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Abstract: In this paper, we focus on the strong product of the pentagonal networks. Let R, be a
pentagonal network composed of 2n pentagons and n quadrilaterals. Let P? denote the graph formed
by the strong product of R, and its copy R;,. By utilizing the decomposition theorem of the normalized
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Kirchhoff index completely. Moreover, the complexity of P? is determined.
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1. Introduction

Graph categories considered in this study are simple, finite, and linked. Allow the graph G to be
made up of Vi and edge set Eg, i.e., G = (Vg, Eg). For more graph notations, readers should refer
to [1].

If and only if two neighbouring verticies i and j of G, the adjacency matrix A(G) = (a;j) is a
(0,1)-matrix, a;; = 1. The diagonal degree matrix of G is

D¢ = diag(dl,dz, e dy),

where d; represents the degree of vertex i in G. The difference between the degree matrix Dg and
adjacency matrix Ag of G gives rise to the Laplace matrix, denoted as Ls. The normalized Laplacian [2]
is defined as

L(G) = I - D(G)*(D(G)'A(G))D(G) " = D(G) L(G)D(G)*.
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The (m, n)th-entry of £(G), which is designated

1, m=n;
(L(G))n =1~ dlm —, M #n, vy is adjacent to v,;
0, otherwise.

The distance between both v; and v;, known as d;; = dg(v;, v;), represents the length of the smallest
path in question. Wiener and Dobrynin [3,4] introduced the Wiener index for the first time in 1947. In
addition, the Wiener index is denoted as

WG) = ) dij.

i<j

For further information on the Wiener index, please refer to [5-9].
The Gutman index of a simple graph G is introduced [10] and denoted as

GMI(G) = Z d,‘djdij,

i<j

taking into account the degree d; of vertex v;.
The Kirchhoff index [11, 12] characterizes graph G by summing the resistance distances between
every pair of vertices, similar to the Wiener index, namely

KfG) =) i

i<j

The multiplicative degree-Kirchhoff index, initially introduced by Chen and Zhang [13] in 2007. It
is an extension of the traditional Kirchhoft index, which is expressed as

Kf*(G) = Z didjrij-

i<j

The techniques of the Kirchhoff index and multiplication degree-Kirchhoff index can be found
in [14-18]. The multiplication degree-Kirchhoff index has garnered significant attention due to its
remarkable contributions in academia and practical applications in computer network science,
epidemiology, social economics, and other fields. Further research results on the Kirchhoff index and
multiplication degree-Kirchhoff index can be explored through [19-23].

The spanning tree of a graph G, also known as complexity, denoted as 7(G), refers to the number
of subgraphs that encompass all vertices in G. This measure serves as a crucial indicator for network
stability and plays a significant role in assessing the structural characteristics of graphs. For further
insights into related topics such as the count of spanning trees, interested readers are encouraged to
consult [24-26].

With the rapid advancement of scientific research and the successful application of topology in
practical scenarios, topological theory has gained increasing recognition worldwide. The calculation
problem concerning the phenylene Wiener index has been effectively resolved by Pavlovi¢ and
Gutman [27]. Chen and Zhang [28] have developed a precise equation for predicting the Wiener index
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of random phenylene chains. Additionally, Liu et al. [29] have identified both the degree-Kirchhoff
index and the number of spanning trees for L, dicyclobutadieno derivatives of [n] phenylenes.

Given two automorphic graphs S and K, we define the symbol S R K to represent the strong product
of these two graphs with V(S) X V(K), which is commonly referred to as the strong product in graph
theory literature. Readers can refer to [30] for more comprehensive definitions and concepts. Recently,
Pan et al. [25] utilized the resistance distance of a strong prism formed by P, and C, to determine the
Kirchhoff index. Similarly, Li et al. [31] derived graph invariants and spanning trees from the strong
prism of a star §,,. Motivated by [30-33], we obtain the pentagonal network R, and its strong product
P2. The pentagonal network consists of numerous adjacent pentagons and quadrilaterals with each
quadrangle having a maximum of two non-adjacent pentagons, as shown in Figure 1. The P? is the
strong product of R,, as depicted in Figure 2. It obviously that

|V(P?)| = 14n and |E(P2)| = 47n - 8.

Figure 2. The strong product P2 of the linear pentagonal.

