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Abstract: Many applications from computational mathematics can be identified for a system of non-
linear equations in more generalized Banach spaces. Analytical methods do not exist for solving these
type of equations, and so we solve these equations using iterative methods. We introduced a new
numerical technique for finding the roots of non-linear equations in Banach space. The method is
tenth-order and it is an extension of the fifth-order method which is developed by Arroyo et.al. [1].
We provided a convergence analysis to demonstrate that the method exhibits tenth-order convergence.
Also, we discussed the local convergence properties of the suggested method which depends on the
fundamental supposition that the first-order Fréchet derivative of the involved function Υ satisfies the
Lipschitz conditions. This new approach is not only an extension of prior research, but also establishes
a theoretical concept of the radius of convergence. We validated the efficacy of our method through
various numerical examples. Our method is comparable with the methods of Tao Y et al. [2]. We also
compared it with higher-order iterative methods, and we observed that it either performs similarly or
better for the numerical examples. We also gave the basin of attraction to demonstrate the behaviour
in the complex plane.
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1. Introduction

In the realm of scientific and engineering applications, many problems often lead to the formulation
of nonlinear equations that resist straightforward analytical solutions. These equations, encompassing
a wide range of complexities, arise in various fields such as biology, economics, engineering, and
physics. While linear equations can be tackled through well-established methods, nonlinear equations
necessitate more sophisticated techniques. Among these, iterative methods play a pivotal role in
approximating solutions.
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Iterative methods involve the process of repeatedly refining an initial estimate to converge towards
the true solution of an equation. These methods find extensive usage in both linear and nonlinear
scenarios. When it comes to nonlinear equations, they provide a powerful tool kit for solving equations
that do not involve derivatives. In particular, higher-order iterative methods bring for a class of
techniques capable of yielding accurate solutions for nonlinear non-differential equations of various
orders.

One crucial aspect of numerical analysis is understanding the behavior and performance of
numerical methods, especially in the context of iterative techniques used to solve nonlinear equations.
Local convergence analysis [1,3–6] is a fundamental tool in assessing the behavior of iterative methods
in the vicinity of a potential solution. When dealing with iterative methods, it is important to consider
not only whether the method converges, i.e. approaches a solution, but also how quickly and reliably
it converges. Local convergence analysis specifically examines the behavior of an iterative method
when starting from an initial guess that is close to the true solution. In local convergence analysis,
the convergence behavior is often characterized by a convergence radius. This radius defines a region
around the true solution within which the iterative method is expected to converge. If the initial guess
falls within this region, the method is likely to converge to the solution.

Many researchers have developed a higher-order iterative methods for the solution of nonlinear
equations [7–11]. One of the most demanding iterative methods is Newton-Rapshon method
denoted which has second order of convergence. The Halley and Chebyshev methods third order
of convergence [12]. Fourth-order convergence developed by [12–15]. In [7, 16, 17] the reserachers
developed fifth-order convergence. In [18, 19] the reserachers developed sixth-order convergence.
Eighth-order convergence analysis was discussed by [2, 14].

The main motive of this paper is to develop a higher tenth-order iterative technique by extending the
fifth-order method proposed by Arroyo and Cordero [1] for finding the roots of nonlinear equations in
Banach space. In our research, we analyze how well our proposed method works within a specific
region, focusing on the behavior of its first Fréchet derivative and Lipschitz constants. We also
determine the range within which our method is effective and provide ways to estimate errors in
the distances ∥χn − χ

∗∥. We solved various numerical problems using Mathematica 11.3 in order to
demonstrate the efficacy of the methods. The results of the proposed methods are compared with the
results of the Tao and Madhu [2]. The proposed technique represented in the complex plane by using
the basin of attraction.

This paper is organized as follows: In Section 2, we have given the proposed tenth-order iterative
technique. In Section 3, we have derived the convergence analysis of proposed technique. In Section 4,
we proved the local convergence analysis of our method. In Section 5, we gave some numerical
examples to verify the results obtained in Section 2. In Section 6, we studied the basin of attraction of
the proposed iterative method. Finally, in Section 7, we have given the conclusion.

2. Proposed method

In this section, we developed our tenth-order iterative method using the fifth-order method.
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In 2015, Arroyo and Cordero [1] developed the fifth-order iterative method as follows:

ψn = χn − [Υ′(χn)]−1Υ(χn),
zn = ψn − 5[Υ′(χn)]−1Υ(ψn),

χn+1 = zn −
1
5

[Υ′(χn)]−1[−16Υ(ψn) + Υ(zn)].

(2.1)

We have generalized (2.1) by adding the 4th step as follows:

ψn = χn − [Υ′(χn)]−1Υ(χn),
zn = ψn − 5[Υ′(χn)]−1Υ(ψn),

wn+1 = zn −
1
5

[Υ′(χn)]−1[−16Υ(ψn) + Υ(zn)],

χn+1 = wn − [Υ′(wn)]−1(Υ(wn)).

(2.2)

Now, we discuss the convergence analysis of our proposed method.

