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Abstract: In this article, we are committed to studying the three-dimensional incompressible Navier-
Stokes equations, where the viscosity depends on density according to a power law. We investigate
the Cauchy problem by constructing an approximation system and bootstrap argument. Finally, we
establish the existence of a global strong solution under the conditions of small initial data and
the compatibility condition. Meanwhile, the algebraic decay-in-time rates for the solution are also
obtained. It is worth pointing out that the degradation of viscosity is allowed.
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1. Introduction

As we all know, the Navier-Stokes equations have a profound physical background and play an
extremely important role in fluid mechanics. This paper is devoted to the following Navier-Stokes
equations in R3, which can characterize the motion of viscous inhomogeneous incompressible fluids:

o; + div(pu) = 0,
(ou), + div(pu ® u) — div(uVu) + VP = 0, w5
divu = 0, '

(0, pu)(x, 0) = (po, potto)(xX).

Here, p = p(x,1), u = (u',u?,u*)(x, 1) and P(x, t) denote the density, velocity and pressure of the fluid,
respectively. u stands for the viscosity coeflicient. In this article, we focus on the Cauchy problem for
the system (1.1) with (p, «) vanishing at infinity and

u=p*O<a<l). (1.2)
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The Navier-Stokes equations have always been a hot topic of concern for mathematical researchers.
To date, many meaningful research results have been achieved regarding this topic. The mathematical
research on incompressible Navier-Stokes equations began with a simple case in which the viscosity u
is a positive constant and the initial density is far from a vacuum. Antontesv and Kazhikov initially
proved the global existence of weak solutions and further demonstrated the local existence of strong
solutions in [5,23]. Later, for the 2D and 3D initial-boundary value problems, Ladyzhenskaya and
Solonnikov [24] confirmed that the local strong solutions are unique. In fact, this local strong solution
is still global, allowing large initial data in two dimensions and requiring small initial data in three
dimensions. More results on the well-posedness of solutions can be found in [1, 11, 12] and their
references. Under the condition that the initial density contains a vacuum, the global weak solutions
were first established by Simon [29]. Based on the vacuum problem, Choe and Kim [9] creatively
introduced the compatibility condition given by

1
—ptug + VPy = plg, for some (Py,g) € H' x L? (1.3)

and obtained the local strong solution. Under the condition that ||uO||H
extended the local solution to the global solution for the whole 3D space.

1 is small, Craig et al. [10]

2

A more general situation is that the viscosity u depends on the density, which is more in line
with the actual background. At this point, the well-posedness problem of the solution becomes more
challenging. Lions [26] established the global weak solutions with the initial density containing a
vacuum, which is a big breakthrough. Regarding the 2D Cauchy problem, Gui and Zhang [16]
demonstrated the global well-posedness of strong solutions under the assumption that the initial
density p, perturbs near 1. Regarding the initial density allowing for a vacuum, similar to the case of
constant viscosity, Cho and Kim [7] obtained a unique local strong solution which required the initial
data to satisfy the compatibility condition. For u(p) > u, VYp € [0, ), the unique global strong solution
was proved by Huang and Wang [20,21] under the condition of smallness on [IVu(oo)lle (2 < g < 00)
in 2D and on |[Vul|;2 in 3D over a bounded domain. The solvability of variable coefficient problem
has been studied by many people (see [2, 3, 13,19, 25,30]). Later, Lii and Song [27] successfully
removed the compatibility condition. On this basis, under the condition that ||ug||gs (% <p <0
is small, the global existence and uniqueness of strong solutions to the 3D Cauchy problem were
obtained by He et al. [17]. Recently, for the degenerate viscosity case given by u(p) = p, He and
Guo [18] established the existence of a global strong solution, which required small initial data and a
compatibility condition. There are some interesting studies that can be references, see [6, 14,22,28].

For a wider range of cases, such as u(p) = p“, the solvability of the Navier-Stokes equations
deserves further research. In this case, the problem becomes more complex. Strong degradation brings
difficulties to our research, which requires us to fully utilize the structure of the equation. For the
case of constant viscosity, the parabolic structure of the momentum equation plays an important role in
high-order estimates. However, for the case that we are considering (i.e., u(p) = p®), the parabolicity
of the momentum equation may disappear. As a result, high regularity or uniqueness cannot be directly
expected from (1.1),. Therefore, we need some new ideas and to make precise estimates.

Under the assumptions of small initial data and the compatibility condition, we obtain the global
existence of a strong solution to the Cauchy problem. The main conclusion is as follows:
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Theorem 1.1. For3 <k < 6 and 2 < g < 6, assume that the initial data (py, ug) satisfy
0<py<p. poeLiNH ND™ Vo' eLinD™, uyeD) nH, (1.4)
and the compatibility condition is given by
—div(pyVug) + VP, = p?g, for some (Py,g) € H* X H'. (1.5)
There exist two positive constants 1y and &, that depend on p, k, q and ||g||g such that if

azl
2

Vo™ i <o, luollar < &o, (1.6)

then the system (1.1) with (1.2) has a global strong solution (p, u, P) with the following:

3
L2nDl4

p € C([0,00); L: N H' N D), VpT' € C([0,0); Li N D),
Vu € C([0, 00); HY N L*(0,00; HY), VP € L*(0, 00; L?) N L*(0, oo0; L?),

02 u, € L*(0, 00; L*) N L2(0, 003 L2), (L7)
Vu, € L*(0, 00; L*) N L*(0, 00; L?> N L),
Furthermore, it holds that
IVu(-, Dll;2 < Cor™2, (1.8)
and
o2 G, Dllzz + Vs, Dllz2 + IV2uC, Dl + IVPC, D2 < Cor™ (1.9)

where C is a positive constant that depends on p and ||ug||xs.

