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1. Introduction

In order for businesses to successfully accomplish both their immediate and long-term objectives,
the decision-making mechanisms inside such businesses are of the utmost significance. The capacity
of businesses to remain in business, make revenue, and execute their objectives depends heavily on this
factor. Poor judgement procedures may have considerable adverse effects on a business, while effective
decision-making techniques can raise the likelihood that the firm will progress and flourish in the
future [1]. Decision-makers (DMs) are required to make judgments in a complicated environment due
to the fact that consumer expectations regarding goods and services are always growing and becoming
more and more diverse in the modern corporate world. A plethora of MADM methodologies have
been developed and studied to enhance the efficiency and objectivity of decision-making processes for
DMs and to attain more effective outcomes [2]. The underlying principle of MADM methods often
involves evaluating numerous alternatives based on a range of criteria, some of which may contradict
each other, and subsequently assigning a score to these alternatives. To achieve this objective, multiple
MADM techniques employ different logical frameworks [3].

In the current age of globalisation and fierce market competition, enterprises encounter a multitude
of challenges that require a methodical approach to supplier selection. The collaboration partners
selected by an organisation have a significant impact on critical factors including product quality,
cost-effectiveness, and on-time delivery. By aligning these considerations with the specific
requirements and anticipations of an organisation, the most effective supplier selection facilitates
enhanced customer contentment and allegiance. Hence, it is imperative that organisations give
precedence to the establishment of efficient supplier selection procedures, as doing so not only
confers a competitive edge, but also facilitates improved operational efficacy and enduring
expansion [4, 5]. Contemporary business landscapes are distinguished by intricate and interdependent
ecosystems wherein entities are no longer limited to geographically specific local or regional markets.
Conversely, an extensive array of global suppliers is easily accessible. The proliferation of suppliers
presents businesses with unparalleled prospects, yet also substantial challenges that demand adept
navigation. Supplier selection practices that allow organisations to optimise the advantages of global
sourcing while minimising the risks involved become critical in this context. Enterprises have the
ability to optimise supply chain operations, seize advantageous opportunities, and adapt to
ever-changing market conditions through the careful selection of superior suppliers [6].

Technology innovations have significantly transformed the way in which businesses function, and
this includes the process of selecting suppliers. The advent of the digital age has provided us with an
abundance of information and advanced resources, enabling us to assess and contrast prospective
suppliers in an unprecedented way. Through the utilisation of advanced technologies such as machine
learning, artificial intelligence, and big data analytics, organisations have the ability to accelerate the
supplier selection procedure, reveal latent patterns within vast datasets, and arrive at decisions based
on empirical evidence. The implementation of these technological advancements empowers
organisations to enhance their supplier selection process, thus promoting streamlined and successful
supply chain management that aligns with the goals of the business [7]. Furthermore, effective
supplier selection promotes partnership and collaboration with vendors, resulting in mutually
beneficial relationships. Businesses can forge enduring partnerships founded on trust, transparency,
and mutual objectives by scrutinising suppliers who are in accordance with their core principles,
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strategic aims, and organisational culture. These collaborative relationships foster enhanced
communication, innovation, and continuous supply chain improvement, enabling organisations to
differentiate themselves and obtain a competitive edge in the marketplace [8, 9].

A significant amount of the fundamental aspects of classical set theory have been researched by
scholars. However, traditional techniques of data analysis are incapable of dealing with knowledge
that is unclear or ambiguous in nature. In order to overcome these difficulties, Zadeh [10] devised
the idea of fuzzy set (FS) theory and membership degree (MBSD), Molodtsov [11] developed soft
set theory, and Pawlak [12] envisioned rough set theory. Atanassov [13] introduced the concept of
intuitionistic fuzzy sets (IFS) in the year 1986. This theory, which is exemplified by the MBSD and the
non-membership degree (N-MBSD), satisfies the restriction that the sum of MBSD and N-MBSD must
be limited to unity. IFS has emerged as one of the essential techniques for defining the ambiguity and
fuzziness of real-life issues due to the distinctive benefits it offers. In addition, Yager [14–16] came
up with the idea of PyFS, which is an expansion of IFS and may be defined by the MBSD and the
N-MBSD. This notion satisfies the criterion that the square addition of the MBSD and the N-MBSD
must be kept to one. As a consequence of this, PyFSs are superior to IFSs when it comes to dealing
with the unpredictability and imprecision of the information collected in real-world issues. In recent
years, a great deal of research that investigates the PyFSs from a variety of vantage points has been
presented.

The domains of business, administration, social work, medicine, technology, psychology, and
intelligent systems all benefit from the consolidation of data for judgement purposes. Historically,
one’s awareness of the alternative has been considered a discrete quantity or a linguistic number. On
the other hand, owing to the unpredictability of the data, it is not simple to consolidate them. In fact,
AOs play a crucial role in the context of MADM difficulties, the primary objective of which is to sum
up a sequence of inputs into a single one.

Moslem [17] came up with the idea of using a spherical fuzzy analytic hierarchy process to solve
the urban transport problem. Peng and Yuan [18] and Rehman et al. [19] proposed Pythagorean fuzzy
averaging AOs and geometric AOs respectively. Wang and Garg [20] proposed some Archimedean
norm based Pythagorean fuzzy AOs. Moslem et al. [21] proposed the idea of sustainable development
of public transportation using Bonferroni AOs. Gayen et al. [22] gave the notion of Aczel-Alsina
AOs for dual hesitant q-rung orthopair fuzzy set. Moslem [23] introduced the best worst method
for evaluating travel mode choice. Demir et al. [24] proposed sensitivity analysis in MADM. Ali
et al. [25] gave the notion of complex T-spherical fuzzy Frank AOs, and Ali [26] proposed the idea
of Hamacher prioritised AOs for probabilistic hesitant bipolar fuzzy data. Linear Diophantine fuzzy
soft-max AOs and a numerically validated approach to modelling water hammer phenomena are given
in [27, 28]. Furthermore, Mahmood et. al. [29] explored the theory of bipolar complex intuitionistic
fuzzy N-soft (BCIFN-S) information to handle information with truth and falsity degrees, along with
parameterisation and grades.

There are several exciting applications related to efficient risk management in distribution operations
[30], sustainable hydrogen manufacturing [31], decision-making for phone selection [32], and general
decision-making [33,34] that are included in the literature. Ali et al. [35] introduced Minkowski-type
distance measures for cubic q-rung orthopair fuzzy sets, and Ali [36] proposed a norm-based distance
measures. Ali and Naeem [37] gave another MADM approach using the VIKOR method. MADM is a
systematic approach used to evaluate and compare alternatives based on multiple, conflicting criteria.
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The importance of MADM lies in its ability to take into account multiple, often conflicting, objectives
and criteria in decision-making, leading to more informed and comprehensive decision-making. There
are numerous decision-making-related applications, including the selection of green suppliers [38], the
evaluation of road segment safety [39], assault boat selection [40], the assessment of risk in trade and
investment [41], and the selection of industrial funds [42].

MADM’s purview extends to numerous disciplines and practical contexts, encompassing the
military, finance, engineering, transportation, environmental management, and healthcare, among
others. In numerous real-world scenarios requiring the consideration of multiple criteria, such as
evaluating the environmental impacts of a project, selecting suppliers, or deciding between investment
options, MADM can be utilised. With respect to its applications, MADM facilitates the process of
decision-making by integrating qualitative and quantitative data, including subjective assessments,
into a unified and all-encompassing judgement. Prioritising criteria according to their relative
importance, identifying and ranking alternatives based on multiple criteria, and visualising trade-offs
between criteria are additional functions of MADM. The supplier selection process in the healthcare
industry is complex and involves factors beyond mere cost considerations. Patient outcomes,
regulatory compliance, supply chain efficiency, and the overall quality of healthcare services are all
directly impacted. It is critical for healthcare organisations to provide patients with safe, effective, and
high-quality care.