3. Convergence analysis

Theorem 3.1. Assume we have a functionΥ defined on an open intervalΩ, with a simple root χ∗ within
that interval. If Υ(χ) is smooth in the vicinity of the root χ∗, we can employ the methods described
by (2.2), which have a high accuracy, specifically being of order 10 and satisfying the following error
equation:

en+1 = 4c5
2(7c2

2 + 2c3)2e10
5 + O(e11

5 ). (3.1)

Proof. Let en = χn − χ
∗ be the error in nth iteration. Using Taylor’s series expansion around χ∗, we get

Υ(χn) = Υ(χ∗) +
Υ′(χ∗)

1!
(χn − χ

∗) +
Υ′′(χ∗)

2!
(χn − χ

∗)2 +
Υ′′′(χ∗)

3!
(χn − χ

∗)3 + · · · ,

Υ(χn) = Υ′(χ∗)
[
en + c2e2

n + c2e3
n + c3e4

n + c4e4
n + c5e5

n + c6e6
n + c7e7

n · · ·
]
,

Υ′(χn) = Υ′(χ∗)
[
1 + 2c2en + 3c2e2

n + 4c3e3
n + 4c4e3

n + 5c5e4
n + c6e5

n + c7e6
n · · ·

]
.

From the first step of (2.2), we get

ψn =c2e2
n +

(
2c3 − 2c2

2

)
e3

n +
(
4c3

2 − 7c3c2 + 3c4

)
e4

n +
(
−8c4

2 + 20c3c2
2 − 10c4c2 − 6c2

3 + 4c5

)
e5

n

+
(
16c5

2 − 52c3c3
2 + 28c4c2

2 +
(
33c2

3 − 13c5

)
c2 − 17c3c4 + 5c6

)
e6

n

− 2
(
16c6

2 − 64c3c4
2 + 36c4c3

2 + 9
(
7c2

3 − 2c5

)
c2

2 + (8c6 − 46c3c4) c2 − 9c3
3 + 6c2

4 + 11c3c5

)
e7

n + · · · ,

From the second step of (2.2), we get

zn = − 4c2e2
n +

(
18c2

2 − 8c3

)
e3

n +
(
−61c3

2 + 63c3c2 − 12c4

)
e4

n

+ 2
(
91c4

2 − 150c3c2
2 + 45c4c2 + 27c2

3 − 8c5

)
e5

n

+
(
−504c5

2 + 1148c3c3
2 − 422c4c2

2 +
(
117c5 − 482c2

3

)
c2 + 153c3c4 − 20c6

)
e6

n

+ 2(664c6
2 − 1936c3c4

2 + 804c4c3
2 + 4

(
333c2

3 − 68c5

)
c2

2
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+ (72c6 − 674c3c4) c2 − 126c3
3 + 54c2

4 + 99c3c5)e7
n + · · · .

From the third step of (2.2), we get

wn =
(
14c4

2 + 4c3c2
2

)
e5

n + c2

(
−140c4

2 + 65c3c2
2 + 4c4c2 + 17c2

3

)
e6

n

+ 2
(
430c6

2 − 535c3c4
2 + 44c4c3

2 +
(
37c2

3 + 2c5

)
c2

2 + 22c3c4c2 + 9c3
3

)
e7

n + · · · .

Finally, we get
en+1 = 4c5

2

(
7c2

2 + 2c3

)
2e10

n + O
(
e11

n

)
. (3.2)

Equation (3.2) shows that the order of convergence of (2.2) is tenth-order.
This completes the proof. □

4. Local convergence

In this section, we discuss the local convergence of (2.2) in Banach space.

Theorem 4.1. Let, Υ : Ω ⊂ S → S be a differentiable function. Suppose that there exists χ∗ ∈ Ω,
given parameters λ0 > 0, λ > 0,M ≥ 1, and for each χ, ψ ∈ Ω the following are true:

Υ(χ∗) = 0, (Υ′(χ∗))−1 ∈ L(S , S ),∥∥∥∥Υ′(χ∗)−1(Υ′(χ) − Υ′(χ∗))
∥∥∥∥ ≤ λ0∥χ − χ

∗∥, (4.1)∥∥∥∥Υ′(χ∗)−1(Υ′(χ) − Υ′(ψ)
∥∥∥∥ ≤ λ∥χ − ψ∥, (4.2)∥∥∥∥Υ′(χ∗)−1(Υ′(χ)
∥∥∥∥ ≤ M, (4.3)

U(χ∗, r) ⊆ Ω. (4.4)

Then, the sequence generated by method (2.2) for χ0 ∈ U(χ∗, r) \ χ∗ is well defined in U(χ∗, r) for each
n = 0, 1, 2, 3, ..... and converges to χ∗. Moreover the following estimates hold.

∥ψn − χ
∗∥ ≤ τ1(∥χn − χ

∗∥)∥χn − χ
∗∥ < ∥χn − χ

∗∥ < 1, (4.5)

∥zn − χ
∗∥ ≤ τ2(∥χn − χ

∗∥)∥χn − χ
∗∥ < ∥χn − χ

∗∥ < 1, (4.6)

∥wn − χ
∗∥ ≤ τ3(∥χn − χ

∗∥)∥χn − χ
∗∥ < ∥χn − χ

∗∥ < 1, (4.7)

∥χn+1 − χ
∗∥ ≤ τ4(∥χn − χ

∗∥)∥χn − χ
∗∥ < ∥χn − χ

∗∥ < 1. (4.8)

Furthermore, suppose that there existsR ∈ [r, 2
λ0

) such that U(χ∗,R). Then, the limit point χ∗ is the only
solution of Υ(χ) = 0 in U(χ∗,R).