Remark 1.1. For the case that u(p) = p, we have previously studied it in detail in [18] and obtained
the global strong solution. This article is its promotion and it has a wider scope of application.

Theorem 1.1 will be proved by constructing an approximation system which has a unique local
strong solution and bootstrap argument. We first establish uniform a priori estimates, and the key
is to obtain the regularity theory for the Stokes system, which does not depend on the lower bound
of viscosity. By combining the local existence of approximated solution with time-uniform a priori
estimates, the global approximated solution is obtained. Finally, by using the standard compactness
theory, the strong solution of the original system is established.

2. Preliminaries

The results on the existence of solutions to the incompressible Navier-Stokes equations are for non-
degenerate viscosity. So, we first construct an approximation system in R>:

p; + div(pu) = 0,
(ou), + div(pu ® u) — div ((0* + 6)Vu) + VP = 0,

divu =0, 2.1
(p’pu)(x’ O) = (p0,5’p0,5u0)(x)$
u(x,t) —» 0, as |x| — oo,
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where 0 < 6 < 1 and pg s(x) = po(x) + 6.
The local well-posedness of strong solutions to the system (2.1) is guaranteed by the results of [8].

Lemma 2.1. Assume that the initial data (py s, uy) satisfy
0<pos—6€LinH ND"*3 <k<6), upe D}, D (2.2)

Then, there exist a small time Ty > 0 and a unique strong solution (p°,u°, P°) to the system (2.1) on
R? x (0, Ty].

Our high-order a priori estimates will be obtained based on the following regularity theory for
Stokes equations, which does not rely on the lower bound of viscosity.

Lemma 2.2. Assume that p satisfies

0<p<p, Vp% e’ND"2<qg<6), ||Vp%||p < &o (& see (2.12)). (2.3)
Let (u, P) € Héﬂ x L?* be the unique weak solution to the following problem:

—div((p? + 6)Vu) + VP = F, x€R3,
divu =0, x € R3, 2.4)

u(x) — 0, |x| = oo.

Then, the following conclusions are valid:
(1)If p™@F € L" with r € [2,3), then

IV2ullr + V(0" + &)~ P)llr < Clio™ Fll.. (2.5)
(2) If p™®F € L? O L with p € [3,6), then
IV2ullr + 1V((0" + 6)"' P)li» < Cllo™ Fll» + CIIVP%IILGIIP_“FIIL%- (2.6)
(3)If p°F € L, p=®VF € L? and Fp~**Vp® € L2, then
IV2ull + IV ((0” + 6)"' Pl < Cllo™Fli2 + Cllo™*VFll2 + ClIFp~ V|| 2
+ ClVal +1(67 + O PO TN 2 IV T s 27)
(4) Further, if F = divG + H withp ™G € L°* N L+, and p “H € L+ for some s € [%, +00), then
IVulls + ll(o® + 6)~ Pllzs < Cllo™Gllws + CIIVP%IIL6IIP_QGIIL% +Cllo™HIl 3 . (2.8)

Here, the constant C depends only on p.

Proof. Equation (2.4), can be rewritten as

P F Vu-Vo*  PVp?
—Au+ V( ) i (2.9)
p°

= + .
+6  p*+8  p*+6 (p*+0)?
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According to the theory of the Stokes system and Gagliardo-Nirenberg inequality, we have the
following for r € [2, 3):

I9%uller + IV (0" + 6" Pl
<Cll(p" + )" Fllir + ClIVu - (0° +6)'Vpllur + Cli(p" + ) > PVl
<Cllo™Fllir + CIVp T N (IVull o + 110" + 6)'Pll_2)
—a ol @ _
<Cllo™ Fll: + CIVp Tl (1V2ulle + V(0 + 6)' P,

If||Vp P ||Lz < ¢ 2 min{(2C)7!, 1}, then (2.5) is valid.
Similarly, for p € [3,6),

IV2ullr + 11V((0" + 6)™' P)l|L»
<Cll(p® + &)~ Fller + C”VP%HL‘)(”VU”L% +1(p" + 5)_1P||L6%)

<Cllp™Flle» + C”Vp%l“Lﬁ(llvzl’t”L% +IIV((" + 5)_1P)|IL%)- (2.10)

Then, 22 +6 € [2, 3) given that p € [3,6). Combining (2.5) and (2.10) yields (2.6).
On the other hand,

IV2ullzt + IV (0" + 8) ™" P)llp

<Cll(" +6)~' Flig + Cl[Vu - (0% +6)"'Vp* = (0" + 6) > PVp°||pp

<Cllo™Fllz2 + ClIVu - (" + )" Vp°ll2 + Cll(p® + 6) >PVp®|ly2 + Cllp " VFl|2
+ ClIF(p" +6)*Vpll2 + CIV(Vu - (o + 8)"'Vp® = (0% + 6) > PVp)|p2

1 _ —a -
SE(”VZMHHI +IV((p® +8)" P)lign) + Cllo™Fll2 + Cllo™VF| 2
—2a a a - La ol
+ CllIFp~>*Vp® |l + CII(IVul + (0" +6)"' Plp 2 ||L[[242||V2P 7 lis,
where, in the last inequality, one can use the following:

IV(Vu - (0 + 6)"'Vp* = (p* + 6) > PVp®)||.2

20’ @ —a a-1 P @ 1—
= ||——V(V 2 Vo2 — T
I V(Vu- ———p= Vp p(,+6p(,+6 )2
< CI(v? 2|||Lz+cn(|w|+| |)(| o 5|| 07|
Y ot
+|sz||Vp2|+|pz||v2 SRl Dlizz

wror P
a-1 P

6)”L6)”Vp 7 lzs + CIVullzs + [l —
oY+

P -1
< C(IIV?ull s + ||V(pa " 6||L6)||Vp 2 ||is

1l a1
+ Cll(Vul + | e 5P V2o = lll2
1
<3 IV2ull> + IIVZ( 5)li2) + Cllo™ Fllz> + ClI(Vul +| I)p ? I 2, V2% o
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Hence, (2.7) holds.
Furthermore, if F = divG + H, we rewrite (2.9) as

—Au+ V(L) = div( )+ H, (2.11)
pY+0

pY+0
where

G- Vp® N H N Vu - Vp® PVp®
(PY+6)? p*+6  pT+6  (p*+6)*

H=

It follows from (2.4), 3, (2.11) and the Sobolev inequality that, for s € [3, +00),

1" +6)™' Plls < ClIVulls + CliGe® + 6)™'Glis + ClI(=A)"" div Alls
< ClIVull + Clio™Glls + CIIA| s,

and
IVullzs < CIIV X ullzs
< CI(=A)"'V x div (0™ + 6)'G)llzs + ClI(=A)'V x HJ|s
< Cllo™Glls + CINAI| 5 -
Therefore,
IValls + 10" +6) ™' Pllzs < Cllo™Gllzs + CIAI 2
< llo™Glls + Cllp™ + 6)™'G - p~'Vpll, 24 + Cllp™ HIl 34
+ ClIVu - p~'Vpll s + Cll(p™ + 6)"' P Vpll 55
< Cllp™Glls + CIIVp“T'IIILellp‘“GIILgTsﬁ +Cllo™HI| 3¢
+ CIIVE Tl (IValls + 11Go® + )7 Pllzs).
If

VT |l < Zo £ min{(2C) ™", 41}, (2.12)

it is clear that (2.8) holds. The proof is finished.
3. A priori estimates

This section mainly aims to obtain uniform a priori estimates of the local strong solution to the
system (2.1), which is necessary to obtain the global existence of approximate solution. We abbreviate
the approximate solution (0°,u’, P°) as (o,u, P). The C in this section represents some positive
constants that depend on p, k and g but are independent of 6 and 7.

Theorem 3.1. For3 <k <6 and?2 < q < 6, assume that the initial data (py s, uo) satisfy

a-1
0<pos—06<p, pos—6€LiNH ND"* Vp? eLinD", uyeD}, NH, (3.1)

0,0
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as well as the condition (1.5). Then there exist two positive constants 1y and &, that depend on p,k, q
and ||g||gt such that if

a1
Vo, |l

then the system (2.1) has a unique global strong solution (p, u, P) with the following:

oo S0 ol < eo. (32)

a—1

p—6€C(0,0):L: N H N DY), VpT e C([0,); L3 N D7),
Vu € C([0, 00); HY)Y N L*(0,00; HY), VP € L*(0, 00; L?) N L?*(0, oo0; L?),

P u, € L(0, 003 L) N LX(0, 00, L7), p'3uy € LX(0, 003 L?),
Vu, € L*(0, 00; L*) N L*(0, 00; L> N LY), p~@P, € L*(0, co; LY).

(3.3)

In order to prove Theorem 3.1, whose proof is placed after Proposition 3.2, we need to establish the
global a priori estimates. Denote
a-1
M = |IVpy* “L%mDLq'
Proposition 3.1. There exist two positive constants ny and &, that depend on p, k and q such that if
(o, u, P) is a strong solution of (2.1) satisfying

T
sup V01,3, < 4M, fo IVt < 2ol (3.4)
then
el ! 4 2
,GS[IS,I}]”VP 23 S 3M, fo IVull;»dt < |luoll;, (3.5)
provided that
M <o, luollyr < &o. (3.6)

Before proving Proposition 3.1, we first establish time-weighted energy estimates, as shown in
Lemmas 3.1-3.4. By the a priori hypotheses (3.4), and Gagliardo-Nirenberg inequality (see [4, 15]),
we have

2g-3

— a— a— 4
VT Iy < ClIV T 72 T 197 < CM, 3.7)
L2

— a— ﬁ a— q
VT |ls < CIIV T 157 [V2p T |97 < CM. (3.8)
L2

Lemma 3.1. Suppose that (o, u, P) is the local strong solution of (2.1) that satisfies (3.4). There exists
a positive constant nz such that if M < ns, then

sup |lo =4l 3, < lleoll (3.9)

3 L <
1€[0,T] LznL

T
sup (llo > ull?, + o1 ONVull?,) + f VUl + o1 (DI 7 w2, + I1V2ull2, + IVPIE)1dE < Clluoll?,,
t€[0,T] 0
(3.10)

3
L2nL?’

where o(t) = max{l, t}.
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Proof. The transport equation (2.1), and divergence-free (2.1); imply that

6% P pot 1 sup llo =6l < oos =l 3 = ool 3. (3.11)
which provides the following:
1p1—a/ < P < pl—(x. (3.12)
pr+0

Multiplying (2.1), by (0 +6)~'u, integrating the result with respect to x over R?, and then using the
Gagliardo-Nirenberg inequality and (3.4),, we can obtain

