
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(3): 7728–7750.
DOI: 10.3934/math.2024375
Received: 09 November 2023
Revised: 06 January 2024
Accepted: 15 January 2024
Published: 23 February 2024

Research article

Existence of global solution to 3D density-dependent incompressible
Navier-Stokes equations

Jianxia He* and Ming Li

Center for Nonlinear Studies, School of Mathematics, Northwest University, Xi’an 710127, China

* Correspondence: Email: jxhe2022@163.com.
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1. Introduction

As we all know, the Navier-Stokes equations have a profound physical background and play an
extremely important role in fluid mechanics. This paper is devoted to the following Navier-Stokes
equations in R3, which can characterize the motion of viscous inhomogeneous incompressible fluids:

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − div(µ∇u) + ∇P = 0,
div u = 0,
(ρ, ρu)(x, 0) = (ρ0, ρ0u0)(x).

(1.1)

Here, ρ = ρ(x, t), u = (u1, u2, u3)(x, t) and P(x, t) denote the density, velocity and pressure of the fluid,
respectively. µ stands for the viscosity coefficient. In this article, we focus on the Cauchy problem for
the system (1.1) with (ρ, u) vanishing at infinity and

µ = ρα (0 < α < 1). (1.2)
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The Navier-Stokes equations have always been a hot topic of concern for mathematical researchers.
To date, many meaningful research results have been achieved regarding this topic. The mathematical
research on incompressible Navier-Stokes equations began with a simple case in which the viscosity µ
is a positive constant and the initial density is far from a vacuum. Antontesv and Kazhikov initially
proved the global existence of weak solutions and further demonstrated the local existence of strong
solutions in [5, 23]. Later, for the 2D and 3D initial-boundary value problems, Ladyzhenskaya and
Solonnikov [24] confirmed that the local strong solutions are unique. In fact, this local strong solution
is still global, allowing large initial data in two dimensions and requiring small initial data in three
dimensions. More results on the well-posedness of solutions can be found in [1, 11, 12] and their
references. Under the condition that the initial density contains a vacuum, the global weak solutions
were first established by Simon [29]. Based on the vacuum problem, Choe and Kim [9] creatively
introduced the compatibility condition given by

−µ△u0 + ∇P0 = ρ
1
2
0 g, for some (P0, g) ∈ H1 × L2 (1.3)

and obtained the local strong solution. Under the condition that ∥u0∥Ḣ
1
2

is small, Craig et al. [10]
extended the local solution to the global solution for the whole 3D space.

A more general situation is that the viscosity µ depends on the density, which is more in line
with the actual background. At this point, the well-posedness problem of the solution becomes more
challenging. Lions [26] established the global weak solutions with the initial density containing a
vacuum, which is a big breakthrough. Regarding the 2D Cauchy problem, Gui and Zhang [16]
demonstrated the global well-posedness of strong solutions under the assumption that the initial
density ρ0 perturbs near 1. Regarding the initial density allowing for a vacuum, similar to the case of
constant viscosity, Cho and Kim [7] obtained a unique local strong solution which required the initial
data to satisfy the compatibility condition. For µ(ρ) ≥ µ, ∀ρ ∈ [0,∞), the unique global strong solution
was proved by Huang and Wang [20, 21] under the condition of smallness on ∥∇µ(ρ0)∥Lq (2 < q < ∞)
in 2D and on ∥∇u0∥L2 in 3D over a bounded domain. The solvability of variable coefficient problem
has been studied by many people (see [2, 3, 13, 19, 25, 30]). Later, Lü and Song [27] successfully
removed the compatibility condition. On this basis, under the condition that ∥u0∥Ḣβ ( 1

2 < β ≤ 1)
is small, the global existence and uniqueness of strong solutions to the 3D Cauchy problem were
obtained by He et al. [17]. Recently, for the degenerate viscosity case given by µ(ρ) = ρ, He and
Guo [18] established the existence of a global strong solution, which required small initial data and a
compatibility condition. There are some interesting studies that can be references, see [6, 14, 22, 28].

For a wider range of cases, such as µ(ρ) = ρα, the solvability of the Navier-Stokes equations
deserves further research. In this case, the problem becomes more complex. Strong degradation brings
difficulties to our research, which requires us to fully utilize the structure of the equation. For the
case of constant viscosity, the parabolic structure of the momentum equation plays an important role in
high-order estimates. However, for the case that we are considering (i.e., µ(ρ) = ρα), the parabolicity
of the momentum equation may disappear. As a result, high regularity or uniqueness cannot be directly
expected from (1.1)2. Therefore, we need some new ideas and to make precise estimates.

Under the assumptions of small initial data and the compatibility condition, we obtain the global
existence of a strong solution to the Cauchy problem. The main conclusion is as follows:
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Theorem 1.1. For 3 < k ≤ 6 and 2 ≤ q < 6, assume that the initial data (ρ0, u0) satisfy

0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ L
3
2 ∩ H1 ∩ D1,k, ∇ρ

α−1
2

0 ∈ L
3
2 ∩ D1,q, u0 ∈ D1

0,σ ∩ H3, (1.4)

and the compatibility condition is given by

− div(ρα0∇u0) + ∇P0 = ρ
1+α

2
0 g, for some (P0, g) ∈ H2 × H1. (1.5)

There exist two positive constants η0 and ε0 that depend on ρ̄, k, q and ∥g∥H1 such that if

∥∇ρ
α−1

2
0 ∥L

3
2 ∩D1,q

≤ η0, ∥u0∥H1 ≤ ε0, (1.6)

then the system (1.1) with (1.2) has a global strong solution (ρ, u, P) with the following:
ρ ∈ C([0,∞); L

3
2 ∩ H1 ∩ D1,k), ∇ρ

α−1
2 ∈ C([0,∞); L

3
2 ∩ D1,q),

∇u ∈ C([0,∞); H1) ∩ L2(0,∞; H1), ∇P ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2),
ρ

1−α
2 ut ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2),
∇ut ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2 ∩ L6).

(1.7)

Furthermore, it holds that

∥∇u(·, t)∥L2 ≤ C0t−
1
2 , (1.8)

and

∥ρ
1−α

2 ut(·, t)∥L2 + ∥∇ut(·, t)∥L2 + ∥∇2u(·, t)∥L2 + ∥∇P(·, t)∥L2 ≤ C0t−1, (1.9)

where C0 is a positive constant that depends on ρ̄ and ∥u0∥H3 .

Remark 1.1. For the case that µ(ρ) = ρ, we have previously studied it in detail in [18] and obtained
the global strong solution. This article is its promotion and it has a wider scope of application.

Theorem 1.1 will be proved by constructing an approximation system which has a unique local
strong solution and bootstrap argument. We first establish uniform a priori estimates, and the key
is to obtain the regularity theory for the Stokes system, which does not depend on the lower bound
of viscosity. By combining the local existence of approximated solution with time-uniform a priori
estimates, the global approximated solution is obtained. Finally, by using the standard compactness
theory, the strong solution of the original system is established.

2. Preliminaries

The results on the existence of solutions to the incompressible Navier-Stokes equations are for non-
degenerate viscosity. So, we first construct an approximation system in R3:

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − div

(
(ρα + δ)∇u

)
+ ∇P = 0,

div u = 0,
(ρ, ρu)(x, 0) = (ρ0,δ, ρ0,δu0)(x),
u(x, t)→ 0, as |x| → ∞,

(2.1)
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where 0 < δ < 1 and ρ0,δ(x) = ρ0(x) + δ.
The local well-posedness of strong solutions to the system (2.1) is guaranteed by the results of [8].

Lemma 2.1. Assume that the initial data (ρ0,δ, u0) satisfy

0 ≤ ρ0,δ − δ ∈ L
3
2 ∩ H1 ∩ D1,k(3 < k ≤ 6), u0 ∈ D1

0,σ ∩ D2. (2.2)

Then, there exist a small time T0 > 0 and a unique strong solution (ρδ, uδ, Pδ) to the system (2.1) on
R3 × (0,T0].

Our high-order a priori estimates will be obtained based on the following regularity theory for
Stokes equations, which does not rely on the lower bound of viscosity.