Proof. In this section, we present the local convergence analysis of our developed iterative
method (2.2). Let λ0 > 0, L > 0, M > 0 be the given parameters. Suppose, there exists χ∗ ∈ Ω
such that Υ(χ∗) = 0. Let us assume that∥∥∥∥Υ′(χ∗)−1(Υ′(χ) − Υ′(χ∗))

∥∥∥∥ ≤ λ0∥χ − χ
∗∥.
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Since χ0 ∈ D, ∥∥∥∥Υ′(χ∗)−1(Υ′(χ0) − Υ′(χ∗))
∥∥∥∥ ≤ λ0∥χ0 − χ

∗∥. (4.9)

Let us assume that ∥χ0 − χ
∗∥ < 1

λ0
, which implies∥∥∥∥Υ′(χ∗)−1

Υ′(χ0) − I
∥∥∥∥ < 1,

(Υ′(χ0))−1 ∈ L(S , S ), and the value of
∥∥∥(Υ′(χ0))−1

∥∥∥ is∥∥∥(Υ′(χ0))−1Υ′(χ)∗
∥∥∥ = 1

1 − λ0∥χ0 − χ∗∥
. (4.10)

From the first step of (2.2),
ψn = χn − (Υ′(χn))−1Υ(χn). (4.11)

Putting n = 0 in (4.11),
ψ0 = χ0 − (Υ′(χ0))−1Υ(χ0),

ψ0 − χ
∗ = −(Υ′(χ0))−1

∫ 1

0

[
Υ′(χ∗ + θ(χ0 − χ

∗)) − Υ′(χ0)
]
dθ(χ0 − χ

∗).

Taking the norm on both sides, we get

∥ψ0 − χ
∗∥ =

∥∥∥∥∥∥(Υ′(χ0))−1
∫ 1

0

[
Υ′(χ∗ + θ(χ0 − χ

∗)) − Υ′(χ0)
]
dθ(χ0 − χ

∗)

∥∥∥∥∥∥,
∥ψ0 − χ

∗∥ ≤

∥∥∥∥∥∥(Υ′(χ0))−1Υ′(χ∗)
∫ 1

0
(Υ′(χ∗))−1

[
Υ′(χ∗ + θ(χ0 − χ

∗)) − Υ′(χ0) dθ
]∥∥∥∥∥∥∥χ0 − χ

∗∥,

∥ψ0 − χ
∗∥ ≤

λ∥χ0 − χ
∗∥

2

2
(
1 − λ0∥χ0 − χ∗∥

) ,
∥ψ0 − χ

∗∥ ≤ τ1∥χ0 − χ
∗∥ ∥χ0 − χ

∗∥,

for n = 0, ψ0 ∈ U(χ∗, r),

τ1(t) =
λt

2(1 − λ0t)
. (4.12)

From the second step of (2.2), we get

z0 = ψ0 − 5[Υ′(χ0)]−1Υ(ψ0).

Taking the norm on both sides, we get

∥z0 − χ
∗∥ =

∥∥∥(ψ0 − χ
∗) − 5[Υ′(χ0)]−1Υ(ψ0)

∥∥∥,
∥z0 − χ

∗∥ ≤ ∥ψ0 − χ
∗∥ + 5

∥∥∥Υ(ψ0)[Υ′(χ0)]−1
∥∥∥

≤ ∥ψ0 − χ
∗∥ + 5M∥ψ0 − χ

∗∥
1

1 − λ0∥χ0 − χ∗∥

= ∥ψ0 − χ
∗∥ +

[
1 +

5M
1 − λ0∥χ0 − χ∗∥

]
≤ τ1∥χ0 − χ

∗∥ +
[
1 +

5M
1 − λ0∥χ0 − χ∗∥

]
∥χ0 − χ

∗∥

= τ2 (∥χ0 − χ
∗∥) ∥χ0 − χ

∗∥

< r.
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Since ∥z0 − χ0∥ < r, then z0 ∈ U(χ∗, r), where

τ2(t) = τ1(t)
[
1 +

5M
1 − λ0t

]
. (4.13)

From the third step of (2.2), we get

wn+1 = zn −
1
5

[Υ′(χn]−1[−16Υ(ψn) + Υ(zn)]. (4.14)

Taking the norm on both sides, we get

∥w0 − χ0∥ ≤ ∥z0 − χ0∥ +
16
5

∥∥∥Υ(ψ0)(Υ′(χ0))−1
∥∥∥ + 1

5

∥∥∥Υ(z0)(Υ′(χ0))−1
∥∥∥

≤ ∥z0 − χ0∥ +
16
5

M∥ψ0 − χ
∗∥

1
1 − λ0∥χ0 − χ∗∥

+
1
5

M∥z0 − χ
∗∥

1
1 − λ0∥χ0 − χ∗∥

≤ τ2(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥

+
16
5

Mτ1(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥
1

1 − λ0∥χ0 − χ∗∥

+
1
5

Mτ2∥(χ0 − χ
∗)∥∥(χ0 − χ

∗)∥
1

1 − λ0∥χ0 − χ∗∥

=
(
τ2∥(χ0 − χ

∗)∥
[
1 +

M
5

1
1 − λ0∥χ0 − χ∗∥

]
+

16
5

Mτ1(∥χ0 − χ
∗∥

1
1 − λ0∥χ0 − χ∗∥

)
∥χ0 − χ

∗∥

≤ τ3(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥

< r,

where
τ3(t) = τ2(t)

[
1 +

M
5(1 − λ0t)

]
+

16
5

Mτ1(t)
1

1 − λ0t
. (4.15)

From the final step of (2.2),
χn+1 = wn − [Υ′(wn)]−1(Υ(wn)).