The subsequent sections of this scholarly article are structured as follows: In Section 2, we delve
into an in-depth discussion of the fundamental concepts that underpin the PyFS, which is vital to our
study. Building upon this foundation, Section 3 comprehensively examines the operational procedures
of the proposed AOs within the context of PyFS. Section 4 presents a novel approach to addressing
MADM challenges by introducing new AOs. We outline a methodological framework that leverages
these AOs to effectively resolve MADM issues, thus enhancing decision-making processes in
complex and uncertain environments. In the subsequent section, namely Section 5, we showcase an
application of MADM using the aforementioned AOs. Through an illustrative case study, we
demonstrate the practical implications and potential benefits of employing the proposed approach in
real-world decision-making scenarios. Finally, in the concluding Section 6, we summarise the key
findings and insights obtained throughout this article. We provide some concluding remarks on the
significance and potential future directions of research in this area. Additionally, we offer valuable
suggestions to guide and inspire future endeavours aimed at advancing the field of MADM and its
applications.

2. Some basic concepts

In this part, we review the operating rules of PyFNs.

Definition 2.1. [14–16] A PyFS B in Q is defined as

B = {〈ζ, ξδB(ζ), 〈ηB(ζ)ג : ζ ∈ Q}

where ξδB,
ηBג : Q → [0, 1] defines the MBSD, and the N-MBSD of the alternative ζ ∈ Q and for

every ζ we have
0 ≤ ξδ

2
B(ζ) + ηג

2
B(ζ) ≤ 1.

Furthermore, πB(ζ) = (1 − ξδ
2
B(ζ) − η2ג

B(ζ))1/2 is called the indeterminacy degree of ζ to B.
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Definition 2.2. [14] Let χλ1 = 〈ξδ1,
〈η1ג and χλ2 = 〈ξδ2,

〈η2ג be PyFNs. Then,
(1) ¯χλ1 = ,η1ג〉

ξδ1〉,
(2) χλ1 ∨ χ

λ
2 = 〈max{ξδ1,

,η1},min{ξδ2ג
,〈{η2ג

(3) χλ1 ∧ χ
λ

2 = 〈min{ξδ1,
,η1},max{ξδ2ג

,〈{η2ג
(4) χλ1 ⊕ χ

λ
2 = 〈(ξδ2

1 + ξδ
2
2 −

ξδ
2
1
ξδ

2
2)1/2, η1ג

,〈η2ג
(5) χλ1 ⊗ χ

λ
2 = 〈ξδ1

ξδ2, ηג)
2
1 + ηג

2
2 −

ηג
2
1
ηג

2
2)1/2〉,

(6) σχλ1 = 〈(1 − (1 − ξδ
2
1)σ)1/2, ηג

σ

1 〉,
(7)χλσ1 = 〈ξδ

σ
1 , (1 − (1 − η2ג

1)σ)1/2〉.

Definition 2.3. [14] Consider a PyFN <̃ = 〈ξδ, .〈ηג Then the score function E of <̃ is characterised
as

E(<̃) = ξδ
2
− ηג

2
,

E(<̃) ∈ [−1, 1]. The ranking of a PyFN is determined by its score: a higher score indicates a higher
preference for the PyFN in query. Nevertheless, the score function is not helpful in several different
applications of PyFN. Because of this, it is not required to depend on the score function in order to do
a comparison of the PyFNs.

Definition 2.4. Consider a PyFN <̃ = 〈ξδ, .〈ηג then an accuracy function R of <̃ is defined as

R(<̃) = ξδ
2

+ ηג
2
,

R(<̃) ∈ [0, 1].

Always keep in mind that the score function value falls between -1 and 1. In assistance of the

following investigation, we present another scoring function, H (<) =
1+ξδ

2
< −

ηג
2
<

2 . We can see that
0 ≤H (<) ≤ 1.

2.1. Pythagorean fuzzy aggregation operators

Definition 2.5. [18] Assume that χλk = 〈ξδk,
〈ηkג is an assortment of PyFNs, and PyFWA: Λn → Λ, if

PyFWA(χλ1, χ
λ

2, . . . χ
λ

n) = Gζ1χ
λ

1 ⊕G
ζ

2χ
λ

2 ⊕ . . . ,G
ζ

nχ
λ

n

where Λn is the set of all PyFNs, and Gζ = (Gζ1,G
ζ

2, . . . ,G
ζ

n)T is weight vector (WV) of

(χλ1, χ
λ

2, . . . , χ
λ

n), such that 0 6 Gζk 6 1 and
n∑

k=1

G
ζ

k = 1. Then, the PyFWA is called the

Pythagorean fuzzy weighted average operator.

Theorem 2.6. [18] Letting χλk = 〈ξδk,
〈ηkג be the assortment of PyFNs,we can find PyFWA by

PyFWA(χλ1, χ
λ

2, . . . χ
λ

n)

=

〈√√
(1 −

n∏
k=1

(1 − ξδ2
k)Gζ k),

n∏
k=1

ηג
Gζ k

k

〉
.
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Definition 2.7. [19] Assume that χλk = 〈ξδk,
〈ηkג is the assortment of PyFN, and PyFWG : Λn → Λ,

if

PyFWG(χλ1, χ
λ

2, . . . χ
λ

n) = χλ
Gζ1
1 ⊗ χλ

Gζ2
2 ⊗ . . . , χλ

Gζn
n

where Λn is the set of all PyFNs, and Gζ = (Gζ1,G
ζ

2, . . . ,G
ζ

n)T is the WV of (χλ1, χ
λ

2, . . . , χ
λ

n),

such that 0 6 Gζk 6 1 and
n∑

k=1

G
ζ

k = 1. Then, the PyFWG is called the Pythagorean fuzzy weighted

geometric operator.

Based on PyFNs operational rules, we can also consider PyFWG by the theorem below.

Theorem 2.8. [19] Letting χλk = 〈ξδk,
〈ηkג be the assortment of PyFNs, we can find the PyFWG by

PyFWG(χλ1, χ
λ

2, . . . χ
λ

n)

=

〈 n∏
k=1

ξδ
Gζ k
k ,

√√
(1 −

n∏
k=1

(1 − η2ג
k)Gζ k)

〉
.

2.2. Soft-max function

Within the realm of mathematics, the soft-max function stands as a notable generalisation that
emerges from the logistic function. This function has found application in diverse fields of study,
encompassing domains such as computer vision and strategic planning. To provide a concise
representation, the soft-max function can be expressed mathematically as follows:

φk ( j, ϑ1, ϑ2, . . . , ϑn) = φ
j
k =

exp
(
ϑ j/k

)
n∑

j=1

exp
(
ϑ j/k

) , k > 0

For the PyFNs ϑ j( j = 1, 2, 3, . . . , n), S j is the score value of PyFN ϑ j. Every ϑ j is formulated by
given the equation

ϑ j =


∏ j−1

i=1 S i, j = 2, 3, . . . , n
1 j = 1

where k is the modulation parameter.

3. Pythagorean fuzzy soft-max aggregation operators

In the forthcoming section, we will present a number of Pythagorean fuzzy soft-max AOs. These
AOs have been developed to address decision-making challenges involving PyFSs, which offer a
versatile mathematical framework encompassing both membership and non-membership grades. By
employing these operators, decision-makers can gain valuable insights and make well-informed
decisions in complex and uncertain contexts.
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3.1. PyFSMA operator

Definition 3.1. Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, and the PyFSMA: Λn → Λ,

is an n-dimension mapping. If

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) =
exp[Yξ1/k]

n∑
℘=1

exp[Yξ℘/k]

χλ1 ⊕
exp[Yξ2/k]

n∑
℘=1

exp[Yξ℘/k]

χλ2 ⊕ . . . ,⊕
exp[Yξn/k]

n∑
℘=1

exp[Yξ℘/k]

χλn

(3.1)
then the mapping PyFSMA is called a Pythagorean fuzzy soft-max averaging (PyFSMA) operator,

where Yξ℘ =
∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1 and H (χλk) is the score of the kth PyFN.

Based on the operating principles of PyFN, the following theorem allows us to additionally
investigate the PyFSMA operator.

Theorem 3.2. Assuming that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, we can find PyFSMA by

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) =

〈
√√√√√√√√√√√√

1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
(3.2)

The initial assertion can be readily verified by referring to Definition 3.1 and subsequently
demonstrating its validity through the proof presented hereafter.