Lemma 2.2. Assume that ρ satisfies

0 ≤ ρ ≤ ρ̄, ∇ρ
α−1

2 ∈ L3 ∩ D1,q (2 ≤ q < 6), ∥∇ρ
α−1

2 ∥L3 ≤ ζ0
(
ζ0 see (2.12)

)
. (2.3)

Let (u, P) ∈ H1
0,σ × L2 be the unique weak solution to the following problem:

− div
(
(ρα + δ)∇u

)
+ ∇P = F, x ∈ R3,

div u = 0, x ∈ R3,

u(x)→ 0, |x| → ∞.

(2.4)

Then, the following conclusions are valid:
(1) If ρ−αF ∈ Lr with r ∈ [2, 3), then

∥∇2u∥Lr + ∥∇
(
(ρα + δ)−1P

)
∥Lr ≤ C∥ρ−αF∥Lr . (2.5)

(2) If ρ−αF ∈ Lp ∩ L
6p
p+6 with p ∈ [3, 6), then

∥∇2u∥Lp + ∥∇
(
(ρα + δ)−1P

)
∥Lp ≤ C∥ρ−αF∥Lp +C∥∇ρ

α−1
2 ∥L6∥ρ−αF∥

L
6p
p+6
. (2.6)

(3) If ρ−αF ∈ L2, ρ−α∇F ∈ L2, and Fρ−2α∇ρα ∈ L2, then

∥∇2u∥H1 + ∥∇
(
(ρα + δ)−1P

)
∥H1 ≤ C∥ρ−αF∥L2 +C∥ρ−α∇F∥L2 +C∥Fρ−2α∇ρα∥L2

+C∥(|∇u| + |(ρα + δ)−1P|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq . (2.7)

(4) Further, if F = div G + H with ρ−αG ∈ Ls ∩ L
6s

s+6 , and ρ−αH ∈ L
3s

s+3 for some s ∈ [3
2 ,+∞), then

∥∇u∥Ls + ∥(ρα + δ)−1P∥Ls ≤ C∥ρ−αG∥Ls +C∥∇ρ
α−1

2 ∥L6∥ρ−αG∥
L

6s
s+6
+C∥ρ−αH∥

L
3s

s+3
. (2.8)

Here, the constant C depends only on ρ̄.

Proof. Equation (2.4)1 can be rewritten as

−△u + ∇(
P
ρα + δ

) =
F
ρα + δ

+
∇u · ∇ρα

ρα + δ
−

P∇ρα

(ρα + δ)2 . (2.9)
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According to the theory of the Stokes system and Gagliardo-Nirenberg inequality, we have the
following for r ∈ [2, 3):

∥∇2u∥Lr + ∥∇
(
(ρα + δ)−1P

)
∥Lr

≤C∥(ρα + δ)−1F∥Lr +C∥∇u · (ρα + δ)−1∇ρα∥Lr +C∥(ρα + δ)−2P∇ρα∥Lr

≤C∥ρ−αF∥Lr +C∥∇ρ
α−1

2 ∥L3(∥∇u∥
L

3r
3−r
+ ∥(ρα + δ)−1P∥

L
3r

3−r
)

≤C∥ρ−αF∥Lr +C∥∇ρ
α−1

2 ∥L3(∥∇2u∥Lr + ∥∇
(
(ρα + δ)−1P

)
∥Lr ).

If ∥∇ρ
α−1

2 ∥L3 ≤ ζ1 ≜ min{(2C)−1, 1}, then (2.5) is valid.
Similarly, for p ∈ [3, 6),

∥∇2u∥Lp + ∥∇
(
(ρα + δ)−1P)∥Lp

≤C∥(ρα + δ)−1F∥Lp +C∥∇ρ
α−1

2 ∥L6(∥∇u∥
L

6p
6−p
+ ∥(ρα + δ)−1P∥

L
6p

6−p
)

≤C∥ρ−αF∥Lp +C∥∇ρ
α−1

2 ∥L6(∥∇2u∥
L

6p
p+6
+ ∥∇
(
(ρα + δ)−1P

)
∥

L
6p
p+6

). (2.10)

Then, 6p
p+6 ∈ [2, 3) given that p ∈ [3, 6). Combining (2.5) and (2.10) yields (2.6).

On the other hand,

∥∇2u∥H1 + ∥∇
(
(ρα + δ)−1P

)
∥H1

≤C∥(ρα + δ)−1F∥H1 +C∥∇u · (ρα + δ)−1∇ρα − (ρα + δ)−2P∇ρα∥H1

≤C∥ρ−αF∥L2 +C∥∇u · (ρα + δ)−1∇ρα∥L2 +C∥(ρα + δ)−2P∇ρα∥L2 +C∥ρ−α∇F∥L2

+C∥F(ρα + δ)−2∇ρα∥L2 +C∥∇(∇u · (ρα + δ)−1∇ρα − (ρα + δ)−2P∇ρα)∥L2

≤
1
2
(
∥∇2u∥H1 + ∥∇

(
(ρα + δ)−1P

)
∥H1
)
+C∥ρ−αF∥L2 +C∥ρ−α∇F∥L2

+C∥Fρ−2α∇ρα∥L2 +C∥(|∇u| + |(ρα + δ)−1P|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq ,

where, in the last inequality, one can use the following:

∥∇(∇u · (ρα + δ)−1∇ρα − (ρα + δ)−2P∇ρα)∥L2

= ∥
2α
α − 1

∇
(
∇u ·

ρα

ρα + δ
ρ

1−α
2 ∇ρ

α−1
2 −

P
ρα + δ

ρα

ρα + δ
ρ

1−α
2 ∇ρ

α−1
2
)
∥L2

≤ C∥
(
|∇2u| + |∇(

P
ρα + δ

)|
)
|∇ρ

α−1
2 |∥L2 +C∥

(
|∇u| + |

P
ρα + δ

|
)(
|
∇ρα

ρα + δ
||∇ρ

α−1
2 |

+ |∇ρ
1−α

2 ||∇ρ
α−1

2 | + |ρ
1−α

2 ||∇2ρ
α−1

2 | + |
ρα∇ρα

(ρα + δ)2∇ρ
α−1

2 |
)
∥L2

≤ C(∥∇2u∥L6 + ∥∇(
P
ρα + δ

)∥L6)∥∇ρ
α−1

2 ∥L3 +C(∥∇u∥L6 + ∥
P
ρα + δ

∥L6)∥∇ρ
α−1

2 ∥2L6

+C∥(|∇u| + |
P
ρα + δ

|)ρ
1−α

2 |∇2ρ
α−1

2 |∥L2

≤
1
2

(∥∇3u∥L2 + ∥∇2(
P
ρα + δ

)∥L2) +C∥ρ−αF∥L2 +C∥(|∇u| + |
P
ρα + δ

|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq .
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Hence, (2.7) holds.
Furthermore, if F = div G + H, we rewrite (2.9) as

−△u + ∇(
P
ρα + δ

) = div(
G
ρα + δ

) + H̃, (2.11)

where

H̃ ≜
G · ∇ρα

(ρα + δ)2 +
H
ρα + δ

+
∇u · ∇ρα

ρα + δ
−

P∇ρα

(ρα + δ)2 .

It follows from (2.4)2,3, (2.11) and the Sobolev inequality that, for s ∈ [3
2 ,+∞),

∥(ρα + δ)−1P∥Ls ≤ C∥∇u∥Ls +C∥(ρα + δ)−1G∥Ls +C∥(−∆)−1 div H̃∥Ls

≤ C∥∇u∥Ls +C∥ρ−αG∥Ls +C∥H̃∥
L

3s
s+3
,

and

∥∇u∥Ls ≤ C∥∇ × u∥Ls

≤ C∥(−∆)−1∇ × div
(
(ρα + δ)−1G

)
∥Ls +C∥(−∆)−1∇ × H̃∥Ls

≤ C∥ρ−αG∥Ls +C∥H̃∥
L

3s
s+3
.