Taking the norm on both sides, we get

∥χ1 − χ
∗∥ =

∥∥∥w0 − χ
∗ − Υ(w0)(Υ′(w0))−1

∥∥∥
≤ τ3(∥χ0 − χ

∗∥)∥χ0 − χ
∗∥ + M∥w0 − χ

∗∥
1

1 − λ0∥w0 − χ∗∥

≤ τ3(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥

+ Mτ3(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥
1

1 − λ0τ3(∥χ0 − χ∗∥)∥χ0 − χ∗∥

=

(
τ3(∥χ0 − χ

∗∥)
[
1 + M

1
1 − λ0τ3(∥χ0 − χ∗∥

])
∥χ0 − χ

∗∥

= τ4(∥χ0 − χ
∗∥)∥χ0 − χ

∗∥

< r,
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where

τ4(t) = τ3(t)
[
1 + M

1
1 − λ0τ3(t)

]
. (4.16)

From this, we can conclude that χ1 ∈ U(χ∗, r) for n = 0. By simply replacing χ0, ψ0, z0,w0, χ1 as
χk, ψk, zk,wk, χk+1 we get

∥χk+1 − χ
∗∥ < ∥χk − χ

∗∥ < r.

Since ∥χk+1 − χ
∗∥ < r, that means χk+1 ∈ U(χ∗, r).

Uniqueness: To show the uniqueness part, let ψ∗ be another root. Then, by definition, Υ(ψ∗) = 0
and ψ∗ ∈ U(χ∗,R).

Let T =
∫ 1

0
Υ′(ψ∗ + θ(χ∗ − ψ∗))dθ.

Now, ∥∥∥Υ′(χ∗)−1(T − Υ(χ∗)
∥∥∥ ≤ ∥∥∥∥∥∥

∫ 1

0
λ0(ψ∗ + θ(χ∗ − ψ∗))dθ

∥∥∥∥∥∥
< 1.

(4.17)

By applying the Banach Inversion Lemma, T−1 exists. Hence, ψ∗ = χ∗.
This completes the proof. □

5. Numerical examples

In this section, we present a comprehensive numerical comparison between our newly developed
tenth-order iterative method and the existing higher-order iterative method [2]. We demonstrate the
performance of the methods. All experiments were conducted on Mathematica 11.3.

5.1. Real-world problems

Example 5.1. (Classical projectile problem) [2] Suppose someone is standing on a tower and want to
launch an object (like a ball) off the tower at a certain speed and angle so that it reaches a hill in the
distance. The hill is represented by a function which tells us its height at any horizontal distance. To
figure out the best angle to launch the object (the projectile) so that it travels the farthest horizontally
and hits the hill, we need the following:

• The height of the tower= h;
• The initial speed of launching an object = v;
• From the horizontal the angle = θ;
• There’s a hill in the distance described by a function=w(χ);
• The height of the hill at any horizontal distance=χ.

We want to maximize the horizontal distance travelled by the projectile.
To do this, we find the launch angle θm that gives the maximum horizontal distance. The path

function

p(χ) = h + χtanθ −
gχ2

2v2 sec2 θ, (5.1)

where y = p(χ) is the motion of projectile.

AIMS Mathematics Volume 9, Issue 3, 6648–6667.
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When the projectile hits the hill, there is a value of χ for which P(χ) = w(χ) for each value of x. We
wish to find the value of θ that maximizes x.

w(χ) = p(χ) = h + xtanθ −
gχ2

2v2 sec2 θ. (5.2)

Differentiating (5.1) implicitly with respect to θ, we have

w′(χ)
dχ
dθ
= χ sec2 θ +

dχ
dθ

tan θ −
g
v2 (χ2 sec2 θ tan θ + χ

dx
dθ

sec2 θ). (5.3)

Setting dx
dθ = 0 in Eq (5.3), we have

χm =
v2

g
cot θm (5.4)

or

θm = arctan
( v2

gχm

)
. (5.5)

An enveloping parabola encloses and intersects all potential projectile paths. Henelsmith determined
this parabola by maximizing the projectile height for a given horizontal distance, encompassing all
possible paths.

Letting w = tan(θ), in Eq (5.1), we get

ψ = P(χ) = h + χw −
gχ2

2v2 (1 + w2). (5.6)

Differentiating (5.6) with respect to w and setting ψ′ = 0, we get, as Henelsmith obtained,

ψ′ = χ −
χg2

v2 (w) = 0, (5.7)

w =
v2

gχ
, (5.8)

so that the enveloping parabola defined by

ψm = ρ(χ) = h +
v2

2g
−
χg2

v2 . (5.9)

To solve the projectile problem, first determine the value of χm that makes the density function ρ(χ)
equal to the function w(χ). Solving for θm in (5.5) because we want to find the point at which the
enveloping parabola ρ intersects the impact function w, and then find θ that corresponds to this point
on the enveloping parabola. We choose a linear impact function w(χ) = 0.4x with h=10 and v=20. Let
g = 9.8, then the nonlinear equation is given by,

Υ(χ) = ρ(χ) − w(χ) = h +
v2

2g
−

gχ2

2v2 − 0.4χ, (5.10)

χ0 = 30, χ∗ = 36.103018.
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The Table 1 summarizes the numerical results, showcasing the performance of both the proposed
method and 16th-order method demonstrating its superiority. To further emphasize this point, the
Figure 1 visually represents the error bounds for both methods. The reduction in error bounds signifies
the enhanced accuracy and efficiency of our approach.