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) =
exp[Yξ1/k]

n∑
℘=1

exp[Yξ℘/k]

χλ1 ⊕
exp[Yξ2/k]

n∑
℘=1

exp[Yξ℘/k]

χλ2 ⊕ . . . ,⊕
exp[Yξn/k]

n∑
℘=1

exp[Yξ℘/k]

χλn

=

〈
√√√√√√√√√√√√

1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
To establish the validity of this theorem, we employ the mathematical induction technique.

For n = 2,

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

χλ1 =

〈
√√√√√√√

1 − (1 − ξδ2
1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1

〉
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exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

χλ2 =

〈
√√√√√√√

1 − (1 − ξδ2
2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2

〉
.

Then,

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
χλ1 ⊕

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]
χλ2

=

〈
√√√√√√√

1 − (1 − ξδ2
1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1

〉
⊕

〈
√√√√√√√

1 − (1 − ξδ2
2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2

〉

=

〈
√√√√√√√

(1 − (1 − ξδ2
1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − ξδ2

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
−,

(
(1 − (1 − ξδ2

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )(
(1 − (1 − ξδ2

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ηג.

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2

〉

=

〈
√√√√√√√√√√

1 − (1 − ξδ2
1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − ξδ2

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
−

(
1 − (1 − ξδ2

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
− (1 − ξδ2

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+

(1 − ξδ2
2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − ξδ2

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ηג.

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2

〉

=

〈
√√√√√√√

1 − (1 − ξδ2
1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − ξδ2

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
, ηג

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ηג.

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2

〉

=

〈
√√√√√√√√√√√√

1 −
2∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

2∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
.

AIMS Mathematics Volume 9, Issue 3, 6738–6771.



6746

This demonstrates that Eq 3.2 holds true when n = 2. Now, let us assume that Eq 3.2 is valid for
n = k, where k is a positive integer. In other words, we suppose that: Equation 3.2 (for n = k) is true,
where Eq 3.2 represents the mathematical expression under consideration.

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

k) =

〈
√√√√√√√√√√√√

1 −
k∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

k∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
.

Now, n = k + 1, and by the operational laws of PyFNs, we have,

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

k+1) = PyFSMA(χλ1, χ
λ

2, . . . χ
λ

k) ⊕ χλk+1

=

〈
√√√√√√√√√√√√

1 −
k∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

k∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
⊕

〈
√√√√√√√

1 − (1 − ξδ2
k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘

, ηג

Yξk+1
n∑

℘=1

Y
ξ
℘

k+1

〉

=

〈
√√√√√√√√√√√√

1 −
k∏

℘=1

(1 − ξδ2
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − ξδ2

k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘

−

(
1 −

k∏
℘=1

(1 − ξδ2
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] )(
1 − (1 − ξδ2

k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘ )
,

k∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

k ηג.

Yξk+1
n∑

℘=1

Y
ξ
℘

k=1

〉

=

〈
√√√√√√√√√√√√

1 −
k∏

℘=1

(1 − ξδ2
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − ξδ2

k+1)

Yξk+1
n∑

℘=1

Y
ξ

k+1

,

k∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

k ηג.

Yξk+1
n∑

℘=1

Y
ξ
℘

k+1

〉

=

〈
√√√√√√√√√√√√√

1 −
k+1∏
℘=1

(1 − ξδ2
℘)

Yξ℘

k+1∑
℘=1

Y
ξ
℘

,

k+1∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
.

This shows that for n = k + 1, Eq 3.2 holds. Then,

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) =

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
Below we define some of PyFSMA’s appealing properties:
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Theorem 3.3. (Boundary) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, and

χλ
−

= (min j (ξδ j),max j ηג) j)) and χλ
+

= (max j (ξδ j),min j ηג) j)).

Then,
χλ
−
≤ PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ≤ χλ+

.

Proof. We have that,
min℘ (ξδ℘) ≤ ξδ℘ ≤ max℘ (ξδ℘) (3.3)

and
min℘ (℘ηג) ≤ ℘ηג ≤ max℘ .(℘ηג) (3.4)

From Eq 3.3, we have,
min℘ (ξδ℘) ≤ ξδ℘ ≤ max℘ (ξδ℘)

⇔

√
min℘ (ξδ℘)2 ≤

√
(ξδ℘)2 ≤

√
max℘ (ξδ℘)2

⇔

√
1 − max℘ (ξδ℘)2 ≤

√
1 − (ξδ℘)2 ≤

√
1 − min℘ (ξδ℘)2

⇔

√√√√√√√√√√(
1 − max℘ (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√√√√√√√√√√(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√√√√√√√√√√(
1 − min℘ (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]

⇔

√√√√√√√√√√√√ n∏
℘=1

(
1 − max℘ (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√√√√√√√√√√√√ n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√√√√√√√√√√√√ n∏
℘=1

(
1 − min℘ (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]

⇔

√
1 − max℘ (ξδ℘)2 ≤

√√√√√√√√√√√√ n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√
1 − min℘ (ξδ℘)2

⇔

√
−1 + min℘ (ξδ℘)2 ≤

√√√√√√√√√√√√
−

n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√
−1 + max℘ (ξδ℘)2

⇔

√
1 − 1 + min℘ (ξδ℘)2 ≤

√√√√√√√√√√√√
1 −

n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√
1 − 1 + max℘ (ξδ℘)2
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⇔

√
min℘ (ξδ℘)2 ≤

√√√√√√√√√√√√
1 −

n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤

√
max℘ (ξδ℘)2

⇔ min℘ (ξδ℘)2 ≤

√√√√√√√√√√√√
1 −

n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
≤ max℘ (ξδ℘)2.

From Eq 3.4, we have,

min℘ (℘ηג) ≤ ℘ηג ≤ max℘ ⇔(℘ηג) min℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ max℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

n∏
℘=1

min℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

n∏
℘=1

(℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

n∏
℘=1

max℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔ min℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

n∏
℘=1

(℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ max℘ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
.

Let
PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) = χλ = (ξδ, .(ηג

Then, H (χλ) = ξδ
2
− ηג

2
≤ max℘ (ξδ)2 − min℘ 2(ηג) = H (χλmax) So, H (χλ) ≤ H (χλmax).

Again, H (χλ) = ξδ
2
− ηג

2
≥ min℘ (ξδ)2 − max℘ 2(ηג) = H (χλmin) So, H (χλ) ≥ H (χλmin).

If, H (χλ) ≤ H (χλmax) and H (χλ) ≥ H (χλmin), then

χλmin ≤ PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ≤ χλmax. (3.5)

If H (χλ) = H (χλmax), then ξδ
2
− ηג

2
= max℘ (ξδ)2 − min℘ 2(ηג)

⇔ ξδ
2
− ηג

2
= max℘ (ξδ)2 − min℘ 2(ηג)
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⇔ ξδ
2

= max℘ (ξδ)2, ηג
2

= min℘ 2(ηג)

⇔ ξδ = max℘ ξδ, ηג = min℘ .ηג

Now, H(χλ) = ξδ
2

+ ηג
2

= max℘ (ξδ)2 + min℘ 2(ηג) = H(χλmax)

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) = χλmax. (3.6)

If H (χλ) = H (χλmin), then ξδ
2
− ηג

2
= min℘ (ξδ)2 − max℘ 2(ηג)

⇔ ξδ
2
− ηג

2
= min℘ (ξδ)2 − max℘ 2(ηג)

⇔ ξδ
2

= min℘ (ξδ)2, ηג
2

= max℘ 2(ηג)

⇔ ξδ = min℘ ξδ, ηג = max℘ .ηג

Now, H(χλ) = ξδ
2

+ ηג
2

= min℘ (ξδ)2 + max℘ 2(ηג) = H(χλmax)

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) = χλmin. (3.7)

Thus, from Eqs 3.5–3.7, we get

χλ
−
≤ PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ≤ χλ+

.

�

Theorem 3.4. (Idempotency) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, where Yξ℘ =∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of kth PyFN. If all χλ℘ are equal, i.e,.
χλ℘ = χλ for all j, then

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) = χλ.

