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1. Introduction

Fibonacci polynomials and Lucas polynomials are important in various fields such as number
theory, probability theory, numerical analysis, and physics. In addition, many well-known
polynomials, such as Pell polynomials, Pell Lucas polynomials, Tribonacci polynomials, etc., are
generalizations of Fibonacci polynomials and Lucas polynomials. In this paper, we extend the linear
recursive polynomials to nonlinearity, that is, we discuss some basic properties of the bi-periodic
Fibonacci and Lucas polynomials.

The bi-periodic Fibonacci {f, (t)} and Lucas {/, ()} polynomials are defined recursively by

ayfu1 D+ fra@®  n=0 (mod 2),
= () — 1 . — > 2’
o =0, A@®=1 f @ { byf O+ n=1 (mod2) n>

and
byl, . (t) + 1,5 (?) n=0 (mod?2),

=2, L =at, 1,0 = {Clyln—l () + 1, (1) n=1 (mod 2),

where a and b are nonzero real numbers. For ¢ = 1, the bi-periodic Fibonacci and Lucas polynomials
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are, respectively, well-known bi-periodic Fibonacci {f,} and Lucas {/,} sequences. We let

() = 0 n=0 (mod 2),
SYWEN n=1 (mod2),

In [1], the scholars give the Binet formulas of the bi-periodic Fibonacci and Lucas polynomials as
follows:

3 asm™h (g (1) — (1)
S 1) = (ab)l3] ( o) -1 ) .1y
and
as‘(n) . .
[, (1) = (b)w "+ (1), (1.2)
a 2

where n > 0, o (f), and 7 (¢) are zeros of A2 — abtd — ab. This is o (f) = @tNabrridab W and 7(¢) =

ab-Val’r b We note the following algebraic properties of o (£) and 7 (7):

ot)+7@) =abt, o((t)—71(t) = Va’b*t> + 4ab, o (t)7(t) = —ab.

Many scholars studied the properties of bi-periodic Fibonacci and Lucas polynomials; see [2—6].
In addition, many scholars studied the power sums problem of second-order linear recurrences and its
divisible properties; see [7-10].

Taking a = b = 1 and ¢ = 1, we obtain the Fibonacci {F,} or Lucas {L,} sequence. Melham [11]
proposed the following conjectures:

Conjecture 1. Let m > 1 be an integer, then the sum
LyL3Ls - - - Ly Z Fr!
=1

can be represented as (Fy,11 — 12 Ry (Fapet), including Ry, (t) as a polynomial with integer
coefficients of degree 2m — 1.

Conjecture 2. Let m > 1 be an integer, then the sum

n

LiL3Ls - - Loy Z !
=1

can be represented as (Ly,+1 — 1) Qo (Loyy1), where Qo (2) is a polynomial with integer coefficients of
degree 2m.

In [12], the authors completely solved the Conjecture 2 and discussed the Conjecture 1. Using the
definition and properties of bi-periodic Fibonacci and Lucas polynomials, the power sums problem and
their divisible properties are studied in this paper. The results are as follows:

Theorem 1. We get the identities
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g2+l 2m + 1\ [ fansnejen (O = frje1 ()
2m+1 m= ! !
Z 0= b (a2b*® + 4ab)” Z( b J(m—j)( bjw (1) )’ 4

Z £ () (ab)" _ Z (2m + 1) (f(2n+2)(2j+1) () = fajr) (t)) , (1.4)

(@b + 4ab) bj ()
Z 2m+ 1 l(2n+1)(2 i+1) (1) = L1 (D)
12m+1 (t) — ( ] )( J J , 1.5
kZ:; 2 ,Z—(; m-—j bji1 (1) )
n am!l & 2m + 1\ (lons2jsn) (D) = bajeny ()
12m+1 (t) ( 1)m j ( ) ( J J ) , 16
kZ_; 2k+1 i+ Z m-—j bj1 (0) o

where n and m are positive integers.

Theorem 2. We get the identities

_ a mej [ 2m \ Fajenn) () a*" 1
Z 0= (a*b*t* + 4ab)" Z(_ ) j(m—j) fj (0 (a2b2t2+4ab) ( )( b ( 2)

1.7)
(ab)™ Fajonsay () = fa; (D) (ab)" 2m
t - , 1.8
Z S () = (a2b21% + 4ab)”™ Z( ])( /0 (@022 + daby"\ m | (1.8)
n o t
Z 2 () = Z( 2m ‘)fzj(z (@ poml_ (Zm) (n . l)’ (1.9)
o 2m N[ frjns) (D) = fa; (1) " (2m
zZr (1) = -n" ’( )( (=1)"n, 1.10
Z 2k+1 jZ(; m— J fzj (t) b ( )
where n and m are positive integers.
As for application of Theorem 1, we get the following:
Corollary 1. We get the congruences:
bly 1) I3 (1) - - - Loy (1) Z Lt (0 =0 (mod fo (1) = 1), (1.11)
k=1
and
aly () I3(1) - - - b (1) Z et (=0 (mod by (1) - ab), (1.12)

where n and m are positive integers.
Taking t = 1 in Corollary 1, we have the following conclusions for bi-periodic Fibonacci {f,} and
Lucas {l,} sequences.
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Corollary 2. We get the congruences:

blily- -+ Lyt ) f3" =0 (mod faun = 1), (1.13)

k=1

and .
alily-+ by ) B =0 (mod by —a), (1.14)

k=1
where n and m are nonzero real numbers.
Taking a = b = 1 and t = 1 in Corollary 1, we have the following conclusions for bi-periodic
Fibonacci {F,} and Lucas {L,} sequences.