In this paper, we focus on the strong product of pentagonal networks, specifically examining the
graph P2 with n > 1. The subsequent sections are organized as follows: Section 2 provides a
comprehensive review of relevant research materials, presenting illustrations, concepts and lemmas.
In Section 3, we derive the normalized Laplacian spectrum and present an explicit closed formula for
the multiplicative degree-Kirchhoff index. Additionally, we calculate the complexity of P2. 1In
Section 4, we conclude the paper.

AIMS Mathematics Volume 9, Issue 3, 7111-7130.



7114

2. Preliminary results

In this section, let R, represent the penagonal-quadrilateral networks, as illustrated in Figure 1. P2
i1s composed of R, and its copy R;, positioned one in front and one behind, as shown in Figure 2.
Moreover,
Dy(x) = det(xl, — A)

represents the characteristic polynomial of matrix A.
The fact that

m= (15,20, ,no)(1,1)(2,2") - - - (Bn), (3n)’)

is an automorphism deserves attention. Let

Vl = {1()720"” s Moy U1, Uy * 0 s U3, VT, w0 ’V3n}’
’ ’ ’ ’ ’ ’ ’ /
V2 = {10’207"' ano’upuza”' ’u3n’v1a”' ,V3n},

|V(P?)| = 14n and |E(P?)| = 47n - 8.

Subsequently, the normalized Laplacian matrix can be represented as a block matrix, that is

o _ [ Lvivi Lvv,
LP) = ( Lyv,v, Ly, )’
in which
Lviv, = Lv,v,s Ly, = Ly,
Let
W—[ fi&z _\/L’iljn ]
Blon =5l
then,
;[ La O
WLPHW :( 0 1 )
where

Ly=Lyy +Lyy, and Lg = Lyy, — Ly,v,.

Observe that W’ and W are transpose matrices of each other.
The characteristic polynomial of the matrix R, is denoted as

O(R) :=det(x] — R).

The decomposition theorem process for P? is obtained in a similar manner to Pan and Li [34], thus we
omit this proof and present it as follows:

Lemma 2.1. [35] Assuming that the determination of L, and Lg has been previously described, then
D1, (%) = D,y (x) - Dpyg(X).
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Lemma 2.2. [13] The graph G is an undirected connected graph with n vertices and m edges. Then
=1
Kf(G)=2 —.
J1(G) =2m kzz; T

Lemma 2.3. [2] The number of spanning trees in G, referred to as the graph’s complexity, can be

considered a fundamental measure in graph theory. Then

1 n n
T(G) = — di . /lj.
2m ll:_ll l;[
3. Main results

In this section, we explore the methodology for deriving an explicit analytical expression of the
multiplicative Kirchhoft' index by traversing the normalized Laplacian matrix. Meanwhile, we

determine the computational complexity of P2. Subsequently, employing the normalized Laplacian,
we derive matrices of order 6n as

1 1
11 -7 01 0 0 -1 01 0 0 0
-5 ! -3 0 0 0o -1 0 0 0
0o -1 1 0 0 0 0o -1 0 0
: : : : 21 : : : :1 :
0 0 0 I -%= 0 0 0 -2 0
r 0 0 0 -7 | 0 0 0 0 -1
VW, = 1 1
H -1 01 0 0 0 11 -5 01 0 0
0 -1 0 0 0 -x | -3 0 0
0 0o -1 0 0 0 -1 1 0 0
: : Zl : : : : 11
0 0 0 -1 01 0 0 0 1] -7
0 0 0 0o -1 0 0 0 -5 !
and
1 1 1
T 01 0 0 -1 01 0 0 0
-5 7 "1 0 0 0o -1 0 0 0
o -1 -1 0 0 0 o -i 0 0
0 0 0 -3 7= 0 0 0 -1+ 0
P 0 0 0 -5 -5 0 0 0 0 -3
Viva = 1 1 1
-1 01 0 0 0 = o1 0 0
0o -1 0 0 0 -7 -7 -3 0 0
0 0o -1 0 0 0o -1 -1 0 0
0 0 0 -1 0 0 0 0 -7
0 0 0 0 -3 0 0 -5 -

AIMS Mathematics
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Due to

Ly = Lyy,(PY) + Ly,v,(P?)

