
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(3): 7340–7371.
DOI: 10.3934/math.2024356
Received: 05 January 2024
Revised: 30 January 2024
Accepted: 01 February 2024
Published: 20 February 2024

Research article

The strong consistency and asymptotic normality of the kernel estimator
type in functional single index model in presence of censored data

Said Attaoui1, Billal Bentata1, Salim Bouzebda2,*and Ali Laksaci3

1 Department of Mathematics, University of Sciences and Technology, Oran, Algeria
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1. Introduction

Regression analysis has proven to be versatile and has offered a strong statistical modeling
framework in a wide range of practical and theoretical situations where the goal is to model the
predictive relationship between related responses and predictors. Parametric regression models are
valuable tools for analysing real-world data, but they can be subject to significant modeling biases if
the model structures are poorly described. This is a common issue in many practical problems.
Nonparametric smoothing techniques can be used as an option to address concerns about modeling
bias. This article will specifically examine the analysis of estimators that belong to the kernel type.
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For x ∈ Rd, the regression function, whenever it exists, is defined to be

r(x) := E(Y | X = x). (1.1)

A well-known estimator for the regression function r(·), often used in nonparametric statistics, is the
kernel regression function estimator. This estimator is, under suitable conditions, strongly consistent,
i.e., it converges almost surely to the unknown regression function at x. Because of numerous
applications and their important role in mathematical statistics, the problem of estimating m(·, φ) and
fX(·) has been a subject of considerable interest during recent decades. For good sources of references
to the research literature in this area along with statistical applications,
consult [11, 14, 19, 20, 24–26, 60, 65, 67, 71] and the references therein. The increased dimensionality
of X can provide challenges when attempting to move beyond standard multiple linear models and
pursue nonparametric estimation of r(x). This strongly motivates the consideration of regression
models that offer dimension reduction. Single index models are widely used to achieve this by
assuming that the predictors’ influence on the response can be simplified to a single index. This index
represents a projection on a specified direction and is combined with a nonparametric link function.
This simplifies the predictors to a single-variable index while still including important characteristics.
Additionally, because the nonparametric link function only operates on a one-dimensional index,
these models are not affected by the problem of having a high number of dimensions, known as the
curse of dimensionality. The single index model extends the concept of linear regression by
incorporating a link function that is equivalent to the identity function; the interested reader may refer
to [6, 35, 41, 50, 69]. The statistical challenges associated with the analysis of functional random
variables, which are variables that take values in an infinite-dimensional space, have gained increasing
attention in the statistics literature in recent decades. The motivation behind the development of this
research issue stems from the abundant data collected on a progressively more precise
temporal/spatial grids. This is evident in fields such as meteorology, medicine, satellite images, and
various other research domains. Consequently, the statistical analysis of this data, viewed as
unpredictable functions, gave rise to numerous complex theoretical and computational research
inquiries. To gain a comprehensive understanding of both the theoretical and practical aspects of
functional data analysis, readers are encouraged to consult the monographs by [8] for linear models
involving random variables in a Hilbert space, and by [64] for scalar-on-function and
function-on-function linear models, functional principal component analysis, and parametric
discriminant analysis. The work of [28] primarily emphasises nonparametric techniques, particularly
kernel-based estimation, for scalar-on-function nonlinear regression models. They expanded the
application of these technologies to include classification and discrimination analysis. The book
by [42] explores the extension of many statistical concepts, including goodness-of-fit tests,
portmanteau tests, and change detection, to the framework of functional data. Recent advances in
functional data analysis have highlighted the necessity of developing models aiming to reduce
dimensionality effects (see [22, 34, 51] recent surveys), see also [2, 12, 13], and semiparametric ideas
are natural candidates for that purpose. In that way, [29] and [1] studied the Functional Single-Index
Model (FSIM). [43] proposed functional single index composite quantile regression and estimated the
unknown slope function and link function by using B-spline basis functions. [61] proposed a new
compact functional single index model, in which the coefficient function is only nonzero in a
subregion. [76] investigated the estimation of a general functional single index model, in which the
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conditional distribution of the response depends on the functional predictor via a functional single
index structure. [70] developed a new estimation procedure that combines a functional principal
component analysis of the functional predictors, B-spline model for the parameters, and profile
estimation of the unknown parameters and functions in the model. [53, 54] investigated the estimation
of the functional single index regression model with missing responses at random for strong mixing
time series data. [27] introduced a new functional single-index varying coefficient model with the
functional predictor being single-index part. By means of functional principal components analysis
and basis function approximation, they obtain the estimators of slope function and coefficient
functions, and propose an iterative estimating procedure. [62] developed a new automatic and
location-adaptive procedure for estimating regression in FSIM that is based on k-Nearest Neighbours
(kNN) ideas. Motivated by the analysis of imaging data, [47] proposed a novel functional
varying-coefficient single-index model to carry out the regression analysis of functional response data
on a set of covariates of interest. [4] investigated a functional Hilbertian regressor for a nonparametric
estimation of the conditional cumulative distribution with a scalar response variable in the single
index structure. [21] developed an alternative approach, where their methodology includes the
multi-index case and does not anchor the true parameter on a prespecified sieve, and they provide a
detailed theoretical analysis of a direct kernel-based estimation scheme which establishes a
polynomial convergence rate. [3] considered the nonparametric estimation of the conditional density
of a scalar response variable given a random variable taking values in separable Hilbert space in the
single-index structure. [52] investigated the estimation of conditional density function based on the
single-index model for functional time series data. [49] proposed a model that accommodates the
existence of interaction between a single functional predictor and other covariates, which has usually
been ignored in previous works. For that, the authors consider a semiparametric single-index structure
to model the potential interaction between the functional predictor and other covariates, which
provides a feasible two-stage procedure to address estimation and inference issues. To explore recent
progress and relevant sources in semiparametric and/or functional data analysis, we refer
to [39, 40, 46, 58, 75] which considered the kNN method in a single index regression model when the
explanatory variable is valued in functional space in the setting of the quasi-association dependence
condition. It should be noted that most of the contributions involved above are in the case of the
samples being observed completely. Therefore, it is imperative to thoroughly examine the functioning
statistical models within the context of censored data. From a pragmatic perspective, this type of data
holds significance. Clinical trials commonly involve survival statistics or failure time data, which are
frequently affected by censoring. More precisely, numerous statistical experiments provide
incomplete samples, even when conducted under carefully regulated circumstances. For instance,
clinical data pertaining to the survival of various diseases is typically obscured by other
life-threatening dangers that ultimately lead to mortality. To be more precise, let (Y0

i )1≤i≤n be the life
(or survival) times supposed independent identically distributed (i.i.d.) sequence of random variables
(r.v.s) with common unknown continuous distribution function (d.f.) F(·) and density f (·). In many
practical situations, instead observing the lifetimes Y0 we observe only censored lifetimes of the
items. Further, we assume that (Ci)1≤i≤n is an i.i.d. sequence of censoring r.v.s with common
continuous d.f. G(·) which is independent of (Y0

i )1≤i≤n, and we observe the n pairs (Yi, δi)1≤i≤n with
Yi = min(Y0

i ,Ci) =: Y0
i ∧ Ci and δi = 1{Y0

i ≤Ci}
, where 1A is the indicator function of the set A (if δi = 1,

this means that Y0
i ≤ Ci and Yi = Y0

i , and the observed value is the true lifetime of subject i; otherwise,
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Ci < Y0
i and hence Yi = Ci and so the actual lifetime Y0

i is not observed). Following the convention
usually assumed, in right censored model, we suppose that (Ci)1≤i≤n and (Xi,Y0

i )1≤i≤n are independent,
for instance, see [14, 15, 45, 63].

The primary objective of this paper is to delineate the asymptotic properties of the estimator
r̂n(θ, ·), defined in (2.7) below, in a censorship setting where the variables exhibit a functional form
and adhere to a single index structure. This includes investigating the rates of almost complete
convergence (a.co.*). Additionally, we derive the asymptotic distribution under certain mild
conditions.

