, x)] + γ

∫ A

0
i(t, a, x)da − δR(t, x),

i(t, 0, x) = S (t, x)
∫ A

0
β(a)i(t, a, x)da,

(1.1)

where (t, a, x) ∈ D , R+ × (0, A] × R and

(J ∗ S − S )(t, x) ,
∫
R

J(x − y)S (t, y)dy − S (t, x),

(J ∗ i − i)(t, a, x) ,
∫
R

J(x − y)i(t, a, y)dy − i(t, a, x),

(J ∗ R − R)(t, x) ,
∫
R

J(x − y)R(t, y)dy − R(t, x).

S (t, x) and R(t, x) represent the densities of susceptible and removed individuals located at time t and
position x and i(t, a, x) represents the density of infected individuals located at time t and location x
with age a. And a > 0 is the time since individuals were infected. Based on the actual situation,
we assume that the age of infection is a constant. A ∈ (0,+∞) means the maximum age of infection.
Therefore, we assume that the maximum infection age A is a sufficiently large constant and i(t, A, x) = 0
throughout this paper. The parameter d > 0 represents the diffusion rate of individuals. The function
β(a) denotes the infection age-specific transmission rate. γ > 0 is the recovery rate of the infected
individuals and δ > 0 is the loss of immunity rate. Since there are no birth or death rates in this model,
N(t, x) = S (t, x)+

∫ A

0
i(t, a, x)da+R(t, x) is a constant for all t > 0. Therefore, we assume that the initial

value of (1.1) is S (0, x) +
∫ A

0
i(0, a, x)da + R(0, x) = S 0. And in this whole paper we assume δ > γ and

we mainly apply this assumption in Lemma 3.3. Moreover, J(x− y) denotes the probability of jumping
from position y to position x and J ∗ S (t, x) denotes the total number of susceptible individuals located
at time t, moving from the whole space to position x. In this paper, we give the following assumptions.

(A1) J ∈ C1(R), J(x) = J(−x) ≥ 0,
∫
R

J(x)dx = 1 and J is compactly supported.

(A2) The map a→ β(a) is almost everywhere bounded and belongs to L∞(0, A].

Kermack and McKendrick [14] first proposed a compartmental model to describe the spread of
infectious diseases in 1927. Since then, the SIR epidemic model and its various adaptations have
been widely studied in pathology [22, 26, 30, 32, 34]. In epidemiology, traveling wave solutions have
attracted a great deal of attention, which denote propagation through space at a constant velocity. In
order to control and prevent diseases, it is crucial to determine whether traveling wave solutions exist.
Therefore, many studies utilize spatially and temporally correlated models to investigate the existence
of traveling wave solutions [15, 21, 29, 31, 33].
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Hosono and Ilyas [7] investigated the reaction-diffusion equation with the nonlinear reaction term.
They verified the existence of a noncritical traveling wave solution. However, it is worth mentioning
that the model involves the classical Laplacian diffusion in [7], which is also called the local diffusion.
The local diffusion denotes that a population at position x will only be affected by variations in
the population near position x, which is deficient in describing diffusion [1, 6, 10, 12, 17, 21]. To
overcome the limitations of diffusion of individuals, the Laplacian operator can be replaced by the
nonlocal diffusion J ∗ u − u. Traveling wave solutions of infectious disease models with nonlocal
diffusion terms have drawn great attention in recent years. For example, Yang et al. [33] studied
the existence and nonexistence of traveling wave solutions in a Kermack-McKendrick epidemic model
with nonlocal diffusion. They established a non-empty closed convex cone on a bounded closed interval
and constructed appropriate upper and lower solutions and then obtained a nonlinear operator of an
ordinary differential system. By applying Schauder’s fixed point theorem, they proved the existence
of nontrivial traveling wave solutions. Furthermore, Yang et al. [31, 32] also investigated the traveling
wave solutions of the SIR epidemic model with critical wave speed. After that, Ma and Yuan [17]
studied the traveling wave solutions of the nonlocal dispersal SIRS model with spatio-temporal delay.
Qiao et al. [21] researched the traveling wave solutions of the nonlocal dispersal SEIR model with
standard incidence.

In addition, age is one of the important features in describing epidemics due to the fact that
individuals of different ages may have different survivability and behaviors in their natural conditions.
For example, hand-foot-mouth disease, chickenpox, measles, and influenza are all susceptible to
occur in childhood. Novel coronavirus infections are universally susceptible to the population and
can occur in all age groups, but are less common in children under three years of age. The
disease is mainly concentrated in older people over the age of sixty-five and the virus is easily
exacerbated. Therefore, age structure is a significant factor in studying the epidemic patterns of
infectious diseases. In recent years, lots of age-structure models have been proposed in the epidemic
spread (see [2,8,9,13,19,20,29]). For instance, Ducrot et al. [5] studied the existence of traveling wave
solutions for multigroup age-structure models. At the same time, Ducrot and Magal [3] researched the
existence of traveling wave solutions for the infection-age structured model with diffusion. In addition,
Ducrot and Magal [4] also proposed the SI infectious disease model with external supplies and age
structure. And age is the time since the individuals were infected. They proved the existence of
traveling wave solutions by constructing suitable upper and lower solutions and applying Schauder’s
fixed point theorem. Meanwhile, they studied the convergence behavior at positive infinity by
constructing a suitable Lyapunov functional. In addition, Tian and Guo [26] obtained the existence
of traveling wave solutions of nonlocal dispersal Fisher-KPP model with age structure. In recent
years, Kang and Ruan [11] have proposed an age-structure SIS infectious disease model with nonlocal
diffusion