Therefore,

∥∇u∥Ls + ∥(ρα + δ)−1P∥Ls ≤ C∥ρ−αG∥Ls +C∥H̃∥
L

3s
s+3

≤ ∥ρ−αG∥Ls +C∥(ρα + δ)−1G · ρ−1∇ρ∥
L

3s
s+3
+C∥ρ−αH∥

L
3s

s+3

+C∥∇u · ρ−1∇ρ∥
L

3s
s+3
+C∥(ρα + δ)−1Pρ−1∇ρ∥

L
3s

s+3

≤ C∥ρ−αG∥Ls +C∥∇ρ
α−1

2 ∥L6∥ρ−αG∥
L

6s
s+6
+C∥ρ−αH∥

L
3s

s+3

+C∥∇ρ
α−1

2 ∥L3(∥∇u∥Ls + ∥(ρα + δ)−1P∥Ls).

If

∥∇ρ
α−1

2 ∥L3 ≤ ζ0 ≜ min{(2C)−1, ζ1}, (2.12)

it is clear that (2.8) holds. The proof is finished.

3. A priori estimates

This section mainly aims to obtain uniform a priori estimates of the local strong solution to the
system (2.1), which is necessary to obtain the global existence of approximate solution. We abbreviate
the approximate solution (ρδ, uδ, Pδ) as (ρ, u, P). The C in this section represents some positive
constants that depend on ρ̄, k and q but are independent of δ and T .

Theorem 3.1. For 3 < k ≤ 6 and 2 ≤ q < 6, assume that the initial data (ρ0,δ, u0) satisfy

0 ≤ ρ0,δ − δ ≤ ρ̄, ρ0,δ − δ ∈ L
3
2 ∩ H1 ∩ D1,k, ∇ρ

α−1
2

0 ∈ L
3
2 ∩ D1,q, u0 ∈ D1

0,σ ∩ H3, (3.1)
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as well as the condition (1.5). Then there exist two positive constants η0 and ε0 that depend on ρ̄, k, q
and ∥g∥H1 such that if

∥∇ρ
α−1

2
0 ∥L

3
2 ∩D1,q

≤ η0, ∥u0∥H1 ≤ ε0, (3.2)

then the system (2.1) has a unique global strong solution (ρ, u, P) with the following:
ρ − δ ∈ C([0,∞); L

3
2 ∩ H1 ∩ D1,k), ∇ρ

α−1
2 ∈ C([0,∞); L

3
2 ∩ D1,q),

∇u ∈ C([0,∞); H1) ∩ L2(0,∞; H1), ∇P ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2),
ρ

1−α
2 ut ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2), ρ

1−α
2 utt ∈ L2(0,∞; L2),

∇ut ∈ L∞(0,∞; L2) ∩ L2(0,∞; L2 ∩ L6), ρ−αPt ∈ L2(0,∞; L6).

(3.3)

In order to prove Theorem 3.1, whose proof is placed after Proposition 3.2, we need to establish the
global a priori estimates. Denote

M ≜ ∥∇ρ
α−1

2
0 ∥L

3
2 ∩D1,q

.

Proposition 3.1. There exist two positive constants η0 and ε0 that depend on ρ̄, k and q such that if
(ρ, u, P) is a strong solution of (2.1) satisfying

sup
t∈[0,T ]

∥∇ρ
α−1

2 ∥
L

3
2 ∩D1,q

≤ 4M,
∫ T

0
∥∇u∥4L2dt ≤ 2∥u0∥

2
H1 , (3.4)

then

sup
t∈[0,T ]

∥∇ρ
α−1

2 ∥
L

3
2 ∩D1,q

≤ 3M,
∫ T

0
∥∇u∥4L2dt ≤ ∥u0∥

2
H1 , (3.5)

provided that

M ≤ η0, ∥u0∥H1 ≤ ε0. (3.6)

Before proving Proposition 3.1, we first establish time-weighted energy estimates, as shown in
Lemmas 3.1–3.4. By the a priori hypotheses (3.4)1 and Gagliardo-Nirenberg inequality (see [4, 15]),
we have

∥∇ρ
α−1

2 ∥L3 ≤ C∥∇ρ
α−1

2 ∥
2q−3

3(q−1)

L
3
2
∥∇2ρ

α−1
2 ∥

q
3(q−1)

Lq ≤ CM, (3.7)

∥∇ρ
α−1

2 ∥L6 ≤ C∥∇ρ
α−1

2 ∥
q−2

2(q−1)

L
3
2
∥∇2ρ

α−1
2 ∥

q
2(q−1)

Lq ≤ CM. (3.8)

Lemma 3.1. Suppose that (ρ, u, P) is the local strong solution of (2.1) that satisfies (3.4). There exists
a positive constant η3 such that if M ≤ η3, then

sup
t∈[0,T ]

∥ρ − δ∥
L

3
2 ∩L2
≤ ∥ρ0∥L

3
2 ∩L2
, (3.9)

sup
t∈[0,T ]

(
∥ρ

1−α
2 u∥2L2 + σ1(t)∥∇u∥2L2

)
+

∫ T

0
[∥∇u∥2L2 + σ1(t)(∥(ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇P∥2L2)]dt ≤ C∥u0∥
2
H1 ,

(3.10)

where σ1(t) = max{1, t}.
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Proof. The transport equation (2.1)1 and divergence-free (2.1)3 imply that

δ ≤ ρ(x, t) ≤ ρ̄ + 1, sup
t∈[0,T ]

∥ρ − δ∥
L

3
2 ∩L2
≤ ∥ρ0,δ − δ∥L

3
2 ∩L2
= ∥ρ0∥L

3
2 ∩L2
, (3.11)

which provides the following:

1
2
ρ1−α ≤

ρ

ρα + δ
≤ ρ1−α. (3.12)

Multiplying (2.1)2 by (ρα+ δ)−1u, integrating the result with respect to x over R3, and then using the
Gagliardo-Nirenberg inequality and (3.4)1, we can obtain

1
2

d
dt

∫
ρ

ρα + δ
|u|2dx +

∫
|∇u|2dx

=

∫
∇u ·

∇ρα

ρα + δ
· udx −

∫
(ρα + δ)−1P

∇ρα

ρα + δ
· udx

≤∥
∇ρα

ρα + δ
∥

L
3
2
∥u∥L6(∥∇u∥L6 + ∥(ρα + δ)−1P∥L6)

≤C∥∇ρ
α−1

2 ∥
L

3
2
∥∇u∥L2(∥∇2u∥L2 + ∥∇

(
(ρα + δ)−1P

)
∥L2)

≤
1
4
∥∇u∥2L2 +C∥∇2u∥2L2 +C∥∇

(
(ρα + δ)−1P

)
∥2L2 , (3.13)

where one can utilize the simple fact that

∥
∇ρα

ρα + δ
∥

L
3
2
= ∥
αρα−1∇ρ

ρα + δ
∥

L
3
2
= ∥

2α
α − 1

ρα

ρα + δ
ρ

1−α
2 ∇ρ

α−1
2 ∥

L
3
2
≤ C∥ρ∥

1−α
2

L∞ ∥∇ρ
α−1

2 ∥
L

3
2
≤ C∥∇ρ

α−1
2 ∥

L
3
2
.

If we apply the following:

M ≤ η1 ≜ min{C−1ζ0, 1}, (3.14)

combined with (3.7), we will have that ∥∇ρ
α−1

2 ∥L3 ≤ ζ0. Applying Lemma 2.2 with F = −ρut − ρu · ∇u,
we deduce from (2.5) and the Sobolev inequality that

∥∇2u∥L2 + ∥∇
(
(ρα + δ)−1P

)
∥L2 ≤ C∥ρ

1−α
2 ut + u · ∇u∥L2 ≤ C∥ρ

1−α
2 ut∥L2 +C∥∇u∥

L2 ∥∇u∥
1
2
L2 ∥∇

2u∥
1
2
L2 ,

which, together with Young’s inequality, can lead to the following:

∥∇2u∥L2 + ∥∇
(
(ρα + δ)−1P

)
∥L2 ≤ C∥ρ

1−α
2 ut∥L2 +C∥∇u∥3

L2
. (3.15)

Given that

∇P = ∇(
P
ρα + δ

)(ρα + δ) + P
∇ρα

ρα + δ
,

there is

∥∇P∥L2 ≤ ∥ρα + δ∥L∞∥∇(
P
ρα + δ

)∥L2 + ∥P∥L6∥
∇ρα

ρα + δ
∥L3 ≤ C∥∇(

P
ρα + δ

)∥L2 +C∥∇P∥L2∥∇ρ
α−1

2 ∥L3 .
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If M ≤ η2 ≜ min{(2C)−1, η1}, one can obtain