and

-[rS = -EV] Vi (Pi) - -EVl Vz(Pi)’

it can be convincingly argued that

2 1
P - 0 0
L 3 1 0
V35 7 7
o -1 2 0
0 0 0 2
0 0 0 -4
_ V35
La =2 -1 0 o 0
0o -1 0 0
o o -1 0
0 0 0 -1
0o 0 0 0
and
. 688
-LS = dlag(ga ?a ?7 e

o O O

ool U\|N®|_
i

|—

L0 0 0 0
o i 0 0 0
0 0 0 0 0
0O 0 0 -1
0O 0 0 o I
2 1
Py 01 0 0

7 7 7 0 0
o i 3 0 0
: : . 3 :1
0O 0 0 P
0 0 0 - ¢

688 86

9 57 7’ 7’ b 7, 5 .

Utilizing Lemma 2.1, it is revealed that the P2 normalized Laplacian spectrum consists of the

eigenvalues from L, and L.
multiplicities of 4 and (6n — 4), respectively.
Let

It is established that the Lg possesses eigenvalues

6

8 .
s and g with

2 1
Py 01 0 0 0 0
-—= 3 1o 0 0 0
o -1 3 - 0 0 0
0 o -1 3 0 0 0
M = . . L .
0 0 0 0 S
1 3 1
0 0 0 0 SR
0 0 0 0 0 TV 5 GuxGn
and
1 1 1 1 1 1 1 1
N: d R = = B T T Sy S )
iag(=35,=3:=3"773 77775

where the matrices M and N are both of order 3n.

AIMS Mathematics
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The matrices M and N are combined to form a block matrix, denoted as %.LA, in the following
manner:

Suppose that

is a block matrix. Hence, we can obtain

1
W(ELA)W':( M+N-— 0 )

0 M-N

LetJ =M+ Nand K = M — N. Then,

1 1
gl _5_3? o1 0 0 0 0
&= 5 -3 0 0 0 0
0 -1 2 -1 0 0 0
0 o -L1 2 0 0 0
J = g .
0 0 0 0 : -1 0
1 4 1
0 0 0 0 -1 71 _3_@
0 0 0 0 0 _\/_375 5 (3n)x(3n)
and
3 1
51 _X_g 01 0 0 0 0
-&= 3 -3 0 0 0 0
o -1 3 -1 0 0 0
4
. - 0 0 —.% 2 0 0 (_) |
0 0 0 0 i -4 0
1 4 1
0 0 0 0 -1 71 —3—5
O O 0 0 O _\/_3? § (3n)x(3n)

in which the diagonal elements are

\ll-lk
DN W
v

4
A

\ll-lk
SRS
RN

3
37

Based on Lemma 2.1, it is evident and demonstrable that the eigenvalues of %ﬁA are identical
to those of J and K. Assume that the eigenvalues of J and K are o and ¢; (i,j = 1,2,---,3n),
respectively, with

01025035 "< 03, §1<<6=<"=<G3.
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We verify oy > 0 and ¢; > 0. In addition, it is easy to know that the normalized Laplacian spectrum
of P2is {207,203, , 20734, 261,262, * ,263,}. Note that

|E(P2)| = 47n - 8,

we can obtain Lemma 3.1 according to Lemma 2.2.

Lemma 3.1. Assume that P2 is the strong product of the pentagonal network. Then,
5 151 151

Kf*(P?) =2(47n - 8)(2 -2 —§——§—
(P, =24Tn 8)( X =+ (6n ) 2240, 2j:1§j)

3n-1 51 &l
:(47n—8)( - +Z; ;g—)

i=2

Subsequently, we partition the computation of the aforementioned equation into two distinct

components and prioritize the initial calculation of Zl -

Lemma 3.2. Suppose that (i = 1,2, - ,3n) is defined as described previously.

Z 1 1035#° + 14202 + 617n
o 2(81n + 490)

Proof. Suppose that

DJ) = X a N Az, + Az x = x(x3"_1 +a X"+t ag,x + A3p—).

Then 0, 03, - - - , 073, fulfil the following equation
@ P Ay x + azyg = 0,
and we observe that - =, L ..., L are the roots of the following equation
o’ o3’ O3n

A1 X"+ a3, X+ g x+ 1 =0.