(
∂

∂t
+
∂

∂a

)
S (t, a, x) = d[LS ](t, a, x) − (λ(t, a, x) + µ(a, x)) S (t, a, x) + γ(a, x)I(t, a, x),(

∂

∂t
+
∂

∂a

)
I(t, a, x) = d[LI](t, a, x) + λ(t, a, x)S (t, a, x) − (µ(a, x) + γ(a, x))I(t, a, x),

S (t, 0, x) =

∫ a+

0

∫
Ω

β(a, x, y)S (t, a, y)dyda, t > 0,

(1.2)
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with
I(t, 0, x) = 0, S (0, a, x) = S 0(a, x), I(0, a, x) = I0(a, x),

where a ≥ 0, t ≥ 0, x ∈ Ω ⊂ RN and the nonlocal operator L is defined by

[Lu](t, a, x) := (J ∗ u − u)(t, a, x) =

∫
Ω

J(x − y)u(t, a, y)dy − u(t, a, x).

And µ(a, x) and γ(a, x) represent the mortality and recovery rates, respectively, for individuals of age
a at location x. λ(t, a, x) is the infectivity of infected individuals to susceptible individuals of age a at
time t in position x. β(a, x, y) indicates the birth rate of individuals of age a on position y giving birth
to newborns at position x. They prove the existence of traveling wave solutions by constructing upper
and lower solutions in [11]. We can refer to [15, 22, 23, 25, 28, 34] for the relevant conclusions on the
research of traveling wave solutions for many infectious disease models. As far as we know, there are
few researches on the traveling wave solutions of epidemic models with age structure [4, 29].

This paper is structured as follows. In Section 2, we give some key preliminaries of this paper.
Then, we establish the existence of traveling wave solutions for c > c∗ in Section 3. Section 4 obtains
the nonexistence of traveling wave solutions for 0 < c < c∗ by using the Laplace transform. We draw
the conclusions in Section 5.

2. Preliminaries

In this section, we present some preliminaries and the characteristic equation.
Let N(t, x) = S (t, x) +

∫ A

0
i(t, a, x)da + R(t, x). The system (1.1) can be rewritten as the following

system: 

∂

∂t
N(t, x) = d[J ∗ N(t, x) − N(t, x)],

∂

∂t
i(t, a, x) +

∂

∂a
i(t, a, x) = d[J ∗ i(t, a, x) − i(t, a, x)] − γi(t, a, x),

∂

∂t
R(t, x) = d[J ∗ R(t, x) − R(t, x)] + γ

∫ A

0
i(t, a, x)da − δR(t, x),

i(t, 0, x) =

(
N(t, x) −

∫ A

0
i(t, a, x)da − R(t, x)

) ∫ A

0
β(a)i(t, a, x)da.

(2.1)

The homogeneous system for (2.1) always exists a disease-free equilibrium (S 0, 0, 0), where S 0 denotes
the density of susceptible individuals at the start of the infection. In addition, if the basic reproduction
number R0 = S 0

∫ A

0
β(a)e−γada > 1, the homogeneous system for (2.1) exists a unique endemic

equilibrium (S 0, i∗(a),R∗), where

i∗(a) =
δγ

δ + γ

S 0 −
1∫ A

0
β(a)e−γada

 e−γa

1 − e−γA and R∗ =
γ

δ + γ

S 0 −
1∫ A

0
β(a)e−γada

 .
Our purpose in this paper is to discuss the traveling wave solutions connecting the disease-free

equilibrium and the endemic equilibrium. More precisely, we aim to study the traveling wave solutions
of system (2.1) with the form

(N(t, x), i(t, a, x),R(t, x)) = (N̂(z),̂ i(a, z), R̂(z)), z = x + ct, (2.2)
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where the parameter c > 0 indicates the wave speed. Substituting (2.2) into (2.1) and replacing N̂, î, R̂
with N, i, R, we deduce the following system:

cN′(z) = d[J ∗ N(z) − N(z)],

c
∂

∂z
i(a, z) +

∂

∂a
i(a, z) = d[J ∗ i(a, z) − i(a, z)] − γi(a, z),

cR′(z) = d[J ∗ R(z) − R(z)] + γ

∫ A

0
i(a, z)da − δR(z),

i(0, z) =

(
N(z) −

∫ A

0
i(a, z)da − R(z)

) ∫ A

0
β(a)i(a, z)da.

(2.3)

Thus, the solution of system (2.3) connecting (S 0, 0, 0) and (S 0, i∗(a),R∗) is a special solution, which
satisfies the asymptotic boundary conditions

(N, i,R) (−∞) = (S 0, 0, 0),
(N, i,R) (+∞) = (S 0, i∗(a),R∗).