The rest of this work is organized as follows: In Section 2, we describe the single index regression
model for functional data and in the censored framework. In Section 3, we will establish our main
results of the uniform almost complete convergence of the kernel estimators (in §3.1) and the
asymptotic normality (in §3.2) under non-restrictive conditions. In Section 4, we discuss the impact
of our contribution in practical application of our results for the construction of the confidence
interval. In Section 5, we perform a simulation study to show that our proposed model works well for
finite samples of simulated data and a real data example. We conclude this paper with some remarks
and future works in Section 6. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to Section 7.

2. Model

Let {(Xi,Ci,Y0
i ), 1 ≤ i ≤ n} be n independent identical copies of a triple of random variables

(X,C,Y0), where X takes values in a separable real Hilbert space H endowed with the inner product
⟨·, ·⟩ and its norm ∥ · ∥ = ⟨·, ·⟩1/2, C is a censoring variable and Y0 is the variable of interest, typically
called a life time variable. We consider the semi-metric dθ(·, ·),† associated with the single-index θ,
which is defined by dθ(χ1, χ2) := |⟨χ1 − χ2, θ⟩|. In the given topological structure and for any θ, our
focus is to estimate nonparametrically the regression function, whenever it exists, of Y0 given ⟨X, θ⟩,
denoted by

rθ(χ) := IE(Y0 | ⟨θ, X⟩ = ⟨θ, χ⟩). (2.1)

Since the single functional index θ plays a crucial role in such a model, the identifiability of this model
will be important. Clearly, the relation in (2.1) can be reformulated as

Y0 = r(⟨X, θ⟩) + ϵ,

where IE(ϵ | X) = 0. To ensure the identifiability of the model θ (i.e., θ1 = θ2) we require that r j(⟨χ, θ j⟩)
is differentiable with respect to (w.r.t) the variable ⟨χ, θ j⟩, j = 1, 2, respectively, and that ⟨θ, e1⟩ = 1,

*Let (zn) for n ∈ N, be a sequence of real r.v.’s. We say that (zn) converges almost-completely (a.co.) toward zero if, and only if, for
all

ϵ > 0,
∞∑

n=1

P (|zn| > ϵ) < ∞.

Moreover, we say that the rate of the almost-complete convergence of (zn) toward zero is of order un (with un → 0 ) and we write
zn = Oa.co. (un) if, and only if, there exists ϵ > 0 such that

∞∑
n=1

P (|zn| > ϵun) < ∞.

This kind of convergence implies both the almost-sure convergence and the convergence in probability.
†A semi-metric (sometimes called pseudo-metric) dθ(·, ·) is a metric which allows dθ(x1, x2) = 0 for some x1 , x2.
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where e1 is the first element of an orthonormal basis of the space H . For more details on the proof of
identifiability of the functional single model, see [29]. It is worth highlighting that when censored data
is considered, the smoothing nonparametric regression estimator r̂(θ, χ) of r(θ, χ) can be viewed as a
local least squares estimator, that is

r̂(θ, χ) = arg min
t∈IR

n∑
i=1

Wi,n(θ, χ)(Yi − t)2,

where Wi,n(θ, χ) are the Nadaraya-Watson weights given by

Wi,n(θ, χ) =
K(h−1

n |⟨χ − Xi, θ⟩|)
n∑

i=1

K(h−1
n |⟨χ − Xi, θ⟩|)

.

The [59, 73] type-estimator of r(θ, χ) is defined as

r̂(θ, χ) =
n∑

i=1

Y0
i Wi,n(θ, χ) =

n∑
i=1

Y0
i K(h−1

n |⟨χ − Xi, θ⟩|)

n∑
i=1

K(h−1
n |⟨χ − Xi, θ⟩|)

, (2.2)

where K(·) is a kernel function, and hn := hn,K is a sequence of bandwidths (positive real numbers)
decreasing to zero as n goes to infinity. When working with censored data, the initial challenge is
understanding and handling the censorship itself, which occurs when observations are incomplete or
only partially obtained. One of the suggested approaches to tackle censored data is to apply the method
of synthetic data, which allows to take into account the censoring effect on the lifetime distribution,
see for instance: [16–18, 45]. Theoretically, the synthetic data transformation provides equal expected
values for both variables. In this case, synthetic response variable (transformed variable) is given by
δi Yi

G(Yi)
, 1 ≤ i ≤ n, where G(·) = 1 − G(·), and if we assume (Y0

i , Xi) and (Ci) are independent (usually

supposed for censored data), we get

IE
[
δi Yi

G(Yi)

∣∣∣∣ Xi

]
= IE

{
IE

[
δi Yi

G(Yi)

∣∣∣∣ Y0
i , Xi

] ∣∣∣∣ Xi

}
= IE

{
IE

[
1{Y0

i ≤Ci}
Yi

G(Yi)

∣∣∣∣ Y0
i , Xi

] ∣∣∣∣ Xi

}
= IE

 Y0
i

G(Y0
i )

IE
[
1{Y0

i ≤Ci}

∣∣∣∣ Y0
i

] ∣∣∣∣ Xi


= IE

[
Y0

i | Xi

]
. (2.3)

In the same manner, we get by conditioning w.r.t ⟨θ, Xi⟩

IE
[
δi Yi

G(Yi)

∣∣∣∣ ⟨θ, Xi⟩

]
= IE

[
Y0

i | ⟨θ, Xi⟩
]
. (2.4)
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Thus, for the infinite dimension case one can define the pseudo-estimator of rθ(χ) as:

r̃(θ, χ) =

n∑
i=1

δi Yi

G(Yi)
K(h−1

n |⟨χ − Xi, θ⟩|)

n∑
i=1

K(h−1
n |⟨χ − Xi, θ⟩|)

=
r̃N(θ, χ)
r̂D(θ, χ)

, (2.5)

where

r̃N(θ, χ) =
1

nIE[K1(θ, χ)]

n∑
i=1

δi Yi

G(Yi)
Ki(θ, χ)

r̂D(θ, χ) =
1

nIE[K1(θ, χ)]

n∑
i=1

Ki(θ, χ)

Ki(θ, χ) = K(h−1
n |⟨χ − Xi, θ⟩|) = K(h−1

n dθ(χ, Xi)).

In practice, since the values Y0 are censored observations, the survival function G(·) = 1 − G(·) is
unknown (because G(·) is too), so it is impossible to use the estimator (2.5). To complete the building of
the good estimator of r(θ, χ), we may can replace the function G(·) by its corresponding estimator [44],
Gn(·) := 1 −Gn(·) defined by

Gn(t) =


n∏

i=1

(
1 −

1 − δ(i)

n − i + 1

)1{Y(i)≤t}

, if t < Y(n);

0, if t ≥ Y(n).
(2.6)

Where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics of Yi and δ(i) is the indicator of no censoring
associated with Y(i). [23] presented some probabilistic strong functional limit theorems extending the
results known for completely observable data. More precisely, for a continuous G(·), as n → ∞, we
have

sup
0≤t≤Y(n)

∣∣∣∣∣ 1
Gn(t)

−
1

G(t)

∣∣∣∣∣ = O

( log2 n
n

) 1
2
 ,

almost surely where log2 u = log+
(
log+ u

)
, log+ u = log(u∨ e). Such a result will be useful to establish

the main results of this paper. Now, plugging the estimator (2.6) into (2.5), one can define an estimator
of r(θ, χ) as:

r̂n(θ, χ) =

1
nIE[K1(θ, χ)]

n∑
i=1

δi Yi

Gn(Yi)
K(h−1

n |⟨χ − Xi, θ⟩|)

1
nIE[K1(θ, χ)]

n∑
i=1

K(h−1
n |⟨χ − Xi, θ⟩|)

=:
r̂N(θ, χ)
r̂D(θ, χ)

. (2.7)

We emphasize that this study represents the first exploration of semi-parametric regression for censored
functional data. It is important to note that the model investigated here differs significantly from the
conditional quantile examined in [38]. Additionally, the asymptotic findings presented in our paper
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diverge from those established in the aforementioned study. Specifically, our results not only confirm
uniform consistency, but also demonstrate the asymptotic normality of the estimator we construct.
Henceforth, let us consider Y0 as having bounded values. While the assumption of boundedness for Y0

can be substituted with a finite moment assumption, such a replacement would introduce significantly
greater complexity into the proofs. Specifically, it necessitates the utilization of a truncation argument.