By Vieta’s Theorem, one has

3n

_1\3n-2
Z i _ (=D a3n—2. G.1)
i=2

o (=1 as,,

For each value of i from 1 to 3n + 1, we consider J; and assign j; as the determinant of J;. We will

derive the formula for j; , which can be utilized to calculate (—1)**"2a3,_, and (=1)**"'as,_,. Then one
has

1 | 1 ) 1 1 . 1 . 1 . 1

=35 2735 BT 55 AT 17150 ST 12005 0T 840350 7 T 5882450 2T 4117715

AIMS Mathematics Volume 9, Issue 3, 7111-7130.
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and
1<i<nm

. 1 -
J3i = 5 J3i-1 — 35.J3i-25
0<i<n-1;

1 -
Jai+1 7]3i — 29J3i-1»

. _ . 1 -
J3iv2 = 7J3i+1 — 39J3i

|| Qo

0<i<n-1

Through a straightforward computation, one can derive the following general formulas

(350 I1<i<n
(3.2)

J3i =
i 0<i<n-1;

J3i+1

Il i

1
5° 343)
j3i+2 3i (343)l O0<i<n-1
According to Eq (3.1), we divide the numerator and denominator into two facts and reveal them later.
For the sake of convenience, we represent the diagonal elements of J as /; in a simplified manner. 0O

Fact 3.3.

490 + 81n, 1
_1 3n-1 ] = n.
(=D asp-1 75 (343)

Proof. Given that J is a left-right symmetric matrix, the sum of all principal minors can be represented
by the number (—1)*~'as,_;, where these minors correspond to rows and columns with indices equal

to(Bn-1).
3n-1
(=)™ az, Zdet Lalil = Z ( I ) ;J, e (33)
where
li+1,i+1 : 0 0
S, = : : . :
’ o - l3n—l,i3n—1 =
0 e _\/_3*5 l3n,3n

By Egs (3.2) and (3.3), we have

n—1

3n-1
D" az1 = 2 j3041 + Z]z(z )42 * J3m=n+2 t Z J31° J3on-n+1 + Z]zm J3(n=0)
=0

=1
08 1w 3 1y T 1y 1\
(5a3) * 55 Gas) * 5 (gg) + 7 (53)

:?. 343 * 352 343 25 \343
_ 490+811’l( 1 )n
25 3437 °
O

This is the completion of the proof.
Volume 9, Issue 3, 7111-7130.
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Fact 3.4.

(—D"?az, =

103513 + 142n? — 617n( 1
50

3%)'

Proof. We note that the sum of all principal minors of order 3n — 2 in J can be expressed as

(-1)*"2as,_,. After that,

3n Ji—l 0
D" ay0 = Y| 0 Z
1<i<j 0 0
where
li+1,i+1
Z = :
0
and
lj+1,j+1
J3n—j O
0
Note that

3n 3n
(—1)3"_2613,1_2 = Z det J;_ - det Z - det J3n—j = Z detZ - s, - S3p—j-

I<i<j

0
0 |, 1<i<j<3n-2,
J3n—]
0
li-1.j-1
0 0
l3n—1,fn—l - \/%75
- \/_3*5 l3n,3n

(3.4)

I<i<j

According to Eq (3.4), the determinant of Z varies depending on the values of i and j, as well as s
and 7. Consequently, we can categorize the primary scenarios into six distinct classifications.

Casel.i=3s,j=3tforl <s<t<n,and

% ;% q 0 0
N 71 _27 01 X
0 = 3 = 0
detZ, = 0 0 -7 3 0
0 0 0 O Z
0O 0 0 O -1
Case2.i=3s,j=3t+1for1 <s<t<n,and
% 2; 0 0 0
N 71 _27 01 0
0 = 3 = 0
det Z, = 0 0 -7 7 0
0 0 0 0 2
0O 0 0 O -1
AIMS Mathematics

0
0
0
0 _21( l‘)( 1 )S—t
: I EVE
_.l
7
2
7 1(3s-3r-1)
0
0
0
0 1 \s—t
=Be-n+1(33) -
.l
!
2
T '(3s=30)

Volume 9, Issue 3, 7111-7130.
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ori=3s+2,j=3tfor0<s<t<n,and

2 1
A R
07 _71 27 -1 0O 0
7 71 27 1 s—t—1
detZy = | 0 0 -3 3 0 0 :(33—3t—2)(%) .
0 0 0 0 2 -1
2
0 0 0 0 _% 7 13s-31-3)

