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1. Introduction

Contrary to popular belief, fractional calculus is a more flexible and extraordinarily large field of
differentiation compared to classical calculus. In the realm of fractional calculus, numerous definitions
of integrals and derivatives exist. The most widely recognized fractional definitions are Caputo and
R.L. [1], which have prompted extensive research aimed at extending differential equations of integer
orders to fractional domains. Recently, Hilfer [2] introduced a general formula that connects the
Caputo and R.L. derivatives. This formulation has garnered significant attention from researchers
in the field [3–5]. In general, fractional calculus can be employed to model each issue of instability
phenomena in real life; we refer the researchers to some works that discuss various applications of
fractional calculus [6–11].

The Leivn-Nohel equations offer several advantages in mathematical analyses. They provide
a powerful framework for studying the analysis of nonlinear phenomena, exhibit well-posedness
properties, and enable the study of stability and convergence. Volterra [12] connected a biological
application by the convolution Levin-Nohel integrodifferential equation of the following form:

y′(u) = −

∫ u

u−δi(u)
k(u, v) y(v)dv. (1.1)

Afterward, in 1954 [13], Brownell and Ergen employed Eq (1.1) to interpret the temperature of the
reactor generated due to the power circulating-fuel nuclear. Furthermore, the Levin-Nohel systems
have important applications in physics and engineering; for instance, these systems can aid in modeling
of one-dimensional viscoelasticity such that k represents a relaxation function, and y acts as the strain.
The Levin-Nohel systems have received attention from several researchers. In particular, the stability
issue for the Levin-Nohel systems with a constant delay was discussed in [14,15]. In 2017, Dung [16]
established a transfer theorem for the Levin-Nohel systems and the stability conditions by connecting
them with the stability conditions of the corresponding functional differential systems. Khelil et al. [17]
obtained various types of stability for the neutral Levin-Nohel integrodifferential equation by utilizing
Krasnoselskii-Burton’s fixed point theorem. In 2023 [18], the existence, uniqueness, and some types
of UH stability were studied for the neutral delay Levin-Nohel integrodifferential equation via Caputo
fractional derivative of the following form:

CDα
0+ y(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv

+ CDα
0+ f(u, y(u − δ1(u), . . . , y(u − δn(u))), u ∈ [0,T ],

y(u) = ϕ(u), u ∈ [−d, 0], d > 0,

where CDα
0+ is a fractional derivative in the sense of Caputo with a fractional order α ∈ (0, 1].

On the other hand, many physical phenomena have unexpected instantaneous changes in their
situation; additionally, some phenomena have time delays in the occurring processes [19–22].
Impulsive delay differential equations offer several distinct significance in modeling dynamic systems.
They collect delay, sudden, and instantaneous changes, and allow for the exact representation of events,
such as impulsive perturbations. Their analysis aids in the understanding of complex phenomena,
including control systems, population dynamics, and neural networks with delays. Numerous authors
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considered the impulsive delay differential systems with a variety of fractional derivatives [23, 24].
In 2012, Feckan et al. [25] used the counterexample technique to show that an essence error appeared in
the solution formula for impulsive fractional differential problems in previous studies such as [26–28].
Then they presented a correct solution formula for a impulsive Caputo fractional Cauchy problem.
Wang et al. [29] discussed some concepts related to initial and impulsive fractional problems. Anguraj
et al. [30] investigated sufficient criterion of the existence and uniqueness theorems for a impulsive
fractional integro-differential equations. Kharade and Kucche in 2019 [31] established uniqueness of
an implicit impulsive delay ψ-Hilfer fractional problem by utilizing a Banach fixed point, an abstract
Gronwall inequality, and Picard operator properties. Then, in 2021 [32] the qualitative theorems for a
delay impulsive differential system with time delay were studied by utilizing the Gronwall inequality
in the ψ-R.L. fractional integral sense and fixed point theorem. Very recently, Chefnaj et al. [33]
established qualitative results for an impulsive hybrid ψ-Caputo fractional differential equation by
classical fixed point theorems.

Furthermore, the various types of stabilities have gained attention by many researchers. Specifically,
the Ulam-Hyers-Mittag-Leffler (UHML) stability pertains to the behavior of solutions to these
equations and is concerned with the existence, uniqueness, and stability of such solutions. Authors
in [34] studied the UHML stability of solution for delay ψ-Hilfer fractional differential system. Authors
in [35] discussed the UHML stability for a tripled Caputo weighted fractional system via Chebyshev
and Bielecki norms. Authors in [36] investigated the UHML stability by a Gronwall’s inequality and a
Picard operator for a non-local ψ-Hilfer Cauchy equation. Thabet et al. [37,38] established some types
of the UH stability for several fractional systems.

Motivated by the advantages of the Levin-Nohel equations, and inspired by the aforementioned
works [16–18], in the present article, we investigate the existence, uniqueness, and the UHML stability
for the following multi-term Hilfer fractional impulsive delay neutral Levin-Nohel integrodifferential
(NLNID) system:

HD
α,β
0+ y(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv

+ HD
α,β
0+ f(u, y(u − δ1(u), . . . , y(u − δn(u))), u ∈ J = (0,T ] − {u1, . . . , un}, (1.2)

∆I
1−γ
0+ y(ui) = gi(y(u−i )), i = 1, n, 0 = u0 < u1 < · · · < un < un+1 = T , (1.3)

I
1−γ
0+ y(0) = y0 ∈ R, (1.4)

y(u) = ϕ(u), u ∈ [−d, 0], d > 0, (1.5)

where HDα,β
0+ is fractional derivative in the Hilfer sense of the arbitrary order α, such that (0 < α ≤

1) and type β, (0 ≤ β ≤ 1), I1−γ
0+ is the R.L. fractional integral of order (1 − γ), α ≤ γ = α +

β − αβ, ∆I
1−γ
0+ y(ui) = I

1−γ
0+ y(u+

i ) − I1−γ
0+ y(u−i ), I1−γ

0+ y(u+
i ) = lim

ε→0+
I

1−γ
0+ y(ui + ε), and I1−γ

0+ y(u−i ) =

lim
ε→0−
I

1−γ
0+ y(ui + ε). Moreover, the functions f : J × Rn → R, gi : R → R, ki, hi : J × J → R, δi, ηi :

J → R, and ϕ : [−d, 0] → R are continuous on their domains, δi, ηi ≥ 0; moreover, the space of
continuous functions from [−d, 0] to R is denoted by C([−d, 0],R), and gifted with the norm ‖ϕ‖C =

sup
u∈[−d,0]

|ϕ(u)|, where ϕ ∈ C([−d, 0],R). Furthermore, similar to Eq (1.1), and for modeling of the
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one-dimensional viscoelasticity by the system (1.2)–(1.5), the functions ki, hi are represented by the
multi-term of relaxation functions, and y acts as the strain.