∥∇P∥L2 ≤ C∥∇(
P
ρα + δ

)∥L2 . (3.16)

Putting (3.15) into (3.13), we obtain

d
dt

∫
ρ

ρα + δ
|u|2dx +

∫
|∇u|2dx ≤ C∥ρ

1−α
2 ut∥

2
L2 +C∥∇u∥6

L2
. (3.17)

Next, multiplying (2.1)2 by (ρα + δ)−1ut and integrating over R3 yields

1
2

d
dt

∫
|∇u|2dx +

∫
ρ

ρα + δ
|ut|

2dx

= −

∫
ρ

ρα + δ
u · ∇u · utdx +

∫
∇u ·

∇ρα

ρα + δ
· utdx −

∫
(ρα + δ)−1P

∇ρα

ρα + δ
· utdx

≤C∥u∥L6∥∇u∥L3∥ρ
1−α

2 ut∥L2 +C∥∇ρ
α−1

2 ∥L3∥ρ
1−α

2 ut∥L2(∥∇u∥L6 + ∥(ρα + δ)−1P∥L6)

≤(
1
16
+CM)∥ρ

1−α
2 ut∥

2
L2 +C∥∇u∥6

L2
.

If

M ≤ η3 ≜ min{(4C)−1, η2}, (3.18)

then we have

d
dt

∫
|∇u|2dx +

∫
ρ1−α|ut|

2dx ≤ C∥∇u∥6
L2
. (3.19)

Using Grönwall’s inequality and (3.4), we can obtain

sup
t∈[0,T ]

∥∇u∥2L2 +

∫ T

0
∥ρ

1−α
2 ut∥

2
L2dt ≤ C∥∇u0∥

2
L2 , (3.20)

sup
t∈[0,T ]

∥ρ
1−α

2 u∥2L2 +

∫ T

0
∥∇u∥2L2dt ≤ C∥u0∥

2
H1 . (3.21)

Furthermore, by taking σ1(t) = max{1, t}, multiplying (3.19) by σ1(t), and using Grönwall’s
inequality, (3.4), (3.15), (3.16) and (3.21), one can obtain

sup
t∈[0,T ]

σ1(t)∥∇u∥2L2 +

∫ T

0
σ1(t)

(
∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇P∥2L2

)
dt ≤ C∥u0∥

2
H1 .

Lemma 3.2. Suppose that (ρ, u, P) is the local strong solution of (2.1) that satisfies (3.4), with the
initial data (ρ0,δ, u0) satisfying the condition (1.5). If M ≤ η3, then

sup
t∈[0,T ]

σ2
1(t)[∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇P∥2L2] +
∫ T

0
σ2

1(t)∥∇ut∥
2
L2dt

≤C∥u0∥
2
H2 +C∥g∥2L2 +C

∫ T

0
σ2

1(t)(∥∇ut∥L6 + ∥ρ−αPt∥L6)2dt. (3.22)
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Proof. Differentiating (2.1)2 with respect to t, one has

ρutt + ρu · ∇ut − div
(
(ρα + δ)∇ut

)
+ ∇Pt = −ρtut − (ρu)t · ∇u + div(∂tρ

α∇u). (3.23)

Multiplying (3.23) by ρ−αut and integrating it over R3, we deduce that

1
2

d
dt

∫
ρ1−α|ut|

2dx +
∫
ρα + δ

ρα
|∇ut|

2dx

= −

∫
ρ−αρt|ut|

2dx −
∫

(ρu)t · ∇u · ρ−αutdx +
∫

div(∂tρ
α∇u) · ρ−αutdx

− α

∫
ρ−α−1Pt∇ρ · utdx + α

∫
ρα + δ

ρα
∇ut · ρ

−1∇ρ · utdx

≜
5∑

i=1

Ji. (3.24)

Now, we estimate the right-hand terms of (3.24) one by one. Thanks to the Gagliardo-Nirenberg
inequality and Young’s inequality, we arrive at the following formulas:

|J1| + |J2| ≤ C∥∇ρ
α−1

2 ∥L3∥u∥L6∥ρ
1−α

2 ut∥
2
L4 +C∥∇ρ

α−1
2 ∥L3∥u∥2L6∥∇u∥L6∥ut∥L6 + ∥ρ

1−α
2 ut∥

2
L4∥∇u∥L2

≤
1
8
∥∇ut∥

2
L2 +C∥∇u∥4L2∥ρ

1−α
2 ut∥

2
L2 +C∥∇u∥10

L2 , (3.25)

J3 = α

∫
ρ−1∂kρuk∂iu j∂iu

j
t dx − α2

∫
ρ−1∂kρuk∂iu jρ−1∂iρu

j
t dx

≤ C∥∇ρ
α−1

2 ∥L3∥u∥L∞∥∇u∥L6∥∇ut∥L2 +C∥∇ρ
α−1

2 ∥2L3∥u∥L∞∥∇u∥L6∥ut∥L6

≤
1
8
∥∇ut∥

2
L2 +C∥ρ

1−α
2 ut∥

3
L2∥∇u∥L2 +C∥∇u∥10

L2 , (3.26)

|J4| + |J5| ≤ 2∥∇ρ
α−1

2 ∥
L

3
2
∥ut∥L6(∥ρ−αPt∥L6 + ∥∇ut∥L6)

≤
1
8
∥∇ut∥

2
L2 +C(∥ρ−αPt∥L6 + ∥∇ut∥L6)2. (3.27)

Based on the above estimates, it can be concluded that

d
dt

∫
ρ1−α|ut|

2dx +
∫
|∇ut|

2dx

≤C∥ρ
1−α

2 ut∥
2
L2(∥∇u∥4L2 + ∥ρ

1−α
2 ut∥L2∥∇u∥L2) +C∥∇u∥10

L2 +C(∥ρ−αPt∥L6 + ∥∇ut∥L6)2. (3.28)

Multiplying (3.28) by σ2
1(t) and taking advantage of Grönwall’s inequality, the condition (1.5),

and (3.10), one has

sup
t∈[0,T ]

σ2
1(t)∥ρ

1−α
2 ut∥

2
L2 +

∫ T

0
σ2

1(t)∥∇ut∥
2
L2dt

≤C∥u0∥
2
H2 +C∥g∥2L2 +C

∫ T

0
σ2

1(t)(∥ρ−αPt∥L6 + ∥∇ut∥L6)2dt. (3.29)

With the help of (3.15), (3.16) and (3.29), we can deduce (3.22). This completes the proof of the
lemma.
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Lemma 3.3. Suppose that (ρ, u, P) is the local strong solution of (2.1), and that it satisfies (3.4). There
exist two positive constants η4 and ε1 such that if M ≤ η4 and ∥u0∥H1 ≤ ε1, then

sup
t∈[0,T ]

[σ2(t)∥∇ut∥
2
L2 + σ

2
1(t)(∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇P∥2L2)]

+

∫ T

0
[σ2(t)∥ρ

1−α
2 utt∥

2
L2 + σ

2
1(t)(∥∇ut∥

2
L2∩L6 + ∥ρ

−αPt∥
2
L6)]dt

≤C∥u0∥
2
H3 +C∥g∥2H1 , (3.30)

with σ2(t) = max{λ, t2}
(
λ see (3.42)

)
.