Case 3. In the same way, i = 3s, j=3r+2for 1 < s <t <n,and

Poboo 0 0
0o -1 2z _1 0 0
0 07 —71 27 0 0 1 \s—t+1
detZ, = 7 7 = 49(3s — 3t + 2)(%) :
0 0 0 0 2 L
11
0 0 0 0 V35 5 (3s=3t+1)
ori=3s+1,j=3tfor0 < s<t<n,and
2 1
P00 0 0
5 3 50 0 0
det 7 8 0 7 8 8 49(3s - 3t — 1)( Lyt
" _ -1 2 = -3t—1)(— .
et Ls . 7T . (s ) 343)
0 0 0 0 e
2
0 0 0 0 _% 7 l35-31-2)

Case 4. Similarly,i =3s+1, j=3t+1forO0< s <t <n,and

2 1

S

()7 _71 27 _1 0 0

0 o0 -1 2 0 0 Ly
detZs = 7 7 =21(s—t)(%) ,

0 0 0 O 2 -1

0 0 0 0 _% % (35=3t-1)

AIMS Mathematics Volume 9, Issue 3, 7111-7130.
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ori=3s+2,j=3t+2for0<k<I[l<n,and

2 1
i 01 0 0 0
-1z _1 9 0 0
()7 _71 2 _1 0 0
7 7 7
1 2
detz, = |0 0 -3 3 0 0
0O 0 0 0 2 L
7 V35
0O 0 0 0 - 1
V35 5 (3s=3t=1)
CaseS.i=3s+1,j=3t+2for0 < s <t<n,and
2
7 —2% 01 0 0 0
77T 01 0 0
0 = 35 = 0 0
detzg = | 0 0 =3 3 0 0
0O 0 0 0 2 L
5 V35
0 0 0 -L 2
R ERTA 1 PC )
Case6.i=3s5s+2,j=3t+1forO0<k<[<n,and
%1 —2% 01 0 0 0
0 = 3 = 0 0
det Zg = 0 O _7 7 0 O
0O 0 0 O0 : -1
1 2
0 0 0 0 707 135-3m-2)

Therefore, we can obtain

(D" 2ay0= ) detZ- jir i =01+ 92+ 05,

1<i<j<3n

where

91 = Z detZ; - jas—1 " Jan-3t + Z det Z; - jas—1 " Jan-3t-1

= det Zs.

= (3s -3t + 1)(%)”.

= 49(3s — 3t - 1)(L)H.

343

1<s<t<n 1<s<t<n
+ Z det Zy - j3s—1 " Jan-3 + Z det J[3s5,3n + 2] - j3,
1<s<t<n—1 1<s<n
_7n(n2 - 1)( 1 )n N (n* +2n)(n + 1)( 1 )n N n’*(n — 1)( 1 )n N n(3n + 1)( 1 )n
B 50 343 2450 343 2450 ‘343 490 343
_345n3 +17n% - 336n( 1 )n
B 50 343/ °

AIMS Mathematics
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02 = Z det Zs - jas* Jan-3e2 + Z det Zs - jas * Jan-3t+1

1<s<t<n 1<s<t<n

+ > detZs- ja- jaa+ ) det J[B3s+1,3n+2]-
1<s<t<n—1 1<s<n

+ > det J11,31] - jawya + ) det ST 3+ 11+ 53, 3101
1<s<n 1<t<n

+ D det JI1,3+ 2]« sz +det J[1,3n +2]
0<t<n-1

n— z_ n 2 _ n
D ame(gg) 2Dy B D

343 50 343 50
7n(3n—1)( 1 )n+7n(3n+1)( 1 )n—1+21n(n+1)( 1 )
10 \343 10 \343 10 \343
TmBn—-1), 1 \n 1 \»
10 (343) +”(3”+1)(%)
_345n3+73n2—92n( 1 )
B 50 343
and
pr= D detZs- jagr - jusat ), detZy- jagr - e
0<s<t<n 0<s<t<n—1

+ Z det Zy - Jase1 * Jan-3+1 + Z det J[3s+2,3n+2] - jass

0<s<t<n 0<s<n-1

_49n(n2 +n-4), 1\t nm®>-1,; 1 \n 4@ +2n-1), 1 \n 2nn+1), 1 \n-1
— 5 G@ * Ga)* 50 (3) * =0 ()
3451 +52n° — 189n( 1 )n
B 50 343/
By substituting ¢, ¢», and @3 into Eq (3.5), the desired outcome can be deduced.