Corollary 3. We get the congruences:

LiLs-Lopn ) F3*' =0 (mod Fy - 1), (1.15)
k=1
and .
2m+1 —
LiLs Loy ) L3*' =0 (mod Loy — 1), (1.16)
k=1

where n and m are nonzero real numbers.
2. Proofs of theorems

To begin, we will give several lemmas that are necessary in proving theorems.

Lemma 1. We get the congruence

Jonsnejn () = frjs1 () =0 (mod fru (1) = 1),

where n and m are nonzero real numbers.

Proof. We prove it by complete induction for j > 0. This clearly holds when j = 0. If j = 1, we note
that ab fyan.) (1) = (@26 + 4ab) f3,., () = 3ab fu (1) and we obtain

Franery O = f3(0) = (abr® +4) £3,, (1) = 3 fauer (0) = (abr® +4) £ (1) + 31 (1)
= (abf® +4) (Fane1 (1) = i ) (Fosr @) + Fruer ) i (D + £7 (D) = 3 (fanir () = £ (1)
= (abf® +4) (ot (O = D (L1 @ + frnir @) fi O+ f2©0) = 3 (anar @) = 1)
=0 (mod fo,41 () — 1).
This is obviously true when j = 1. Assuming that Lemma 1 holds if j = 1,2,...,k, that is,
Janinejsny (0 = i () =0 (mod faue (1) — 1).

If j=k+12>2, wehave
Lonety (0 fonenjs1) () = fonenejss) (0 + abfonnej-1) (1),
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and
bl (1) = (a*b’F + 4ab) fr,., (1) — 2ab = (a®b*F* + 4ab) f7 (1) = 2ab  (mod f,1 (1) = 1).

We have

Jenenerss) (1) = fores ()
= bons1y (1) fonenr+1) () = abfaneyi-1) (1) = L () fors1 (1) + abfor—y (1)

= ((abfz + 4) ff@®- 2) Jentnarrny (1) — ab fonsnei-1) (1)
— ((abf® + 4) £7 () = 2) farer (1) + @b fris ()

= ((abfz + 4) fi@®- 2) (fennesy @) = fan () = ab (fonnei-1) @) = fa1 ()

=0 (mod fo.1 (1) — D).
This completely proves Lemma 1. O
Lemma 2. We get the congruence

alonsnjeny () —ablyj (1) =0 (mod b,y (1) — at),

where n and m are nonzero real numbers.

Proof. We prove it by complete induction for j > 0. This clearly holds when j = 0. If j = 1, we note
that alzon.1) (1) = blgn .1 () + 3aly, (1) and we obtain

alzoneny (1) —als (1) = blﬁ,m () + 3aly, () — bl? (t) — 3al; (1)
= (lbna (1) = [ (1) (bl§n+1 () + byt (D 1y (1) + bl (t)) = 3a (b1 () =1 (D)
= (st (1) = at) (DB, (1) + bayly (t) + ba**) = 3a (L (1) - at)
=0 (mod ly, () — at).
This is obviously true when j = 1. Assuming that Lemma 2 holds if j = 1,2,...,k, that is,
alonsnjey () —ablyj () =0 (mod b,y (1) — at).
If j=k+1>2, wehave

banery @) lonsnjen () = lonenejes) () + lonnej-n (0,

and
alyonsny (1) = b, () + 2a = bl (t) + 2a  (mod . (£) — at).
We have
alon+1yarss) (1) — aloges) (1)
= a(bonet) @) lons sy (O = Lonenyai-n (1) = a (b (8) bt (€) = Iy (1)
= (bl% (@) + 261) lonsnyreny () — alineyor-1) (1) = (bl% (1) + 261) o1 (1) + aly—y (1)
= (dbt2 + 2) (alansnyarsny (1) = alyper (1) = (@lnenyi-1) (D) — aly—y (1)
=0 (mod b, (1) — at).
This completely proves Lemma 2. O
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Proof of Theorem 1. We only prove (1.3), and the proofs for other identities are similar.
n n ag(2k+l) O_2k (l) _ T2k (l) 2m+1
>0 = (S| |
k=1 S\ (ab)l?] o) -7
a2m+l Z”: (O'2k (t) _ T2k (I))