Proof. From Definition 3.1, we have

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) =
exp[Yξ1/k]

n∑
℘=1

exp[Yξ℘/k]

χλ1 ⊕
exp[Yξ2/k]

n∑
℘=1

exp[Yξ℘/k]

χλ2 ⊕ . . . ,⊕
exp[Yξn/k]

n∑
℘=1

exp[Yξ℘/k]

=
exp[Yξ1/k]

n∑
℘=1

exp[Yξ℘/k]

χλ ⊕
exp[Yξ2/k]

n∑
℘=1

exp[Yξ℘/k]

χλ ⊕ . . . ,⊕
exp[Yξn/k]

n∑
℘=1

exp[Yξ℘/k]

χλ

= χλ.

�

Corollary 3.5. If χλ℘ = 〈ξδ℘,
〈℘ηג j = (1, 2, . . . n) is the assortment of the largest PyFNs, i.e,. χλ℘ =

(1, 0) for all j, then
PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) = (1, 0).
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Proof. We can easily obtain a corollary similar to the Theorem 3.4. �

Theorem 3.6. (Monotonicity) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג and χλ∗℘ = 〈ξδ

∗

℘,
ηג
∗

℘〉 are the families of
PyFNs, where Yξ℘ =

∏c−1
k=1 H (χλk), T ∗℘ =

∏c−1
k=1 H (χλ∗k) (c = 2 . . . , n), Yξ1 = 1, T ∗1 = 1, H (χλk) is the

score of χλk PyFN, and H (χλ∗k) is the score of χλ∗k PyFN. If ξδ∗℘ ≥
ξδ℘ and ℘∗ηג ≤

℘ηג for all j, then

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ≤ PyFSMA(χλ∗1, χ
λ∗

2, . . . χ
λ∗

n).

Proof. Here, ξδ∗℘ ≥
ξδ℘ and ℘∗ηג ≤

℘ηג for all j, If ξδ
∗

℘ ≥
ξδ℘.

⇔ (ξδ∗℘)2 ≥ (ξδ℘)2 ⇔

√
(ξδ∗℘)2 ≥

√
(ξδ℘)2 ⇔

√
1 − (ξδ∗℘)2 ≤

√
1 − (ξδ℘)2

⇔

√√√√√√√
(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
∏n

℘=1(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
∏n

℘=1(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
1 −

∏n
℘=1(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
1 −

∏n
℘=1(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

Now,
ηג
∗

℘ ≤
.℘ηג

⇔ (℘∗ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔
∏n

(℘∗ηג)1=℘

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

∏n
(℘ηג)1=℘

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
.

Let
χλ = PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n)

and
χλ∗ = PyFSMA(χλ∗1, χ

λ∗

2, . . . χ
λ∗

n).

We get that χλ∗ ≥ χλ. So,

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ≤ PyFSMA(χλ∗1, χ
λ∗

2, . . . χ
λ∗

n).

�
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Theorem 3.7. (Boundary) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, and

χλ
−

= (min℘ (ξδ℘),max℘ ((℘ηג) and χλ
+

= (max℘ (ξδ℘),min℘ .((℘ηג)

Then,
χλ
−
≤ PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ≤ χλ+

where Yξ℘ =
∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of the kth PyFN.

Proof. Here, ξδ∗℘ ≥
ξδ℘ and ℘∗ηג ≤

℘ηג for all j. If ξδ
∗

℘ ≥
ξδ℘,

⇔ (ξδ∗℘)2 ≥ (ξδ℘)2 ⇔

√
(ξδ∗℘)2 ≥

√
(ξδ℘)2 ⇔

√
1 − (ξδ∗℘)2 ≤

√
1 − (ξδ℘)2

⇔

√√√√√√√
(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
∏n

℘=1(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
∏n

℘=1(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
1 −

∏n
℘=1(1 − (ξδ℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
1 −

∏n
℘=1(1 − (ξδ∗℘)2)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
.

Now,
ηג
∗

℘ ≤
.℘ηג

⇔ (℘∗ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ (℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔
∏n

(℘∗ηג)1=℘

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

∏n
(℘ηג)1=℘

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
.

Let
χλ = PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n)

and
χλ∗ = PyFSMA(χλ∗1, χ

λ∗

2, . . . χ
λ∗

n).

We get that χλ∗ ≥ χλ. So,

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ≤ PyFSMA(χλ∗1, χ
λ∗

2, . . . χ
λ∗

n).

�
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Theorem 3.8. Assume that χλ℘ = 〈ξδ℘,
〈℘ηג and β℘ = 〈φ℘, ϕ℘〉 are two families of PyFNs, where

Yξ℘ =
∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of the kth PyFN. If r > 0 and
β = 〈ξδβ,

〈ηβג is an PyFN, then
i. PyFSMA(χλ1 ⊕ β, χ

λ
2 ⊕ β, . . . χ

λ
n ⊕ β) = PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ β,

ii. PyFSMA(rχλ1, rχ
λ

2, . . . rχ
λ

n) = r PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n),
iii. PyFSMA(χλ1 ⊕ β2, χ

λ
2 ⊕ β2, . . . χ

λ
n ⊕ βn) = PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ PyFSMA(β1, β2, . . . βn),

iv. PyFSMA(rχλ1 ⊕ βrχλ2 ⊕ β, . . . ⊕ rχλn ⊕ β) = r PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ⊕ β.

Proof. Here, we just prove i and iii.
i.

We have,
χλ℘ ⊕ β =

(
1 − (1 − (ξδ℘)2)(1 − (ξδβ)2), ℘ηג

ηβג
)
.

By Theorem 3.2,
PyFSMA(χλ1 ⊕ β, χ

λ
2 ⊕ β, . . . χ

λ
n ⊕ β)

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(
(1 − ξδ2

℘)(1 − (ξδβ)2)
)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

(
ηβג
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉

=

〈
√√√√√√√√√√√√

(1 −
(
1 − (ξδβ)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
,
(
ηβג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉

=

〈
√√√√√√√√√√√√

(1 −
(
1 − (ξδβ)2

) n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
,
(
ηβג

) n∏
℘=1

(
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉
.

Now, by operational laws of PyFNs,

PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ⊕ β

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
⊕ 〈ξδβ,

〈ηβג

=

〈
√√√√√√√√√√√√

(1 −
(
1 − (ξδβ)2

) n∏
℘=1

(
1 − (ξδ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
,
(
ηβג

) n∏
℘=1

(
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉
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Thus,
PyFSMA(χλ1 ⊕ β, χ

λ
2 ⊕ β, . . . χ

λ
n ⊕ β) = PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ β.

iii.
According to Theorem 3.2,
PyFSMA(χλ1 ⊕ β2, χ

λ
2 ⊕ β2, . . . χ

λ
n ⊕ βn)

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(
(1 − ξδ2

℘)(1 − (φ℘)2)
)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

(
ϕ℘
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(
1 − (φ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
1 − ξδ2

℘

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
,

n∏
℘=1

(
ϕ℘

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉
.

Now,
PyFSMA(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ PyFSMA(β1, β2, . . . βn)

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉
⊕

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(1 − ξδ2
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘

〉

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(
1 − (φ℘)2

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
1 − ξδ2

℘

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k]
,

n∏
℘=1

(
ϕ℘

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] n∏
℘=1

(
℘ηג

)
exp[Yξ℘/k]

n∑
℘=1

exp[Yξ℘/k] 〉
.

Thus,

PyFSMA(χλ1 ⊕ β2, χ
λ

2 ⊕ β2, . . . χ
λ

n ⊕ βn) = PyFSMA(χλ1, χ
λ

2, . . . χ
λ

n) ⊕ PyFSMA(β1, β2, . . . βn).

�

3.2. PyFSMG operator

Definition 3.9. Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the assortment of PyFNs, and PyFS MG : Λn → Λ, is

an n-dimension mapping. if

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) = χλ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ⊗ χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

2 ⊗ . . . ,⊗χλ

exp[Yξn/k]
n∑

℘=1

exp[Yξ℘/k]

n , (3.8)

then the mapping PyFSMG is called a Pythagorean fuzzy soft-max geometric (PyFSMG) operator,
where Yξ℘ =

∏c−1
k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of the kth PyFN.
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Based on the PyFNs operational rules, we can also consider the PyFSMG by the theorem below.