3. Main results

3.1. Uniform almost complete convergence

Throughout this paper, when no confusion will be possible, we will denote by C, C′ or/and Cθ,x
some strictly positive generic constants which may be different in each appearance. For any sequences
(un) and (vn) we write un = O(vn) if |un| ≤ C|vn|,∀n (if the property holds almost completely we use the
symbol Oa.co.). We design by Nχ a fixed neighborhood of a fixed point χ inH , and by

Bθ(χ, r) := { χ1 ∈ H : |⟨χ − χ1, θ⟩| < r},

the ball centered at χ, with radius r. Let τF = sup{y : F(y) > 0} and τG = sup{y : G(y) > 0} be upper
endpoints of F(·) and G(·), respectively. We assume that τF < ∞, and G(τF) > 0, which implies that
τF < τG. Let us consider the following coverings of the compacts SH and ΘH :

SH ⊂
d

SH
n⋃

k=1

B(χk, ln) and ΘH ⊂
d
ΘH
n⋃
j=1

B(t j, ln),

with χk, t j ∈ H and ∀χ ∈ H ; ∀θ ∈ ΘH , one sets k(χ) = arg min
k∈{1,...d

SH
n }
∥χ − χk∥ and j(θ) =

arg min
j∈{1,...d

ΘH
n }
∥θ − t j∥. Note that this cover of the compact subset is necessary to derive our uniform

consistency, and it is a key point to ensure the geometric link between the number dSH
n , dΘHn of balls

and the sequence of radius ln. In abstract semi-metric spaces, it is usually assumed that dSH
n ln (dΘHn ln)

is bounded, see [1] for more discussion. We now list the assumptions needed to derive our first result.

(A0) (X,Y0) and C are independent;
(A1) (i) IP(X ∈ Bθ(χ, ϵ)) =: ϕθ,χ(ϵ) > 0, and ∀ϵ > 0, limϵ→0 ϕθ,χ(ϵ) = 0,

(ii) There exists a differentiable function ϕ(·), ∀χ ∈ SH , θ ∈ ΘH , 0 < Cϕ(hn) ≤ ϕθ,χ(hn) ≤
C′ϕ(hn) < ∞, and ∃ξ0 > 0, ∀ξ < ξ0, ϕ′(ξ) < C;

(A2) The function r(·, ·) satisfies the following Hölder condition: ∀θ ∈ H , ∀(χ1, χ2) ∈ Nχ × Nχ:

|r(θ, χ1) − r(θ, χ2)| ≤ Cθ,χdθ(χ1, χ2)γ, γ > 0;

(A3) K(·) is a bounded continuous function such that

(i) 0 < C1[0,1](t) < K(t) < C′1[0,1](t) < ∞,
(ii) ∀t1, t2 ∈ IR, |K(t1) − K(t2)| ≤ C|t1 − t2|;

(A4) For ln = O( log n
n ), the sequences dSH

n and dΘHn satisfy:

(i)
(log n)2

nϕ(hn)
< log dSH

n + log dΘHn <
nϕ(hn)
log n

,
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(ii)
∞∑

n=1

(dSH
n dΘHn )1−β < ∞, for some β > 2,

(iii) nϕ(hn) = O((log n)2) and lim
n→∞

nϕ(hn) = ∞.

Comments on the assumptions

We first recall that our assumptions are not restrictive and may be considered as standard in the
present context. Assumption (A0) was introduced in [18] and used in [10, 36, 45] which is plausible
whenever the censoring is independent to the characteristics of the patients under study. This
condition can be relaxed to conditional independence, but this will add extra complexity to the proofs.
Note also that the assumption τF < τG (implying G(Y0) > G(τF)) is classical for asymptotic normality
results in the censorship framework. Assumption (A1) controls the behavior of the small ball
probability around zero and is the usual condition on the small ball probability. Assumption (A2)
imposes some smoothness of the regression operator required to control the convergence rate of bias.
Assumption (A3) pertains to the choice of the kernel K(·), a common practice in nonparametric
functional estimation. It is important to observe that the Parzen symmetric kernel is not suitable in
this particular situation due to the fact that the random process |⟨χ − Xi, θ⟩| is always positive. As a
result, we will instead use K(·) with a support range of [0, 1]. This is an extension of the often
assumed condition on the kernel in the situation of multiple variables, where K(·) is expected to be a
density function that exhibits spherical symmetry. Assumption (A4) serves a technical purpose,
allowing for the evaluation of the asymptotic variance component. This assumption pertains to the
Kolmogorov entropy of the functional subsets ΘH and SH . Such assumptions in functional data
analysis were originally introduced by [9] and have since found application in functional single index
models, as demonstrated by [5] and [38].

In the following theorem, we first present the uniform almost complete convergence rate of the
estimator r̂n(θ, χ).

Theorem 3.1. Assume that (A0)–(A4) hold. We then have, as n→ ∞,

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rn(θ, χ) − r(θ, χ)
∣∣∣ = O(hγn) + Oa.co.


√

log dSH
n + log dΘHn

nϕ(hn)

 .
In the particular case where the functional single index is fixed we get the following result.

Corollary 3.2. Under the Assumptions (A0)–(A4), we have, as n→ ∞,

sup
χ∈SH

∣∣∣̂rn(θ, χ) − r(θ, χ)
∣∣∣ = O(hγn) + Oa.co.


√

log dSH
n

nϕ(hn)

 .
Proof of Theorem 3.1. We may consider the following decomposition

r̂n(θ, χ) − r(θ, χ) =
r̂N(θ, χ) − r(θ, χ)̂rD(θ, χ)

r̂D(θ, χ)

=
r̂N(θ, χ) − r̃N(θ, χ)

r̂D(θ, χ)
+

r̃N(θ, χ) − IE
[̃
rN(θ, χ)

]
r̂D(θ, χ)
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+
IE

[̃
rN(θ, χ)

]
− r(θ, χ)

r̂D(θ, χ)
+ r(θ, χ)

(
1 − r̂D(θ, χ)

)
r̂D(θ, χ)

. (3.1)

Through this decomposition, the proof of Theorem 3.1 will rely on the following lemmas, the proofs
of which are deferred to Section 7. □

Lemma 3.3. Under the Assumptions (A1), (A3), and (A4), we have, as n→ ∞,

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̂rD(θ, χ) − 1
∣∣∣∣ = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hn)

 .
Corollary 3.4. Under the Assumptions (A1), (A3), and (A4), we have, as n→ ∞,

∞∑
n=1

IP
(

inf
θ∈ΘH

inf
χ∈H

∣∣∣∣̂rD(θ, χ)
∣∣∣∣ < 1/2

)
< ∞. (3.2)

Lemma 3.5. Under the Assumptions (A0), (A1), (A3), and (A4), we have, as n→ ∞,

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̂rN(θ, χ) − r̃N(θ, χ)
∣∣∣∣ = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hn)

 .
Lemma 3.6. Under the Assumptions (A0), (A1-(i)), and (A2), we have, as n→ ∞,

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣IE[̃
rN(θ, χ)

]
− r(θ, χ)

∣∣∣∣ = O(hγn).

Lemma 3.7. Under the Assumptions (A0), (A1), (A3), and (A4), we have, as n→ ∞,

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̃rN(θ, χ) − IE
[̃
rN(θ, χ)

]∣∣∣∣ = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hn)

 .
3.2. Asymptotic normality

Our second result consists of establishing the asymptotic normality of the estimator r̂n(θ, χ). We fix
a point χ inH , and we introduce the following assumptions:

(A1’) The concentration property in (A1-(i)) holds. Moreover, there exists a function βθ,χ(·) satisfying:

∀s ∈ [0, 1], lim
n→∞

ϕθ,χ(shn)
ϕθ,χ(hn)

= βθ,χ(s);

(A3’) The kernel K(·) is a bounded continuous function with support [0, 1], differentiable, its derivative
K′(·) exists, and is such that there exist two constants C and C′ with −∞ < C < K′(t) < C′ < 0,
for all t ∈ [0, 1];

(A4’) The bandwidth hn satisfies :

(i) lim
n→∞

hn = 0, and lim
n→∞

1
nϕθ,χ(hn)

= 0,

(ii) lim
n→∞

nϕθ,χ(hn)h2γ
n = 0.
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Comments on the assumptions.