B (o (1) — T(l‘))szrl — (ab)(2m+l)k

g2m] Z”: 2’"211 1y (2m + 1) o 2k@me1=)) (1) 22Ki (f)

= (0_ (t) T (t))2m+l ey (ab)(2m+l)k

2m+1

2n(2m+1 ZJ)(I)

e Mi( )](2m+1) I - G
T o) -1 @)™ J (@2

0—2(2m+ 1-2)) (l)

0_2)1(2m+1—2j)([) 0.2n(2j—l—2m)(t)
_ q2m+1 Z’”:(_l)j om+1\[ 1 - G 1 - G
- _ 2m+1 . (ah)2m+172j (ab)2j7172m
(O- (t) T(t)) j=0 J G.Z(TI—ZJ)([) -1 m -1
0.2(2m+l—2j)(t) 0.(2n+2)(2m+1—2j)(t) 0.2n(2j—1—2m)(t)
_ a2m+1 i (—])j 2m+ 1 (aby?™ 2] - (ab)DCT=2) +1- (ab) @ T 2mn
- B 2m+1 ; T 2@m+1-2))(p)
(c@®—-71() = J | = e
2m+1 m
a (2m+ 1
= 2+l Z (=1 ;
(o () T ()" & J

O_(2n+l)(2m+172j) (1‘) T(2n+l)(2m+172j)(t)

2m+1-2j 2m+1-2j
oM (t) =TT A() - (ab) @ =2m (ab) @12
—o2mHI=2] (1) — 72mH -2 ()

a?m+l Z <1y (2m + 1) (f(zn+1>(2j+1> (®) = frjs1 (f))
" b (a2 + dab)” m— j b (1) '

X

Proof of Theorem 2. We only prove (1.7), and the proofs for other identities are similar.

~ as@+D (2% () — 12k (p) )2'"
Z C 0= Z ((ab)LZkJ ( o) —7(1) )
am n (O'2k (r) — 72k (l))zm

T - r(r))z'” 2

k=1

n o 2m) 2k(2m—j) (t) T2kj (l‘)
G <r> -7 (r))z'” 2 Z v ( (aby™

k=1 j=0

0_2n(2m—2_/)(t)
2m

2m | [ A— A
_ ] (ub)(2m—2/)n
T (o) - T(z))z’" Z;* b ( ) (abp )

F2Cm=2j)(f) -1
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2m u ( ) | = ey e
Z (ab)(2m—2.f)" (ab)(2j—2m)n
- + -
— (ab)Zm*ZJ (ab)2]72m
T (t) (1) 4 s =1 S -1
2m
a 2m
+ > (_1)m+1 ( n

(@ —-1@)™ m

0.2(2171721‘)([) O_(2n+2)(2)7172j)(t)

2m

n 1 2n(2j 2m)(t)
z : ( ) (a2 " (ab)mh@n2p + (b I
(O- (t) - T(t)) j=0 1 _ 02@m=2j)(f)

(ab)Zm 2j
a2m 2m
+ (_ 1)m+1 ( n
(@) —1@)™" m
i : o QntD(@m-2j) L+ D2m-2))
Z ( 1)] (2m) 0-2m_2] (t) - sz_zj (t) - (ab)n(2m72jj)(t) (ab)n(mezjj)(t)
(0' (1) - T(t))z'" 72m2] (1) — o221 (1)
2m
N a (1! (2m ,
(@ —-1@))" m

am S 2 aney (1) = fo; (t 2m 2
- 2;1 mz(_l)m_J( m‘)(fzj(z (@) fz,,())_'_ : 2;! m(—l)m+l( m)n
(a?b?t?> + 4ab) = m—j fi (a?b*t?> + 4ab) m
O
Proof of Corollary 1. First, from the definition of f, (f) and binomial expansion, we easily prove

(fans1 (1) = 1,a®b* + 4ab) = 1. Therefore, (fae1 (1) = 1,(a?H?F + 4ab)m) = 1. Now, we prove (1.11)
by Lemma 1 and (1.3):

Bl (D)1 (1) -+ Loa (1) Z A

a*! Zm: (Zm + 1) (f(2n+1)(2j+1) ®) = fojn (l‘))
(o () —T@)™" = ' L1 (2)

=0 (mod fp,4 (1) — D).

=LOL® - by (1)[

Now, we use Lemma 2 and (1.5) to prove (1.12):

aly () 15 (0) -+ by (1) ) B (0)

k=1

5 (2m + 1\ (alopenejen) (0) — alyje (f))
=L OLE) Ly, .

JCLYORNE I(I)[on(m—f)( o () ]
=0 (mod by (¢) — ar).

O
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3. Conclusions

In this paper, we discuss the power sums of bi-periodic Fibonacci and Lucas polynomials by Binet
formulas. As corollaries of the theorems, we extend the divisible properties of the sum of power of
linear Fibonacci and Lucas sequences to nonlinear Fibonacci and Lucas polynomials. An open problem
is whether we extend the Melham conjecture to nonlinear Fibonacci and Lucas polynomials.
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