(2.4)

We intend to obtain the existence of traveling waves of system (2.1), which satisfies N(±∞) = S 0.
Since N(z) is a constant, system (2.3) can be simplified by removing the first equation to the following
system: 

c
∂

∂z
i(a, z) +

∂

∂a
i(a, z) = d[J ∗ i(a, z) − i(a, z)] − γi(a, z),

cR′(z) = d[J ∗ R(z) − R(z)] + γ

∫ A

0
i(a, z)da − δR(z),

i(0, z) =

(
S 0 −

∫ A

0
i(a, z)da − R(z)

) ∫ A

0
β(a)i(a, z)da,

(2.5)

which satisfies the asymptotic boundary conditions

(i,R) (−∞) = (0, 0) = E0,

(i,R) (+∞) = (i∗(a),R∗) = E∗.
(2.6)

Assume that R0 = S 0

∫ A

0
β(a)e−γada > 1. By linearizing the third equation of system (2.5) around

the disease-free equilibrium (0,0) and letting i(a, z) = eλzφ(a), we can obtain the characteristic equation
as follows:

F1(λ, c) = S 0

∫ A

0
β(a)eg(λ,c)ada − 1, (2.7)

where g(λ, c) = d
(∫
R

J(x)eλxdx − 1
)
− γ − cλ and the function φ satisfies φ′(a) = g(λ, c)φ(a). Notice

that

F1(0, c) = S 0

∫ A

0
β(a)e−γada − 1 = R0 − 1 > 0,

∂F1(λ, c)
∂c

= −λS 0

∫ A

0
β(a)eg(λ,c)ada < 0,

∂F1(λ, c)
∂λ

∣∣∣∣
λ=0

= −cS 0

∫ A

0
β(a)e−γaada < 0,

∂2F1(λ, c)
∂λ2 = S 0

∫ A

0
β(a)eg(λ,c)aa

(
a (gλ(λ, c))2 + gλλ(λ, c)

)
da > 0.

(2.8)
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In order to construct R+(z), we consider the following function and study its properties:

F2 (λ, c) = d
∫
R

J(x)e−λxdx − d − δ − cλ +
γ

R∗
M,

where M is a positive constant to be determined and M can be taken to be e(λ1−λ3)z3 in Lemma 3.3. And
λ1, λ3 can be seen in Lemma 2.1 and z3 can be obtained from R+(z). Notice that

F2 (0, c) = −δ +
γ

R∗
M,

∂F2 (λ, c)
∂λ

∣∣∣∣∣
λ=0

= −c < 0,

∂F2 (λ, c)
∂c

= −λ < 0,

∂2F2 (λ, c)
∂λ2 = d

∫
R

J(x)x2eλxdx > 0.

(2.9)

Based on (2.8) and (2.9), we can obtain the following lemma.

Lemma 2.1. If R0 = S 0

∫ A

0
β(a)e−γada > 1, then there exist positive constants c∗i and λ∗i such that

Fi
(
λ∗i , c

∗
i
)

= 0 and
∂Fi (λ, c)

∂λ

∣∣∣∣∣
(λ∗i ,c

∗
i )

= 0, i = 1, 2.

Furthermore,
(i) • when c ∈

(
0, c∗1

)
, it is known that F1(λ, c) > 0 holds for all λ ≥ 0;

• when c > c∗1, F1(λ, c) = 0 has two positive roots λ1(c) and λ2(c) satisfying

0 < λ1(c) < λ∗1 < λ2(c) < +∞.

In addition, when c > c∗1, F1(λ, c) is less than zero in λ ∈ (λ1(c), λ2(c)) and greater than zero beyond
[λ1(c), λ2(c)].
(ii) • When c ∈

(
0, c∗2

)
, it is known that F2(λ, c) > 0 holds for all λ ≥ 0;

• when c > c∗2, F2(λ, c) = 0 has two positive roots λ3(c) and λ4(c) satisfying

0 < λ3(c) < λ∗2 < λ4(c).

In addition, when c > c∗2, F2(λ, c) is less than zero in λ ∈ (λ3(c), λ4(c)) and greater than zero beyond
[λ3(c), λ4(c)].

Remark 2.1. When δ = 0 and γ = 0, we obtain c∗2 = 0, λ3 = 0. Therefore, we get c∗2 < c∗1 and λ3 < λ1

by choosing δ and γ small enough. Taking c∗ = c∗1, we consider c∗ as the critical wave speed in this
paper.

Remark 2.2. The function φ(a) satisfies the equation φ′(a) = g(λ, c)φ(a) for c > c∗. In the process of
deriving the characteristic equation, it can be obtained that φ(0) = S 0

∫ +∞

0
β(a)φ(a)da.
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3. Existence of traveling wave solutions with c > c∗

In this section, we assume c > c∗ and give the definitions of the upper solution and lower
solution. To construct the suitable upper and lower solutions, we assume that δ and γ are small enough
throughout this paper (see Remark 2.1 and (3.3)). Then, the existence of traveling wave solutions is
proved by using Schauder’s fixed point theorem.