Proof. According to Lemma 2.2, the Sobolev inequality and (3.23), we can deduce the following for
p ∈ [3, 6):

∥∇2u∥Lp + ∥∇
(
(ρα + δ)−1P

)
∥Lp

≤ C∥ρ−α(ρut + ρu · ∇u)∥Lp +C∥∇ρ
α−1

2 ∥L6∥ρ−α(ρut + ρu · ∇u)∥
L

6p
p+6

≤ C∥ρ
1−α

2 ut∥
6−p
2p

L2 ∥ρ
1−α

2 ut∥
3p−6

2p

L6 +C∥u∥L∞∥∇u∥Lp +C∥ρ
1−α

2 ut∥
3
p

L2∥ρ
1−α

2 ut∥
p−3

p

L6 +C∥u∥L∞∥∇u∥
L

6p
p+6

≤ C∥ρ
1−α

2 ut∥
6−p
2p

L2 ∥∇ut∥
3p−6

2p

L2 +C∥ρ
1−α

2 ut∥
3
p

L2∥∇ut∥
p−3

p

L2 +C∥∇u∥
3
p

L2∥∇
2u∥

2p−3
p

L2 +C∥∇u∥
p+6
2p

L2 ∥∇
2u∥

3p−6
2p

L2 , (3.31)

and

∥∇ut∥L6 + ∥(ρα + δ)−1Pt∥L6

≤C∥ρ−α∂tρ
α∇u∥L6 +C∥∇ρ

α−1
2 ∥L6∥ρ−α∂tρ

α∇u∥L3 +C∥ρ−α
(
ρutt + ρu · ∇ut + ρtut + (ρu)t · ∇u

)
∥L2

≤C∥∇ρ
α−1

2 ∥L6∥u∥L∞∥∇u∥L∞ +C∥∇ρ
α−1

2 ∥2L6∥u∥L∞∥∇u∥L6 +C∥ρ
1−α

2 utt∥L2 +C∥u∥L∞∥∇ut∥L2

+C∥∇ρ
α−1

2 ∥L3∥u∥L∞∥ut∥L6 +C∥∇ρ
α−1

2 ∥L3∥u∥2L∞∥∇u∥L6 +C∥∇u∥L3∥ut∥L6

≤C∥ρ
1−α

2 utt∥L2 +C∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥∇ut∥L2 +C∥∇u∥L2∥∇2u∥2L2 +C∥∇u∥

1
2
L2∥∇

2u∥
3
2
L2

+C∥∇u∥
1
2
L2∥∇

2u∥
1
2
L2∥∇u∥L∞ . (3.32)

Multiplying (3.23) by (ρα + δ)−1utt, integrating the resulting equality over R3, and using integration by
parts, we derive

1
2

d
dt

∫
|∇ut|

2dx +
∫

ρ

ρα + δ
|utt|

2dx

= −

∫
ρ

ρα + δ
(ut · ∇u + u · ∇ut) · uttdx −

∫
ρtut · (ρα + δ)−1uttdx −

∫
ρtu · ∇u · (ρα + δ)−1uttdx

+

∫
∇ut ·

∇ρα

ρα + δ
· uttdx −

∫
(ρα + δ)−1Pt

∇ρα

ρα + δ
· uttdx −

∫
∂i(uk∂kρ

α∂iu j)(ρα + δ)−1u j
ttdx

≜
11∑
i=6

Ji. (3.33)
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Owing to the Sobolev inequality and (3.32), one can obtain

|J6| ≤ C∥ut∥L6∥∇u∥L3∥ρ
1−α

2 utt∥L2 +C∥u∥L∞∥∇ut∥L2∥ρ
1−α

2 utt∥L2

≤
1

40
∥ρ

1−α
2 utt∥

2
L2 +C∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2 , (3.34)

|J7 + J8| ≤ ∥∇ρ
α−1

2 ∥L3∥u∥L∞∥ut∥L6∥ρ
1−α

2 utt∥L2 + ∥∇ρ
α−1

2 ∥L3∥u∥2L∞∥∇u∥L6∥ρ
1−α

2 utt∥L2

≤
1
40
∥ρ

1−α
2 utt∥

2
L2 +C∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2 +C∥∇u∥2L2∥∇

2u∥4L2 , (3.35)

|J9| + |J10| ≤ ∥∇ρ
α−1

2 ∥L3∥ρ
1−α

2 utt∥L2(∥∇ut∥L6 + ∥(ρα + δ)−1Pt∥L6)

≤ CM∥ρ
1−α

2 utt∥L2
(
∥ρ

1−α
2 utt∥L2 + ∥∇ut∥L2∥∇u∥

1
2
L2∥∇

2u∥
1
2
L2 + ∥∇u∥L2∥∇2u∥2L2

+ ∥∇u∥
1
2
L2∥∇

2u∥
3
2
L2 + ∥∇u∥

1
2
L2∥∇

2u∥
1
2
L2∥∇u∥L∞

)
≤

11
40
∥ρ

1−α
2 utt∥

2
L2 +C∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2 +C∥∇u∥2L2∥∇

2u∥4L2

+C∥∇u∥L2∥∇2u∥3L2 +C∥∇u∥L2∥∇2u∥L2∥∇u∥2L∞ , (3.36)

and

J11 = −α

∫
∂iukρ

α−3
2 ∂kρ∂iu j ρ

α+1
2

ρα + δ
u j

ttdx − α
∫

uk∂i(ρ
α−3

2 ∂kρ)∂iu j ρ
α+1

2

ρα + δ
u j

ttdx

−
α(α + 1)

2

∫
ukρ

α−3
2 ∂iρρ

α−3
2 ∂kρ∂iu j ρ

ρα + δ
u j

ttdx − α
∫

ukρ
α−3

2 ∂kρ∂i∂iu j ρ
α+1

2

ρα + δ
u j

ttdx

≤ ∥∇ρ
α−1

2 ∥L6∥∇u∥2L6∥ρ
1−α

2 utt∥L2 + ∥∇2ρ
α−1

2 ∥Lq∥u∥L∞∥∇u∥
L

2q
q−2
∥ρ

1−α
2 utt∥L2

+ ∥∇ρ
α−1

2 ∥2L6∥u∥L∞∥∇u∥L6∥ρ
1−α

2 utt∥L2 + ∥∇ρ
α−1

2 ∥L6∥u∥L∞∥∇2u∥L3∥ρ
1−α

2 utt∥L2

≤
1

40
∥ρ

1−α
2 utt∥

2
L2 +C∥∇2u∥4L2 +C∥∇u∥L2∥∇2u∥L2∥∇u∥2

L
2q

q−2
+C∥∇u∥L2∥∇2u∥3L2

+C∥∇u∥L2∥∇2u∥L2∥∇2u∥2L3 , (3.37)

provided that

M ≤ η4 ≜ min{(4C)−1, η3}. (3.38)

Substituting the above estimates into (3.33) yields

1
2

d
dt

∫
|∇ut|

2dx +
1
2

∫
ρ1−α|utt|

2dx

≤ C∥∇ut∥
2
L2∥∇u∥L2∥∇2u∥L2 +C∥∇2u∥4L2 +C∥∇u∥2L2∥∇

2u∥4L2 +C∥∇u∥L2∥∇2u∥3L2

+C∥∇u∥L2∥∇2u∥L2∥∇2u∥2L3 +C∥∇u∥L2∥∇2u∥L2∥∇u∥2L∞ +C∥∇u∥L2∥∇2u∥L2∥∇u∥2
L

2q
q−2

≜ C∥∇ut∥
2
L2∥∇u∥L2∥∇2u∥L2 +

17∑
i=12

Ji. (3.39)
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Multiply (3.39) by σ2(t) ≜ max{λ, t2} (λ is a positive number to be determined) and integrate the
resulting equation over [0, t]. By virtue of Lemma 3.1 and Lemma 3.2, we arrive at the following:∫ t

0
σ2(τ)J12dτ ≤ C sup

τ∈[0,t]

(
σ2

1(τ)∥∇2u∥2L2

)
sup
τ∈[0,t]

σ2(τ)
σ3

1(τ)

∫ t

0
σ1(τ)∥∇2u∥2L2dτ ≤ Cλ∥u0∥

2
H1 E, (3.40)

where E ≜ ∥u0∥
2
H2 + ∥g∥2L2 +

∫ t

0
σ2

1(τ)(∥∇ut∥L6 + ∥ρ−αPt∥L6)2dτ and we have used the fact that sup
τ∈[0,t]