In what follows, we present the contributions and novelty of this work:
(i) The Levin-Nohel system (1.2)–(1.5) is discussed under a Hilfer fractional derivative, which can be
reduced to a Caputo version at β = 1, R.L form at β = 0, which becomes a first order derivative at
α = 1;
(ii) The Levin-Nohel system (1.2)–(1.5) is studied with initial impulsive conditions and time delays;
(iii) We establish the existence and uniqueness result for the new multi-term Hilfer fractional impulsive
delay NLNID system (1.2)–(1.5), along the UHML stability, by applying the Banach contraction
principle, and the generalized Gronwall inequality;
(iv) Additionally, this work discusses the Caputo and R.L fractional versions of the main proposed
system (1.2)–(1.5).

The rest of our work is arranged as follows. Section 2 recalls essential background materials related
to fractional calculus. Section 3 is divided into five parts; Part 3.1 derives the corresponding integral
equation for the main system (1.2)–(1.5); Part 3.2 proves the existence and uniqueness theorem;
Part 3.3 discusses the UHML stability; Part 3.4 deduces the results that are related to the R.L fractional
version; and Part 3.5 presents the results in the sense of the Caputo fractional version. Section 4 is
devoted to testing our results using illustrative applications.

2. Background materials

This part recalls several basic materials for our work analysis throughout this paper. Let us introduce
the weighted space of continuous functions as follows:

C1−γ(J,R) = {y : (0,T ]→ R| u1−γy(u) ∈ C(J,R)}, and

PC1−γ(J,R) =
{
y : (0,T ]→ R| y ∈ C1−γ(ui, ui+1],R), i = 1, n, I1−γ

0+ y(u+
i ), I1−γ

0+ y(u−i ) exist,

and I1−γ
0+ y(ui) = I

1−γ
0+ y(u−i ), for i = 1, n

}
,

denotes the weighted Banach space of pieces-wise continuous functions endowed with the supremum
norm ‖y‖PC1−γ = supu∈J |u

1−γy(u)|. Moreover, we define the space

YC,PC1−γ =
{
y : [−d,T ]→ R| y ∈ C ∩ PC1−γ(J,R)

}
,

equipped with the norm ‖y‖YC,PC1−γ
= max{‖y‖C, ‖y‖PC1−γ}. Its easy to show that the space with the norm

(YC,PC1−γ , ‖y‖YC,PC1−γ
) represents a Banach space. Furthermore, in similar way, we can define the spaces

YC,PC1−α and YC,PC.

Definition 2.1. [1] The R.L. fractional integral of order α > 0 for an integrable function y is given
as follows:

(Iα0+y)(u) =
1

Γ(α)

∫ u

0
(u − v)α−1y(v)dv, u ≥ 0.

Moreover,
(
Iα0+I

β
0+y

)
(u) =

(
I
α+β
0+ y

)
(u), α, β > 0, and Iα0+u

ζ−1 =
Γ(ζ)

Γ(ζ + α)
uζ+α−1, ζ > 0.
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Definition 2.2. [1] The R.L. fractional derivative of order α ∈ (n − 1, n] for an integrable function y
is given as follows:

(RDα
0+y)(u) =

1
Γ(n − α)

(
d

du

)n ∫ u

0
(u − v)n−α−1y(v)dv, u ≥ 0,

where n = [α] + 1, [α] is an integer part of α. Furthermore, RDα
0+u

α−1 = 0, 0 < α < 1.

Definition 2.3. [2] The Hilfer derivative of fractional order 0 < α ≤ 1, and type 0 ≤ β ≤ 1 for a
function y is given as follows:

(HDα,β
0+ y)(u) = I

β(1−α)
0+ DI

(1−β)(1−α)
0+ y(u), D :=

d
du
.

Remark 2.1. We note that the Hilfer fractional derivative reduces to the R.L. derivative at (β = 0),
the Caputo derivative at (β = 1), and the first order derivative when (α = 1).

Lemma 2.1. [39] Consider 0 < α ≤ 1, 0 ≤ γ < 1, and y,I1−α
0+ y ∈ C1−γ(I,R); then,

(i) Iα0+
HD

α,β
0+ y(u) = I

γ
0+
RD

γ
0+y(u) = y(u) −

(I1−γ
0+ y)(0)
Γ(γ)

uγ−1, ∀ u ∈ I.

(ii) HDα,β
0+ I

α
0+ y(u) = y(u).

(iii) HDα,β
0+ u

ζ−1 = 0, 0 < ζ < 1.

Lemma 2.2. [39] If 0 < α ≤ 1, f ∈ C1−γ(I,R), and 0 ≤ γ < 1, then

(Iα0+ f )(0) = lim
u→0+
Iα0+ f (u) = 0, 0 ≤ γ < α.

Next, we introduce the generalized Gronwall’s inequality as follows.

Lemma 2.3. (Corollary (3), [32]) Consider a function H ∈ PC1−γ(I,R+), which verifies the following
relation:

H(u) ≤ K(u) + σH(u) + q(u)
∫ u

0
(u − v)α−1H(v)dv +

∑
0<ui<u

λiH(u−i ), u ≥ 0,

such that H(u),K(u), σ ∈ PC1−γ(I,R+) are positive, q is a continuous function, and λi > 0, (i = 1, n);
then, one has

H(u) ≤ K(u)
[
σMα

(
q(u)Γ(α)uα

) i−1∏
k=1

{
1 + λk Mα

(
q(u)Γ(α)uαk

)}
+

i∏
k=1

{
1 + λk Mα

(
q(u)Γ(α)uαk

)} ]
Mα

(
q(u)Γ(α)uα

)
, u ∈ (ui, ui+1],

whereMα is the Mittag-Leffler law and defined byMα(x) =
∞∑

k=0

xk

Γ(kα + 1)
, x ∈ C,Re(α) > 0.
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3. Main results

3.1. Integral equation of solution

In this part, we introduce an equivalent fractional integral equation, which corresponds to the multi-
term Hilfer fractional impulsive delay NLNID system (1.2)–(1.5). Regarding this, we present the
following lemma.

Lemma 3.1. Consider 0 < α < 1, 0 ≤ β ≤ 1, α ≤ γ = α + β − αβ, and p, q : J → R are continuous
functions. Then, the function y ∈ PC1−γ(J,R) for any T ∈ J, is defined by the following:

y(u) =
uγ−1

Γ(γ)

[
I

1−γ
0+ y(T) − I

1−γ
0+ p(u)

∣∣∣∣
T
− I

1−γ+α
0+ q(u)

∣∣∣∣
T

]
+ Iα0+ q(u) + p(u), (3.1)

which is a solution of the fractional equation HDα,β
0+ [y(u) − p(u)] = q(u), u ∈ J.