Table 1. Numerical comparison between proposed iterative method PM and 16th-order.

method n χn | Υ(χn) | | χn−1 − χn | COC CPU Time

PM
1 36.103 4.1079 × 10−8 3.19557 × 10−8

2 36.103 0 0 10 0.125
16th YM 3 36.103 - 0 16.01 0.512152

(a) 0.01225χ2 + 0.4χ − 30.4082(PM) (b) 0.01225χ2 + 0.4χ − 30.4082(16th YM)

Figure 1. Graphical comparison between proposed iterative method PM and 16th-order.

Example 5.2. This problem is related to Plank’s radiation law [2],

ϕ(t) =
8πcht−5

e
ch
tkT − 1

.

Planck’s radiation law is a formula used to calculate the energy density within a black body at

• specific temperature= T;
• speed of light=c;
• wavelength =t;
• Planck’s constant=h;
• Boltzmann’s constant=k.

By finding the maximum of the function ϕ(t) and its corresponding wavelength (t), one can use the
derivative ϕ′(t) = 0 to derive the maximum wavelength according to the law. This law is crucial in
understanding the radiation emitted by black bodies at different temperatures. The maximum of the
function ϕ(t) and the associated wavelength t can be derived from ϕ′(t) = 0, and, therefore, by setting
χ = ch

tkT , we get the equation

e−χ +
χ

5
− 1, (χ0 = 3).

Initial point χ0 = 3 will be used in the following numerical tests for finding the simple root α =
4.965114.
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The Table 2 summarizes the numerical results, showcasing the performance of both the proposed
method and 16th-order method demonstrating its superiority. To further emphasize this point, the
Figure 2 visually represents the error bounds for both methods. The reduction in error bounds signifies
the enhanced accuracy and efficiency of our approach.

Table 2. Numerical comparison between proposed iterative method PM and 16th-order.

method n χn | Υ(χn) | | χn−1 − χn | COC CPU Time

PM
1 4.9651170871159177010 5.5 × 10−7 2.9 × 10−6

2 4.9651142317442763037 5.1 × 10−69 2.6 × 10−68 10 0.265
3 4.9651142317442763037 2.4 × 10−689 1.2 × 10−688

16th YM
1 4.9650723894771912524 8.1 × 10−6 0.000042
2 4.9651142317442763037 9.2 × 10−51 4.8 × 10−50 16 0.828
3 4.9651142317442763037 3.1 × 10−455 1.6 × 10−454

(a) e−χ + χ
5 − 1(PM) (b) e−χ + χ

5 − 1(16th YM)

Figure 2. Graphical comparison between proposed iterative method PM and 16th-order.

Example 5.3. [12] Let X = Y = C[0, 1] represent the space of continuous functions defined on [0, 1],
and both the spaces are equipped with the max-norm. Consider a subset of X denoted by Ω defined by
Ω = {χ ∈ C[0, 1]; ∥χ∥ ≤ R}, with R > 1, and Υ be defined on Ω by

Υ(χ)(ς) = χ(ς) − Υ(ς) − µ
∫ 1

0
G(ς, t)χ(t)3dt, x ∈ C[0, 1], ς ∈ [0, 1], (5.11)

where, Υ ∈ C[0, 1] is a given function, µ is a real constant, and the kernel G is the Green’s function

G(ς, t) =

(1 − ς)t, t ≤ ς,
(1 − ς)t, ς ≤ t.

(5.12)

In this case, for each x ∈ Ω, Υ′(χ) is a linear operator defined on Ω by the following expression:

Υ′(χ)(v)(ς) = V(ς) − 3λ
∫ 1

0
G(ς, t)χ(t)2v(t)dt, v ∈ C[0, 1], ς ∈ [0, 1]. (5.13)
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By choosing, λ0 = 2.16, λ = 3.12,M = 1 + λ0t, then applying Theorem 4.1, r = min{r1, r2, r3, r4} =

0.0155207.
From the tabulated results in Table 3, the radius of convergence for our method suggests a wider

range of initial conditions for which a solution exists and it provides numerical aspects of existence of
solution. Hence, the solution exists in the region U(χ∗, 0.0155207).

Table 3. Radii of convergence.

λ0 λ M r1 r2 r3 r4

2.16 3.12 1 + λ0t 0.268817 0.0699475 0.0454709 0.0155027

Example 5.4. Let X = Y = R3, Ω = U(0, 1), [12] and

x =


0
0
0

 . (5.14)

Define the function F on Ω for

w =


χ

ψ

z

 , (5.15)

Υ(w) =


eχ

e−1
2 ψ

2 + ψ

z

 . (5.16)

Then, the Fréchet-derivative is given by

Υ′(v) =


eχ 0 0
0 (e − ψ) + 1 0
0 0 1

 . (5.17)

By choosing, λ0 = 2, λ = e,M = 1+λ0t, then applying Theorem 4.1, r = min{r1, r2, r3, r4} = 0.0183063.
From the tabulated results in Table 4, the radius of convergence for our method suggests a wider

range of initial conditions for which a solution exists and it provides snumerical aspects of existence
of solution. Hence, the solution exists in the region U(χ∗, 0.0183063).

Table 4. Radii of convergence.