10357° + 142n* - 617n( 1 )n
50 3437

This is the completion of the proof. O

(=1 2a3, 0 =91+ 92 + 93 =

Let
O=¢<o<ag<--<gy
represent the eigenvalues of J. By Facts 3.3 and 3.4, we can further investigate Lemma 3.2. According
to Eq (3.1), it is evident that

i 1 (=) 2az,, _ 10357% + 1422% + 617n
i=2

o (D lay,. 2(490 + 81n)

3n
Considering Lemma 3.1, we will focus on the calculations of }; gi Let
j=1°

102901(11 + 2 v/30) + 3600 + 12430 V30
60000

o(n) =

AIMS Mathematics Volume 9, Issue 3, 7111-7130.



7124

and

102901(11 = 2 v/30) + 3600 — 12430 V30
60000 '

Lemma 3.5. The variable ¢; (where j ranges from 1 to 3n + 2) is assumed to be defined as previously
described. One has

&n) =

3n

Z 1 (=17 b3,y
Sj B det K ’

J=1

where
45+ 11v30 11 +4+30,, 45-11v30,11-4+30,,
det K = ( Y + ( )
125 343 125 343
and
114-4\[" 4\f_'
(=1)"b3, = S()(————)" — &(n )( ).

Proof. The representation of ®(K) can be expressed as

3n— 1

"+byy s+ b3y + b3y = YO+ b1y + -+ bauay + byasy),

where ¢y, ¢, -+ , 63, represent the roots of the equation.
V' 4 by P 4+ by0y + by = 0,

and the equation is determined to possess -, -

L L ... L asits solutions
S1’ 2 S$3n

b3n,1y3n_l + b3n,2y3n_2 + .-+ bly +1=0.

By Vieta’s Theorem, one holds that

3n

1 (=1)""'bs,
—_— 3.6
JZ::‘ S det K (3-6)

To simplify the analysis, let R, denote the p-th order principal minors of matrix K and k, represent
the determinant of R,. We will derive an equation for &, that can be utilized to calculate (=1)*bsy,_,
and det K for values of p ranging from 1 to 3n — 1. Subsequently, we arrive at

1 1 1 1 1 1 1

s k= oo k=, k= o, ks = o, ke =y k= o, kg
2735 BT 045 M T 17150 0 T 120057 T T 840357 7T 5882457 T 4117715

_2 1 )
kip = sksp-1 — gkap-2, 1< p<mn
2 1 )

kips1 = 5k3p — 5kap-1, 1< p<mn;

2 1
k3p+2 = :/k3p+1 - Ek:;p, 0< p<n-— 1.

AIMS Mathematics Volume 9, Issue 3, 7111-7130.
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After a straightforward computation, the following general formulas can be derived

_ 105+14V30 | (11+4V30\p , 105-14V30 _ 11-4v30\p .

k3p - 150‘/7 ( 34%) + 15\(/)7 ( 3‘4/137 ) 1< p=n
45+8 11+4V30\p | 45-8 11-4v304p .

kapr1 = =55 - (T35 oY+ 50 (T3; Y. 1<p<m

kapr = 11+2\F (ugigf)p 4 1= 2W (uﬁéﬁ)p O<p<n—1.
O
Subsequently, we proceed by examining the following Facts:
Fact 3.6.
45+ 11V30,11+4+30, 45-11+30 11 -4+30,
det K = ( )+ ( ).
125 343 125 343
Proof. By expanding det K with respect to its last row, we obtain
3 1 45+11v30,11+4v30, 45-11+30 11-4+30,,
det K = _k3n+1 - _k3n = ( ) + ( )
5 35 125 343 125 343
The desired outcome has been achieved. O
Fact 3.7.
- 11+ 4 \/_ 4 x/_
(=1 b3y = () (——7—)" — €n )( ),
where
s(ny = 10290n(LL + 4/30) + 3600 + 12430 V30
n) =
60000
and
£n) = 10290n(11 — 4 v/30) + 3600 — 12430 x/_o
n

60000

Proof. Considering that K has a (3n — 1)-row and (3n — 1)-column structure, the sum of all principal
minors can be expressed as (—1)**~'b,_,. Here, I;; represents the diagonal entries of K. It is noteworthy
that K exhibits bilateral symmetry, which enables us to derive specific information.