Proof. The result can be proven by the same manner as the Lemma 3.1 [40]. �

Lemma 3.2. The multi-term Hilfer fractional impulsive delay NLNID system (1.2)–(1.5) admits a
solution y ∈ YC,PC1−γ , if y satisfies the fractional integral equation of the following form:

y(u) =


uγ−1

Γ(γ)

[
y0 +

∑
0<ui<u

gi(y(u−i ))
]

+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J,

ϕ(u), u ∈ [−d, 0],

(3.2)

where 
Fy(u − δi(u)) = f(u, y(u − δ1(u), . . . , y(u − δn(u))), i = 1, n,

Gy(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv.
(3.3)

Proof. Let y ∈ YC,PC1−γ verify the multi-term Hilfer fractional impulsive delay NLNID system (1.2)–
(1.5). For u ∈ [0, u1], we have the following:

HD
α,β
0+ y(u) =

Gy(u) + HD
α,β
0+ Fy(u − δi(u)), u ∈ [0, u1],

I
1−γ
0+ y(0) = y0 ∈ R,

(3.4)

where Gy(u) and Fy(u − δi(u)) are given in (3.3). Now, by applying Iα0+ on both sides of Eq (3.4) and
Lemma 2.1, one obtains the following:

y(u) =
uγ−1

Γ(γ)
y0 + Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ [0, u1]. (3.5)

Next, if u ∈ (u1, u2], one has the following:

HD
α,β
0+ y(u) =

Gy(u) + HD
α,β
0+ Fy(u − δi(u)), u ∈ (u1, u2],

I
1−γ
0+ y(u+

1 ) − I1−γ
0+ y(u−1 ) = g1(y(u−1 )).

(3.6)
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Thus, in view of Lemma 3.1, for u ∈ (u1, u2], we find the following:

y(u) =
uγ−1

Γ(γ)

[
I

1−γ
0+ y(u+

1 ) − I1−γ
0+ Fy(u − δi(u))

∣∣∣∣
u1
− I

1−γ+α
0+ Gy(u)

∣∣∣∣
u1

]
+ Iα0+ Gy(u) + Fy(u − δi(u))

=
uγ−1

Γ(γ)

[
I

1−γ
0+ y(u−1 ) + g1(y(u−1 )) − I1−γ

0+ Fy(u − δi(u))
∣∣∣∣
u1
− I

1−γ+α
0+ Gy(u)

∣∣∣∣
u1

]
+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ (u1, u2]. (3.7)

Based on Eq (3.5), we obtain

I
1−γ
0+ y(u−1 ) − I1−γ

0+ Fy(u − δi(u))
∣∣∣∣
u1
− I

1−γ+α
0+ Gy(u)

∣∣∣∣
u1

= y0, (3.8)

and by substituting it into Eq (3.7), we have

y(u) =
uγ−1

Γ(γ)
[
y0 + g1(y(u−1 ))

]
+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ (u1, u2]. (3.9)

Again, if u ∈ (u2, u3], one has

HD
α,β
0+ y(u) =

Gy(u) + HD
α,β
0+ Fy(u − δi(u)), u ∈ (u2, u3],

I
1−γ
0+ y(u+

2 ) − I1−γ
0+ y(u−2 ) = g2(y(u−2 )).

(3.10)

Therefore, by Lemma 3.1, for u ∈ (u2, u3], we find

y(u) =
uγ−1

Γ(γ)

[
I

1−γ
0+ y(u−2 ) + g2(y(u−2 )) − I1−γ

0+ Fy(u − δi(u))
∣∣∣∣
u2
− I

1−γ+α
0+ Gy(u)

∣∣∣∣
u2

]
+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ (u2, u3]. (3.11)

From Eq (3.9), we have

I
1−γ
0+ y(u−2 ) − I1−γ

0+ Fy(u − δi(u))
∣∣∣∣
u2
− I

1−γ+α
0+ Gy(u)

∣∣∣∣
u2

= y0 + g1(y(u−1 )). (3.12)

Thus, Eq (3.11) becomes

y(u) =
uγ−1

Γ(γ)
[
y0 + g1(y(u−1 )) + g2(y(u−2 ))

]
+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ (u2, u3]. (3.13)

Hence, by continuing in the same way, we get

y(u) =
uγ−1

Γ(γ)

[
y0 +

n∑
i=1

gi(y(u−i ))
]

+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J, (3.14)

which is Eq (3.2).
On the another hand, suppose that y ∈ YC,PC1−γ verifies the system (3.2) for u ∈ J; then, we have

y(u) =
uγ−1

Γ(γ)

[
y0 +

∑
0<ui<u

gi(y(u−i ))
]

+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J. (3.15)
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By taking HDα,β
0+ on both sides of (3.15), and based on Lemma 2.1 (iii), one obtains

HD
α,β
0+ y(u) = Gy(u) + HD

α,β
0+ Fy(u − δi(u)), u ∈ J, (3.16)

which is Eq (1.2). Moreover, according to Eq (3.5), we find

I
1−γ
0+ y(u) = y0 + I

1−γ+α
0+ Gy(u) + I

1−γ
0+ Fy(u − δi(u)), u ∈ [0, u1]. (3.17)

According to Lemma 2.2, this yields that I1−γ
0+ y(0) = y0, which is Eq (1.4). Additionally, in view of

Eq (3.14), for u ∈ (ui, ui+1], one has

I
1−γ
0+ y(u) = y0 +

n∑
i=1

gi(y(u−i )) + I
1−γ+α
0+ Gy(u) + I

1−γ
0+ Fy(u − δi(u)). (3.18)

Again, for u ∈ (ui−1, ui], one obtains

I
1−γ
0+ y(u) = y0 +

n−1∑
i=1

gi(y(u−i )) + I
1−γ+α
0+ Gy(u) + I

1−γ
0+ Fy(u − δi(u)). (3.19)

Then, due to Eqs (3.18) and (3.19), we get

I
1−γ
0+ y(u+

i ) − I1−γ
0+ y(u−i ) =

n∑
i=1

gi(y(u−i )) −
n−1∑
i=1

gi(y(u−i )) = gi(y(u−i )),

which is Eq (1.3). Hence, the proof is finished. �

3.2. Existence and uniqueness

In this subsection, we establish the existence and uniqueness result for the multi-term Hilfer
fractional impulsive delay NLNID system (1.2)–(1.5). Therefore, we need to introduce the following
assumptions:

(H1) For y, x ∈ YC,PC1−γ , and u ∈ J, there are constants `i > 0, (i = 1, n), such that

|Fy(u − δi(u) − Fx(u − δi(u)| ≤
n∑

i=1

`i u
1−γ

∣∣∣∣y(u − δi(u) − x(u − δi(u)
∣∣∣∣,

where Fy(u − δi(u)) is defined in (3.3).
(H2) For y, x ∈∈ YC,PC1−γ and ρi > 0, (i = 1, n), a function gi : R→ R verifies the following identity:

|gi(y(u−i )) − gi(x(u−i ))| ≤ ρi (u−i )1−γ|y(u−i ) − x(u−i )|.