Theorem 3.10. Assuming that χλ℘ = 〈ξδ℘,
〈℘ηג is the family of PyFNs, we can find PyFSMG by

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) =

〈 n∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
(1 −

n∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
. (3.9)

Proof. The first statement is easily followed by Definition 3.9 and Theorem 3.10. In the following, we
prove that

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n)

= χλ

T̃1
n∑

℘=1

Y
ξ
℘

1 ⊗ χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

2 ⊗ . . . ,⊗χλ

Yξn
n∑

℘=1

Y
ξ
℘

n

=

〈 n∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
(1 −

n∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
.

To prove this theorem, we use mathematical induction.
For n = 2,

χλ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 =

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1

〉
,

√√√√√√√
1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

2 =

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2 ,

√√√√√√√
1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] 〉
.

Then,

χλ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ⊗ χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

2

=

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1

√√√√√√√
1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] 〉
⊗

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2 ,

√√√√√√√
1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] 〉
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=

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 .ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2 ,

√√√√√√√
(1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
−

(
(1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )(
(1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )〉

=

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 .ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2 ,

√√√√√√√
1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
−

(
1 − (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
− (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
+ (1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] )〉

=

〈
ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 .ξδ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

2 ,

√√√√√√√
1 − (1 − η2ג

1)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − η2ג

2)

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k] 〉

=

〈 2∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
1 −

2∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
.

This shows that Eq 3.9 is true for n = 2. Now we assume that Eq 3.9 holds for n = k, i.e.,

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

k) =

〈 k∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
1 −

k∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
.

Now, n = k + 1, and by the operational laws of PyFNs we have,
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PyFSMG(χλ1, χ
λ

2, . . . χ
λ

k+1) = PyFSMG(χλ1, χ
λ

2, . . . χ
λ

k) ⊗ χλk+1

=

〈 k∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
1 −

k∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
⊗

〈
ξδ

Yξk+1
n∑

℘=1

Y
ξ
℘

k+1 ,

√√√√√√√
1 − (1 − η2ג

k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘ 〉

=

〈 k∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

k .ξδ

Yξk+1
n∑

℘=1

Y
ξ
℘

k=1 ,

√√√√√√√√√√√√
1 −

k∏
℘=1

(1 − η2ג
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
+ 1 − (1 − η2ג

k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘

−

(
1 −

k∏
℘=1

(1 − η2ג
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] )(
1 − (1 − η2ג

k+1)

Yξk+1
n∑

℘=1

Y
ξ
℘ )〉

=

〈 k∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

k .ξδ

Yξk+1
n∑

℘=1

Y
ξ
℘

k+1 ,

√√√√√√√√√√√√
1 −

k∏
℘=1

(1 − η2ג
k)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
(1 − η2ג

k+1)

Yξk+1
n∑

℘=1

Y
ξ

k+1 〉

=

〈 k+1∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√√
1 −

k+1∏
℘=1

(1 − η2ג
℘)

Yξ℘

k+1∑
℘=1

Y
ξ
℘ 〉
.

This shows that for n = k + 1,Eq 3.2 holds. Then,

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) =

〈 n∏
℘=1

ξδ

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

℘ ,

√√√√√√√√√√√√
(1 −

n∏
℘=1

(1 − η2ג
℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
�

Below we define some of the PyFSMG operator’s appealing properties.

Theorem 3.11. (Idempotency) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the family of PyFNs, where Yξ℘ =∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of the kth PyFN. If all χλ℘ are equal, i.e,.
χλ℘ = χλ for all j, then

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) = χλ.
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Proof. From Definition 3.1, we have

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) = χλ

exp[Yξ1/k]
n∑

℘=1

exp[Yξ℘/k]

1 ⊗ χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]

2 ⊗ . . . ,⊗χλ

exp[Yξn/k]
n∑

℘=1

exp[Yξ℘/k]

n

= χλ

T̃1
n∑

℘=1

Y
ξ
℘

⊗ χλ

exp[Yξ2/k]
n∑

℘=1

exp[Yξ℘/k]
⊗ . . . ,⊗χλ

exp[Yξn/k]
n∑

℘=1

exp[Yξ℘/k]

= χλ.

�

Corollary 3.12. If χλ℘ = 〈ξδ℘,
〈℘ηג j = (1, 2, . . . n) is the family of largest PyFNs, i.e,. χλ℘ = (1, 0) for

all j, then
PyFSMG(χλ1, χ

λ
2, . . . χ

λ
n) = (1, 0).

Proof. We can easily obtain a corollary similar to Theorem 3.4. �

Theorem 3.13. (Monotonicity) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג and χλ∗℘ = 〈ξδ

∗

℘,
ηג
∗

℘〉 are the families of
PyFNs, where Yξ℘ =

∏c−1
k=1 H (χλk), T ∗℘ =

∏c−1
k=1 H (χλ∗k) (c = 2 . . . , n), Yξ1 = 1, T ∗1 = 1, H (χλk) is the

score of χλk PyFN, and H (χλ∗k) is the score of χλ∗k PyFN. If ξδ∗℘ ≥
ξδ℘ and ℘∗ηג ≤

℘ηג for all j, then

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) ≤ PyFSMG(χλ∗1, χ
λ∗

2, . . . χ
λ∗

n).

Proof. Here, ℘∗ηג ≥
℘ηג and ξδ

∗

℘ ≤
ξδ℘ for all j, If ℘∗ηג ≥

.℘ηג

⇔ 2(℘∗ηג) ≥ 2(℘ηג) ⇔

√
2(℘∗ηג) ≥

√
2(℘ηג) ⇔

√
1 − 2(℘∗ηג) ≤

√
1 − 2(℘ηג)

⇔

√√√√√√√
(1 − (2(℘∗ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
(1 − (2(℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
∏n

℘=1(1 − (2(℘∗ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
∏n

℘=1(1 − (2(℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

⇔

√√√√√√√
1 −

∏n
℘=1(1 − (2(℘ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

√√√√√√√
1 −

∏n
℘=1(1 − (2(℘∗ηג)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]

Now,
ξδ
∗

℘ ≤
ξδ℘.

⇔ (ξδ∗℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤ (ξδ℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
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⇔
∏n

℘=1(ξδ∗℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
≤

∏n
℘=1(ξδ℘)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
.

Let
χλ = PyFSMG(χλ1, χ

λ
2, . . . χ

λ
n)

and
χλ∗ = PyFSMG(χλ∗1, χ

λ∗

2, . . . χ
λ∗

n).

We get that χλ∗ ≥ χλ. So,

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) ≤ PyFSMG(χλ∗1, χ
λ∗

2, . . . χ
λ∗

n).

�

Theorem 3.14. (Boundary) Assume that χλ℘ = 〈ξδ℘,
〈℘ηג is the family of PyFNs, and

χλ
−

= (min℘ (ξδ℘),max℘ ((℘ηג) and χλ
+

= (max℘ (ξδ℘),min℘ .((℘ηג)

Then,
χλ
−
≤ PyFSMG(χλ1, χ

λ
2, . . . χ

λ
n) ≤ χλ+

where Yξ℘ =
∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1 and H (χλk) is the score of kth PyFN.

Proof. The proof of this theorem is same as that of Theorem 3.7. �

Theorem 3.15. Assume that χλ℘ = 〈ξδ℘,
〈℘ηג and β℘ = 〈φ℘, ϕ℘〉 are two familie of PyFNs, where

Yξ℘ =
∏c−1

k=1 H (χλk) (c = 2 . . . , n), Yξ1 = 1, and H (χλk) is the score of the kth PyFN. If r > 0 and
β = 〈ξδβ,

〈ηβג is a PyFN, then
a. PyFSMG(χλ1 ⊕ β, χ

λ
2 ⊕ β, . . . χ

λ
n ⊕ β) = PyFSMG(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ β,

b. PyFSMG(rχλ1, rχ
λ

2, . . . rχ
λ

n) = r PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n),
c. PyFSMG(χλ1 ⊕ β2, χ

λ
2 ⊕ β2, . . . χ

λ
n ⊕ βn) =

PyFSMG(χλ1, χ
λ

2, . . . χ
λ

n) ⊕ PyFSMG(β1, β2, . . . βn),
d. PyFSMG(rχλ1 ⊕ βrχλ2 ⊕ β, . . . ⊕ rχλn ⊕ β) = r PyFSMG(χλ1, χ

λ
2, . . . χ

λ
n) ⊕ β.