σ2(τ)
σ

j
1(τ)
≤

λ, ∀ j ≥ 2.
Similarly,∫ t

0
σ2(τ)J13dτ ≤ Cλ∥u0∥

2
H1 E,∫ t

0
σ2(τ)J14dτ +

∫ t

0
σ2(τ)J15dτ ≤ Cλ∥u0∥

2
H1 E +Cλ∥u0∥

2
H1 ,∫ t

0
σ2(τ)J16dτ ≤ C

∫ t

0
σ2(τ)∥∇u∥L2∥∇2u∥L2∥∇u∥

2(2p−6)
5p−6

L2 ∥∇2u∥
6p

5p−6

Lp dτ ≤ Cλ∥u0∥
2
H1 E +Cλ∥u0∥

2
H1 .

For 2 ≤ q ≤ 3, it holds that∫ t

0
σ2(τ)J17dτ ≤ C

∫ t

0
σ2(τ)∥∇u∥L2∥∇2u∥L2∥∇u∥

2(3q−6)
q

L6 ∥∇u∥
2(6−2q)

q

L∞ dτ ≤ Cλ∥u0∥
2
H1 E +Cλ∥u0∥

2
H1 .

For 3 < q < 6, we have∫ t

0
σ2(τ)J17dτ ≤ C

∫ t

0
σ2(τ)∥∇u∥L2∥∇2u∥L2∥∇u∥

2(q−3)
q

L2 ∥∇u∥
6
q

L6dτ ≤ Cλ∥u0∥
2
H1 E +Cλ∥u0∥

2
H1 .

It is easy to deduce from the definitions of σ1(t) and σ2(t) that∫ t

0
σ′2(τ)∥∇ut∥

2
L2dτ ≤ sup

τ∈[0,t]

σ′2(τ)
σ2

1(τ)

∫ t

0
σ2

1(τ)∥∇ut∥
2
L2dτ ≤

C
√
λ

E. (3.41)

By combining these formulas with (3.32) and applying the following:

λ ≜ (64C2)−1, ∥u0∥H1 ≤ ε1 ≜ min{512C3, 1}, (3.42)

we obtain

17∑
i=12

∫ t

0
σ2(τ)Jidτ +

∫ t

0
σ′2(τ)∥∇ut∥

2
L2dτ

≤ (Cλ∥u0∥
2
H1 +

C
√
λ

)E +Cλ∥u0∥
2
H1

≤
(
Cλ∥u0∥

2
H1 +

C
√
λ

)(
λ

∫ t

0
σ2(τ)

(
∥ρ

1−α
2 utt∥

2
L2 + ∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2 + ∥∇u∥2L2∥∇

2u∥4L2

+ ∥∇u∥L2∥∇2u∥3L2 + ∥∇u∥L2∥∇2u∥L2∥∇u∥2L∞
)
dτ + ∥u0∥

2
H2 + ∥g∥2L2

)
+Cλ∥u0∥

2
H1
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≤
1
4

∫ t

0
σ2(τ)(∥ρ

1−α
2 utt∥

2
L2 + ∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2)dτ +

1
4

∫ t

0
σ2(τ)(J13 + J14 + J16)dτ

+C∥u0∥
2
H2 +C∥g∥2L2 . (3.43)

Considering (3.39) and (3.43) and taking advantage of the condition (1.5) and Grönwall’s inequality, it
can be inferred that

sup
t∈[0,T ]

σ2(t)∥∇ut∥
2
L2 +

∫ T

0
σ2(t)∥ρ

1−α
2 utt∥

2
L2dt ≤ C(∥u0∥

2
H3 + ∥g∥2H1). (3.44)

Meanwhile, by virtue of Lemma 3.2, (3.43) and (3.44), we have

sup
t∈[0,T ]

σ2
1(t)
(
∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇(
P
ρα + δ

)∥2L2

)
+

∫ T

0
σ2

1(t)∥∇ut∥
2
L2dt

≤ C∥u0∥
2
H2 +C∥g∥2L2 +C

∫ T

0
σ2

1(t)(∥∇ut∥L6 + ∥ρ−αPt∥L6)2dt

≤ C∥u0∥
2
H2 +C∥g∥2L2 +C

∫ T

0
σ2(t)∥ρ

1−α
2 utt∥

2
L2dt +C

∫ T

0
σ2(t)∥∇ut∥

2
L2∥∇u∥L2∥∇2u∥L2dt

≤ C∥u0∥
2
H3 +C∥g∥2H1 .

Hence, we have completed the proof of Lemma 3.3.

Lemma 3.4. Suppose that (ρ, u, P) is the local strong solution of (2.1), and that it satisfies (3.4). Then,∫ T

0
∥∇u∥L∞dt ≤ C∥u0∥

6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1), ∀p ∈ (3, 6), (3.45)

provided that M ≤ η4 and ∥u0∥H1 ≤ ε1.

Proof. Taking into account Lemma 2.2, the Gagliardo-Nirenberg inequality, (3.10), (3.30) and (3.31),
one has ∫ T

0
∥∇u∥L∞dt ≤ C

∫ T

0
∥∇u∥α

L
3r

3−r
∥∇2u∥1−αLp dt

≤ C
∫ T

0
∥∇2u∥Lr dt +C

∫ T

0
∥∇2u∥Lpdt

≤ C
∫ T

0
∥ρ

1−α
2 ut∥

6−r
2r

L2 ∥∇ut∥
3r−6

2r

L2 dt +C
∫ T

0
∥∇u∥

3
r

L2∥∇
2u∥

2r−3
r

L2 dt

+C
∫ T

0
∥ρ

1−α
2 ut∥

6−p
2p

L2 ∥∇ut∥
3p−6

2p

L2 dt +C
∫ T

0
∥ρ

1−α
2 ut∥

3
p

L2∥∇ut∥
p−3

p

L2 dt

+C
∫ T

0
∥∇u∥

3
p

L2∥∇
2u∥

2p−3
p

L2 dt +C
∫ T

0
∥∇u∥

p+6
2p

L2 ∥∇
2u∥

3p−6
2p

L2 dt

≤ C∥u0∥
6−r
2r

H1 (∥u0∥H3 + ∥g∥H1)
3r−6

2r +C∥u0∥
6−p
2p

H1 (∥u0∥H3 + ∥g∥H1)
3p−6

2p

+C∥u0∥
3
p

H1(∥u0∥H3 + ∥g∥H1)
p−3

p +C∥u0∥H1

≤ C∥u0∥
6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1),

where α = r(p−3)
3(p−r) , 2 < r < 3, 3 < p < 6.
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Now, we can use Lemmas 3.1–3.4 to prove Proposition 3.1.
Proof of Proposition 3.1. First, based on (2.1)1 and (2.1)3, we find that

(∂iρ
α−1

2 )t + (∂iu · ∇)ρ
α−1

2 + u · ∇∂iρ
α−1

2 = 0. (3.46)

Multiplying this formula by 3
2 |∇ρ

α−1
2 |−

1
2∂iρ

α−1
2 and then integrating over R3, we have

d
dt
∥∇ρ

α−1
2 ∥

L
3
2
≤ ∥∇u∥L∞∥∇ρ

α−1
2 ∥

L
3
2
. (3.47)

Choose some small positive constant ε2 satisfying

Cε
6−p
2p

2 (1 + ∥u0∥H3 + ∥g∥H1) ≤ ln
3
2
. (3.48)

If ∥u0∥H1 ≤ min
{
ε1, ε2

}
, combined with Grönwall’s inequality, (3.45) and (3.47), we have

sup
t∈[0,T ]

∥∇ρ
α−1

2 ∥
L

3
2
≤ ∥∇ρ

α−1
2

0,δ ∥L
3
2

exp{
∫ T

0
∥∇u∥L∞dt} ≤

3
2
∥∇ρ

α−1
2

0 ∥L
3
2
. (3.49)

Similarly, the following formula can also be obtained:

sup
t∈[0,T ]

∥∇ρ∥L2∩Lk ≤ 2∥∇ρ0∥L2∩Lk , (3.50)

which shows that

∥ρt∥L
3
2
≤ ∥u∥L6∥∇ρ∥L2 ≤ C∥∇ρ0∥L2 . (3.51)

On the other hand, taking the derivative of (3.46) with respect to xk (k = 1, 2, 3), we get

(∂k∂iρ
α−1

2 )t = −(∂k∂iu · ∇)ρ
α−1

2 − (∂iu · ∇)∂kρ
α−1

2 − ∂ku · ∇∂iρ
α−1

2 − u · ∇∂k∂iρ
α−1

2 .