Again assumption (A1’) controls the behavior of the small ball probability around zero and is the
usual condition on the small ball probability. This approximately shows that the small ball probability
can be written approximately as the product of two independent functions, refer to [56] for the diffusion
process, [7] for a Gaussian measure, and [48] for a general Gaussian process, and these assumptions
have been employed by [55] for strongly mixing processes. For example, the function ϕ(·) can be
expressed as ϕ(ϵ) = ϵδ exp(−C/ϵa) with δ ≥ 0 and a ≥ 0, and it corresponds to the Ornstein-Uhlenbeck
and general diffusion processes (for such processes, a = 2 and δ = 0) and the fractal processes (for
such processes, δ > 0 and a = 0). We refer to the paper of [30] and for other examples [68]. As
was discussed in [55], the assumption (A1’) is consistent with the assumptions made by [33] in the
context of density estimation for functional data. When H is a separable Hilbert space and is infinite
dimensional, ϕ(h) could decrease to zero as h → 0 exponentially fast, for instance, see [33]. This
condition also permits us to present an explicitly asymptotic variance term. The condition (A3’) is
essential in the variance calculation as in [55]. The assumption (A4’-ii) will be used to remove the bias
term in the asymptotic normality results.

Below, we write Z
D
→ N(µ, σ2) whenever the random variable Z follows a normal law with

expectation µ and variance σ2. Our main result of this section is summarized in the following
theorem.

Theorem 3.8. Assume that (A0)-(A1’),(A2), and (A3’)-(A4’) hold. We have, as n→ ∞,

(nϕθ,χ(hn))1/2(̂rn(θ, χ) − r(θ, χ))
D
−→ N(0, σ2

r (θ, χ)),

where

σ2
r (θ, χ) :=

C2 (r(θ, χ))2

C2
1

with Cl = Kl(1) −
∫ 1

0
(Kl)′(s)βθ,χ(s) ds, for l = 1, 2.

Proof of Theorem 3.8. Considering the decomposition:

r̂n(θ, χ) − r(θ, χ) =
r̂N(θ, χ) − r(θ, χ)̂rD(θ, χ)

r̂D(θ, χ)

=
r̂N(θ, χ) − IE

[̂
rN(θ, χ)

]
+ IE

[̂
rN(θ, χ)

]
− r(θ, χ)̂rD(θ, χ)

r̂D(θ, χ)
. (3.3)

Using Eq (3.3), we conclude that the remaining task is to demonstrate the convergence in probability
of the numerator to 1, the vanishing of the last term of the denominator, and the asymptotic normality
of the first term of the denominator. □

Finally, we will need the following lemmas to state Theorem 3.8:

Lemma 3.9. Under Assumptions (A1’), (A3’), (A4’-(i)), we have, as n→ ∞,

r̂D(θ, χ) − 1 → 0, in probability.

Lemma 3.10. Under Assumptions (A0)-(A1’), (A2) and (A3’)-(A4’), we have, as n→ ∞,

(nϕθ,χ(hn))1/2
(
IE

[̂
rN(θ, χ)

]
− r(θ, χ)̂rD(θ, χ)

)
→ 0.
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Lemma 3.11. Under Assumptions (A0)-(A1’) and (A3’)-(A4’), we have, as n→ ∞,

(nϕθ,χ(hn))1/2
(̂
rN(θ, χ) − IE

[̂
rN(θ, χ)

]) D
−→ N(0, σ2

r (θ, χ)).

Remark 3.12. We allow C to be defective, that is, such that P(C = ∞) is possibly positive, to cover the
uncensored case corresponding to the particular case where P(C = ∞) = 1. It is to be noted that the
uncensored case corresponds to the case G(x) = 0 for all x ∈ R.

4. Methodology for estimating of a single functional index

Recall that in practical applications, the functional index is typically unknown in practice and needs
to be estimated. In this context, two important rules exist for carrying out the estimation. The initial
one is the Least Squares Cross-Validation (LSCV) rule defined by

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

(Yi − r̂−i
n (θ, Xi))2, (4.1)

where r̂−i
n (θ, χ) is the leave-one-out estimator of r̂n(θ, χ). The second one is the Maximum Likelihood

Cross-Validation (MLCV) rule expressed by

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

log f̂ (Yi | r̂−i
n (θ, Xi)), (4.2)

where f̂ (· | ·) is the estimator of the conditional density of Y given ⟨θ, X⟩. Of course, in practice we
must optimize these rule over finite subset Θ of indices. According to [1], we propose to select the
optimal index from the following subset

Θ = Θn =

θ ∈ H , θ = k∑
i=1

ciei, ∥θ∥ = 1, and ∃ j ∈ [1, k] such that ⟨θ, e j⟩ > 0

 , (4.3)

where (ei)i=1,...,k are finite basis functions of the Hilbert subspace spanned by the covariates (Xi)i, and
(ci)i some real calibrated constants allowing to ensure the model’s identifiability. The common way is
to choose the (ci)i with calibration from the subset {−1, 0, 1}. In practice, it is shown that one can
estimate any parameter by the cross-validation method. Another alternative, which will be adopted in
this section, consists of selecting θ(t) among the eigenfunctions of the covariance operator
E

[
(X′ − E (X′)) ⟨X′, ·⟩H

]
, where X(t) is, for instance, a diffusion-type process defined on a real interval

[a, b] and X′(t) its first derivative see, for instance, [4]. Given a training sample L, the covariance
operator can be estimated by its empirical version (1/|L|)

∑
i∈L

(
X′i − EX′

)t (
X′i − EX′

)
. Consequently,

one can obtain a discretized version of the eigenfunctions θi(t) by applying the principle component
analysis method, as in [37]. Let θ∗ be the first eigenfunction corresponding to the highest eigenvalue
of the empirical covariance operator, which will replace θ in the simulation steps to calculate the
regression estimator. Lastly, it should be noted that there are numerous more concepts in vectorial
statistics that can be extended to the functional case. We refer to the local linear approach and
jump-preserving approaches proposed by [39]. The primary characteristic of this latest version is the
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concurrent estimate of the link function and the single index through the utilization of distinct scoring
functions. Therefore, implementing this latest approach in functional data analysis has great promise
in the current study. In addition to this approach, we can also utilize the concepts proposed by [72] to
estimate the linear component of this model. We refer back to [74] for other alternative estimating
methods in the linear model. Nevertheless, in our work we have concentrated on the estimation of the
nonparametric function and have established the uniform consistency over a single index. We point
out that the obtained uniform consistency constitutes a mathematical support for the convergence for
any estimator of a single index (see, [1]).

As previously mentioned, the asymptotic variance σ2
r (θ, χ) given in Theorem 3.8 depends on the

functions C1(θ, χ), C2(θ, χ), and r(θ, χ). So, the estimation of σ2
r (θ, χ) will be basically obtained by

estimating these functions, which are precisely based on the estimation of the functional parameter
θ. Let us denote by θ∗ the first eigenfunction corresponding to the first higher eigenvalue, and the
estimator Ĉl(θ∗, χ) defined as in [28, p. 44] by

Ĉl(θ∗, χ) =
1

nϕ̂θ∗(χ, hn)

n∑
i=1

Kl
i(θ
∗, χ), l = 1, 2 , (4.4)

where

ϕ̂θ∗(χ, hn) =
1
n

n∑
i=1

1{|⟨χ−Xi,θ∗⟩|<hn}.