For simplicity, we define the following notations:

ξ1(u) =

n∑
i=1

∫ u

u−δi(u)
|ki(u, v)|dv, ξ∗1 = sup

0≤u≤T
{ξ1(u)},
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ξ2(u) =

n∑
i=1

∫ u+ηi(u)

u

|hi(u, v)|dv, ξ∗2 = sup
0≤u≤T

{ξ2(u)}.

Now, in view of Lemma 3.2, we define the mapping Ξ : YC,PC1−γ → YC,PC1−γ , as follows:

(Ξ y)(u) =


uγ−1

Γ(γ)

[
y0 +

∑
0<ui<u

gi(y(u−i ))
]

+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J,

ϕ(u), u ∈ [−d, 0],

(3.20)

where Gy(u) and Fy(u − δi(u)) are given in (3.3).

Theorem 3.1. Let (H1) and (H2) hold, and if

Φ1 :=
1

Γ(γ)

n∑
i=1

ρi +
(ξ∗1 + ξ∗2)T α

Γ(α + 1)
+ T 1−γ

n∑
i=1

`i < 1, (3.21)

then the multi-term Hilfer fractional impulsive delay NLNID system (1.2)–(1.5) admits one solution in
YC,PC1−γ .

Proof. We prove that a fixed point of the mapping Ξ given in (3.20) is a solution of the proposed
system (1.2)–(1.5). To this end, let y, x ∈ YC,PC1−γ and for any u ∈ [−d, 0], one has

|(Ξ y)(u) − (Ξ x)(u)| = 0 =⇒ ‖Ξ y − Ξ x‖C = 0. (3.22)

Now, for any u ∈ J, by using (H1) and (H2), we have

|u1−γ ((Ξ y)(u) − (Ξ x)(u)) | ≤
1

Γ(γ)

∑
0<ui<u

|gi(y(u−i )) − gi(x(u−i ))|

+ u1−γ Iα0+ |Gy(u) − Gx(u)| + u1−γ |Fy(u − δi(u)) − Fx(u − δi(u))|

≤
1

Γ(γ)

∑
0<ui<u

ρi (u−i )1−γ |y(u−i ) − x(u−i )|

+ u1−γ Iα0+

∣∣∣∣∣∣ n∑
i=1

∫ u

u−δi(u)
ki(u, v)y(v)dv −

n∑
i=1

∫ u

u−δi(u)
ki(u, v)x(v)dv

∣∣∣∣∣∣
+ u1−γ Iα0+

∣∣∣∣∣∣ n∑
i=1

∫ u+ηi(u)

u

hi(u, v)y(v)dv −
n∑

i=1

∫ u+ηi(u)

u

hi(u, v)x(v)dv

∣∣∣∣∣∣
+ u1−γ

n∑
i=1

`i u
1−γ |y(u − δi(u)) − x(u − δi(u))|

≤
1

Γ(γ)

∑
0<ui<u

ρi (u−i )1−γ |y(u−i ) − x(u−i )|

+ u1−γ Iα0+

∣∣∣∣∣∣ n∑
i=1

∫ u

u−δi(u)
ki(u, v) (y(v) − x(v)) dv

∣∣∣∣∣∣
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+ u1−γ Iα0+

∣∣∣∣∣∣ n∑
i=1

∫ u+ηi(u)

u

hi(u, v) (y(v) − x(v)) dv

∣∣∣∣∣∣
+ u1−γ

n∑
i=1

`i u
1−γ |y(u − δi(u)) − x(u − δi(u))|

≤
1

Γ(γ)

n∑
i=1

ρi‖y − x‖PC1−γ +
ξ∗1 T

α

Γ(α + 1)
‖y − x‖PC1−γ

+
ξ∗2 T

α

Γ(α + 1)
‖y − x‖PC1−γ + T 1−γ

n∑
i=1

`i ‖y − x‖PC1−γ

≤

 1
Γ(γ)

n∑
i=1

ρi +
ξ∗1 T

α

Γ(α + 1)
+

ξ∗2 T
α

Γ(α + 1)
+ T 1−γ

n∑
i=1

`i

 ‖y − x‖PC1−γ .

Thus, by the inequality (3.21), we get

‖Ξ y − Ξ x‖PC1−γ ≤ Φ1‖y − x‖PC1−γ . (3.23)

Hence, by the identities (3.22) and (3.23), one finds that

‖Ξ y − Ξ x‖YC,PC1−γ
= max{‖y‖C, ‖y‖PC1−γ}

≤ max{0,Φ1‖y − x‖PC1−γ}

≤ Φ1‖y − x‖YC,PC1−γ
.

Therefore, due to Φ1 < 1, the mapping Ξ is a contraction, and because of the Banach theorem, Ξ

admits one fixed point in YC,PC1−γ , which is a solution of the multi-term Hilfer fractional impulsive
delay NLNID system (1.2)–(1.5) in YC,PC1−γ . �

3.3. UHML stability

This subsection is devoted to discussing the UHML stability for the multi-term Hilfer fractional
impulsive NLNID system (1.2)–(1.3). For this goal, we need to present some basic material which
play a key role in our analysis.

Definition 3.1. [41, 42] We say the multi-term Hilfer fractional impulsive NLNID system (1.2)–(1.3)
has the UHML stability with respect to Mα(uα), if for each ε > 0, ∃CMα

> 0, such that for each
x ∈ YC,PC1−γ , the following inequalities are satisfied:

∣∣∣HDα,β
0+ [x(u) − Fx(u − δi(u))] − Gx(u)

∣∣∣ ≤ εMα(uα), u ∈ J,∣∣∣∆I1−γ
0+ x(ui) − gi(x(u−i ))

∣∣∣ ≤ ε, i = 1, n,
(3.24)

where 
Fx(u − δi(u)) = f(u, x(u − δ1(u), . . . , x(u − δn(u))), i = 1, n,

Gx(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) x(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) x(v)dv,
(3.25)
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there is exactly one solution y ∈ YC,PC1−γ for the system (1.2)–(1.3), verifying
∣∣∣x(u) − y(u)∣∣∣ = 0, u ∈ [−d, 0],

u1−γ
∣∣∣x(u) − y(u)∣∣∣ ≤ ε CMα

Mα(ζuα), u ∈ J, ζ > 0.
(3.26)

Remark 3.1. We would like to declare the following points:

(1) The UH stability and generalized UH are specific cases of the UHML stability; for their definitions
see [43].