Proof. The proof of this theorem is same as that of Theorem 3.8. �

4. Proposed methodology

Let zγ
= {zγ

1,z
γ

2, . . . ,z
γ

m} and <z = {<z1,<
z

2, . . . ,<
z

n} denote the sets of alternatives and
criteria, respectively. Let Kζ = {K

ζ
1,K

ζ
2, . . . ,K

ζ
p} be the group of decision makers (DMs). Each decision

maker provides a matrix of their own opinion D(p) = (B(p)i j)m × n, where B(p)i j represents the opinion
of decision maker Kζp for the alternatives zγ

i ∈ z
γ with respect to the criteria <z℘ ∈ <z in the form

of PyFNs. Criteria are in the linear prioritized relation as, <z1 > <
z

2 > . . . , > <
z

n. Moreover, DMs
are also in the prioritized relation as, Kζ1 > K

ζ
2, . . . ,K

ζ
p.
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In MADM, there are two types of criteria: benefit-type attributes τb, and cost-type attributes τ℘. If
all criteria are of the same type, normalization is unnecessary. However, if the criteria are of different
types, we use the normalization formula to transform the matrix D(p) into a normalised matrix Y (p) =

(P (p)
i j )m × n as follows:

(P (p)
i j )m × n =

(B(p)
i j )c; j ∈ τc B(p)

i j ;
j ∈ τb.

(4.1)

Here, (B(p)
i j )c denotes the complement of B(p)

i j .
We then apply the PyFSMA operator or PyFMA operator to implement a MCGDM approach in a

PyF context. The proposed operators are applied to the MCGDM approach in the following steps:

Algorithm

Input:
Step 1:
Acquire a decision matrix D(p) = (B(p)

i j )m×n in the form of PyFNs from the decision makers.
Step 2:
There is no requirement for normalising if all of the criteria are of the same kind; however, in MCGDM,
there are two distinct sorts of criteria. In this instance, the matrix was converted into the response matrix
Y (p) = (P (p)

i j )m×n by applying the normalising procedure Eq 4.1.
Calculations:
Step 3:
Calculate the values of Yξ(p)

i j by the following formula:

Y
ξ(p)

i j =

p−1∏
k=1

H (P (k)
i j ) (p = 2 . . . , n), (4.2)

T (1)
i j = 1.

Step 4:
In order to combine all of the separate PyF decision matrices, you need make use of one of the provided
aggregation procedures. Y (p) = (P (p)

i j )m×n worth of information into a single cumulative assessment
matrix of the options W (p) = (Wi j)m×n.
Step 5:
Calculate the values of Yξ i j by following formula:

Y
ξ

i j =

c−1∏
k=1

H (Wik) ( j = 2 . . . , n), (4.3)

Y
ξ

i1 = 1.

Step 6:
Aggregate the PyF values Wi j for each alternative zγ

i by the PyFSMA (or PyFSMG) operator:
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Wi = PyFSMA(Pi1,Pi2, . . .Pin)

=

〈
√√√√√√√√√√√√

(1 −
n∏

℘=1

(1 − (ξδ2
i j)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

n∏
℘=1

ηג)
2
i j)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
(4.4)

or

Wi = PyFSMG(Pi1,Pi2, . . .Pin)

=

〈 n∏
℘=1

(ξδ2
i j)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k]
,

√√√√√√√√√√√√
(1 −

n∏
℘=1

(1 − η2ג)
i j)

exp[Yξ℘/k]
n∑

℘=1

exp[Yξ℘/k] 〉
. (4.5)

Output:
Step 7:
Examine the total score obtained from all of the cumulative alternative tests.
Step 8:
The options were ranked using the score function, and the successful candidate was determined to be
the alternative that was the most appropriate.

5. Numerical example

In this modern era of globalised and highly competitive markets, efficient supplier selection has
emerged as a critical strategic decision for businesses across industries. In supply chain management,
the importance of this process and provide motivation for organisations to focus on enhancing their
supplier selection practices [43].

First and foremost, efficient supplier selection directly contributes to a company’s overall
performance and competitiveness. The suppliers chosen by an organisation play a vital role in
determining the quality, cost, and timely delivery of goods or services. Selecting the right suppliers
who can meet the specific requirements and expectations of the organisation is crucial for maintaining
customer satisfaction and loyalty [44]. A competitive edge, improved operational effectiveness, and
long-term viability can be attained by organisations that guarantee a dependable and efficient supply
chain. Furthermore, the contemporary business environment is distinguished by a growing intricacy
and interdependence. Organisations have expanded their supplier base beyond local and regional
markets to encompass a diverse range of international vendors. However, managing and selecting the
most appropriate suppliers becomes increasingly difficult as a result of this expanded supplier base.
Efficient supplier selection practices are crucial in this context as they enable organisations to navigate
the intricacies of global procurement, minimise risks, and capitalise on opportunities [45].

Furthermore, technological advancements have significantly transformed business operations,
including the supplier selection process. Organisations have access to an abundance of data and
sophisticated tools that can facilitate the evaluation and comparison of prospective suppliers in the
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current digital age [46]. Through the utilisation of advanced technologies including machine learning,
artificial intelligence, and big data analytics, organisations have the ability to optimise the supplier
selection procedure, discern patterns in extensive data sets, and arrive at decisions based on empirical
evidence. By adopting these technological advancements, organisations can greatly improve the
efficacy and efficiency of supplier selection. This empowers them to make more informed decisions
and maximise the performance of their supply chains [47].

Additionally, supplier collaboration and partnership are fostered through efficient supplier
selection, resulting in mutually beneficial relationships. Organisations can foster enduring
partnerships founded on trust, transparency, and mutual objectives by meticulously choosing suppliers
who are in harmony with their values, goals, and culture [48]. Collaborative alliances of this nature
have the potential to yield enhanced communication, novel ideas, and ongoing refinement across the
entire supply chain, thereby cultivating a competitive edge and distinguishing characteristics within
the marketplace. Effective supplier selection has become an essential operational procedure for
organisations seeking to prosper in a rapidly changing and fiercely competitive corporate
landscape [49]. Organisations can attain sustained success, boost supply chain performance, and gain
a competitive advantage by strategically choosing suppliers who are in line with their objectives,
capitalising on technological developments, and cultivating collaborative partnerships. To obtain the
numerous benefits that supplier selection processes provide, organisations should therefore invest
time, resources, and knowledge into their development [50].

The supplier selection procedure for a business requires crucial decision-making. Supplier selection
entails the evaluation of numerous alternatives and the subsequent selection of the most appropriate
provider in accordance with predetermined criteria [51]. Organisations can enhance the quality of
their procurement process, reduce expenses, boost productivity, and guarantee that their suppliers are
dependable and able to deliver superior products or services through the use of effective decision-
making [52].

The following are some of the important uses, and importance of decision-making in supplier
selection:

• Minimising Risks: By selecting the right supplier, businesses can reduce the risks associated
with procurement. A thorough evaluation of suppliers’ capabilities and experience can help
businesses to avoid suppliers that may deliver poor quality products or services, fail to meet
delivery deadlines, or engage in unethical business practices.
• Cost Savings: Decision-making in supplier selection can help businesses to save costs by

choosing suppliers that offer competitive prices, favorable payment terms, and efficient delivery
methods.
• Improved Quality: By selecting suppliers that meet high standards of quality, businesses can

ensure that the products and services they receive are of high quality, which can help to improve
the overall quality of their offerings.
• Increased Efficiency: Effective decision-making in supplier selection can help businesses to

increase the efficiency of their procurement process by reducing the time and resources required
to identify and evaluate suppliers.
• Better Relationships: By selecting suppliers that are responsive, cooperative, and committed to

meeting their needs, businesses can build strong relationships with their suppliers, which can lead
to increased trust, better communication, and more efficient collaboration.
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• Access to new technologies: Decision-making in supplier selection can help businesses to access
new technologies and innovations offered by suppliers. This can help businesses to improve their
products and services, stay competitive, and expand into new markets.