By applying the kernel estimator of r(θ∗, χ) given above, the quantity σ2
r (θ∗, χ) can be estimated finally

by:

σ̂2
r (θ∗, χ) =

Ĉ2(θ∗, χ)
(̂
r(θ∗, χ)

)2

Ĉ1
2
(θ∗, χ)

. (4.5)

Corollary 4.1. Under the Assumptions of Theorem 3.8, we have√
nϕ̂θ∗(χ, hn)
σ̂2

r (θ∗, χ)
(̂
rn(θ∗, χ) − r(θ∗, χ)

)
→D N(0, 1). (4.6)

Thus, following Corollary 4.1, we can approximate (1 − ζ) confidence interval of r(θ∗, χ) by

r̂n(θ∗, χ) ± tζ/2 ×
σ̂(θ∗, χ)√
nϕ̂θ∗(χ, hn)

, (4.7)

where tζ/2 is the upper ζ/2 quantile of the standard normal variable N(0, 1). Using approximated
constants directly from the limiting law to generate confidence bands might sometimes result in
inadequate convergence qualities. It should be noted that this drawback can be circumvented by
employing the functional variant of the conventional wild bootstrap technique. Within the context of
censored functional data, the existing methods in the literature for regression estimations on
functional data, such as the one proposed by [31], can be regarded in a similar manner. Nevertheless,
it is necessary to provide the theoretical justification.
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5. Monte Carlo experiments

5.1. A simulation study

In this section, we show the feasibility and the efficiency of the constructed estimator through a
Monte Carlo experiment. Specifically, through this simulated data analysis we aim to:

(1) Examine the easy implementation of the constructed estimator;
(2) Evaluate the effect of the censorship as well as the regularity of the conditional distribution on the

performance of the estimator.

For this empirical analysis, we generate a functional random variable by taking

Xi(t) = bi cos(πt) + ηi for all t ∈ (0, 1) and for i = 1, 2, . . . , n = 150,

where bi is generated according to the normal distribution N(1, 2) and ηi is drawn from the standard
normal distribution N(2, 1). The curves are discretized on a grid generated from 100 equispaced
measurements in (0, 1).

Figure 1. A sample of 150 curves.

Next, the scalar response Y is generated by a single index model as follows:

Yi = r(⟨θ, Xi⟩) + ϵi, r(z) =
1

1 + z2 , for i = 1, . . . , n = 150, (5.1)

where the errors (ϵi) are assumed to be independent of (Xi). As the conditional distribution of Y given
X = x is explicitly given by the law of the error ϵ shifted by r(⟨θ, Xi⟩), we consider four types of errors
which are generated from the following normal mixture distributions (cf. [57] for more details on the
normal mixture distributions).

Law Distribution function
Standard normal distribution (S.N.D.) N(0, 1)
Skewed bimodal distribution (C.B.D.) 3

4N(0, 1) + 1
4N( 3

2 ,
1
9 )
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Now, concerning the functional index scalar θ, we put θ = e1 as the first element of the
Karhunen-Loève basis functions. Explicitly, θ is the eigenfunction associated to the first eigenvalue of
the covariance operator of the process (Xi)i. Clearly this index is an eligible functionals index because
it belongs in the same Hilbert subspace of the functional variable and is an element of Θn (see the
previous section). In practice, if this index is unknown, then we estimated it by using the rule (4.1 for
J = 5. The second feature of our study concerns the censorship aspect. The latter is modeled by
considering a censoring variable C distributed as an Exponential distribution Exp(1/λ). Typically, the
censoring rate is evaluated by the parameter λ. We choose three values of λ that are λ = 2, 0.5. Such
values allowing to generate data with two censoring percentage 60% and 10%. Now the
computationablity of the estimator as well as the effect of different parameters involved in its
efficiency, such as the conditional model, the choice single index, the choice of the smoothing
parameter, and the censorship are examined by drawing m independent n-samples of random pairs
(Xi,Yi) and we compute, for each sample, empirical values of the quantities

NT (χ0, θ) =

√
nϕ̂θ(χ0, hn)
σ̂2

r (θ̂, χ0)

(̂
rn(θ̂, χ0) − r(θ, χ0)

)
,

where χ0 is an arbitrary conditioning curve Xi0 and σ̂2
r (θ, χ0) is the plug-in estimator estimating the

asymptotic variance expressed by (4.5). In this quantity, we select the optimal smoothing parameter by
the cross-validation rule based on the Asymmetric Least Squares Error defined by

hCV = arg min
hn∈Hn

1
n

n∑
i=1

(Yi − r̂−i
n (θ, Xi))2,

where Hn is the set of positive real numbers, hn, such that, the ball centered at x with radius hn contains
exactly k neighbors of x. k is selected from the subset Hn = {5, 15, 25, . . . , 55}. Moreover, we point out
that the quantity NT (χ0, θ) is obtained by using the β-kernel. Finally, we highlight the impact of the
choice of the single index in the estimation quality, we compare this result to an arbitrary choice of θ.
Indeed, We repeat the same algorithm where θ̂ = e3 the third, of element of the Karhunen-Loève basis
functions. After computing the m independent values of (Zi = NTi(χ0, θ̂opt, hopt))i=1,...,m, for all these
situations we compare in Figures 2–5 the Q-Q plot of these quantities.

Figure 2. Optimal θ S.N.D. model.

AIMS Mathematics Volume 9, Issue 3, 7340–7371.



7354

Figure 3. Optimal θ C.B.D. model.

Figure 4. Arbitrary θ S.N.D. model.

Figure 5. Arbitrary θ C.B.D. model.
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Finally, we see clearly that the asymptotic behavior of the distribution of NT(χ0, θ) is strongly
affected by the choice of θ, the censorship rate, and the conditional distribution type even if the effect
of the last is not significant compared to the the censoring character and the index choice.

5.2. Real data example

The objective of this section is to assess the performance of the censored functional version of the
single index structure. This analysis complements the discussion in the previous section, where we
evaluated the ease of implementing the constructed estimator for different levels of censoring. In this
section, we return to emphasizing the importance of the functional single index model in practical
applications. It is well-documented that the econometrics field is the most suitable domain for this
type of semiparametric model (refer to [1] for further discussion). To illustrate the practical relevance,
we consider financial data in the form of the intraday return of the Nikkei stock index during the period
from January 1, 1984, to December 31, 2021. Given the nature of time-varying data, it can be treated
as censored data, as trading in stock markets typically halts whenever the index falls below a certain
threshold, especially during crisis periods like the Covid-19 pandemic. Considering the numerous
stoppages during this period, the censoring rate of this data is highly significant. The data under study
was obtained from the website https://fred.stlouisfed.org/series/NIKKEI225. To ensure
a representative sample of independent functional data, we selected three separate months: January,
May, and September. This selection resulted in a total of 111 functional observations. To address the
heteroscedastic nature of the data, we opted for a transformed version obtained through logarithmic
differencing. Typically, we proceed with

For each selected month Xi(d) = −100 log
(

s(d)
s(d − 1)

)
, d is the days of the month,

where s(t) is the daily return. Therefore, our objective is to forecast the variation of X(t) one month
ahead based on the historical trajectory of the preceding month. Typically, we frame this forecasting
problem by defining Y as X(d0) − X(d30). We then assess our prediction approach in comparison to the
nonparametric regression model defined by

r̃(x) =
n∑

i=1

∑n
i=1 K(h−1d(x, Xi))Yi∑n

j=1 K(h−1d(x, X j))
.

In conclusion, it is worth noting that we maintain consistent selection methods from the previous
section, employing the same kernel. Nevertheless, due to the discontinuity of the functional variable,
the selection of the PCA-metric becomes imperative. Additionally, the feasibility of both methods is
assessed using the Mean Squared Error (MSE) defined by

MS E =
1
n

n∑
i=1

(Yi − R̂−i
n (Xi))2,

where R̂−i
n (Xi) means either r̂−i

n (θ, Xi) or r̃(x). Ultimately, we partition the data into two sets: a learning
sample comprising 80 observations, and a testing sample with 31 observations. This observation split
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is repeated multiple times (50 times), and for each iteration, we compute the Mean Squared Error
(MSE) for both estimators. The resulting errors are depicted in the boxplot shown in Figure 6.

As expected, the semiparametric approach outperforms the nonparametric one, a conclusion
supported by the lower MSE values.

Figure 6. MSE of both estimator.