(2) The inequalities in (3.24) have a solution x ∈ YC,PC1−γ if there is a function ω ∈ YC,PC1−γ , and the
sequence {ωi}, (i = 1, n, ) depends on x, which satisfies the following properties:
(i) |ω(u)| ≤ ε Mα(uα), u ∈ J,

∑n
i=1 |ωi| ≤ n ε;

(ii) HDα,β
0+ [x(u) − Fx(u − δi(u))] = Gx(u) + ω(u), u ∈ J;

(iii) ∆I
1−γ
0+ x(ui) = gi(x(u−i )) + ωi, i = 1, n.

Now, we are ready to discuss the UHML stability for the system (1.2)–(1.3).

Theorem 3.2. Let (H1) and (H2) hold; then, the multi-term Hilfer fractional impulsive NLNID
system (1.2)–(1.3) has UHML stability.

Proof. Consider x ∈ YC,PC1−γ to be a solution of the inequality (3.24); then, based on Lemma 3.2 and
Remark 3.1, we get

x(u) =
uγ−1

Γ(γ)

[
I

1−γ
0+ x(0) +

∑
0<ui<u

gi(x(u−i )) + ωi

]
+ Iα0+ Gx(u) + Iα0+ ω(u) + Fx(u − δi(u)), u ∈ J, (3.27)

where Fx(u − δi(u)) and Gx(u) are given (3.25). Furthermore, let y ∈ YC,PC1−γ be a solution of the
following system: 

HD
α,β
0+ y(u) = Gy(u) + HD

α,β
0+ Fy(u − δi(u)), u ∈ J,

∆I
1−γ
0+ y(ui) = gi(y(u−i )), i = 1, n,

I
1−γ
0+ y(0) = I

1−γ
0+ x(0),

y(u) = x(u), u ∈ [−d, 0], d > 0.

(3.28)

Therefore, according to Eq (3.27) and Remark 3.1, for u ∈ J, we obtain∣∣∣∣∣∣∣x(u) − uγ−1

Γ(γ)

[
I

1−γ
0+ x(0) +

∑
0<ui<u

gi(x(u−i ))
]
− Iα0+ Gx(u) − Fx(u − δi(u))

∣∣∣∣∣∣∣
≤
uγ−1

Γ(γ)

n∑
i=1

|ωi| + I
α
0+ |ω(u)|

≤
uγ−1

Γ(γ)
n ε +

ε

Γ(α)

∫ u

0
(u − v)α−1Mα(vα)dv
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≤
uγ−1

Γ(γ)
n ε +

ε

Γ(α)

∞∑
k=0

1
Γ(kα + 1)

∫ u

0
(u − v)α−1vkαdv, by taking t =

v

u
, implies udt = dv,

≤
uγ−1

Γ(γ)
n ε +

ε

Γ(α)

∞∑
k=0

ukα+α

Γ(kα + 1)

∫ 1

0
(1 − t)α−1 tkαdt

≤
uγ−1

Γ(γ)
n ε +

ε

Γ(α)

∞∑
k=0

ukα+α

Γ(kα + 1)
Γ(α)Γ(kα + 1)
Γ(α + kα + 1)

≤
uγ−1

Γ(γ)
n ε + ε

∞∑
k=0

u(k+1)α

Γ((1 + k)α + 1)

≤
uγ−1

Γ(γ)
n ε + ε

∞∑
r=0

urα

Γ(rα + 1)

≤
uγ−1

Γ(γ)
n ε + ε Mα(uα). (3.29)

Next, for u ∈ [−d, 0], we have
|x(u) − y(u)| = 0. (3.30)

Moreover, from inequality (3.29), and by utilizing (H1) and (H2), for u ∈ J, we find

|x(u) − y(u)| ≤

∣∣∣∣∣∣∣x(u) − uγ−1

Γ(γ)

[
I

1−γ
0+ x(0) +

∑
0<ui<u

gi(x(u−i ))
]
− Iα0+ Gx(u) − Fx(u − δi(u))

∣∣∣∣∣∣∣
+
uγ−1

Γ(γ)

∑
0<ui<u

∣∣∣gi(x(u−i )) − gi(y(u−i ))
∣∣∣ + Iα0+

∣∣∣Gx(u) − Gy(u)∣∣∣
+

∣∣∣Fx(u − δi(u)) − Fy(u − δi(u))
∣∣∣

≤
uγ−1

Γ(γ)
n ε + ε Mα(uα) +

uγ−1

Γ(γ)

∑
0<ui<u

ρi (u−i )1−γ|x(u−i ) − y(u−i )|

+
(ξ∗1 + ξ∗2)

Γ(α)

∫ u

0
(u − v)α−1 |x(v) − y(v)| dv

+

n∑
i=1

`i u
1−γ|x(u − δi(u)) − y(u − δi(u))|,

which implies that

|u1−γ (x(u) − y(u)) | ≤
n ε

Γ(γ)
+ ε T 1−γ Mα(T α) +

1
Γ(γ)

∑
0<ui<u

ρi ‖x − y‖PC1−γ

+ T 1−γ
n∑

i=1

`i ‖x − y‖PC1−γ

+
(ξ∗1 + ξ∗2)

Γ(α)

∫ u

0
(u − v)α−1‖x − y‖PC1−γdv.
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Let w(u) = supu∈J |u
1−γ (x(u) − y(u)) |; we find

w(u) ≤
n ε

Γ(γ)
+ ε T 1−γ Mα(T α) +

1
Γ(γ)

∑
0<ui<u

ρi w(u)

+ T 1−γ
n∑

i=1

`i w(u) +
(ξ∗1 + ξ∗2)

Γ(α)

∫ u

0
(u − v)α−1w(v)dv.

Based on Lemma 2.3, one has

H(u) = w(u), K(u) =
n ε

Γ(γ)
+ ε T 1−γ Mα(T α), q(u) =

(ξ∗1 + ξ∗2)
Γ(α)

, σ = T 1−γ
n∑

i=1

`i, λi =
ρi

Γ(γ)
,

and yields that

w(u) ≤
(

n ε
Γ(γ)

+ ε T 1−γ Mα(T α)
) [
T 1−γ

n∑
i=1

`iMα

(
(ξ∗1 + ξ∗2)uα

)
×

i−1∏
k=1

{
1 +

ρk

Γ(γ)
Mα

(
(ξ∗1 + ξ∗2)uαk

)}

+

i∏
k=1

{
1 +

ρk

Γ(γ)
Mα

(
(ξ∗1 + ξ∗2)uαk

)} ]
×Mα

(
(ξ∗1 + ξ∗2)uα

)
≤

(
n ε

Γ(γ)
+ ε T 1−γ Mα(T α)

) [
T 1−γ

n∑
i=1

`i Mα

(
(ξ∗1 + ξ∗2)T α

)
×

{
1 +

P
Γ(γ)

Mα

(
(ξ∗1 + ξ∗2)T α

)}(n−1)

+

{
1 +

P
Γ(γ)

Mα

(
(ξ∗1 + ξ∗2)T α

)}(n) ]
×Mα

(
(ξ∗1 + ξ∗2) uα

)
, u ∈ J.