1d p 2 f 2

—— | ——ul"dx+ | |Vuld

sar ) praoridxt | IVuldx

Vp“ Vp“
:fVu- p ~udx—f(p"+5)_1P P udx
pr+0 pr+0

/e @ s
n 6”L%”u”Lﬁ(”VM”L6 + 10" + 6)™" Pllgs)
<CIVPZ 1| 3 IVull 2Vl + 9 (0" +6)' P)ll2)

<||

1 -
SZIIVMIIiz + CIIV2ully, + CIV((0® + 6)' P)II7 (3.13)

12°

where one can utilize the simple fact that

a

Vp* ap®'Vp 20 p

s == : :”af—lp“+6

”p"+6 L3 pr+o L

lo_ ol Lo a1 a1
p T Vp Tl 5 < Clloll, 2 Ve 1l 3 < ClIVp 1| 5

198

If we apply the following:
M <y £ min{C™'¢, 1}, (3.14)

combined with (3.7), we will have that IIV,OQT*l Iz < . Applying Lemma 2.2 with F = —pu, — pu - Vu,
we deduce from (2.5) and the Sobolev inequality that

_ P 1-a 1 1
IV2ull2 + IV((0® +8) ' P)ll2 < Cllo =y + - Vull2 < Clip ™ willz + ClVull , [V ull 5 IV2ull

which, together with Young’s inequality, can lead to the following:

IV2ullzz + V(0" + 6) ' P)llz2 < Cllpl_Tautlle + CIIVulliz- (3.15)
Given that
P V a
VP = V(——)(o" + 6) + P—L—,
pr+0 pr+0
there is
o -1
IVPl2 < [lp” + 5”L””V(pa, n 6)”L2 + ||P||L6||pa n 6||L3 < CIIV(pa n 6)”L2 + ClIVP| Ve 2 || 3.

AIMS Mathematics Volume 9, Issue 3, 7728-7750.



7736

If M < 1, 2 min{(2C)~", 1}, one can obtain

P
IVP|l;2 < CIIV( 2. (3.16)
pY+0
Putting (3.15) into (3.13), we obtain
4 L uPdx + | [VuPdx < Cllo = wl?, + C||Vu|l® (3.17)
dt 5 =t tllp '

Next, multiplying (2.1), by (0% + §)"'u, and integrating over R? yields

2 = f Vuldx + f 5l
a -1 Vpa
cudx — | (0% +60) P—— - udx
P

VO./
f u-Vu - u,dx+fVu- P
pr+0 pr+0 +0

L a1 I p -
<C||MIIL6||VMIIL3IIP gl + ClIVE T llllo = will2(1Valzs + 110" + 6)™" Pligs)

<(— +CM)Ip ™ “ull + CIIVullfz-
If
M < 13 2 min{(4C)~", 1}, (3.18)
then we have

d
- f \Vul*dx + f P Pdx < ClIVull®,. (3.19)

Using Gronwall’s inequality and (3.4), we can obtain

sup [[Vull?, f llo %" “u|7,dt < Cl|Vull2,, (3.20)
t€[0,T]

sup IIpl'T“ulliZ +f IVull?,dt < Cllull7,:- (3.21)
t€[0,T] 0

Furthermore, by taking o(f) = max{l,#}, multiplying (3.19) by o(¢), and using Gronwall’s
inequality, (3.4), (3.15), (3.16) and (3.21), one can obtain

T
2 La 9 212 2 2
sup o1 ()|[Vull;, + f a1 ()(llo 2 wll;, + IVoull;, + IVP[.)dt < Cllugllz,
1€[0,T] 0

Lemma 3.2. Suppose that (p,u, P) is the local strong solution of (2.1) that satisfies (3.4), with the
initial data (py s, uo) satisfying the condition (1.5). If M < n;, then

T
sup 2(Dlllp’ > w7, + IVl + VP2 +f o1 (OIVull;.dt
t€[0,T] 0

T
<Clluoli3, + Cliglly, + Cf a1 (OUIVudls + llo™ Pyl e) . (3.22)
0
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Proof. Differentiating (2.1), with respect to ¢, one has
pouy + pu - Vu, — div ((0° + 6)Vu,) + VP, = —p,u; — (pu), - Vu + div(0,0"Vu). (3.23)

Multiplying (3.23) by p~%u, and integrating it over R*, we deduce that

1d [ 45
s | PP+ f 2 o IVufds

=- fp_"ptlu,lzdx— f(pu), -Vu-p %udx + fdiv(atp“Vu) -0 "udx

a

s ZS: J. (3.24)

Now, we estimate the right-hand terms of (3.24) one by one. Thanks to the Gagliardo-Nirenberg
inequality and Young’s inequality, we arrive at the following formulas:

Y40
-« fp_‘HP,Vp “udx + afpp Vu, - p~'Vp - udx

a1 l-a 2 az1 2 1 2
1l + 1ol < ClIVe 2 lsllullzsllo 2 uillza + ClIIVE = [l llulll[Vallzolludd e + llo™2 wll7l[Vuell 2

1 I-a
< §||VM:||iz + C||VM||12||P 2 ut”iz + C||Vu||2(z), (3.25)

J3 = afp_lakpuk(?iuj(?iu{dx—az fp_lﬁkpukﬁiujp_laipu{dx
ol a1l
< ClIVe = llpllull= Vel 6l Vatgll2 + ClIVO = 117 laall o Vel o el o

1 Le
< glquzlliz + Clio " | Vullz + ClIVull}) (3.26)

12°

a1 —
[Jal + 1751 < 201V |z lldllzsCllo™ Pillzs + 1Vl o)
1 -
< glqutI@ + C(lp™*Plls + IVuqlle)*. (3.27)
Based on the above estimates, it can be concluded that

d
- f 07w, Pdx + f \Vu,[*dx

la Lo —
<Cllo = wll-(1Vully> + llo = will 2l Valz2) + ClIVull, + Cllo™ Pllzs + IVule)®. (3.28)