λ0 λ M r1 r2 r3 r4

2 e 1 + λ0t 0.297695 0.0787637 0.0514214 0.0183063

Example 5.5. Let X = [−1, 1], Y = R, χ0 = 0, and let F : X → Y be the polynomial [12]

Υ(χ) =
χ3

6
+
χ2

6
−

5χ
6
+

1
9
. (5.18)

By choosing, λ0 =
13
10 , λ =

22
10 ,M = 1 + λ0t, then applying the Theorem 4.1, r = min{r1, r2, r3, r4} =

0.0340465.
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From the tabulated results in Table 5, the radius of convergence for our method suggests a wider
range of initial conditions for which a solution exists and it provides numerical aspects of existence of
solution. Hence, the solution exists in the region U(χ∗, 0.0340465).

Table 5. Radii of convergence.

λ0 λ M r1 r2 r3 r4
13
10

22
10 1 + λ0t 0.571429 0.121991 0.0753055 0.0340465

Example 5.6. Let us consider an equation

χ3 − 0.49 = 0. (5.19)

Consider the domain Ω = U(χ0, 0.5), where χ0 = 1. By choosing λ0 = 2.5, λ = 3, M = 1 + λ0t, then
applying Theorem 4.1, r = min{r1, r2, r3, r4} = 0.510028.

From the tabulated results in Table 6, the radius of convergence for our method suggests a wider
range of initial conditions for which a solution exists and it provides numerical aspects of existence of
solution. Hence, the solution exists in the region U(χ∗, 0.510028).

Table 6. Radii of convergence.

λ0 λ M r1 r2 r3 r4

2.5 3 1 + λ0t 0.25 0.0684962 0.51078 0.510028

6. Basin of attraction

We focus here on the visual representation of the basins of attraction where Ψ(ϕ) is a predefined
complex polynomial, written as ϕ(z), which is an important part of our proposed strategy. The concept
of basins of attraction is fundamental in understanding the behaviour of iterative methods in complex
dynamics. When ϕ∗ represents a root of the functionΨ(ϕ), the basins of attraction for ϕ∗ can be defined
as the collection of all ϕ0 values, such that initiating the method at ϕ0 will ultimately converge to ϕ∗.
Mathematically,

B(ϕ∗) = {z0 ∈ C : ϕ(z)→ ϕ∗ as n→ ∞}. (6.1)

The basins of attraction are able to be pictured as regions on a a complex plane. The complex
polynomial ϕ(z) has several roots, and each one corresponds to a distinct basin. When we commence
the iterative process from a particular starting point ϕ0, it gravitates towards a root ϕ∗ if it falls within
the basin corresponding to that particular root.

Expanding the range of initial points across the complex plane allows for a more comprehensive
analysis of the method’s behavior. Even when the function’s roots are real, a viable solution can
be obtained. Illustrating the basins of attraction through figures proves to be an effective technique
in understanding the method’s behavior within the complex plane. Mathematica software is highly
valuable for generating these visual representations. These have been discussed by many researchers.

Numerical approaches help understand complex dynamical systems by analyzing their behavior
and exploring their outcomes based on foundational principles. It is crucial to examine each numerical
method individually as they can yield differing results.
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A complex polynomial of order n has n distinct roots, essentially the complex plane into “n” basins.
However, the important thing is that these basins may not necessarily be uniformly distributed or even
linked to each other.

Basin colouring is a technique for visualizing the regions created by complex polynomials. In this
basin colouring , each of the distinct basins resulting from the polynomial’s roots is assigned a unique
color out of the total of “n” basins. By applying numerical methods, the initial points within a defined
region or mesh are analyzed to determine which basin they converge to. The corresponding color is
then applied to represent the specific basin. Varying color intensities indicate the number of iterations
required for convergence to a root, i.e., converging faster shows with higher intensity. This coloring
approach shows a meaningful geometric interpretations of nearly all types of complex polynomials.

The concept of a basin of attraction in the context of the complex approach is pioneered by
Cayley. This section is dedicated to utilizing this graphical tool to visually represent the basins
associated with our proposed method. Taking advantage of the computational capabilities of the
Mathematica 11.3 software, we aim to illustrate the basins of attraction for complex functions. This
approach enables a detailed and insightful exploration of the method’s basin of attraction through a
graphical representation of its convergence patterns.

In the complex plane, we take a rectangle denoted as Ω = [−3, 3] × [−3, 3] ∈ C consisting of a grid
of 450 points along each axis. Employing our iterative methods, we initiate the process from every
zero point z(0). With a cap of 100 iterations and a tolerance criterion of |ϕ(z(k))| < 10−4, we ascertain
whether z(0) is the basin of attraction for a particular zero or not. This determination is made if the
iterative procedure leads to a zero of the polynomial within the defined tolerance. This systematic
approach provides valuable insights into the basins of attraction associated with different zeros of the
polynomial.
Problem 6.1. Let ϕ(z) = z(z2 + 1)(z2 + 4) having five zeros {0, i,−i, 2i,−2i}. In Figure 3 we carefully
consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] × [−3, 3] ∈ C. Our approach
involves initiating the iterative process from various points within this region. When the iterative
technique fails to converge for a specific starting point z0, we colored the point black. Conversely,
points where convergence occurs are colorized. A convergence criterion of less than 10−4 guides us in
determining when the convergence process is deemed complete. The interesting patterns and shapes
formed by the edges of attraction areas is the Julia set. It serves to delineate the intricate structure
of iteration functions and provides valuable insights into their behavior and convergence patterns. In
Figure 3, the left side represents the basin of attraction for the proposed iterative method (10th PM),
while the right side represents the basin of attraction for the 16th-order iterative method (16th YM).