Definition 3.1. A pair of the continuous functions Φ+ = (i+(a, z),R+(z)) and Φ− = (i−(a, z),R−(z)) are
called the upper solution and lower solution of system (2.5), if there exists a finite set S = {Zi ∈ R : i =

1, 2, ...,m} such that Φ
′

+,Φ
′

− exist and are bounded for z ∈ RnS, and satisfy

c
∂

∂z
i+(a, z) +

∂

∂a
i+(a, z) > d[J ∗ i+(a, z) − i+(a, z)] − γi+(a, z),

cR′+(z) > d[J ∗ R+(z) − R+(z)] + γ

∫ A

0
i+(a, z)da − δR+(z),

i+(0, z) >
(
S 0 −

∫ A

0
i+(a, z)da − R−(z)

) ∫ A

0
β(a)i+(a, z)da,

(3.1)

and 

c
∂

∂z
i−(a, z) +

∂

∂a
i−(a, z) 6 d[J ∗ i−(a, z) − i−(a, z)] − γi−(a, z),

cR′−(z) 6 d[J ∗ R−(z) − R−(z)] + γ

∫ A

0
i−(a, z)da − δR−(z),

i−(0, z) 6
(
S 0 −

∫ A

0
i−(a, z)da − R+(z)

) ∫ A

0
β(a)i−(a, z)da,

(3.2)

for z ∈ RnS, respectively.

Let ε > 0 be small enough and ε1 = ε + ε2. Next, we define two continuous functions Φ+ =

(i+(a, z),R+(z)) and Φ− = (i−(a, z),R−(z)) as follows:

i+(a, z) =

 eλ1zφ(a), z 6 z1,

i∗(a) + ε1e−λzφ(a), z > z1,
i−(a, z) =

0, z 6 z2,

i∗(a) − ε1e−λzφ(a), z > z2,

R+(z) =

 R∗eλ3z, z 6 z3,

R∗ + εe−λz, z > z3,
R−(z) =

0, z 6 z4,

R∗ − εe−λz, z > z4,

(3.3)

where z1, z3 > 0, z2 < z4 < 0 and λ > 0 is a small enough constant.

Remark 3.1. By the expressions for i−(a, z) and R−(z), it follows that z2 = − 1
λ

ln R∗
ε
− 1

λ
ln δe−γa

(1+ε)φ(a) and
z4 = − 1

λ
ln R∗

ε
. And it is easy to hold that z2 < z4, e.g., when γ = 1

A , where A is a sufficiently large
constant.

Lemma 3.1. The function i+(a, z) satisfies
c
∂

∂z
i+(a, z) +

∂

∂a
i+(a, z) > d[J ∗ i+(a, z) − i+(a, z)] − γi+(a, z),

i+(0, z) >
(
S 0 −

∫ A

0
i+(a, z)da − R−(z)

) ∫ A

0
β(a)i+(a, z)da,

(3.4)

for z , z1.
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Proof. For the first equation of system (3.4), when z < z1, i+(a, z) = eλ1zφ(a). Thus, we just need to
prove

cλ1eλ1zφ(a) + eλ1zφ′(a) > d
(∫
R

J(z − y)eλ1yφ(a)dy
)
− (γ + d)eλ1zφ(a).

It is sufficient to prove
φ′(a)
φ(a)

> d
∫
R

J(x)eλ1 xdx − γ − d − cλ1.

Recalling Remark 2.2, the above inequality holds.
When z > z1, i+(a, z) = i∗(a) + ε1e−λzφ(a), we need to prove

−cλε1e−λzφ(a) + i∗′(a) + ε1e−λzφ′(a) >d
∫
R

J(z − y)
(
i∗(a) + ε1e−λyφ(a)

)
dy

− (d + γ)(i∗(a) + ε1e−λzφ(a)).

It is enough to verify
φ′(a)
φ(a)

> d
∫
R

J(x)e−λxdx − γ − d + cλ.

That is to say,
g(λ1) > g(λ) + 2cλ. (3.5)

When λ > 0 is small enough, (3.5) is established.
For the second equation of the system (3.4), when z < z1, i+(a, z) = eλ1zφ(a). Therefore, it is

sufficient to demonstrate

eλ1zφ(0) >
(
S 0 −

∫ A

0
i+(a, z)da − R−(z)

)
eλ1z

∫ A

0
β(a)φ(a)da. (3.6)

Recalling Remark 2.2, inequality (3.6) holds.
When z > z1, i+(a, z) = i∗(a) + ε1e−λzφ(a). We need to show

i∗(0) + ε1e−λzφ(0) >
(
S 0 −

∫ A

0
i+(a, z)da − R−(z)

) ∫ A

0
β(a)

(
i∗(a) + ε1e−λzφ(a)

)
da. (3.7)

Due to φ(0) = S 0

∫ A

0
β(a)φ(a)da and i∗(0) >

(
S 0 −

∫ A

0
i+(a, z)da − R−(z)

) ∫ A

0
β(a)i∗(a)da, it is evident

that (3.7) is true. �

Lemma 3.2. The function i−(a, z) satisfies
c
∂

∂z
i−(a, z) +

∂

∂a
i−(a, z) 6 d[J ∗ i−(a, z) − i−(a, z)] − γi−(a, z),

i−(0, z) 6
(
S 0 −

∫ A

0
i−(a, z)da − R+(z)

) ∫ A

0
β(a)i−(a, z)da,

(3.8)

for z , z2.
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Proof. For the first equation of system (3.8), when z < z2, i−(a, z) = 0. Therefore, it is obviously true.
When z > z2, i−(a, z) = i∗(a) − ε1e−λzφ(a). We need to show

cλε1e−λzφ(a) + i∗′(a) − ε1e−λzφ′(a) 6d
∫
R

J(z − y)
(
i∗(a) − ε1e−λyφ(a)

)
dy

− (d + γ)
(
i∗(a) − ε1e−λzφ(a)

)
.