After standard calculations, we can obtain

d
dt
∥∇2ρ

α−1
2 ∥Lq ≤ 2∥∇u∥L∞∥∇2ρ

α−1
2 ∥Lq + ∥|∇2u||∇ρ

α−1
2 |∥Lq . (3.52)

It indicates that

sup
t∈[0,T ]

∥∇2ρ
α−1

2 ∥Lq ≤
(
∥∇2ρ

α−1
2

0,δ ∥Lq +

∫ T

0
∥|∇2u||∇ρ

α−1
2 |∥Lqdt

)
exp{2

∫ T

0
∥∇u∥L∞dt}

≤
(
M +CM2 +CM∥u0∥

6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1)
)

× exp{C∥u0∥
6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1)}

≤
(9
8

M +CM2) exp{C∥u0∥
6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1)}, (3.53)

where we have used the following facts:
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∥∇2ρ
α−1

2
0,δ ∥Lq = ∥

α − 1
2

∂i∂ jρ0

(ρ0 + δ)
3−α

2

+
(α − 1)(α − 3)

4
∂iρ0∂ jρ0

(ρ0 + δ)
5−α

2

∥Lq

≤ ∥
α − 1

2
(
∂i∂ jρ0

ρ
3−α

2
0

+
α − 3

2
∂iρ0∂ jρ0

ρ
5−α

2
0

)(
ρ0

ρ0 + δ
)

3−α
2 ∥Lq

+ ∥
(α − 1)(α − 3)

4
(−
∂iρ0∂ jρ0

ρ0(ρ0 + δ)
3−α

2

+
∂iρ0∂ jρ0

(ρ0 + δ)
5−α

2

)∥Lq

≤ ∥
α − 1

2
(
∂i∂ jρ0

ρ
3−α

2
0

+
α − 3

2
∂iρ0∂ jρ0

ρ
5−α

2
0

)∥Lq + ∥
(α − 1)(α − 3)

4
∂iρ0∂ jρ0

ρ3−α
0

δρ2−α
0

(ρ0 + δ)
5−α

2

∥Lq

≤ ∥∇2ρ
α−1

2
0 ∥Lq +C∥∇ρ

α−1
2

0 ∥
2
L2q ≤ ∥∇

2ρ
α−1

2
0 ∥Lq +C∥∇ρ

α−1
2

0 ∥
2q−3

3(q−1) )

L
3
2
∥∇2ρ

α−1
2

0 ∥
4q−3

3(q−1)

Lq

≤ M +CM2,

and ∫ T

0
∥|∇2u||∇ρ

α−1
2 |∥Lqdt ≤

∫ T

0
∥∇ρ

α−1
2 ∥

L
pq

p−q
∥∇2u∥Lpdt

≤ C
∫ T

0
∥∇ρ

α−1
2 ∥

2pq+3q−3p
3p(q−1)

L
3
2

∥∇2ρ
α−1

2 ∥
pq−3q

3p(q−1)

Lq ∥∇2u∥Lpdt

≤ CM∥u0∥
6−p
2p

H1 (1 + ∥u0∥H3 + ∥g∥H1), ∀ max{q, 3} < p < 6.

Then, if

M ≤ η0 ≜ min{(8C)−1, η4}, ∥u0∥H1 ≤ min
{
ε1, ε2, ε3

}
,

where ε3 satisfying Cε
6−p
2p

3 (1 + ∥u0∥H3 + ∥g∥H1) ≤ ln 6
5 , it can be inferred from (3.53) that

sup
t∈[0,T ]

∥∇2ρ
α−1

2 ∥Lq ≤
3
2

M. (3.54)

Meanwhile, (3.46) yields the following:

∥∂t∇ρ
α−1

2 ∥
L

6q
q+6
≤ ∥|∇u||∇ρ

α−1
2 |∥

L
6q

q+6
+ ∥|u||∇2ρ

α−1
2 |∥

L
6q

q+6

≤ ∥∇u∥L6∥∇ρ
α−1

2 ∥Lq + ∥u∥L6∥∇2ρ
α−1

2 ∥Lq

≤ C. (3.55)

Furthermore, it can be easily derived from (3.10) that∫ T

0
∥∇u∥4L2dt ≤ sup

t∈[0,T ]
∥∇u∥2L2

∫ T

0
∥∇u∥2L2dt ≤ C∥u0∥

4
H1 ≤ ∥u0∥

2
H1 , (3.56)

provided that

∥u0∥H1 ≤ ε0 ≜ min{C−
1
2 , ε1, ε2, ε3}.
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It is now clear that if (3.6) holds, then (3.5) is valid. The proof of Proposition 3.1 is completed.
Taking all of the a priori estimates (see Proposition 3.1, Lemma 3.1 and Lemma 3.3, (3.31), (3.50),

(3.51) and (3.55)) together, the following proposition can be obtained.

Proposition 3.2. It holds that

sup
t∈[0,T ]

∥∇ρ
α−1

2 ∥
L

3
2 ∩D1,q

≤ 3∥∇ρ
α−1

2
0 ∥L

3
2 ∩D1,q

, (3.57)

sup
t∈[0,T ]

[∥ρ − δ∥
L

3
2 ∩H1∩D1,k

+ ∥ρt∥L
3
2
+ ∥∂t∇ρ

α−1
2 ∥

L
6q

q+6
+ ∥ρ

1−α
2 u∥2L2 + ∥∇

2u∥Lp + σ1(t)∥∇u∥2L2 + σ2(t)∥∇ut∥
2
L2

+ σ2
1(t)(∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2 + ∥∇P∥2L2)] + ∥∇3u∥L2 +

∫ T

0
[∥∇u∥2L2 + σ1(t)(∥ρ

1−α
2 ut∥

2
L2 + ∥∇

2u∥2L2

+ ∥∇P∥2L2)]dt +
∫ T

0
[σ2(t)∥ρ

1−α
2 utt∥

2
L2 + σ

2
1(t)(∥∇ut∥

2
L2∩L6 + ∥ρ

−αPt∥
2
L6)]dt ≤ C, (3.58)

provided that

∥∇ρ
α−1

2
0 ∥L

3
2 ∩D1,q

≤ η0, ∥u0∥H1 ≤ ε0.

Proof. All estimates have been obtained except for ∥∇3u∥L2 . We now estimate ∥∇3u∥L2 . According to
Lemma 2.2, one has

∥∇2u∥H1 + ∥∇
(
(ρα + δ)−1P

)
∥H1

≤ C∥ρ−α(ρut + ρu · ∇u)∥L2 +C∥ρ−α∇(ρut + ρu · ∇u)∥L2 +C∥(ρut + ρu · ∇u)ρ−2α∇ρα∥L2

+C∥(|∇u| + |
P
ρα + δ

|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq

≤ C∥ρ
1−α

2 ut∥L2 +C∥u∥L6∥∇u∥L3 +C∥ρ−α(|∇ρ||ut| + ρ|∇ut| + |∇ρ||u||∇u| + ρ|∇u|2 + ρ|u||∇2u|)∥L2

+C∥(ut + u · ∇u)ρ−α∇ρα∥L2 +C∥(|∇u| + |(ρα + δ)−1P|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq

≤ C∥ρ
1−α

2 ut∥L2 +C∥∇u∥
3
2
L2∥∇

2u∥
1
2
L2 +C∥∇ρ

α−1
2 ∥L3∥ut∥L6 +C∥∇ut∥L2 +C∥∇ρ

α−1
2 ∥L6∥u∥L6∥∇u∥L6

+C∥∇u∥2L4 +C∥u∥L∞∥∇2u∥L2 +
1
4
(
∥∇2u∥H1 + ∥∇

(
(ρα + δ)−1P

)
∥H1
)
+C

≤
1
4
(
∥∇2u∥H1 + ∥∇

(
(ρα + δ)−1P

)
∥H1
)
+C,

owing to, for 2 ≤ q ≤ 3,

∥(|∇u| + |(ρα + δ)−1P|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq

≤ C
(
∥∇u∥

L
2q

q−2
+ ∥(ρα + δ)−1P∥

L
2q

q−2

)
∥∇2ρ

α−1
2 ∥Lq

≤ C
(
∥∇u∥

2q−3
q

L6 ∥∇
2u∥

3−q
q

L6 + ∥(ρ
α + δ)−1P∥

2q−3
q

L6 ∥∇
(
(ρα + δ)−1P

)
∥

3−q
q

L6

)
∥∇2ρ

α−1
2 ∥Lq

≤
1
4
(
∥∇2u∥H1 + ∥∇

(
(ρα + δ)−1P

)
∥H1
)
+C,

and for 3 < q < 6,
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∥(|∇u| + |(ρα + δ)−1P|)ρ
1−α

2 ∥
L

2q
q−2
∥∇2ρ

α−1
2 ∥Lq

≤ C
(
∥∇u∥L6 + ∥(ρα + δ)−1P∥L6

)
∥ρ

1−α
2 ∥

L
3q

q−3
∥∇2ρ

α−1
2 ∥Lq

≤ C.