Hence,

w(u) ≤ ε CMα
Mα

(
ζ uα

)
, u ∈ J, (3.31)

where
ζ = (ξ∗1 + ξ∗2), P = max{ρ1, . . . , ρn}, and

CMα
=

(
n

Γ(γ)
+ T 1−γ Mα(T α)

) [
T 1−γ

n∑
i=1

`i Mα

(
(ξ∗1 + ξ∗2)T α

)
×

{
1 +

P
Γ(γ)

Mα

(
(ξ∗1 + ξ∗2)T α

)}(n−1)

+

{
1 +

P
Γ(γ)

Mα

(
(ξ∗1 + ξ∗2)T α

)}(n) ]
.

Thus, in view of (3.30) and (3.31), the multi-term Hilfer fractional impulsive NLNID system (1.2)–
(1.3) has UHML stability. �
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Corollary 3.1. Let (H1) and (H2) hold; then, the multi-term Hilfer fractional impulsive NLNID
system (1.2)–(1.3) has UH stability, and consequently a generalized UH stability.

Proof. According to the incremental functionMα(·), the inequality (3.31) becomes

sup
u∈J

|u1−γ (x(u) − y(u)) | ≤ ε CMα
Mα

(
ζ T α), u ∈ J, (3.32)

which implies that

‖x − y‖PC1−γ ≤ ε CG, u ∈ J, (3.33)

where CG := CMα
Mα

(
ζ T α). Furthermore, for u ∈ [−d, 0], one has ‖x−y‖C = 0. Thus, we infer that ‖x−

y‖YC,PC1−γ
≤ ε CG, this means that the multi-term Hilfer fractional impulsive NLNID system (1.2)–(1.3)

has UH stability. As a consequence, if ψ(ε) = ε CG, then it has a generalized UH stability. �

3.4. The R.L. fractional version

This part aims at discussing the R.L. version of the Hilfer fractional impulsive delay NLNID
system (1.2)–(1.5) at β = 0, which is given as follows:

RDα
0+ y(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv

+ RDα
0+ f(u, y(u − δ1(u), . . . , y(u − δn(u))), u ∈ J, (3.34)

∆I1−α
0+ y(ui) = gi(y(u−i )), i = 1, n, (3.35)

I1−α
0+ y(0) = y0 ∈ R, (3.36)

y(u) = ϕ(u), u ∈ [−d, 0], d > 0, (3.37)

which is equivalent to the following Volterra integral equation:

y(u) =


uα−1

Γ(α)

[
y0 +

∑
0<ui<u

gi(y(u−i ))
]

+ Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J,

ϕ(u), u ∈ [−d, 0].

(3.38)

To prove the existence and uniqueness of solutions for the system (3.34)–(3.37), we need the
following hypotheses:

(H3) There are constants `i > 0, (i = 1, n) such that for y, x ∈∈ YC,PC1−α , and u ∈ J, we have

|Fy(u − δi(u) − Fx(u − δi(u)| ≤
n∑

i=1

`i u
1−α

∣∣∣∣y(u − δi(u) − x(u − δi(u)
∣∣∣∣,

where Fy(u − δi(u)) defined in (3.3).
(H4) For y, x ∈ YC,PC1−α and ρi > 0, (i = 1, n), a function gi : R→ R verifies the following identity:

|gi(y(u−i )) − gi(x(u−i ))| ≤ ρi (u−i )1−α|y(u−i ) − x(u−i )|.
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Theorem 3.3. Let (H3) and (H4) hold, and if

Φ2 :=
1

Γ(α)

n∑
i=1

ρi +
(ξ∗1 + ξ∗2)T α

Γ(α + 1)
+ T 1−α

n∑
i=1

`i < 1, (3.39)

then the R.L. fractional impulsive delay NLNID system (3.34)–(3.37) admits one solution in YC,PC1−α .

Proof. The proof can be performed similar to the Theorem 3.1 with β = 0. �

Theorem 3.4. Let (H3) and (H4) be satisfied; then, theR.L. fractional impulsive NLNID system (3.34)–
(3.35) has UHML stability.

Proof. Let β = 0 within Theorem 3.2; then, the proof is finished. �

Corollary 3.2. Let (H3) and (H4) hold; then, the R.L. fractional impulsive NLNID system (3.34)–
(3.35) has UH stability, and consequently a generalized UH stability.

3.5. The Caputo fractional version

This subsection focuses on the Caputo version of the multi-term Hilfer fractional impulsive delay
NLNID system (1.2)–(1.5), at β = 1, which is given by the following:

CDα
0+ y(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv

+ CDα
0+ f(u, y(u − δ1(u), . . . , y(u − δn(u))), u ∈ J, (3.40)

∆y(ui) = gi(y(u−i )), i = 1, n, (3.41)

y(u) = ϕ(u), u ∈ [−d, 0], d > 0, (3.42)

which corresponds to the following integral equation:

y(u) =


y(0+) +

∑
0<ui<u

gi(y(u−i )) + Iα0+ Gy(u) + Fy(u − δi(u)), u ∈ J,

ϕ(u), u ∈ [−d, 0].

(3.43)

Regarding the existence and uniqueness of the solutions for the system (3.40)–(3.42), we need the
following hypotheses:

(H5) There are constants `i > 0, (i = 1, n) such that for y, x ∈∈ YC,PC, and u ∈ J, we have

|Fy(u − δi(u) − Fx(u − δi(u)| ≤
n∑

i=1

`i

∣∣∣∣y(u − δi(u) − x(u − δi(u)
∣∣∣∣,

where Fy(u − δi(u)) is defined in (3.3).
(H6) For y, x ∈ YC,PC and ρi > 0, (i = 1, n), a function gi : R→ R verifies the following identity:

|gi(y(u−i )) − gi(x(u−i ))| ≤ ρi |y(u−i ) − x(u−i )|.
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Theorem 3.5. Let (H5) and (H6) hold, and if

Φ3 :=
n∑

i=1

ρi +
(ξ∗1 + ξ∗2)T α

Γ(α + 1)
+

n∑
i=1

`i < 1, (3.44)

then the Caputo fractional impulsive delay NLNID system (3.40)–(3.42) admits one solution in YC,PC.