(3.9)

(3.9) can be simplified to
φ′(a)
φ(a)

> d
∫
R

J(x)e−λxdx − γ − d + cλ.

That is to say,
g(λ1) > g(λ) + 2cλ. (3.10)

When λ > 0 is small enough, (3.10) holds.
For the second equation of system (3.8), when z < z2, i−(a, z) = 0. It is clearly true.
When z > z2, i−(a, z) = i∗(a) − ε1e−λzφ(a). We need to show

i∗(0) − ε1e−λzφ(0)

6

(
S 0 −

∫ A

0

(
i∗(a) − ε1e−λzφ(a)

)
da − R+(z)

) ∫ A

0
β(a)

(
i∗(a) − ε1e−λzφ(a)

)
da.

(3.11)

Next, we need to discuss the two cases of R+(z) in (3.11).
When z2 < z < z3, R+(z) = R∗eλ3z. It is sufficient to ensure that

i∗(0) − ε1e−λzφ(0) ≤
(
S 0 −

∫ A

0
i∗(a)da + ε1e−λz

∫ A

0
φ(a)da − R∗eλ3z

)
(∫ A

0
β(a)i∗(a)da − ε1e−λz

∫ +∞

0
β(a)φ(a)da

)
.

(3.12)

(3.12) can be simplified to(
ε1e−λz

∫ A

0
φ(a)da − R∗eλ3z + R∗

) ∫ A

0
β(a)i∗(a)da

+

(∫ A

0
i∗(a)da − ε1e−λz

∫ A

0
φ(a)da + R∗eλ3z

)
ε1e−λz

∫ A

0
β(a)φ(a)da > 0.

(3.13)

Under the conditions that

ε1e−λz3

∫ A

0
φ(a)da − R∗eλ3z3 + R∗ > 0 (3.14)

and ∫ A

0
i∗(a)da − ε1e−λz

∫ A

0
φ(a)da + R∗eλ3z > 0 (3.15)

the inequality (3.13) holds. In addition, (3.14) is equal to

(1 + ε)
∫ A

0
φ(a)da > 1. (3.16)
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We can choose φ(0) =
g(λ1)

eg(λ1)A−1 and ε1 small enough to guarantee (3.15) and (3.16) hold.
When z > z3, R+(z) = R∗ + εe−λz. It is to prove that

i∗(0) − ε1e−λzφ(0) ≤
(
S 0 −

∫ A

0
i∗(a)da − R∗ + ε1e−λz

∫ A

0
φ(a)da − εe−λz

)
(∫ A

0
β(a)i∗(a)da − ε1e−λz

∫ A

0
β(a)φ(a)da

)
.

(3.17)

(3.17) can be simplified to

εe−λz

(
(1 + ε)

∫ A

0
φ(a)da − 1

) ∫ A

0
β(a)i∗(a)da

+

(∫ A

0
i∗(a)da + R∗ − ε1e−λz

∫ A

0
φ(a)da + εe−λz

) (
ε1e−λz

∫ A

0
β(a)φ(a)da

)
> 0.

(3.18)

Due to φ(0) =
g(λ1)

eg(λ1)A−1 , then (1 + ε)
∫ A

0
φ(a)da > 1 holds. Since ε1 is small enough, then∫ A

0
i∗(a)da + R∗ − ε1e−λz

∫ A

0
φ(a)da + εe−λz > 0 (3.19)

is true. Therefore, (3.17) holds.
�

Lemma 3.3. The function R+(z) satisfies

cR′+(z) > d[J ∗ R+(z) − R+(z)] + γ

∫ A

0
i+(a, z)da − δR+(z), (3.20)

for z , z3.

Proof. When z < z3, R+(z) = R∗eλ3z. It is necessary to demonstrate

cλ3R∗eλ3z > d
∫
R

J(z − y)R∗eλ3ydy − (d + δ)R∗eλ3z + γ

∫ A

0
i+(a, z)da.

That is to say, we only need to prove this simplified expression as follows:

d
∫
R

J(z − y)eλ3(y−z)dy − d − δ +
γ

R∗
e−λ3z

∫ A

0
i+(a, z)da − cλ3 6 0. (3.21)

At this point, (3.21) can be organized in the following inequalities:

F2 (λ3, c) −
γ

R∗

(
M − e−λ3z

∫ A

0
i+(a, z)da

)
6 0.