6. Concluding remarks

In this study, we investigated the nonparametric estimation challenge associated with the
regression function in the Single Functional Index Model within the framework of random censoring.
We focus on the kernel-type estimator for regression operator, achieving the strong almost-complete
consistency along with its rate and the asymptotic normality. We apply our findings to construct
confidence intervals. Finally, the usefulness of our proposed methodology is illustrated through both
finite sample results and the analysis of real data. Multiple avenues exist for developing our method
further. Observe that mixing is a type of asymptotic independence assumption that is commonly used
in the pursuit of simplicity, but can be unrealistic in situations where the data are highly dependent.
Extending non-parametric functional ideas to a general dependence structure is a discipline that is still
in the beginning stages. Notably, the ergodic framework eschews the commonly employed strong
mixing condition and its variants for measuring dependence, as well as the extremely involved
probabilistic calculations that this condition necessitates. It would be intriguing to extend our work to
the case of functional ergodic data, which requires nontrivial mathematics; however, this is well
outside the scope of this paper. As a perspective on this work, one can relax the stationarity
assumption we made in this paper and investigate similar limit theorems for local stationary
functional processes. In this case, we allow the Single Functional Index estimator to change smoothly
over time. It will be useful to establish similar results in this paper for data-driven bandwidth. The
proof of such a statement, however, should require a different methodology than that used in the
present paper, and we leave this problem open for future research. In a similar direction, it will be
natural to consider in a future investigation the functional kNN local linear approach expectile

AIMS Mathematics Volume 9, Issue 3, 7340–7371.



7357

regression estimators to obtain an alternative estimator which benefits from advantages of both
methods, the local linear method and the kNN approach.

7. Proofs of theorems

This section is dedicated to establishing the proof of our main result. The notation introduced earlier
will persist throughout the subsequent discussion.

Proof of Lemma 3.3. Using the fact that

IE
[̂
rD(θ, χ)

]
= IE

[̂
rD(t j(θ), χk(χ))

]
= 1,

we can write

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̂rD(θ, χ) − IE
[̂
rD(θ, χ)

]∣∣∣∣ ≤ sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χ) − r̂D(θ, χk(χ))
∣∣∣

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χk(χ)) − r̂D(t j(θ), χk(χ))
∣∣∣

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ . (7.1)

For the first and the second terms of the right-hand side of the inequality (7.1), we use the Hölder
continuity condition of K(·) (in view of (A3-(ii))) and the Cauchy-Schwartz’s inequality to get

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χ) − r̂D(θ, χk(χ))
∣∣∣ = O


√

log dSH
n + log dΘHn

nϕ(hn)

 , (7.2)

and

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χk(χ)) − r̂D(t j(θ), χk(χ))
∣∣∣ = O


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.3)

Clearly, we have by the Lipschitz property of K(·) imposed in (A3-(ii)) and the Cauchy-Schwartz’s
inequality, we can write

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χ) − r̂D(θ, χk(χ))
∣∣∣ ≤ C

ϕθ,χ(hn)
sup
θ∈ΘH

1
n

n∑
i=1

∣∣∣∣∣∣K
(
dθ(χ, Xi)

hn

)
− K

(
dθ(χk(χ), Xi)

hn

)∣∣∣∣∣∣
≤

C
hnϕθ,χ(hn)

sup
θ∈ΘH

1
n

n∑
i=1

∣∣∣∣ ∣∣∣∣⟨θ, χ − Xi⟩

∣∣∣∣ − ∣∣∣⟨θ, χk(χ) − Xi⟩
∣∣∣ ∣∣∣∣

≤ C sup
θ∈ΘH

∥θ∥ · ∥χ − χk(χ)∥

hnϕ(hn)

≤ C
ln

ϕ(hn)
.
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By the fact that ln = O( log n
n ), for n sufficiently large, we obtain

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χ) − r̂D(θ, χk(χ))
∣∣∣ = O

(
log n

nϕ(hn)

)
= o


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.4)

Similarly, following the same steps leading to (7.4), we derive

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χk(χ)) − r̂D(t j(θ), χk(χ))
∣∣∣ = O

(
log n

nϕ(hn)

)
= o


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.5)

For the last term of the right-hand side of (7.1), we obtain

IP

 sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ > η  log dSH

n + log dΘHn

nϕ(hn)

1/2
≤ IP

 max
k=1,...,d

SH
n

max
j=1,...,d

ΘH
n

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ > η  log dSH

n + log dΘHn

nϕ(hn)

1/2
≤ CdSH

n dΘHn IP

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ > η  log dSH

n + log dΘHn

nϕ(hn)

1/2 .
We highlight that

r̂D(t j(θ), χk(χ)) − 1 =
1
n

n∑
i=1

Ki(t j(θ), χk(χ)) − IE
[
K1(t j(θ), χk(χ))

]
IE

[
K1(t j(θ), χk(χ))

]
=

1
n

n∑
i=1

Ψi,

where

Ψi :=
Ki(t j(θ), χk(χ)) − IE

[
K1(t j(θ), χk(χ))

]
IE

[
K1(t j(θ), χk(χ))

] .

By combining (A1) and (A3-(i)), for all 1 ≤ i ≤ n, we readily obtain

|Ψi| ≤ C/ϕ(hn) and IE
[
|Ψi|

2
]
≤ C′/ϕ(hn). (7.6)

Applying the Bernstein-type inequality, for instance, see [66], p. 855, we get

IP

1
n

∣∣∣∣∣∣∣
n∑

i=1

Ψi

∣∣∣∣∣∣∣ > η
√

log dSH
n + log dΘHn

nϕ(hn)

 ≤ C′ exp{−Cη2 log(dSH
n dΘHn )}.

This readily implies that

IP

 sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ > η

√
log dSH

n + log dΘHn

nϕ(hn)

 ≤ C′(dSH
n dΘHn )1−Cη2

.
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Choosing η large enough in such a way that β = Cη2 > 2 and using the condition (A5-iii) in
combination with the Borel-Cantelli’s lemma, we infer that

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(t j(θ), χk(χ)) − 1
∣∣∣ = O


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.7)

This last result completes the proof of the lemma together with results (7.2) and (7.3). □

Proof of Corollary 3.4. For each χ ∈ SH and θ ∈ ΘH , we have

inf
χ∈SH

inf
θ∈ΘH

∣∣∣̂rD(θ, χ)
∣∣∣ ≤ 1

2
⇒ ∃χ ∈ SH ∃θ ∈ ΘH such that sup

χ∈SH
sup
θ∈ΘH

∣∣∣1 − r̂D(θ, χ)
∣∣∣ > 1

2
.

Consequently, we have

IP
(

inf
χ∈SH

inf
θ∈ΘH

∣∣∣̂rD(θ, χ)
∣∣∣ ≤ 1

2

)
≤ IP

(
sup
χ∈SH

sup
θ∈ΘH

∣∣∣1 − r̂D(θ, χ)
∣∣∣ > 1

2

)
.

Lemma 3.3 conclude the proof of the corollary. □

Proof of Lemma 3.5. We first notice that we have∣∣∣∣̂rN(θ, χ) − r̃N(θ, χ)
∣∣∣∣ = 1

nIE[K1(θ, χ)]

n∑
i=1

∣∣∣∣∣∣
(
δiYi

Gn(Yi)
−
δiYi

G(Yi)

)
Ki(θ, χ)

∣∣∣∣∣∣
=

1
nIE[K1(θ, χ)]

n∑
i=1

∣∣∣∣∣∣∣
1{Y0

i ≤Ci}
Y0

i

Gn(Y0
i )
−
1{Y0

i ≤Ci}
Y0

i

G(Y0
i )

 Ki(θ, χ)

∣∣∣∣∣∣∣
≤

1
nIE[K1(θ, χ)]

n∑
i=1

|Y0
i Ki(θ, χ)|

∣∣∣∣∣∣∣
Gn(Y0

i ) −G(Y0
i )

Gn(Y0
i )G(Y0

i )


∣∣∣∣∣∣∣

≤
τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣ 1
nIE[K1(θ, χ)]

n∑
i=1

Ki(θ, χ)

≤ r̂D(θ, χ)
τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣

≤ (̂rD(θ, χ) − 1)
τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣

+
τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣ .

This readily implies that

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̂rN(θ, χ) − r̃N(θ, χ)
∣∣∣∣

≤ sup
χ∈SH

sup
θ∈ΘH

∣∣∣̂rD(θ, χ) − 1
∣∣∣ τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣

+
τF

Gn(τF)G(τF)
sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣ .
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By Lemma 3.3 in conjunction with result of [32] or [23], that is :

sup
t<τF

∣∣∣Gn(t) −G(t)
∣∣∣ = O

( log2 n
n

)1/2 ,
which implies as n→ ∞, Gn(τF)G(τF) ∼ (G(τF))2. Since

log2 n
n
= o

(
log n

nϕ(hn)

)
,

by (A4-(ii)), we get

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̂rN(θ, χ) − r̃N(θ, χ)
∣∣∣∣ = o


√

log dSH
n + log dΘHn

nϕ(hn)

 .
Hence, the proof is complete. □

Proof of Lemma 3.3. By stationarity, conditioning w.r.t ⟨θ, X1⟩ and the fact IE
[
1{Y0

1≤C1}
|Y0

1

]
= G(Y0

1 ), we
readily infer

IE
[̃
rN(θ, χ)

]
− r(θ, χ)

=
1

IE[K1(θ, χ)]
IE

[
δ1Y1

G(Y1)
K1(θ, χ)

]
− r(θ, χ)

= IE


IE

[
δ1Y1

G(Y1)

∣∣∣∣ ⟨θ, X1⟩

]
K1(θ, χ) − r(θ, χ)IE[K1(θ, χ)]

IE[K1(θ, χ)]


= IE


IE

 Y0
1

G(Y0
1 )

IE
{
1{Y0

1≤C1}
|Y0

1

} ∣∣∣∣ ⟨θ, X1⟩

 K1(θ, χ) − r(θ, χ)IE[K1(θ, χ)]

IE[K1(θ, χ)]


= IE

[
r(θ, X1)K1(θ, χ) − r(θ, χ)IE[K1(θ, χ)]

IE[K1(θ, χ)]

]
=

1
IE[K1(θ, χ)]

IE
[
K1(θ, χ)1{Bθ(χ,hn)}(X1) (r(θ, X1) − r(θ, χ))

]
.

Due to the Lipschitz condition of the function r(·, ·) given in assumption (A2), we get

1Bθ(χ,hn)(X1)|r(θ, X1) − r(θ, χ)| ≤ Cdθ(χ, X1)γ

≤ Chγn.

Finally, uniformly on χ and θ, one can write

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣IE[̃
rN(θ, χ)

]
− r(θ, χ)

∣∣∣∣ = O(hγn). (7.8)

This completes the proof. □

AIMS Mathematics Volume 9, Issue 3, 7340–7371.



7361

Proof of Lemma 3.5. Consider the following decomposition:

sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̃rN(θ, χ) − IE
[̃
rN(θ, χ)

]∣∣∣∣
≤ sup

χ∈SH
sup
θ∈ΘH

∣∣∣̃rN(θ, χ) − r̃N(θ, χk(χ))
∣∣∣︸                                   ︷︷                                   ︸

F1

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣̃rN(θ, χk(χ)) − r̃N(t j(θ), χk(χ))
∣∣∣︸                                          ︷︷                                          ︸

F2

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣̃rN(t j(θ), χk(χ)) − IE
[̃
rN(t j(θ), χk(χ))

]∣∣∣∣︸                                                   ︷︷                                                   ︸
F3

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣IE [̃
rN(t j(θ), χk(χ))

]
− IE

[̃
rN(θ, χk(χ))

]∣∣∣∣︸                                                     ︷︷                                                     ︸
F4

+ sup
χ∈SH

sup
θ∈ΘH

∣∣∣∣IE [̃
rN(θ, χk(χ))

]
− IE

[̃
rN(θ, χ)

]∣∣∣∣︸                                             ︷︷                                             ︸
F5

.

As both F1 and F5 can be treated in a similar way, we only deal with F1. Indeed, by (A3-(ii)) and the
Cauchy-Schwartz inequality, we have

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̃rN(θ, χ) − r̃N(θ, χk(χ))
∣∣∣

≤
1
n

sup
χ∈SH

sup
θ∈ΘH

n∑
i=1

δi|Yi|

G(Yi)

∣∣∣∣∣∣∣∣ Ki(θ, χ)
IE

[
K1(θ, χ)

] − Ki(θ, χk(χ))

IE
[
K1(θ, χk(χ))

]
∣∣∣∣∣∣∣∣

≤
τF

nϕ(hn)
sup
χ∈SH

sup
θ∈ΘH

n∑
i=1

1{Y0
i ≤Ci}
|Y0

i |

G(Y0
i )

∣∣∣Ki(θ, χ) − Ki(θ, χk(χ))
∣∣∣

≤
CτF

G(τF)
sup
χ∈SH

sup
θ∈ΘH

∥θ∥ · ∥χ − χk(χ)∥

hnϕ(hn)

≤
CτF

G(τF)

ln

ϕ(hn)
.

Thus, by assumption (A4-(ii)), since ln = O
(

log n
n

)
, by Jensen’s inequality, as n tends to infinity, we get

F5 ≤ F1 = O


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.9)

Analogously, dealing with F2 and F4 in the same way, one may easily obtain

sup
χ∈SH

sup
θ∈ΘH

∣∣∣̃rN(θ, χ) − r̃N(θ, χk(χ))
∣∣∣

AIMS Mathematics Volume 9, Issue 3, 7340–7371.



7362

≤
C

nϕ(hn)
sup
χ∈SH

sup
θ∈ΘH

n∑
i=1

1{Y0
i ≤Ci}
|Y0

i |

G(Y0
i )

∣∣∣Ki(θ, χ) − Ki(t j(θ), χ)
∣∣∣

≤
CτF

G(τF)
sup
χ∈SH

sup
θ∈ΘH

∥χ∥ · ∥θ − t j(θ)∥

hnϕ(hn)

≤
CτF

G(τF)

ln

ϕ(hn)

= O
(

log n
nϕ(hn)

)
.

Hence, we conclude that

F4 ≤ F2 = O


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.10)

Now, our focus turns to the upper bound of the term F3. On the one hand, we express

IP (F3 > ϵ) ≤ dSH
n dΘHn max

1≤k≤d
SH
n

max
1≤ j≤d

ΘH
n

IP
(∣∣∣∣̃rN(t j(θ), χk(χ)) − IE

[̃
rN(t j(θ), χk(χ))

]∣∣∣∣ > ϵ)
≤ dSH

n dΘHn max
1≤k≤d

SH
n

max
1≤ j≤d

ΘH
n

IP


∣∣∣∣∣∣∣

n∑
i=1

Ψ̃i

∣∣∣∣∣∣∣ > nϵ

 ,
with

Ψ̃i :=
δi YiKi(t j(θ), χk(χ)) − IE

[
δi YiKi(t j(θ), χk(χ))

]
G(Yi)IE

[
K1(t j(θ), χk(χ))

] .

On the other hand, in order to apply the Bernstein-type exponential inequality we need to bound the
two quantities

∣∣∣Ψ̃i

∣∣∣ and IE
∣∣∣Ψ̃i

∣∣∣2 , for each i = 1, . . . , n. Indeed, because of (A1) and (A3-(i)), by the fact
that

IE
[
1{Y0

i ≤Ci}
|Y0

i

]
= G(Y0

i ),

we have

∣∣∣Ψ̃i

∣∣∣ =
∣∣∣∣∣∣∣∣
1{Y0

i ≤Ci}
Y0

i Ki(t j(θ), χk(χ)) − IE
[
1{Y0

i ≤Ci}
Y0

i Ki(t j(θ), χk(χ))
]

G(Y0
i )IE

[
K1(t j(θ), χk(χ))

]
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
Y0

i Ki(t j(θ), χk(χ)) − IE
[
Y0

i Ki(t j(θ), χk(χ))
]

IE
[
K1(t j(θ), χk(χ))

]
∣∣∣∣∣∣∣∣

≤ τF


∣∣∣∣∣∣∣∣ Ki(t j(θ), χk(χ))

IE
[
K1(t j(θ), χk(χ))

]
∣∣∣∣∣∣∣∣ + 1


= O

(
1
ϕ(hn)

)
.
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By assumption (A1-(ii)) and the fact that, for each θ, χ and i, as n goes to∞,

IE
[
Kl

i(θ, χ)
]
→ Clϕθ,χ(hn), l ∈ {1, 2}, (7.11)

for details see [30]. This readily implies that

IE
∣∣∣Ψ̃i

∣∣∣2 = IE

∣∣∣∣∣∣∣∣
1{Y0

i ≤Ci}
Y0

i Ki(t j(θ), χk(χ)) − IE
[
1{Y0

i ≤Ci}
Y0

i Ki(t j(θ), χk(χ))
]

G(Y0
i )IE

[
K1(t j(θ), χk(χ))

]
∣∣∣∣∣∣∣∣
2

≤ IE



1{Y0
i ≤Ci}

Y0
i

G(Y0
i )

2

K2
i (t j(θ), χk(χ))

IE2
[
K1(t j(θ), χk(χ))

]


≤ IE



 IE
[
1{Y0

i ≤Ci}
|Y0

i

]
Y0

i

G(Y0
i )


2

K2
i (t j(θ), χk(χ))

IE2
[
K1(t j(θ), χk(χ))

]


≤

 Y0
i

IE
[
K1(t j(θ), χk(χ))

]
2

IE
[
K2

1(t j(θ), χk(χ))
]

≤

(
τF

C1ϕθ,χ(hn)

)2 (
C2ϕθ,χ(hn)

)
= O

(
1
ϕ(hn)

)
.