3n

(=1 by, Zdet K[i] = Zd z( -1 Ry )— Z”‘-l - (3.7)

i=1

where
gi+1,i+1 e O O
Ran-i = 0 ... L
gSn—l,13n—1 V35
0 Tt - V35 gSn,3n
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In line with Eq (3.7), we have

n—1 n—1

(=1 by, =2k, + Z det K[31] + Z det K[31 + 1] + Z det K[31 + 2]
=0
(3.8)

n—1 n—1

=2k3,-1 + Z k3g-1)+2 - k3g-ny+2 + Z k3 - K3g-p+1 + Zkam k3n-1y.-

Immediately, we can get

245n 11 + 4«/%),1+1 11-4 x/%)m

and

Z k3g-1y+2 - k3pm-ny+2 = ( —(
- 20 343 343 39)
+\/_(11+4\/_) \/_(11—4«/_)
600 343 600 343
Zn:k . 2391n(11+4«/%)n+l (11—4«/%),1+1
31 3(n=D+1 = Y
300 343 343
(3.10)
137@(11+4\/E) 137«/_(11—4\/_)
60000 343 60000 343
! o 2391n(11 +4x/ﬁ)n+1 (11 —4\/@)%1
31+1 * R3(n-I) = —\T 545~
- 300 343 343 311
N 1271\/%(11+4\/%)n_ 1271\/@(11—4@),1
60000 343 60000 343
90 + 1630 11 +4+30., 90-16+30 11 -4+30., (3.12)
Dk, | = ( ) + ( ) :
75 343 75 343

By incorporating Eqs (3.9)—(3.12) into Eq (3.8), we can achieve Lemma 3.7. Utilizing Eq (3.6), in

conjunction with Facts 3.6 and 3.7, Lemma 3.5 can be promptly derived. O

By integrating Lemmas 3.1, 3.2 and 3.5, we can readily deduce the Theorems 3.8 and 3.9.

Theorem 3.8. Assume that P? is the strong product of the pentagonal network. One has

where

1029n% + 57361 + 427 —1)1bs,_
KF(P) = 029n" + 5736m° +4275n +850 o0 (GO bay
3 detK
) 11+4+30, 4x/_
D gy = S ) = ()
ot K 45+11\/_(11+4\/_ 45—11@(11—4@),,
‘T s 343 125 343

AIMS Mathematics Volume 9, Issue 3, 7111-7130.



7127

additionally,
() = 10290m(11 +2 V30) + 3600 + 12430 V30
- 60000
and
£ny = 10290n(11 —2 V30) + 3600 — 12430 V30

60000
Theorem 3.9. Let P2 be the strong product of pentagonal network. Then

35 . 232n+7

T((45 + 11V30)(11 + 4 V30)" + (45 — 11 V30)(11 — 4 \/%)").

Proof. Based on the proof of Lemma 2.2, it is evident that oy, 07, - - - 05,41 constitute the roots of the
equation

(P)

2n=1 + -+ a1 X+ ay = 0.

X+ apx
Accordingly, one has

3n

1—[ o = (_1)3n—1a3n—1.

i=2
By Fact 3.3, we have

3n

12+23n, 1 \n
Hf’f:T(%)-

i=2

By the same method,

n 45+ 11V30 11 +4+v30, 45-11vV30 (11 -4~30),
||g‘.,-:detK: ( )+ ( ).
375 343 375 343

Note that
n d(Pi) — 54 . 716n—4

vevV »
P’l

and
|E(P?)| = 48n —17.

In conjunction with Lemma 2.3, we get

3n 3n
()= 5 E(IP,%»((g)z . ]—2[ 20 ];[2g,-- [1ar)

VEVP%
35 . 232n+7
- T((45 +11V30)(11 + 4 V30)" + (45 — 11 V30)(11 — 4 @)").
This is the completion of the proof. O
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4. Conclusions

In this study, we have derived explicit expressions for the multiplicative degree-Kirchhoff index

and complexity of P? based on the spectrum of the Laplacian matrix, where P2 = R, ® R/. These
two fundamental calculations serve as simple yet reliable graph invariants that effectively capture the
stability of diverse networks. Future research should focus on applying our methodology to determine
spectra for strong products of automorphic and symmetric networks.
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