Thus, we have

∥∇2u∥H1 + ∥∇
(
(ρα + δ)−1P

)
∥H1 ≤ C.

With all of the a priori estimates in this section in hand, we are now in a position to prove
Theorem 3.1.
Proof of Theorem 3.1. Lemma 2.1 illustrates the fact that there exists a T0 > 0 such that the system (2.1)
has a unique local strong solution (ρ, u, P) on R3× (0,T0]. We now extend this local solution to a global
one. It follows from (3.1) that there exists a T1 ∈ (0,T0] such that (3.4) holds for T = T1. Denote

T ∗ ≜ sup{T |(ρ, u, P) is a strong solution onR3 × (0,T ] and (3.4) holds}. (3.59)

Then, T ∗ ≥ T1 > 0. From Proposition 3.1, it can be seen that T ∗ = T1. For any 0 < T ≤ T1 with T
finite, we can deduce from (3.57) and (3.58) that

ρ − δ ∈ C([0,T ]; L
3
2 ∩ H1 ∩ D1,k), ∇ρ

α−1
2 ∈ C([0,T ]; L

3
2 ∩ D1,q). (3.60)

By virtue of Proposition 3.2, it can be inferred that

∇u ∈ C([0,T ]; H1), (3.61)

where we have used the following standard embedding:

L∞([0,T ]; H2 ∩W1,p) ∩ H1([0,T ]; L2) ↪→ C([0,T ]; H1) ∩C(R3 × [0,T ]).

We assert that T ∗ = ∞. Otherwise, we assume that T ∗ < ∞. According to Proposition 3.1, (3.5) holds
at T = T ∗. It follows from (3.60) and (3.61) that

(ρ∗, u∗)(x) ≜ (ρ, u)(x,T ∗) = lim
t→T ∗

(ρ, u)(x, t)

satisfies

0 ≤ ρ∗ − δ ∈ L
3
2 ∩ H1 ∩ D1,k, ∇ρ∗

α−1
2 ∈ L

3
2 ∩ D1,q, u∗ ∈ D1

0,σ ∩ D2.

Then, with (ρ∗, u∗) as the initial data, we can use Proposition 3.1 to extend the local strong solution
of (2.1) beyond T ∗, which contradicts the definition of T ∗. So T ∗ = ∞. The proof of Theorem 3.1 is
finished.
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4. Proof of Theorem 1.1

With the global existence of the approximate solutions (see Theorem 3.1) and a priori estimates
independent of δ, we can take the limit on the approximation system and obtain the solution of the
original problem described by (1.1) with (1.2).
Proof. The definition of ρ0,δ can indicate that when δ→ 0, we have the following for any R > 1:

ρ0,δ → ρ0 in L
3
2 (BR) ∩ H1(BR) ∩ D1,k(BR).

Taking advantage of Proposition 3.2, we know that when δ → 0, the approximated solution sequence
(ρδ, uδ, Pδ) converges to (ρ, u, P) in the weak sense, and if necessary, we select its subsequence. As
δ→ 0, the standard compactness theory can provide the following:

ρδ − δ ⇀ ρ weak − ∗ in L∞
(
0,∞; L

3
2 (R3) ∩ D1,k(R3) ∩ H1(R3)

)
,

ρδt ⇀ ρt weak − ∗ in L∞
(
0,∞; L

3
2 (R3)

)
,

ρδ → ρ in C([0,∞); Ls(BR)
)
, for any 2 ≤ s < 6,

uδ ⇀ u weak − ∗ in L∞
(
[0,∞); L6(R3)

)
,

∇uδ → ∇u in C
(
[0,∞); L2(R3)

)
,

ρδuδ → ρu in C
(
[0,∞); L2(BR)

)
,

∇2uδ ⇀ ∇2u weak − ∗ in L∞
(
[0,∞); L2(R3)

)
,

∇Pδ ⇀ ∇P weak − ∗ in L∞
(
[0,∞); L2(R3)

)
,

∇uδt ⇀ ∇ut weak − ∗ in L∞
(
[0,∞); L2(R3)

)
.

(4.1)

Since (ρδ, uδ, Pδ) is the strong solution to the system (2.1), as δ → 0, we have that ∀φ ∈ C∞c (R3 ×

[0,T ]),

div u = 0,∫ T

0

∫
[ρtφ + ρu · ∇φ]dxdt = 0,∫ T

0

∫
[ρuφt + ρu ⊗ u · ∇φ − ρα∇u · ∇φ + ∇Pφ]dxdt = 0.

Thanks to the regularity of ρ and u, using Holder’s inequality and the Sobolev inequality, we have

∥ div(ρu)∥
L

3
2
= ∥u · ∇ρ∥

L
3
2
≤ ∥u∥L6∥∇ρ∥L2 ≤ C,

∥(ρu)t∥L2 = ∥ρtu + ρut∥L2

= ∥u · ∇ρu∥L2 + ∥ρut∥L2

≤ C∥∇ρ∥L2∥u∥2L∞ + ∥ρ∥L3∥ut∥L6

≤ C∥∇ρ∥L2∥∇u∥L2∥∇2u∥L2 + ∥ρ∥L3∥∇ut∥L2

≤ C,
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∥ div(ρu ⊗ u)∥L2 = ∥ div(ρu)u + ρu · ∇u∥L2

≤ ∥u · ∇ρu∥L2 + ∥ρu · ∇u∥L2

≤ C∥∇ρ∥L3∥u∥L∞∥u∥L6 + ∥ρ∥L6∥u∥L6∥∇u∥L6

≤ C∥∇ρ∥
2(k−3)
3(k−2)

L2 ∥∇ρ∥
k

3(k−2)

Lk ∥∇
2u∥

1
2
L2∥∇u∥

3
2
L2 + ∥∇ρ∥L2∥∇u∥L2∥∇2u∥L2

≤ C,

and

∥ div(ρα∇u)∥L2 = ∥ρα∆u + ∇ρα · ∇u∥L2

≤ C∥ρ∥αL∞∥∇
2u∥L2 + ∥∇ρα∥L3∥∇u∥L6

≤ C∥ρ∥αL∞∥∇
2u∥L2 + +∥∇ρ

α−1
2 ∥L3∥∇2u∥L2

≤ C∥ρ∥αL∞∥∇
2u∥L2 + ∥∇ρ

α−1
2 ∥

2q−3
3(q−1)

L
3
2
∥∇2ρ

α−1
2 ∥

q
3(q−1)

Lq ∥∇
2u∥L2

≤ C.

Hence, ∫ T

0

∫
[ρt + div(ρu)]φdxdt = 0,∫ T

0

∫
[(ρu)t + div(ρu ⊗ u) − div(ρα∇u) + ∇P]φdxdt = 0.

Due to the arbitrariness of φ, it can be inferred that for almost everywhere (x, t) ∈ R3 × (0,∞), we have
the following: 

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) − div(ρα∇u) + ∇P = 0,
div u = 0.

Therefore, (ρ, u, P) is a strong solution to the Navier-Stokes system given by (1.1) with (1.2) on R3 ×

(0,∞) satisfying (1.7). Hence, Theorem 1.1 is proved.

5. Conclusions

We studied the nonhomogeneous incompressible Navier-Stokes equations with variable viscous
coefficient and established a global strong solution. This result can help researchers better understand
the behavior of fluids obtained by mixing two incompressible and immiscible fluids with different
densities, and also contribute to the study of fluid motion containing molten materials. It has certain
reference value in some applications of fluid mechanics.
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