Now, letting ϵ = η

√
log dSH

n + log dΘHn

nϕ(hn)
, and applying Bernstein’s inequality, we get

IP

F3 > η

√
log dSH

n + log dΘHn

nϕ(hn)

 ≤ C′dSH
n dΘHn exp

{
−Cη2 log(dSH

n dΘHn )
}

≤ C′
(
dSH

n dΘHn

)1−Cη2

.

By choosing β = Cη2 and using (A4-(ii)), we get

F3 = Oa.co.


√

log dSH
n + log dΘHn

nϕ(hn)

 . (7.12)

Therefore, Lemma 3.5 follows from results (7.9), (7.10) and (7.12). □
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Proof of Lemma 3.9. It is clear that the result of Lemma 3.7 allows us to write

r̂D(θ, χ) − 1 = O
( log n

nϕθ,χ(hn)

)1/2 ,
almost completely, which implies that r̂D(θ, χ) converges to 1, in probability as n goes to∞. □

Proof of Lemma 3.10. By the result of Lemma 3.9, and the fact that Gn(t) converges asymptotically to
G(t), for all t < τF , and thanks to the result (7.8), under assumption (A4’-ii), it follows that(

nϕθ,χ(hn)
)1/2 (

IE
[̂
rn(θ, χ)

]
− r̂D(θ, χ)r(θ, χ)

)
= O

(√
nϕθ,χ(hn)h2γ

n

)
→ 0, as n→ ∞.

This completes the proof of the lemma. □

Proof of Lemma 3.11. For all θ, χ ∈ H , we define

Qi(θ, χ) =

√
ϕθ,χ(hn)

√
nIE

[
K1(θ, χ)

] (
δiYi

Gn(Yi)
Ki(θ, χ) − IE

[
δ1Y1

Gn(Y1)
K1(θ, χ)

])
,

and

S n :=
n∑

i=1

Qi(θ, χ).

We have
S n =

√
nϕθ,χ(hn)

(̂
rN(θ, χ) − IE

[̂
rN(θ, χ)

])
.

So, our claimed result is now

S n → N(0, σ2
r (θ, χ)). (7.13)

Therefore, we have

Var(S n) = nϕθ,χ(hn)Var
(̂
rN(θ, χ) − IE

[̂
rN(θ, χ)

] )
= nϕθ,χ(hn)Var

(̂
rN(θ, χ)

)
.

Now, we have by conditioning w.r.t ⟨θ, X1⟩, and taking into account the stationarity property and the
fact that Gn(t)→ G(t), we have

Var(̂rN(θ, χ)) =
1

(nIE
[
K1(θ, χ)

]
)2 Var

 n∑
i=1

δiYi

Gn(Yi)
Ki(θ, χ)


=

(
IE

[
δ1Y1

G(Y1)

∣∣∣∣ ⟨θ, X1⟩

])2

(nIE
[
K1(θ, χ)

]
)2 Var

 n∑
i=1

Ki(θ, χ)


= (r(θ, χ))2

 IE
[
K2

1(θ, χ)
]

n(IE
[
K1(θ, χ)

]
)2 −

1
n

 .
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Thanks to the result (7.11), we have

Var(̂rN(θ, χ)) = (r(θ, χ))2

 C2ϕθ,χ(hn)

n
(
C1ϕθ,χ(hn)

)2 −
1
n


= (r(θ, χ))2

[
C2

nC2
1ϕθ,χ(hn)

+ o
(

1
nϕθ,χ(hn)

)]
= (r(θ, χ))2

[
C2

C2
1

+ o (1)
]

1
nϕθ,χ(hn)

, (7.14)

and finally

Var(S n) = nϕθ,χ(hn) (r(θ, χ))2
[
C2

C2
1

+ o (1)
]

1
nϕθ,χ(hn)

= (r(θ, χ))2
[
C2

C2
1

+ o (1)
]

→ C2/C2
1 (r(θ, χ))2 =: σ2

r (θ, χ), as n→ ∞.

Now, with Zi(θ, χ) =
1

nIE[K1(θ, χ)]
δiYi

Gn(Yi)
Ki(θ, χ), the only remaining task is, for some l > 0, to prove

n∑
i=1

IE
[∣∣∣∣Zi(θ, χ) − IEZi(θ, χ)

∣∣∣∣2+l]
Var

 n∑
i=1

Zi(θ, χ)

(2+l)/2 −→ 0, as n→ ∞. (7.15)

Thanks to result (7.14), it is clear that

nϕθ,χ(hn)Var

 n∑
i=1

Zi(θ, χ)

 = nϕθ,χ(hn)Var
(̂
rN(θ, χ)

)
,

converges to C2
C2

1
(r(θ, χ))2 = σ2

r (θ, χ), as n→ ∞. So, it remains to prove that, as n→ ∞ :

(nϕθ,χ(hn))(2+l)/2
n∑

i=1

IE
[
|Zi(θ, χ) − IEZi(θ, χ)|2+l

]
→ 0.

Since
∣∣∣∣ δiYi

Gn(Yi)

∣∣∣∣ < τF , and by the use of the elementary inequality : (a + b)p ≤ 2p−1(ap + bp), ∀a, b ≥
0, ∀p ≥ 1, we arrive at

(nϕθ,χ(hn))(2+l)/2
n∑

i=1

IE
[
|Zi(θ, χ) − IEZi(θ, χ)|2+l

]
≤ (nϕθ,χ(hn))(2+l)/2

(
τF

C1nϕθ,χ(hn)

)2+l n∑
i=1

IE
[(∣∣∣∣Ki(θ, χ)

∣∣∣∣ + ∣∣∣∣IE [
Ki(θ, χ)

] ∣∣∣∣)2+l
]
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≤

(
τF

C1

)2+l 1
(nϕθ,χ(hn))(2+l)/2

n∑
i=1

IE
[(∣∣∣∣Ki(θ, χ)

∣∣∣∣ + ∣∣∣∣IE [
Ki(θ, χ)

] ∣∣∣∣)2+l
]

≤ 21+l

(
τF

C1

)2+l 1
(nϕθ,χ(hn))(2+l)/2

n∑
i=1

IE
[(∣∣∣∣Ki(θ, χ)

∣∣∣∣2+l
+

∣∣∣∣IE [
Ki(θ, χ)

] ∣∣∣∣2+l)]
≤ 21+l

(
τF

C1

)2+l 1
(nϕθ,χ(hn))(2+l)/2 n

(
IE

[∣∣∣∣K1(θ, χ)
∣∣∣∣2+l]
+

∣∣∣∣IE [
K1(θ, χ)

] ∣∣∣∣2+l)
≤ 21+l

(
τF

C1

)2+l 1
(nϕθ,χ(hn))(2+l)/2 n

(
Cϕθ,χ(hn) +

(
ϕθ,χ(hn)

)2+l
)

≤ 21+l

(
τF

C1

)2+l 1
(nϕθ,χ(hn))(2+l)/2 nϕθ,χ(hn) (C + o (1))

= O
 1

(nϕθ,χ(hn))l/2

 −→ 0.

The last convergence is a consequence of A4’(i). This finishes the proof of the lemma. □
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