(a) z(z2 + 1)(z2 + 4)(PM) (b) z(z2 + 1)(z2 + 4)(16th YM)

Figure 3. Comparison of basins of attraction.

AIMS Mathematics Volume 9, Issue 3, 6648–6667.



6661

Problem 6.2. Let ϕ(z) = (z − 1)3 − 1 [20] having three zeros {0.5 − 0.866025i, 0.5 + 0.866025i, 2}.
In Figure 4, we carefully consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] ×
[−3, 3] ∈ C. Our approach involves initiating the iterative process from various points within this
region. When the iterative technique fails to converge for a specific starting point z0, we colored the
point black. Conversely, points where convergence occurs are colorized. A convergence criterion
of less than 10−4 guides us in determining when the convergence process is deemed complete. The
interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behavior
and convergence patterns. In Figure 4, the left side represents the basin of attraction for the proposed
iterative method (10th PM), while the right side represents the basin of attraction for the 16th-order
iterative method (16th YM).

(a) (z − 1)3 − 1(PM) (b) (z − 1)3 − 1(16th YM)

Figure 4. Comparison of basins of attraction.

Problem 6.3. Let ϕ(z) = z7 + 1 having seven zeros {−0.62349 + 0.781831i,−0.62349 −
0.781831i, 0.22521 + 0.9749281i, 0.22521 − 0.9749281i, 0.900969 − 0.433884i, 0.900969 +
0.433884,−1}. In Figure 5, we carefully consider a rectangular area in the complex plane,
denoted as Ω = [−3, 3] × [−3, 3] ∈ C. Our approach involves initiating the iterative process from
various points within this region. When the iterative technique fails to converge for a specific starting
point z0, we colored the point peach while in right side the technique fails to converge for a specific
starting point z0, we colored the point black . Conversely, points where convergence occurs are
colorized. A convergence criterion of less than 10−4 guides us in determining when the convergence
process is deemed complete. The interesting patterns and shapes formed by the edges of attraction
areas is the Julia set. It serves to delineate the intricate structure of iteration functions and provides
valuable insights into their behavior and convergence patterns. In Figure 5, the left side represents the
basin of attraction for the proposed iterative method (10th PM), while the right side represents the
basin of attraction for the 16th-order iterative method (16th YM).

(a) z7 + 1(PM) (b) z7 + 1(16th YM)

Figure 5. Comparison of basins of attraction.
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Problem 6.4. Let ϕ(z) = z3 − z [21] having three zeros {−1, 0, 1}. In Figure 6, we carefully consider a
rectangular area in the complex plane, denoted as Ω = [−3, 3] × [−3, 3] ∈ C. Our approach involves
initiating the iterative process from various points within this region. When the iterative technique
fails to converge for a specific starting point z0, we colored the point red. Conversely, points where
convergence occurs are colorized. A convergence criterion of less than 10−4 guides us in determining
when the convergence process is deemed complete. The interesting patterns and shapes formed by
the edges of attraction areas is the Julia set. It serves to delineate the intricate structure of iteration
functions and provides valuable insights into their behavior and convergence patterns. In Figure 6, the
left side represents the basin of attraction for the proposed iterative method (10th PM), while the right
side represents the basin of attraction for the 16th-order iterative method (16th YM).

(a) z3 − z(PM) (b) z3 − z(16th YM)

Figure 6. Comparison of basins of attraction.

Problem 6.5. Let ϕ(z) = z4 − 5z2 + 4 [21] having four zeros {−2,−1, 1, 2}. In Figure 7, we carefully
consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] × [−3, 3] ∈ C. Our approach
involves initiating the iterative process from various points within this region. When the iterative
technique fails to converge for a specific starting point z0, we colored the point white. Conversely,
points where convergence occurs are colorized. A convergence criterion of less than 10−4 guides us in
determining when the convergence process is deemed complete. The interesting patterns and shapes
formed by the edges of attraction areas is the Julia set. It serves to delineate the intricate structure
of iteration functions and provides valuable insights into their behavior and convergence patterns. In
Figure 7, the left side represents the basin of attraction for the proposed iterative method (10th PM),
while the right side represents the basin of attraction for the 16th-order iterative method (16th YM).

(a) z4 − 5z2 + 4(PM) (b) z4 − 5z2 + 4(16th YM)

Figure 7. Comparison of basins of attraction.

AIMS Mathematics Volume 9, Issue 3, 6648–6667.



6663

Problem 6.6. Let ϕ(z) = z7 − 1 having seven zeros {0.62349 + 0.781831i, 0.62349 −
0.781831i,−0.22521 + 0.9749281i,−0.22521 − 0.9749281i,−0.900969 − 0.433884i,−0.900969 +
0.433884, 1}. In Figure 8, we carefully consider a rectangular area in the complex plane, denoted
as Ω = [−3, 3]× [−3, 3] ∈ C. Our approach involves initiating the iterative process from various points
within this region. When the iterative technique fails to converge for a specific starting point z0, we
colored the point white. Conversely, points where convergence occurs are colorized. A convergence
criterion of less than 10−4 guides us in determining when the convergence process is deemed complete.
The interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behavior
and convergence patterns. In Figure 8, the left side represents the basin of attraction for the proposed
iterative method (10th PM), while the right side represents the basin of attraction for the 16th-order
iterative method (16th YM).