Since F2 (λ3, c) = 0, we need to demonstrate

M > e−λ3z
∫ A

0
i+(a, z)da. (3.22)
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Next, we will consider different cases for i+(a, z).
If z < z1, then i+(a, z) = eλ1zφ(a). Noticing that

∫ A

0
φ(a)da = 1, we can choose M = e(λ1−λ3)z3 to

ensure that (3.22) holds.
If z > z1, then i+(a, z) = i∗(a) + ε1e−λzφ(a). We just need to verify

e(λ1−λ3)z3 > e−λ3z
∫ A

0

(
i∗(a) + ε1e−λzφ(a)

)
da. (3.23)

Simplifying (3.23), we obtain

e(λ1−λ3)z3eλ3z1 >

∫ A

0
i∗(a)da + ε1e−λz1 . (3.24)

Since λ3 < λ1 and z1 < z < z3, it follows that the left side of (3.24) is greater than 1. When ε1 > 0 is
sufficiently small, ε1e−λz1 tends to zero. By taking S 0 6 1 so that

∫ A

0
i∗(a)da 6 1, we have that (3.24)

holds.
When z > z3, R+(z) = R∗ + εe−λz, i+(a, z) 6 i∗(a) + ε1e−λ(z∨z1)φ(a), where z∨ z1 := max {z, z1}. It is to

prove that

−cλεe−λz >d
∫
R

J(z − y)
(
R∗ + εe−λy

)
dy − (d + δ)

(
R∗ + εe−λz

)
+ γ

∫ A

0

(
i∗(a) + ε1e−λ(z∨z1)φ(a)

)
da.

(3.25)

Due to ∣∣∣∣∣d ∫
R

J(x)e−λxdx − d + cλ
∣∣∣∣∣→ 0 as λ→ 0,

then there exists δ1 > 0, for any λ ∈ (0, δ1),∣∣∣∣∣d ∫
R

J(x)e−λxdx − d + cλ
∣∣∣∣∣ < η1. (3.26)

Thus, (3.25) can be simplified to

d
∫
R

J(x)e−λxdx − d + cλ − δ + γ(1 + ε)e−λ(z∨z1−z)
∫ A

0
φ(a)da

≤η1 − δ + γ(1 + ε).
(3.27)

We can choose η1 = δ − γ(1 + ε), then (3.25) holds. �

Lemma 3.4. The function R−(z) satisfies

cR′−(z) 6 d[J ∗ R−(z) − R−(z)] + γ

∫ A

0
i−(a, z)da − δR−(z), (3.28)

for z , z4.
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Proof. When z < z4, R−(z) = 0. Thus, it is obviously true.
When z > z4, R−(z) = R∗ − εe−λz. We need to show

cελe−λz ≤ d
∫
R

J(z − y)
(
R∗ − εe−λy

)
dy − (d + δ)

(
R∗ − εe−λz

)
+ γ

∫ A

0
i−(a, z)da. (3.29)

Since z2 < z4 when A is sufficiently large, (3.29) reduces to

d
∫
R

J(x)e−λxdx − d + cλ 6 δ − γ(1 + ε). (3.30)

Due to ∣∣∣∣∣d ∫
R

J(x)e−λxdx − d + cλ
∣∣∣∣∣→ 0 as λ→ 0,

then there exists δ1 > 0, for any λ ∈ (0, δ1),∣∣∣∣∣d ∫
R

J(x)e−λxdx − d + cλ
∣∣∣∣∣ < η1. (3.31)

We choose
η1 = δ − γ(1 + ε), (3.32)

then (3.29) holds true. �

For any b > 0, define the bounded closed convex set

Cb = {i0 ∈ C([−b, b]) : i−(0, z) 6 i0(z) 6 i+(0, z)} .

Next, we study the operator T : Cb → C([−b, b]) given by

T (i0) (z) =

(
S 0 −

∫ A

0
i(a, z)da − R(z)

) ∫ A

0
β(a)i(a, z)da,

where i is the solution of the problem
c
∂

∂z
i(a, z) +

∂

∂a
i(a, z) = d[J ∗ i(a, z) − i(a, z)] − γi(a, z), a > 0, z ∈ (−b, b),

i(0, z) = i0(z), z ∈ (−b, b),
i(a,±b) = i−(a,±b), a > 0,

(3.33)

while R is the solution of the problemcR′(z) = d[J ∗ R(z) − R(z)] + γ

∫ A

0
i(a, z)da − δR(z), z ∈ (−b, b),

R(±b) = R−(±b).
(3.34)

Therefore, the existence of solutions to systems (3.33) and (3.34) can be converted to the existence of
a fixed point for the operator T .

Now, we can present the main result of the existence of traveling waves in this section.
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Theorem 3.1. (Existence of traveling waves) We assume that R0 > 1, for any c > c∗, system (2.5) has
a solution that connect the disease-free equilibrium E0 and the endemic equilibrium E∗.