Proof. Let β = 1 within the Theorem 3.1; then, the proof is finished. �

Theorem 3.6. Let (H5) and (H6) be satisfied; then, the Caputo fractional impulsive NLNID
system (3.40)–(3.41) has UHML stability.

Proof. The proof can be performed similar to Theorem 3.2 with β = 1. �

Corollary 3.3. Let (H5) and (H6) hold; then, the Caputo fractional impulsive NLNID system (3.40)–
(3.41) has UH stability, and consequently a generalized UH stability.

Remark 3.2. If α = 1 in the system (3.40)–(3.42), then it reduces to the first order impulsive delay
NLNID system of the following form:

D1
0+ y(u) = −

n∑
i=1

∫ u

u−δi(u)
ki(u, v) y(v)dv −

n∑
i=1

∫ u+ηi(u)

u

hi(u, v) y(v)dv

+D1
0+ f(u, y(u − δ1(u), . . . , y(u − δn(u))), u ∈ J, (3.45)

∆y(ui) = gi(y(u−i )), i = 1, n, (3.46)

y(u) = ϕ(u), u ∈ [−d, 0], d > 0, (3.47)

which corresponds to the following integral equation:

y(u) =


y(0+) +

∑
0<ui<u

gi(y(u−i )) + I1
0+ Gy(u) + Fy(u − δi(u)), u ∈ J,

ϕ(u), u ∈ [−d, 0].

(3.48)

Moreover, the results in the Theorems 3.5, 3.6, and Corollary 3.3 remain valid for the system (3.45)–
(3.47), while taking in account that α = 1.

4. Applications

In this section, we provide numerical applications with tables and graphics to test the validity main
results.

Now, consider the following multi-term Hilfer fractional impulsive delay NLNID system:

HD
α,β
0+ y(u) = −

∫ u

u−0.1u

(
1/16 + 1/9e(u+v)

)
y(v)dv −

∫ u+0.2u

u

(
0.01 + 0.03 (u + 3v)2

)
y(v)dv

+ HD
α,β
0+

(
0.5 u1−γ

11 + eu
y(u − 0.1 u)

)
, u ∈ J = (0, 1] − {1/3}, (4.1)
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∆I
1−γ
0+ y(1/3) =

(1/3
−)1−γ|y(1/3

−)|
16(2 + |y(1/3

−)|)
, (4.2)

I
1−γ
0+ y(0) = 0, (4.3)

y(u) = 0.08, u ∈ [−0.3, 0]. (4.4)

Here, we have

n = 1,T = 1, d = 0.3, ϕ(u) = 0.08, δ1(u) = 0.1u, η1(u) = 0.2u,
k1(u, v) = 1/16 + 1/9e(u+v), h1(u, v) = 0.01 + 0.03 (u + 3v)2,

g1(y(1/3
−)) =

(1/3
−)1−γ|y(1/3

−)|
12(2 + |y(1/3

−)|)
,

f(u, y(u − δ1(u)) = f(u, y(u − 0.1 u)) =
0.5 u1−γ

11 + eu
y(u − 0.1 u),

ξ1(u) =

∫ u

0.9u

∣∣∣1/16 + 1/9 e(u+v)
∣∣∣ dv, ξ∗1 = 0.0843791,

ξ2(u) =

∫ 1.2u

u

∣∣∣0.01 + 0.03 (u + 3v)2
∣∣∣ dv, ξ∗2 = 0.11312.

Figure 1, displays the graphics of ξ1 and ξ2 in the interval u ∈ (0, 1], for the system (4.1)–(4.4). In the
sequel, we study our application for the following three cases:
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ξ
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ξ
2

Figure 1. 2D plot represents the curves of ξ1 and ξ2 in u ∈ (0, 1], for the system (4.1)–(4.4).

The Hilfer fractional version: Let α = 0.8 and β = 0.6; then γ = 0.875, and∣∣∣∣f(u, y(0.9u)) − f(u, x(0.9u))∣∣∣∣ ≤ 0.5u1−0.875

12

∣∣∣∣y(0.9u) − x(0.9u)∣∣∣∣,
|g1(y(1/3

−)) − g1(x(1/3
−))| ≤

2 (1/3
−)1−0.875

16

∣∣∣y(1/3
−) − x(1/3

−)
∣∣∣ .

Then, `1 = 0.5/12, ρ1 = 1/8, and Φ1 := 0.371274 < 1. Hence, the hypotheses (H1), (H2), and
condition Φ1 := 0.371274. < 1 of Theorem 3.1 are satisfied; thus, the multi-term Hilfer fractional
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impulsive NLNID system (4.1)–(4.4) admits one solution in the space YC,PC1−0.875 . Furthermore, in view
of Theorem 3.2, for each ε > 0, if x ∈ YC,PC1−0.875 is a solution of the following inequalities:

∣∣∣∣∣∣HD0.75,0.5
0+

[
x(u) −

0.5 u1−0.875

11 + eu
x(0.9u)

]
−

∫ u

0.9u

(
1/16 + 1/9e(u+v)

)
x(v)dv

−
∫ 1.2u

u

(
0.01 + 0.03 (u + 3v)2

)
x(v)dv

∣∣∣∣∣∣ ≤ εM0.75(u0.75), u ∈ (0, 1],∣∣∣∣∣∣∆I1−0.875
0+ x(1/3) −

(1/3
−)1−0.875|x(1/3

−)|
12(2 + |x(1/3

−)|)

∣∣∣∣∣∣ ≤ ε,
(4.5)

then there is one solution y ∈ YC,PC1−0.875 of the Hilfer version of system (4.1)–(4.2), which is satisfied
that 

∣∣∣x(u) − y(u)∣∣∣ = 0, u ∈ [−0.3, 0],

u1−0.875
∣∣∣x(u) − y(u)∣∣∣ ≤ ε CM0.75M0.75(ζu0.75), u ∈ (0, 1], ζ > 0,

(4.6)

where ζ = 0.197499, P = 1/8, and CM0.75 = 10.7109. Therefore, the Hilfer version of system (4.1)–(4.2)
has UHML stability. Moreover, by putting CG := CM0.75M0.75(ζu0.75), and according to Corollary 3.1,
we deduce that the Hilfer version of system (4.1)–(4.2) is UH stable, and as a consequence, it has a
generalized UH stability.

Figure 2, and Table 1, show that the values of Φ1 are less than one at various α ∈ (0, 1] and β ∈ [0, 1],
for the system (4.1)–(4.4).
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Figure 2. 3D plot represents the curve of Φ1 for various α ∈ (0, 1] and β ∈ [0, 1], for the
system (4.1)–(4.4).

Table 1. Show numerical values of Φ1 at various values of α ∈ (0, 1] and β ∈ (0, 1], for the
system (4.1)–(4.4).