Multiplying (3.28) by o(¢) and taking advantage of Gronwall’s inequality, the condition (1.5),
and (3.10), one has

T
2 Lo 9 2 2
sup o (Dllp > wll}, + f T OV} dt

0

te[0,T]
T
<Clluo|l7,. + Cligll>. + C f a1 (o™ Pllzs + IVuyllps)*dt. (3.29)
0

With the help of (3.15), (3.16) and (3.29), we can deduce (3.22). This completes the proof of the
lemma.
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Lemma 3.3. Suppose that (p, u, P) is the local strong solution of (2.1), and that it satisfies (3.4). There
exist two positive constants 14 and &, such that if M < n, and ||ug||;n < &1, then

sup [0 (OIIVul2 + 3Ol = wllZ: + [V2ullZ, + IVPIL)]

t€[0,T]
T
+ f [O'Z(I)Hp Mtt”Lz + O-I(I)(”VMIHLZQL() + ||p_aP,||L6)]dt
0
<Clluolly + Cligll7,., (3.30)

with o»(t) = max{a, 1*} (1 see (3.42)).
Proof. According to Lemma 2.2, the Sobolev inequality and (3.23), we can deduce the following for
p €[3,6):
IV2uller + 1V((0" + 6) P)llL»
< Cllo™ (pu + pu - V)l + ClIVP'T Ilyollo™ (ouy + pue - Va)| L

6-p 3p—6 p-3

<Clp™ “ull Y o™ “wll, + Cllull I Vully + Clip™ uzll”zllp “wll,f + Cllull |Vl Lo

p 3p 6 p=3 2p-3 ]7+6 3p76

6
< Cllo = ull,¥ IVudll ) + CIIPTutII"ZIIVuzII : + CIIVMII”zIIVzullLf + ClIVull 11Vl (3.31)

2 o
and
Vil + (0® + 6)7 Pillgs
<Cllo™" 00" Vullrs + C||VPGT_1||L6||P_aatpavu||L3 + Cllo™(ous + pu - Vu, + pu; + (pu), - Vu)|| 2
<CIIVp'T [lyollellz I Varll = + ClIVP 1 lull I Vatll o + Cllo 2" wullzz + Cllull = Vel 2
+ CIVP T lallullzolluedlzs + CIVE T allulZollVedlzs + ClIVall sl
<Cllp = gz + C||VM||22||V2M||32||VMz||L2 + CI[Vull 2 V2ull7, + C||VM||EZ||V2M||,%2
+ C”VM”Zz”Vzl’t“Zz”VM”L‘X’- (3.32)

Multiplying (3.23) by (0% + 6)"'uy,, integrating the resulting equality over R?, and using integration by
parts, we derive

f Vi, dx + f

= f + (ut Vu +Uu- Vut) ut,dx fptut * (p(l + 5)_11/!;;61')6 - fp,u ° Vu * (pd + 5)_1M,,dx
p(l

2
|utt| dx

Vp® _ Vp? N
+fVu,-in6-u,,dx—f(p”+6) 1P,p(l€_6-u,,dx—f8(uk8kp auj)(p +0) 1u,,

11
4 Z A (3.33)
i=6
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Owing to the Sobolev inequality and (3.32), one can obtain

Ie I
V6l < CllugllzslIVullpsllo ™ uallzz + Cllullr=IVullz2llo > wallz2

—a

1 Lo 2 2 2
< %Ilp 2 gl + ClIVul |Vl 211V ull 2, (3.34)
a1 La a1 2 La
|7 + Js| < [[Vo 7 || pallull o lluallpsllo 2 sl + 11V = || s llellz= [ Vullgsllo ™ wyll 2

|
< E“’D 2 Mn||iz + C||Vuz||iz||VM||L2||V2M||L2 + C||VM||%2||V2M||22, (3.35)

azl 1-a -1
[Jol + 110l < IVP = sl uall2(IVugllzs + 11(0® + 6)™ Pills)
La La 3 192012 2 112
< CMllp ™2 ugllz2(llo ™ unllez + IVull 2Vl LIVl + IVull 21V 7l
1 3 1 1
L3 Lo
+ IVl IV 7ully, + 1IVull2 IV2ull L [ Valls)

IT e 2 2 2 192,14
< o7 unlly, + ClIVu L IVull2 IV ull 2 + ClIVull V7 ull)

— 40
+ ClVull 2 NV2ull, + ClIVaull 21 V2ull 2 IVl 2, (3.36)
and
atl a+l
Ji = —a’faiukpagaakpaiujpﬁ j_ 5”{:dx —a f“kai([)afakp)ai”jpi j_ 5”{#’)5
"
- —a/(a/2+ D f u'p"> Bipp™T Aipdiud’ o + 5u{zdx -« f u'p’T 8pd, 0’ p/‘i :_ 6M{,dx
<190 sl Varlallo = ez + 1V Nl IVl 2 oS
+ IV T 1Bl [V ullollo = wll 2 + 19T gollall o 1V 22t 310 a2
< %np]?'unniz + Il + CIVulla IVl [Vl 5 + IVl 92l
+ CIIVull21V2ull 92l (3.37)
provided that
M < n4 £ min{(4C)7", n3). (3.38)