The following are some of the steps involved in the decision-making process for supplier selection:

• Define Requirements: The first step in the supplier selection process is to define the requirements
for the products or services that are needed. This includes defining the specifications, quality
standards, and delivery requirements for the products or services.
• Identify Potential Suppliers: The next step is to identify potential suppliers that meet the

requirements defined in the first step. This can be done by researching suppliers in the market,
reaching out to industry associations, or seeking recommendations from other businesses.
• Evaluate Suppliers: Once potential suppliers have been identified, the next step is to evaluate

them based on specific criteria such as their experience, quality of products or services, delivery
capabilities, and price.
• Negotiate Contracts: After evaluating suppliers, the next step is to negotiate contracts with the

preferred suppliers. This involves negotiating the terms and conditions of the agreement,
including delivery schedules, payment terms, and warranties.
• Monitor Performance: After the contracts have been signed, the final step is to monitor the

performance of the suppliers to ensure that they are meeting the requirements defined in the first
step. This can be done by regularly monitoring the quality of the products or services received,
delivery times, and communication with the suppliers.

Decision-making in supplier selection is an important process that helps businesses to minimize
risks, save costs, improve quality, increase efficiency, and build better relationships with their suppliers.
By following the steps outlined above, businesses can ensure that they make informed decisions that
lead to success in procurement.

In order to further understand our suggested process, below is an example that pertains to the
selection of suppliers in healthcare. Consider a set of alternatives zγ

= {zγ
1,z

γ
2,z

γ
3,z

γ
4,z

γ
5} and

<z = {<z1,<
z

2,<
z

3,<
z

4,<
z

5,<
z

6} as the finite set of criterion, where <z1= quality , <z2= cost ,
<z3= delivery, <z4= services , <z5=environment, and <z6= corporate social responsibility.
Kζ = {K

ζ
1,K

ζ
2,K

ζ
3} is the group of DMs. The strict prioritised relation is given as,

<z1 > <
z

2 > <
z

3 > <
z

4 > <
z

5 > <
z

6 and DMs are prioritized as Kζ1 > K
ζ
2 > K

ζ
3. DMs provide a

matrix of their own opinion D(p) = (B(p)
i j )m×n, where B(p)

i j is given for the alternatives zγ
i ∈ z

γ with
respect to the criteria<z℘ ∈ <z by Kζp decision maker in the form of PyFNs.

Step 1:
Acquire a decision matrix D(p) = (B(p)

i j )m×n in the form of PyFNs from the decision makers.
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Table 1. PyF decision matrix from Kζ1.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.89,0.00) (0.64,0.34) (0.74,0.14) (0.94,0.14) (0.74,0.00) (0.44,0.24)

zγ
2 (0.94,0.24) (0.79,0.29) (0.54,0.24) (0.74,0.14) (0.44,0.44) (0.34,0.14)

zγ
3 (0.84,0.14) (0.34,0.54) (0.74,0.24) (0.54,0.00) (0.64,0.34) (0.44,0.00)

zγ
4 (0.74,0.34) (0.80,0.24) (0.64,0.14) (0.34,0.24) (0.74,0.24) (0.34,0.74)

zγ
5 (0.79,0.24) (0.59,0.00) (0.24,0.14) (0.14,0.64) (0.64,0.14) (0.24,0.64)

Table 2. PyF decision matrix from Kζ2.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.74,0.24) (0.54,0.29) (0.84,0.14) (0.94,0.14) (0.79,0.24) (0.89,0.14)

zγ
2 (0.54,0.14) (0.59,0.34) (0.44,0.14) (0.74,0.34) (0.64,0.29) (0.74,0.00)

zγ
3 (0.89,0.59) (0.64,0.18) (0.24,0.54) (0.64,0.54) (0.14,0.24) (0.69,0.29)

zγ
4 (0.49,0.00) (0.54,0.39) (0.14,0.09) (0.49,0.59) (0.09,0.14) (0.59,0.34)

zγ
5 (0.84,0.34) (0.69,0.29) (0.64,0.54) (0.24,0.49) (0.49,0.29) (0.49,0.24)

Table 3. PyF decision matrix from Kζ3.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.89,0.14) (0.84,0.24) (0.79,0.00) (0.69,0.34) (0.79,0.19) (0.69,0.29)

zγ
2 (0.79,0.24) (0.54,0.14) (0.59,0.24) (0.49,0.29) (0.59,0.29) (0.59,0.29)

zγ
3 (0.74,0.14) (0.64,0.24) (0.34,0.00) (0.49,0.34) (0.74,0.29) (0.34,0.24)

zγ
4 (0.34,0.34) (0.49,0.34) (0.44,0.24) (0.54,0.44) (0.24,0.24) (0.64,0.00)

zγ
5 (0.64,0.24) (0.64,0.24) (0.59,0.14) (0.64,0.24) (0.64,0.54) (0.44,0.39)

Step 2:
Normalise the decision matrices acquired by DMs using Eq 4.1. There are two types of criteria. <z2

is a cost type criteria and others are benefit type criteria.

Table 4. Normalised PyF decision matrix from Kζ1.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.89,0.00) (0.34,0.64) (0.74,0.14) (0.94,0.14) (0.74,0.00) (0.44,0.24)

zγ
2 (0.94,0.24) (0.29,0.79) (0.54,0.24) (0.74,0.14) (0.44,0.44) (0.34,0.14)

zγ
3 (0.84,0.14) (0.54,0.34) (0.74,0.24) (0.54,0.00) (0.64,0.34) (0.44,0.00)

zγ
4 (0.74,0.34) (0.24,0.80) (0.64,0.14) (0.34,0.24) (0.74,0.24) (0.34,0.74)

zγ
5 (0.79,0.24) (0.00,0.59) (0.24,0.14) (0.14,0.64) (0.64,0.14) (0.24,0.64)
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Table 5. Normalised PyF decision matrix from Kζ2.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.74,0.24) (0.29,0.54) (0.84,0.14) (0.94,0.14) (0.79,0.24) (0.89,0.14)

zγ
2 (0.54,0.14) (0.34,0.59) (0.44,0.14) (0.74,0.34) (0.64,0.29) (0.74,0.00)

zγ
3 (0.89,0.59) (0.18,0.64) (0.24,0.54) (0.64,0.54) (0.14,0.24) (0.69,0.29)

zγ
4 (0.49,0.00) (0.39,0.54) (0.14,0.09) (0.49,0.59) (0.09,0.14) (0.59,0.34)

zγ
5 (0.84,0.34) (0.29,0.69) (0.64,0.54) (0.24,0.49) (0.49,0.29) (0.49,0.24)

Table 6. Normalised PyF decision matrix from Kζ3.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.89,0.14) (0.24,0.84) (0.79,0.00) (0.69,0.34) (0.79,0.19) (0.69,0.29)

zγ
2 (0.79,0.24) (0.14,0.54) (0.59,0.24) (0.49,0.29) (0.59,0.29) (0.59,0.29)

zγ
3 (0.74,0.14) (0.24,0.64) (0.34,0.00) (0.49,0.34) (0.74,0.29) (0.34,0.24)

zγ
4 (0.34,0.34) (0.39,0.24) (0.44,0.24) (0.54,0.44) (0.24,0.24) (0.64,0.00)

zγ
5 (0.64,0.24) (0.24,0.64) (0.59,0.14) (0.64,0.24) (0.64,0.54) (0.44,0.39)

Step 3:
Calculate the values of Yξ(p)

i j by Eq 4.2.

Y
ξ (1)

i j =



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1


.