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Φ1 0.2751 0.3073 0.3336 0.3533 0.3665 0.3741 0.3769 0.3757 0.3713 0.3642
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The R.L. fractional version: Let α = 0.75 and β = 0; then γ = 0.75, and∣∣∣∣f(u, y(0.9u)) − f(u, x(0.9u))∣∣∣∣ ≤ 0.5u1−0.75

12

∣∣∣∣y(0.9u) − x(0.9u)∣∣∣∣,
|g1(y(1/3

−)) − g1(x(1/3
−))| ≤

2 (1/3
−)1−0.75

16

∣∣∣y(1/3
−) − x(1/3

−)
∣∣∣ .

Then, `1 = 0.5/12, ρ1 = 1/8, and Φ2 := 0.358565 < 1. Hence, the hypotheses (H3), (H4), and
condition Φ2 := 0.358565 < 1 for Theorem 3.3 are satisfied; thus, the R.L. version of fractional
impulsive NLNID system (4.1)–(4.4) admits one solution in the space YC,PC1−0.75 . Furthermore, in view
of Theorem 3.4, for each ε > 0, if x ∈ YC,PC1−0.75 is a solution of the following inequalities:

∣∣∣∣∣∣RD0.75
0+

[
x(u) −

0.5 u1−0.75

11 + eu
x(0.9u)

]
+

∫ u

0.9u

(
1/16 + 1/9e(u+v)

)
x(v)dv

+

∫ 1.2u

u

(
0.01 + 0.03 (u + 3v)2

)
x(v)dv

∣∣∣∣∣∣ ≤ εM0.75(u0.75), u ∈ J,∣∣∣∣∣∣∆I1−0.75
0+ x(1/3) −

(1/3
−)1−0.75|x(1/3

−)|
12(2 + |x(1/3

−)|)

∣∣∣∣∣∣ ≤ ε,
(4.7)

then there is one solution y ∈ YC,PC1−0.75 of the R.L. version for the system (4.1)–(4.2), which is satisfied
that 

∣∣∣x(u) − y(u)∣∣∣ = 0, u ∈ [−0.3, 0],
u1−0.75

∣∣∣x(u) − y(u)∣∣∣ ≤ ε CM0.75M0.75(ζu0.75), u ∈ (0, 1], ζ > 0,
(4.8)

where ζ = 0.197499, P = 1/8, and CM0.75 = 10.3954. Therefore, the R.L. version for system (4.1)–(4.2)
has UHML stability. Moreover, by putting CG := CM0.75M0.75(ζu0.75), and according to Corollary 3.2,
we deduce that the R.L. version of system (4.1)–(4.2) is UH stable, and as a consequence, it has a
generalized UH stability.
The Caputo fractional version: Let α = 0.75 and β = 1, then γ = 1, and∣∣∣∣f(u, y(0.9u)) − f(u, x(0.9u))∣∣∣∣ ≤ 0.5

12

∣∣∣∣y(0.9u) − x(0.9u)∣∣∣∣,
|g1(y(1/3

−)) − g1(x(1/3
−))| ≤

1
8

∣∣∣y(1/3
−) − x(1/3

−)
∣∣∣ .

Then, `1 = 0.5/12, ρ1 = 1/8, and Φ3 := 0.381559 < 1. Thus, the hypotheses (H5), (H6), and condition
Φ3 := 0.381559 < 1 for Theorem 3.5 are satisfied; hence, the Caputo version of the fractional
impulsive NLNID system (4.1)–(4.4) admits one solution in the space YC,PC. Furthermore, in view
of Theorem 3.6, for each ε > 0, if x ∈ YC,PC is a solution of the following inequalities:

∣∣∣∣∣∣CD0.75
0+

[
x(u) −

0.5
11 + eu

x(0.9u)
]

+

∫ u

0.9u

(
1/16 + 1/9e(u+v)

)
x(v)dv

+

∫ 1.2u

u

(
0.01 + 0.03 (u + 3v)2

)
x(v)dv

∣∣∣∣∣∣ ≤ εM0.75(u0.75), u ∈ (0, 1],∣∣∣∣∣∣∆ x(1/3) −
|x(1/3

−)|
12(2 + |x(1/3

−)|)

∣∣∣∣∣∣ ≤ ε,
(4.9)
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then there is one solution y ∈ YC,PC of the Caputo version for the system (4.1)–(4.2), which is satisfied
that 

∣∣∣x(u) − y(u)∣∣∣ = 0, u ∈ [−0.3, 0],∣∣∣x(u) − y(u)∣∣∣ ≤ ε CM0.75M0.75(ζu0.75), u ∈ (0, 1], ζ > 0,
(4.10)

where ζ = 0.197499, P = 1/8, and CM0.75 = 10.9686. Therefore, the Caputo version for system (4.1)–
(4.2) has UHML stability. Moreover, by putting CG := CM0.75M0.75(ζu0.75), and according to
Corollary 3.3, we deduce that the Caputo version of system (4.1)–(4.2) is UH stable, and as a
consequence, it has a generalized UH stability.

Figure 3, and Table 2, display the values of Φ2 and Φ3 are less than one at various α ∈ (0, 1] and
specific values of β = 0 and β = 1 respectively, for system (4.1)–(4.4).
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Figure 3. 2D plot represents the curves of Φ2 and Φ3 for various α ∈ (0, 1] and β = 0, β = 1,
respectively, for the system (4.1)–(4.4).

Table 2. Show the values of Φ2 and Φ3 for α ∈ (0, 1] and β = 0, β = 1 respectively, for the
system (4.1)–(4.4).

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Φ2 0.2624 0.2840 0.3035 0.3206 0.3350 0.3466 0.3553 0.3611 0.3640 0.3642
Φ3 0.3743 0.3818 0.3867 0.3893 0.3895 0.3877 0.3840 0.3787 0.3720 0.3642

5. Conclusions

This paper focused on investigating a new structure of the Hilfer NLNID system (1.2)–(1.5) under
initial and instantaneous impulse conditions with variable time delays. The existence and uniqueness
results were established by applying the Banach contraction principle. Moreover, the UHML stability
was proven by employing the generalized Gronwall’s inequality and nonlinear analysis issues. As a
consequence, the UH stability and generalized UH were deduced as special cases of UHML stability.
Additionally, this paper was enhanced by discussing the R.L. and Caputo fractional types of the
proposed system (1.2)–(1.5). Finally, numerical simulations with tables and graphics were provided
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to test the exactitude of our findings. The results of this work give us a deep understanding of
those applications that are connected with the Levin-Nohel equations, especially those that cause
instantaneous impulses and time delays. In the future, our focus will be on studying sufficient
conditions of positive solutions for the NLNID system involving the Hilfer-like fractional difference
on discrete time scale [44].
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