Proof. From the definition of Cb, it can be shown that Cb is closed, convex and bounded. Moreover,
by the similar argument in [17], we have operator T is completely continuous and T (Cb) ⊂ Cb. Using
the Schauder’s fixed theorem, T has a fixed point i0. Let (ib(a, z),Rb(z))(z ∈ (−b, b)) be the solution
of systems (3.33) and (3.34) for any fixed b > 0. To obtain the existence of traveling wave solutions
in R, we choose an increasing sequence {bn}

+∞
n=1 such that bn > max {z1, z3} and lim

n→+∞
bn = +∞. By

similar arguments in [3, Section 4.4] and [4, Proposition 2.5], for the sequence
(
ibn ,Rbn

)
, we can extract

a subsequence by a standard diagonal extract argument, denoted by
{
ibnk

}
k∈N

,
{
Rbnk

}
k∈N

, which tend
towards functions (i,R) in the following topologies ibnk

→ i and Rbnk
→ R as k → +∞ uniformly

on every bounded closed interval and pointwise on R for any given a > 0. Due to the fact that J is
compactly supported, applying the Lebesgue dominated convergence theorem, we obtain the following
results:

lim
k→+∞

∫ +∞

−∞

J(y)ibnk
(a, z − y)dy =

∫ +∞

−∞

J(y)i(a, z − y)dy = J ∗ i(a, z)

and

lim
k→+∞

∫ +∞

−∞

J(y)Rbnk
(z − y)dy =

∫ +∞

−∞

J(y)R(z − y)dy = J ∗ R(z)

for any z ∈ R. Therefore, we have that i(a, z) and R(z) satisfy system (2.5). Note the fact that

i−(a, z) 6 i(a, z) 6 i+(a, z), R−(z) 6 R(z) 6 R+(z), ∀z ∈ R, (3.35)

and
lim

z→−∞
(i−(a, z),R−(z)) = (0, 0), lim

z→+∞
(i−(a, z),R−(z)) = (i∗,R∗),

lim
z→−∞

(i+(a, z),R+(z)) = (0, 0), lim
z→+∞

(i+(a, z),R+(z)) = (i∗,R∗),
(3.36)

we obtain
lim

z→−∞
(i(a, z),R(z)) = (0, 0), lim

z→+∞
(i(a, z),R(z)) = (i∗,R∗). (3.37)

Thus, (i(a, z),R(z)) satisfies the asymptotic boundary conditions (2.6). The proof is completed. �

4. Nonexistence of traveling waves with c ∈ (0, c∗)

In this section, we mainly focus on the nonexistence of traveling waves when 0 < c < c∗ with
R0 > 1 by using the Laplace transform.

Theorem 4.1. (Nonexistence of traveling waves) Assume that R0 > 1, for any speed c ∈ (0, c∗), there
exist no nontrivial traveling wave solutions (i(a, z),R(z)) of system (2.5) satisfying (2.6).

Proof. By contradiction, we assume that there exists a nontrivial traveling wave solution (i(a, z),R(z))
of system (2.5) that satisfies

(i,R) (−∞) = (0, 0),
(i,R) (+∞) = (i∗,R∗).
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Due to R0 = S 0

∫ A

0
β(a)e−γada > 1 and (i,R) (−∞) = (0, 0), there exists ẑ < 0 such that S 0− I(z)−R(z) >

S 0
2 + 1

2
∫ A

0 β(a)e−γada
for any z < ẑ, where I(z) =

∫ A

0
i(a, z)da. Integrating the first equation of (2.5) with

respect to a from 0 to A, we have

cI′(z) = d(J ∗ I(z) − I(z)) − γI(z) + (S 0 − I(z) − R(z))
∫ A

0
β(a)i(a, z)da

> d(J ∗ I(z) − I(z)) − γI(z) +

S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1I(z),
(4.1)

where β1 = inf
a∈(0,A]

β(a). For any z < ẑ, let H(z) =
∫ z

−∞
I(s)ds. Integrating two sides of inequality (4.1)

from −∞ to z, we obtain

cI(z) > d
∫ z

−∞

(J ∗ I(s) − I(s))ds +


S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 H(z). (4.2)

By applying Fubini theorem, it holds that∫ z

−∞

J ∗ I(s)ds =

∫ +∞

−∞

∫ z

−∞

J(x)I(s − x)dsdx

=

∫ +∞

−∞

J(x)
∫ z−x

−∞

I(s)dsdx = J ∗ H(z).
(4.3)

Substituting (4.3) into (4.2), we get

cI(z) > d(J ∗ H(z) − H(z)) +


S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 H(z). (4.4)

Thanks to ∫ z

−∞

(J ∗ H(s) − H(s))ds =

∫ z

−∞

∫ +∞

−∞

J(x)(H(s − x) − H(s))dxds

=

∫ z

−∞

∫ +∞

−∞

(−x)J(x)
∫ 1

0
H′(s − θx)dθdxds

=

∫ 1

0

∫ +∞

−∞

(−x)J(x)
∫ z

−∞

I(s − θx)dsdxdθ

=

∫ +∞

−∞

(−x)J(x)
∫ 1

0
H(z − θx)dθdx,

we have J ∗ H(z) − H(z) is integrable on (−∞, z] for any z ∈ R. From Eq (4.4), we obtain that H(z) is
integrable on (−∞, z] for any z ∈ R. Then integrating both sides of inequality (4.4) from −∞ to z with
z 6 ẑ, we have

S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 ∫ z

−∞

H(s)ds 6 cH(z) + d
∫ +∞

−∞

xJ(x)
∫ 1

0
H(z − θx)dθdx.
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Due to xH(z − θx) is non-increasing for θ ∈ [0, 1] with any fixed z ∈ R. We obtain
S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 ∫ z

−∞

H(s)ds 6
(
c + d

∫ +∞

−∞

xJ(x)dx
)

H(z).