Substituting the above estimates into (3.33) yields

1d 1 —w
Ed—tfquzlde+§fp] lunl*dx

2 2 2 14 2 2 14 2113
< ClIVullIVull 211V ull 2 + ClIVull, + ClIVullpV7ull ), + ClIVull 2 [[V7ull;,
2 2112 2 2 2 2
+ ClIVull 2 AIV=ull 2 IV7ullys + ClIVull 2 IV-ull 2Vl 7w + ClIVull 2V ul 2 Vull”

L2
17

2 ClIVul2 IV ull 21V ull 2 + Z Ji. (3.39)

i=12
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Multiply (3.39) by () £ max{A4,*} (1 is a positive number to be determined) and integrate the
resulting equation over [0, 7]. By virtue of Lemma 3.1 and Lemma 3.2, we arrive at the following:

s
f o2(iadt < C sup (POIVull) sup 20
0

!
3 o1(@IIVull2.dr < CAlluol2, E, (3.40)
e[0.1] (0,1 07(7) Jo

where E 2 [lugll2, +lIgl%, + [ o2(0)(IVugllzo + |0~ Pillze)?dt and we have used the fact that sup "227; <
ref0.] 71T

A, Vj=2.
Similarly,

!
f o2 (D) 13dt < CAlluglly E
0

! !
f 0'2(T)J14d7+f o2 (1) J15dt < CAllugll7, E + CAlluglly,
0 0

! t 2(2p—6)
f o2(T)J16dT < Cf T (ONIVull 21Vl 2Vl 7 IIVZMIIS” "dr < CAlluoliz E + CAlluoll7,
0 0

For 2 < g < 3, it holds that

2(3g—6) 2(6—2¢q)

t !
f (1) Ji7dt < Cf o ONIVull IV ull 2 1Vedl 11Vl dr < CAllugllz E + CAlluoll,,
0 0

For 3 < g < 6, we have

2(q-3) 6

! t
f (1) Ji7dt < Cf @IVl NVl 2NVall, " 11Vullsdr < CAlluolz, E + CAluoll,
0 0

It is easy to deduce from the definitions of o(#) and o, (¢) that

!
f YOIV Padr < sup =
0

1OV}, dr < —E (3.41)
ref01] 0'1 7) f o o Va
By combining these formulas with (3.32) and applying the following:

A2 (64CH™", luglly < &) 2 min{512C°, 1}, (3.42)

we obtain

Z f oo (T)J,dT + f o (OIIVu | dr

i=12

2 2
< (CAluoll + T)E + CAlluolly

C
S(Cﬂlluolli,ﬁﬁ)( fo'z(T)(Hp ugll 7, + IV 2NV ull 211V ull 2 + IVl 21V ully,
0

2113 2 2 2 2 2
+ IVull2MV7ully, + IVall 2V ull 2V ullze )dT + lluoll + IIglle) + CAluolly:
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!

I 1
4f a2l ugllZs + IVu Vel 2l V2ull2)d T + ) f o213 + J14 + J16)dT
0

+ Clluoll7;. + Cligll?.. (3.43)

Considering (3.39) and (3.43) and taking advantage of the condition (1.5) and Gronwall’s inequality, it
can be inferred that

T
sup o2 ()|IVul7 +f Uz(t)llplTuunllizdt < Clluoli7 + gl (3.44)
€[0T} 0
Meanwhile, by virtue of Lemma 3.2, (3.43) and (3.44), we have
T
sup 2(D(llp’ ™ w1Vl + IIV( )”Lz) +f 1OV ull;.dt
t€[0,T]

T
< Clluoll7 + Cllgll7, + Cf a1 OUIVulls + llo™ Pl o) dt
0

T

T
< Cllugllz + Cligll3, + Cf 2Ol ™ w2t + Cf o ONIVul Va2V ull 2t
0
< Clluolls + Cligll7,
Hence, we have completed the proof of Lemma 3.3.

Lemma 3.4. Suppose that (p, u, P) is the local strong solution of (2.1), and that it satisfies (3.4). Then,

6-p
f IVull=dt < Clluoll 7 (1 + lluollgs + ligllan), ¥p € (3,6), (3.45)
provided that M < n4 and ||ugl|g < €.

Proof. Taking into account Lemma 2.2, the Gagliardo-Nirenberg inequality, (3.10), (3.30) and (3.31),
one has

f IVuldr < € f IVl o, IVullde
SCf ||V2u||erl+Cf \V2ul|»dt

T 3 23
<Cf ||P Mz| ”Vutl = dH‘Cf ||VM||22||V2M||L{ dt

+ Cf llo™™" uzll IIVutll Farec IIp uzll”ZIIVuzll i

+Cf [Vl 2||V2u||

21) 3

p+6
dt+Cf ||Vu|| ||V2u|| 5 dt

6-—p

< Clluoll (||uo||H3 +lgll) = + Clluoll ;7 (lutoll s + hka

+ Clluollpl(lluollm + ||g||H1)7 + Clluol|gn
6 p

< Clluoll ;7 (1 + llutollzs + llgller),

r(p=3)

where a = 30

2<r<3,3<p<6.
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Now, we can use Lemmas 3.1-3.4 to prove Proposition 3.1.
Proof of Proposition 3.1. First, based on (2.1), and (2.1);, we find that

a-1
2

0P )+ Ou- V)T +u-VopT =0.