(a) z7 − 1(PM) (b) z7 − 1(16th YM)

Figure 8. Comparison of basins of attraction.

Problem 6.7. Let ϕ(z) = (z3 − i)(z + 2i) [10] having four zeros {−i,−2i,−0.866025 + 0.5i, 0.866025 +
0.5i}. In Figure 9, we carefully consider a rectangular area in the complex plane, denoted as Ω =
[−3, 3] × [−3, 3] ∈ C. Our approach involves initiating the iterative process from various points within
this region. When the iterative technique fails to converge for a specific starting point z0, we colored
the point yellow. Conversely, points where convergence occurs are colorized. A convergence criterion
of less than 10−4 guides us in determining when the convergence process is deemed complete. The
interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behaviour
and convergence patterns. In Figure 9, the left side represents the basin of attraction for the proposed
iterative method (10th PM), while the right side represents the basin of attraction for the 16th-order
iterative method (16th YM).

(a) (z3 − i)(z + 2i)(PM) (b) (z3 − i)(z + 2i)(16th YM)

Figure 9. Comparison of basins of attraction.
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Problem 6.8. Let ϕ(z) = (z2 − 1)(z2 + 0.16) [10] having four zeros {−1,−0.4i, 0.4i, 1}. In Figure 10,
we carefully consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] × [−3, 3] ∈ C.
Our approach involves initiating the iterative process from various points within this region. When
the iterative technique fails to converge for a specific starting point z0, we colored the point light
white shades. Conversely, points where convergence occurs are colorized. A convergence criterion
of less than 10−4 guides us in determining when the convergence process is deemed complete. The
interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behavior
and convergence patterns.

(a) (z2 − 1)(z2 + 0.16)(PM)

Figure 10. Comparison of basins of attraction.

Problem 6.9. Let ϕ(z) = (z2+1)(z−1)2 [10] having zeros {−i, i, 1, 1}. In Figure 11, we carefully consider
a rectangular area in the complex plane, denoted as Ω = [−3, 3] × [−3, 3] ∈ C. Our approach involves
initiating the iterative process from various points within this region. When the iterative technique
fails to converge for a specific starting point z0, we colored the point light white shades. Conversely,
points where convergence occurs are colorized. A convergence criterion of less than 10−4 guides us in
determining when the convergence process is deemed complete. The interesting patterns and shapes
formed by the edges of attraction areas is the Julia set. It serves to delineate the intricate structure
of iteration functions and provides valuable insights into their behavior and convergence patterns. In
Figure 11, the left side represents the basin of attraction for the proposed iterative method (10th PM),
while the right side represents the basin of attraction for the 16th-order iterative method (16th YM).

(a) (z2 + 1)(z − 1)2(PM) (b) (z2 + 1)(z − 1)2(16th YM)

Figure 11. Comparison of basins of attraction.

Problem 6.10. Let ϕ(z) = z3 + z + 40 having zeros {−3.32251, 1.66126 − 3.0462i, 1.66126 + 3.0462i}.
In Figure 12, we carefully consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] ×
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[−3, 3] ∈ C. Our approach involves initiating the iterative process from various points within this
region. When the iterative technique fails to converge for a specific starting point z0, we colored the
point black. Conversely, points where convergence occurs are colorized. A convergence criterion
of less than 10−4 guides us in determining when the convergence process is deemed complete.The
interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behavior
and convergence patterns. In Figure 12, the left side represents the basin of attraction for the proposed
iterative method (10th PM), while the right side represents the basin of attraction for the 16th-order
iterative method (16th YM).

(a) z3 + z + 40(PM) (b) z3 + z + 40(16th YM)

Figure 12. Comparison of basins of attraction.

Problem 6.11. Let ϕ(z) = z4 + 4z3 − 24z2 + 16z + 16 having four zeros {2, 2,−7.4641,−0.535898}.
In Figure 13, we carefully consider a rectangular area in the complex plane, denoted as Ω = [−3, 3] ×
[−3, 3] ∈ C. Our approach involves initiating the iterative process from various points within this
region. When the iterative technique fails to converge for a specific starting point z0, we colored the
point white. Conversely, points where convergence occurs are colorized. A convergence criterion
of less than 10−4 guides us in determining when the convergence process is deemed complete. The
interesting patterns and shapes formed by the edges of attraction areas is the Julia set. It serves to
delineate the intricate structure of iteration functions and provides valuable insights into their behavior
and convergence patterns. In Figure 13, the left side represents the basin of attraction for the proposed
iterative method (10th PM), while the right side represents the basin of attraction for the 16th-order
iterative method (16th YM).

(a) z4 + 4z3 − 24z2 + 16z + 16(PM) (b) z4 + 4z3 − 24z2 + 16z + 16(16th YM)

Figure 13. Comparison of basins of attraction.
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7. Conclusions

In this research article, we embarked on a journey to explore and develop 10th-order iterative
methods for the solution of nonlinear equations with efficiency index 1.4677992. By employing the
Frechet derivative of the first order, we established a foundation for achieving local convergence. This
mathematical framework allowed us to tailor our iterative methods to exhibit efficient and reliable
convergence behavior within specific regions, enhancing the applicability of our approach to a diverse
array of nonlinear problems. The basin of attraction not only provides insights into the reliability of our
methods, but also enables practitioners to strategically select starting points that expedite convergence.
The results of our research not only contribute to the theoretical understanding of iterative methods,
but also offer practical tools for solving nonlinear equations encountered in various scientific and
engineering domains.
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