By the property that J is an even function, we have
∫ +∞

−∞
xJ(x)dx = 0 holds. Thus, for any z 6 ẑ, one

gets 
S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 ∫ +∞

0
H(z − s)ds 6 cH(z).

Since H(z) is increasing with respect to z, there exists some τ > 0 such that
S 0

2
+

1

2
∫ A

0
β(a)e−γada

 β1 − γ

 τH(z − τ) 6 cH(z).

Hence, there exists a constant τ0 > 0 large enough and some ν ∈ (0, 1) such that H(z − τ0) 6 νH(z) for
each z 6 ẑ. Set Q(x) = H(x)e−µ1 x and µ1 = 1

τ0
ln 1

ν
, then

Q (z − τ0) = H (z − τ0) e−µ1(z−τ0) 6 νH(z)e−µ1(z−τ0) = Q(z).

Therefore, there exists Q0 > 0 such that Q(z) 6 Q0 for any z 6 ẑ, which implies

H(z) 6 Q0eµ1z for any z 6 ẑ.

It is noticed that
cI′(z) 6 d(J ∗ I(z) − I(z)) + (S 0‖β‖∞ − γ)I(z),

then there exists P1 > 0, such that I(z) 6 P1eµ1z for any z 6 ẑ. Due to I(z) is bounded, it is possible to
obtain

sup
z∈R

{
I(z)e−µ1z} < +∞ and sup

z∈R

{
I′(z)e−µ1z} < +∞. (4.5)

By the same process, we have

sup
z∈R

{
R(z)e−µ2z} < +∞ and sup

z∈R

{
R′(z)e−µ2z} < +∞ for some µ2 > 0. (4.6)

According to (4.5) and (4.6), it can be obtained that

sup
z∈R

{
e−µ0z(I(z) + R(z))

}
< +∞

and

sup
z∈R

{
e−µ0z

∫ A

0
β(a)i(a, z)da

}
< sup

z∈R

{
‖β‖∞e−µ0zI(z)

}
< +∞,

where µ0 = min {µ1, µ2} . Therefore, we obtain

sup
z∈R

{
e−2µ0z (I(z) + R(z))

∫ A

0
β(a)i(a, z)da

}
< +∞. (4.7)
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Next, we define

Ĩ(z) =

∫ A

0
β(a)i(a, z)da

and a two-sided Laplace transform of I(·) by

LI(λ) =

∫ +∞

−∞

e−λzI(z)dz

and a two-sided Laplace transform of Ĩ(·) by

LĨ(λ) =

∫ +∞

−∞

e−λz
∫ A

0
β(a)i(a, z)dadz

for λ ∈ C with 0 < Re λ < µ0.
Then, in view of

d(J ∗ I(z) − I(z)) − cI′(z) − γI(z) + S 0

∫ A

0
β(a)i(a, z)da = (I(z) + R(z))

∫ A

0
β(a)i(a, z)da (4.8)

and ∫ +∞

−∞

e−λzJ ∗ I(z)dz =

∫ +∞

−∞

J(x)e−λxLI(λ)dx,

we have

g(λ, c)LI(λ) + S 0LĨ(λ) =

∫ +∞

−∞

e−λz (I(z) + R(z))
∫ A

0
β(a)i(a, z)dadz. (4.9)

By the property of the Laplace transform (see [27]), it follows that either there exists a real number λ̂
such that LI(λ) and LĨ(λ) are analytic for λ ∈ C with 0 < Re λ < λ̂ and λ = λ̂ is singular point of LI(λ)
and LĨ(λ), or LI(λ) and LĨ(λ) are well defined for λ ∈ C with Re λ > 0. Indeed, motivated by Zhou,
Xu, Wei et al. [35, Section 3], we can obtain that the right-hand side of Eq (4.9) is well defined for
λ ∈ C with 0 < Re λ < 2µ0 according to (4.7). One can obtain that LI(λ) and LĨ(λ) are well defined
with Re λ > 0. Nevertheless, (4.9) can be rewritten as∫ +∞

−∞

e−λz

[
g(λ, c)I(z) + S 0

∫ A

0
β(a)i(a, z)da − (I(z) + R(z))

∫ A

0
β(a)i(a, z)da

]
dz = 0. (4.10)

It is evident from the definition of g(λ, c) and Lemma 2.1 that g(λ, c) → +∞ as λ → +∞. This is a
contradiction to Eq (4.10) and we complete the proof. �

5. Conclusions

In this paper, we propose and consider a nonlocal dispersal SIRS infectious disease model with age
structure that has practical significance. Due to the consideration of age structure, the investigation of
traveling wave problem becomes more complicated. In addition, the epidemic system is non-monotone
such that the theory for monotone semiflow can not be applied. To overcome these difficulties, we
obtain the existence of traveling wave solutions by constructing appropriate upper and lower solutions
and applying Schauder fixed point theorem. In fact, the solution of system (2.5) can be derived when
the basic reproduction number R0 > 1 and the wave speed c > c∗. That is to say, infectious diseases
can spread among populations when R0 > 1 and c > c∗. Furthermore, we prove the nonexistence of
traveling wave solutions when 0 < c < c∗ with R0 > 1 by using the Laplace transform.
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