Multiplying this formula by %le% |‘%6,~p% and then integrating over R?, we have

d ot at
d_t”Vp 2 ||Lg < |IVul|=[|Vp 2 ||L%-

Choose some small positive constant &, satisfying

6-p

T 3
Ce,” (1 + lluolly + llgller) < In =

If ||ug|l;n < min{e;, &>}, combined with Gronwall’s inequality, (3.45) and (3.47), we have
Vo'l s <1905 Vulledt) < 2190
[68[101’]!;]|| p ||Lg <1IVpy3 ||Lg expf . IVul|~dt} < 5” Py ||L%~

Similarly, the following formula can also be obtained:

sup [[Vpllrzazx < 2lIVpollrznrx,
€[0T

which shows that

llodl, 3 < Hlullsl[Vollz2 < ClIVpoll2.
On the other hand, taking the derivative of (3.46) with respect to x; (k = 1,2, 3), we get
@0ip"T ) = =i - Vp'T = Ot V)Ohp'T = By - VOip™T —u- Va7 .

After standard calculations, we can obtain
d 2 el 2 el 2 azl
d_t”V 02 e < 2[[Vullp=lIVop 2 [le + IV ullVo 2 ]| o

It indicates that

a—1 a1l T a—1 T
sup V0% lls < (1203 lles +f IVl Vo = [l odr) eXp{Zf IVull~dr}
0 0

t€[0,T]
6-p

< (M + CM? + CMIluoll, i (1 + lluolle + ligllen)

6-p
x exp{Clluoll,;; (1 + lluolls + llglls)}
H

6-p

9 6
< (gM + CM?) exp{(Clluoll ;7 (1 + lluolls + llgllz)},

H!

where we have used the following facts:

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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-1 66jpo +(a—1)(01 3) 3,/005;/00

—1
V2005 s = 1= ||,
T2 () 4 (o
—1 8:0jpo  a=30,p00;p0. . po 30
<)% et )
% p, PO
+”(a—1)(a—3) 900 jpo N 000 ;po »
(3 L
4 po(o + ) (po +6)7"
a—1 080,00 a- 3a,po iPo (@ — D)(a = 3)0ipodip0 Py “
< |l——(—2= + Mo + 1l - — |l
2oy ! P o+ 0)F
3 a1 d9-d
<1927 llo + ClIVp, 1Psy < IV llis + ClIVp," ||3<‘f DIV ||“‘f D
<M+ CM?,
and
T T
f V2l [ Vo= [l odt < f IV T I, o IVl ot
0
2pq+3q 3p
<Cf Vs L9 2| V20l dr
6])
< CMIluoll, (1 + lluolles + ligllen), ¥ max{g,3} < p <6.
Then, if
M <no2min{(8C)", ma},  lluolly < min{ey, &, &),
6-p

where &3 satisfying Cg?”(l + |luollgs + lgllg) < In g, it can be inferred from (3.53) that

a—1 3
sup [|V20'2 ||le < =M. (3.54)
1€[0,T] 2

Meanwhile, (3.46) yields the following:
16,9 || Lo < IVul[Vp'= ||| S + [llullV2p T||| S

< IVullslIVp7 o + llls19%0 7 g
<C. (3.55)

Furthermore, it can be easily derived from (3.10) that

T T
f IVullj,dt < sup IIVullizf IVull7.dt < Clluolly: < lluoll7,:, (3.56)
0 t€[0,T] 0

provided that

lluollm < €0 £ min{C™2, g1, &, &3).
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It is now clear that if (3.6) holds, then (3.5) is valid. The proof of Proposition 3.1 is completed.
Taking all of the a priori estimates (see Proposition 3.1, Lemma 3.1 and Lemma 3.3, (3.31), (3.50),
(3.51) and (3.55)) together, the following proposition can be obtained.

Proposition 3.2. It holds that

2
U IO 30 < 309067 (3.57)
sup [l = 01l 5 e + il 3 + 10,9071 s+ 110 T ull, + IVullr + 1 OV, + 201Vt
t€[0,T]

T
+ Ol wl +||V2u||iz+||VPIIiz)]+IIV3u||L2+f [Vul, + o)l ™ wllZ, + 11Vl
0

T
+IV Pl + f (20l % uall2s + OV 6 + 0 PAEIdE < C, (3.58)
0
provided that
a-1
Voo™ I3, <705 Nluollen < &o.

Proof. All estimates have been obtained except for |[V3ul|;2. We now estimate ||V3ul|;2. According to
Lemma 2.2, one has

IV2ullgn + 11V (0" + 6) " Pl
< Cllo™(ou; + pu - Vu)llz2 + Cllo™*Vi(pu; + pu - Vu)llz + Cli(pu, + pu - Vuyp™>*Vp®|| 2

P Ia ) a1
+ Cl[(IVul + lp" " 6|)P 2 ||L%||V P2 |l

< Cllo = wllz> + CllullolVedlzs + Cllo™(Vpllwd + pIVis] + IVpllull Vel + plVael® + plul V2 ul)l 2
+ Cll(u; + - Viyp™Vp?l| 2 + CI(IVul + (0" + 5)—1p|)p%"||ﬁ V207 s
1o 3 1 a-1 a1
< Cllo > tillz + CIVUIIV2ullZ, + CIVE ™ lllludizs + ClIVudlzz + IV HlgsllullzslIValls
1 _
+ ClIVuliz, + Cllullz=IIV2ull2 + Z(IVull + 10" + 6)7' Pllan) + C
1 _
< ZUIV%ully +1V((0" +6)™ P)llin) + C,
owing to, for 2 < g < 3,
_ 1-a azl
11Vul + 1" + &) PNl 24 1V oo
< CUIVull 2 + ||<p“ +0)'Pl )V s
2g-3 2q -3
< C(IIVull¢ ||V2u|| +11(e" + &Pl V(" +6) 1P)|| V20