Y
ξ (2)

i j =



0.8540 0.3741 0.6992 0.9160 0.7001 0.5400
0.8909 0.3174 0.5650 0.6993 0.4999 0.5238
0.8043 0.5510 0.6931 0.5729 0.6249 0.5176
0.6985 0.2320 0.5956 0.4935 0.6930 0.2905
0.7482 0.4140 0.4960 0.3533 0.6256 0.3619


.

Y
ξ (3)

i j =



0.5977 0.1542 0.5579 0.8373 0.5318 0.4650
0.5244 0.0939 0.2999 0.4991 0.2989 0.2995
0.5992 0.1976 0.3043 0.3562 0.2987 0.4490
0.3718 0.0989 0.3043 0.1934 0.3423 0.2587
0.5741 0.1261 0.3976 0.1844 0.3727 0.4317


.

Step 4:
Use PyFSMA to aggregate all individual PyF decision matrices Y (p) = (P (p)

i j )m×n into one cumulative
assessments matrix of the alternatives W (p) = (Wi j)m×n using proposed AOs given in Table 7.
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Table 7. Collective PyF decision matrix.

<z1 <z2 <z3 <z4 <z5 <z6

zγ
1 (0.7986, 0.0000) (0.2844, 0.5432) (0.8674, 0.0000) (0.9643, 0.0932) (0.8956, 0.0000) (0.6784, 0.2636)

zγ
2 (0.9743, 0.1897) (0.2973, 0.4632) (0.4536, 0.2138) (0.6954, 0.1984) (0.5434, 0.3224) (0.6474, 0.0000)

zγ
3 (0.7953, 0.2943) (0.3563, 0.7643) (0.7884, 0.0000) (0.5356, 0.0000) (0.5956, 0.5465) (0.6764, 0.0000)

zγ
4 (0.7854, 0.0000) (0.3522, 0.7849) (0.4352, 0.3464) (0.6463, 0.4674) (0.6644, 0.1675) (0.4754, 0.0000)

zγ
5 (0.2467, 0.2315) (0.5232, 0.6743) (0.4363, 0.5638) (0.6474, 0.5516) (0.5956, 0.3225) (0.4636, 0.6546)

Step 5:
Evaluate the values of Yξ i j by using Eq 4.3.

Y
ξ

i j =


1 0.8179 0.2999 0.2102 0.1998 0.1361
1 0.7999 0.2905 0.1946 0.1232 0.0253
1 0.7967 0.2323 0.1983 0.1343 0.0177
1 0.6321 0.2652 0.0987 0.0728 0.0149
1 0.7781 0.3101 0.1499 0.1223 0.0245


.

Step 6:
Aggregate the PyF values Wi j for each alternative zγ

i by the PyFSMA operator using Eq 4.4 given in
Table 8.

Table 8. PyF Aggregated values Wi.

Wi value
1 W1 (0.7765, 0.0000)
2 W2 (0.7298, 0.0000)
3 W3 (0.7167, 0.0000)
4 W4 (0.5784, 0.0000)
5 W5 (0.6352, 0.3532)

Step 7:
Calculate the score of all PyF aggregated values Wi.

H (W1) = 0.7289,

H (W2) = 0.7134,

H (W3) = 0.6944,

H (W4) = 0.5789,

H (W5) = 0.6532.

Step 8:
Ranks by score function values.

W1 � W2 � W3 � W5 � W4.
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So,

zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4.

Table 9. Comparison of proposed operators with some existing operators.

Method Ranking of alternatives The optimal alternative
PyFWG (Rahman et al. [19]) zγ

1 � z
γ

2 � z
γ

5 � z
γ

3 � z
γ

4 zγ
1

PyFWOG (Rahman et al. [19]) zγ
1 � z

γ
2 � z

γ
5 � z

γ
4 � z

γ
3 zγ

1

PyFWA ( Peng and Yuan [18]) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

GPyFWA (Peng and Yuan [18]) zγ
1 � z

γ
2 � z

γ
4 � z

γ
5 � z

γ
3 zγ

1

A-PyFIWA (Wang & Garg [20]) zγ
1 � z

γ
5 � z

γ
3 � z

γ
2 � z

γ
4 zγ

1

A-PyFIWG (Wang & Garg [20]) zγ
1 � z

γ
3 � z

γ
2 � z

γ
5 � z

γ
4 zγ

1

PyFWPG (Wei & Lu [53]) zγ
1 � z

γ
2 � z

γ
4 � z

γ
5 � z

γ
3 zγ

1

PyFPWA (Wei & Lu [53]) zγ
1 � z

γ
3 � z

γ
2 � z

γ
5 � z

γ
4 zγ

1

PyFHWA (Wu & Wei [54]) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

PyFHWG (Wu & Wei [54]) zγ
1 � z

γ
4 � z

γ
3 � z

γ
5 � z

γ
2 zγ

1

CPyFWA (Garg [55]) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

CPyFWG (Garg [55]) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

PyFPAd (Proposed) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

PyFPGd (Proposed) zγ
1 � z

γ
2 � z

γ
3 � z

γ
5 � z

γ
4 zγ

1

5.1. Comparison analysis of the proposed AOs

In this section, we present a comparative review of recommended operators alongside some current
AOs. The aim is to showcase the excellence of our suggested AOs, which yield the same final
result as the existing AOs. By analysing the information data using both our proposed AOs and the
existing ones, we compare the results and find consistent optimal decisions. This demonstrates the
strength and consistency of our proposed model. To facilitate the comparison between the presented
AOs and the current AOs, we have provided a comprehensive analysis in Table 9. The table offers
a clear overview of the ratings assigned to the AOs, indicating their relative preferences as follows:
zγ

1 � z
γ

2 � z
γ

3 � z
γ

5 � z
γ

4. These ratings are obtained using our proposed aggregation operators.
To verify the validity of our optimal choice, we have additionally applied additional established

operators to the problem. This evaluation serves to reassert the efficacy and soundness of the
aggregation operators we proposed, as we consistently reach the identical optimal conclusion.
Through a comparative analysis of suggested operators and established AOs, the robustness and
uniformity of our proposed model are underscored. The outcomes achieved by implementing our
aggregation operators are consistent with those achieved by utilising other established operators. The
robust validation results demonstrate that the proposed AOs are dependable and efficient in reaching
the optimal decision.
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6. Conclusions

By resolving the inherent complexities of this process with a novel method for selecting green
suppliers, especially in the healthcare industry, based on the Pythagorean fuzzy framework, this
manuscript concludes. The methodology surpasses conventional MADM challenges by incorporating
factors such as attribute relationships and an uncertain environment, which are often disregarded in
current approaches. The paper introduces a decision-making approach that integrates PyFN-based
evaluations of decision-makers and utilises PyF information. The method thus effectively mitigates
the prevalent issue of incomplete and ambiguous information that often accompanies the selection of
green suppliers. In addition to enhancing the accuracy and reliability of the decision-making process,
the suggested methodology cultivates an environment that is congenial and conducive to the comfort
of those who make decisions. Furthermore, the utilisation of the PyFSMA and PyFSMG operators is
recommended by the authors. These operators facilitate the streamlined collection and aggregation of
supplier evaluation data, thus enhancing the overall effectiveness of the method. An instance of
effectively choosing environmentally sustainable suppliers is provided to illustrate the feasibility and
practicability of the suggested approach. The outcomes illustrate the method’s efficacy in
implementation and underscore its benefits in facilitating agreement among decision-makers and
precisely quantifying their weights. The proposed methodology offers a more viable and effective
resolution for organisations aiming to choose environmentally sustainable and responsible suppliers,
thereby making a positive contribution to the field of supply chain management. By integrating the
Pythagorean fuzzy framework with PyFNs, as well as the PyFSMA and PyFSMG operators, the
decision-making process is enhanced and an environment conducive to comfortable and inclusive
decision-making is fostered.

This approach promotes environmentally conscious and sustainable business practices by enabling
organisations to make well-informed choices regarding the selection of green suppliers. The proposed
operators also have some limitations, including poor performance when priority degree vectors are
introduced and when the data is not Pythagorean fuzzy data. Moreover, applications can be seen as
decision support software solutions [56], cold chain logistics service providers [57], logistics centre
location [58], and forecasting of Alzheimer’s disease [59].
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