1
< Z(”VZMHH' + V(" + 8" P)ll) + C,
and for 3 < ¢ < 6,
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Vel + 10 +8) PDp 1| 24 IV Il
< C(IVulle + 160" +8) Pleolllo 1l IV Il
<C.
Thus, we have
IV2ull +11V((0" + 8)' P)llgn < C.
With all of the a priori estimates in this section in hand, we are now in a position to prove
Theorem 3.1.
Proof of Theorem 3.1. Lemma 2.1 illustrates the fact that there exists a T, > 0 such that the system (2.1)
has a unique local strong solution (p, u, P) on R3 % (0, Ty]. We now extend this local solution to a global
one. It follows from (3.1) that there exists a T'; € (0, Ty] such that (3.4) holds for T = T. Denote
T = sup{T|(p, u, P) is a strong solution on R? x (0, T] and (3.4) holds}. (3.59)

Then, T* > T, > 0. From Proposition 3.1, it can be seen that 7* = T,. Forany 0 < T < T; with T
finite, we can deduce from (3.57) and (3.58) that

p—08€C(0,TI;L: N H' N D), VpT e C([0,T];L> N D). (3.60)
By virtue of Proposition 3.2, it can be inferred that
Vu e C(0,T]; HY, (3.61)
where we have used the following standard embedding:
L=([0,T]; H* n W) n H'([0, T1; L*) — C([0, T1; H') N C(R? x [0, T)).

We assert that 7* = co. Otherwise, we assume that 7" < co. According to Proposition 3.1, (3.5) holds
at T = T~. It follows from (3.60) and (3.61) that

(0", u)(x) = (o, u)(x, T") = [1_i>r%(p, u)(x, )
satisfies
0<p -6eLinH' nD™, Vp™T eLinD", u €D}, nD.
Then, with (p*, u*) as the initial data, we can use Proposition 3.1 to extend the local strong solution
of (2.1) beyond T, which contradicts the definition of 7. So T* = oco. The proof of Theorem 3.1 is

finished.
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4. Proof of Theorem 1.1

With the global existence of the approximate solutions (see Theorem 3.1) and a priori estimates
independent of ¢, we can take the limit on the approximation system and obtain the solution of the
original problem described by (1.1) with (1.2).

Proof. The definition of py s can indicate that when 6 — 0, we have the following for any R > 1:

Pos = po in L3(Bg) N H'(Bg) N D" (By).

Taking advantage of Proposition 3.2, we know that when 6 — 0, the approximated solution sequence
(0°, u’, P°) converges to (p,u, P) in the weak sense, and if necessary, we select its subsequence. As
0 — 0, the standard compactness theory can provide the following:

00 — & = p weak — xin L=(0, 00; L3 (R?) N D'*(R3) N H'(R?)),

p° — p, weak — % in L(0, o0; L2 (RY)),

p° — pin C([0, c0); L(Bg)), forany2 < s < 6,

u® — u weak — xin L*([0, 00); LS(R?)),

Vu® — Vu in C([0, 00); L2(R?)), 4.1)
p°u® — pu in C([0, 0); L*(Bg)),

V2u® — V*u weak — xin L*([0, 00); L>(R?)),

VP’ — VP weak — *in L=([0, co); L2(R?)),

Vu® — Vu, weak — xin L=([0, 00); L*(R?)).

Since (0°, u°, P?) is the strong solution to the system (2.1), as § — 0, we have that Yo € C®(R? x
[0,T]),

divu =0,

T
f f[ptgo + pu - Voldxdt = 0,
0

T
f f[pmp, +pu®u-Vo —p*Vu- Vo + VPpldxdt = 0.
0
Thanks to the regularity of p and u, using Holder’s inequality and the Sobolev inequality, we have

[ div(pwll 3 = llu- Vpll 3 < lullsl[Voll2 < C,

3
2

I(ewllz2 = llowu + puyl| 2
= [lu - Vpull2 + lloulr2
< CUIVll2llullzs + olls el o
< ClIVpllIVull21Vullz2 + llolilI Va2
<C,
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|| div(ou ® u)||;2 = || div(pw)u + pu - Vul|;2
< |lu- Voullz2 + llou - Vul|;-
< ClIVpllslleellollullzs + llolls lluell s Vaallzs

2k-3)

k 1 3
= =) 2 13 5 2
< ClIVellLs Vel IV=ull LIVl + IVl IV all 21Vl 2

L2
<C,
and
1 div(e™Val,: = llp® Au+ Vo - Vil

< ClIEIV2ull2 + 92 IVl

< ClIpIEIV2ull + +19p 1212l

< ClI IVull + 19119 T 9l

<C.
Hence,

T
f f [o: + div(ou)lpdxdt = 0,
0

T
f f[(pu), + div(pu ® u) — div(p*Vu) + VP]edxdt = 0.
0

Due to the arbitrariness of ¢, it can be inferred that for almost everywhere (x, t) € R3 x (0, o), we have
the following:

p; + div(pu) = 0,
(ou); + div(pu ® u) — div(p*Vu) + VP = 0,
divu = 0.

Therefore, (o, u, P) is a strong solution to the Navier-Stokes system given by (1.1) with (1.2) on R? x
(0, 00) satisfying (1.7). Hence, Theorem 1.1 is proved.

5. Conclusions

We studied the nonhomogeneous incompressible Navier-Stokes equations with variable viscous
coeflicient and established a global strong solution. This result can help researchers better understand
the behavior of fluids obtained by mixing two incompressible and immiscible fluids with different
densities, and also contribute to the study of fluid motion containing molten materials. It has certain
reference value in some applications of fluid mechanics.
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