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Abstract: General learning algorithms trained on a specific dataset often have difficulty generalizing 

effectively across different domains. In traditional pattern recognition, a classifier is typically trained 

on one dataset and then tested on another, assuming both datasets follow the same distribution. This 

assumption poses difficulty for the solution to be applied in real-world scenarios. The challenge of 

making a robust generalization from data originated from diverse sources is called the domain 

adaptation problem. Many studies have suggested solutions for mapping samples from two domains 

into a shared feature space and aligning their distributions. To achieve distribution alignment, 

minimizing the maximum mean discrepancy (MMD) between the feature distributions of the two 

domains has been proven effective. However, this alignment of features between two domains ignores 

the essential class-wise alignment, which is crucial for adaptation. To address the issue, this study 

introduced a discriminative, class-wise deep kernel-based MMD technique for unsupervised domain 

adaptation. Experimental findings demonstrated that the proposed approach not only aligns the data 

distribution of each class in both source and target domains, but it also enhances the adaptation 

outcomes. 
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1. Introduction 

Deep learning techniques have proven successful in various computer vision fields, such as image 

classification [1], object detection [2], and semantic segmentation [3]. However, the effectiveness of 

deep learning relies heavily on large, labeled training datasets, which could be labor-intensive to 

annotate. When dealing with large unlabeled datasets, it is often impractical to label enough data for 

training a deep learning model. An alternative approach is transfer learning, where labeled data from 

related domains (source domain) are utilized to enhance the model's performance in the domain of 

interest (target domain). Transfer learning is the process of applying knowledge learned from a labeled 

source domain to a target domain, where labeled data may be limited or unavailable. 

Pan [4] classified transfer learning into three categories according to labeled data in the two 

domains used during training. They are (1) inductive transfer learning: When the target domain data is 

labeled, irrespective of whether the source domain data is labeled or not; (2) transductive transfer 

learning: When only the source domain data is labeled, while the target domain data remains unlabeled; 

and (3) unsupervised transfer learning: When both domains lack labels. Transductive transfer learning 

can be further divided into two types: (1) domain adaptation: When both domains use the same 

attributes but have different marginal probability distributions; and (2) sample selection bias: When 

the sample spaces or data types of the two domains are different, such as images in the source domain 

and text in the target domain. This paper focuses on unsupervised domain adaptation (UDA), which 

aims to minimize the distribution discrepancy between data from two domains, enabling successful 

knowledge transfer from the source domain to the target domain. 

Currently, numerous domain adaptation methods have been researched and developed [4–23]. 

These methods fall into three main categories [4]: Instance reweighting methods [5–7], feature 

extraction methods [8–11], and classifier adaptive approaches [12,13]. Feature extraction methods aim 

to learn domain-invariant feature representations and are broadly categorized into two types [14]: 

Adversarial learning-based approaches [15–17] and statistics-based approaches [18–20]. Adversarial 

learning-based methods seek to achieve domain-invariant features by generating images or feature 

representations from different domains. For instance, the deep reconstruction classification network 

(DRCN) [21] establishes a classifier for labeled source domain data and constructs a domain-invariant 

feature representation shared with unlabeled target domain data. Statistical methods involve defining 

a suitable measure of difference or distance between two distinct distributions [18,24–29]. Various 

distance metrics, such as quadratic [30], Kullback-Leibler [31] and Mahalanobis [32], have been 

proposed over the years. However, these methods are not easily adaptable to different domain 

adaptation (DA) models and may not effectively describe complex distributions like conditional and 

joint distributions due to theoretical limitations. In recent years, the MMD [28], initially used for two-

sample testing, has been found to be effective in calculating the distance between sample distributions 

from two domains in feature space. It facilitates alignment between the distributions by minimizing 

the MMD between them. The method presented in this paper falls under this category. Long et al. [9] 

introduced the regularization of MMD, utilizing it to reduce the distribution difference between the 

feature distributions of two domains in hidden layers of deep adaptation networks. 

The use of MMD focuses mainly on aligning the overall distribution of two domains, but often 

falls short in ensuring precise alignment of data within the same category across domains. In response, 

Long et al. [19] proposed the class-wise maximum mean discrepancy (CWMMD) to enhance robust 

domain adaptation. The two-domain samples are linearly mapped into a common feature space and the 
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MMD for each category is calculated, then summed to obtain a CWMMD. Wang et al. [33] highlighted 

that minimizing the MMD is equivalent to minimizing the overall data variance while simultaneously 

maximizing the intra-class distances of the source and target domains, leading to a decrease in feature 

discriminativeness. They adjusted balance parameters to mitigate this issue but were limited to linear 

transformations in the feature space. However, they used the L2 norm as the MMD estimator in a 

linearly transformed feature space. It is worth noting that the L2 norm is not well suited for general 

estimation [34,35], and that linear transformations may not adequately capture complex data 

relationships, especially if nonlinear mappings are required. 

In contrast, deep neural networks, particularly convolutional neural networks (CNNs), learn 

powerful and expressive nonlinear transformations. This paper proposes a method to improve upon 

this, which involves training a CNN architecture, so that the model automatically learns feature 

representations that are well-suited for the task at hand. Furthermore, the loss function used in the 

domain adaptation process can be efficiently evaluated in a reproduced kernel hilbert space (RKHS). 

This facilitates effective alignment of data belonging to the same class from both the source and target 

domains in the shared feature space. 

2. Materials and methods 

This section presents the related research, including pseudo labels and different variants of MMD. 

2.1. Pseudo labels 

Computing a class-level MMD during training requires the use of pseudo-labels for unlabeled 

target domain data. A simple way to generate pseudo labels is directly applying formula (1) to the 

source domain model [14]; that is, input the target sample 𝑥𝑡
  into the source domain model f = C∙F, 

which comprises a feature extractor F and a classifier C, to obtain the softmax result of classification 

𝛿 = (𝛿1, 𝛿2, … , 𝛿𝐶), and then set the index of the maximum of components in the output vector 𝛿 as 

the pseudo label for the target sample 𝑥𝑡
 . However, due to domain shift, the pseudo-label generated 

by this method may have large bias. Instead, this study adopts another method, the self-supervised 

pseudo-label strategy proposed by Liang et al. [36]. The strategy first uses the current target domain 

model to calculate the centroid of each category for the target domain data, which is similar to weighted 

K-means clustering, as shown in formula (2). These centroids robustly represent the distribution of 

different classes in the target domain data. Next, the category of the nearest centroid for each target 

domain data is obtained as its pseudo label, as shown in formula (3), where Dcos(𝑎, b) means the 

cosine distance between a and b. The new pseudo-label is then utilized to recalculate the centroid, as 

shown in formula (4), and update the pseudo-label again, as shown in formula (5). Finally, with the 

new pseudo labels, the target model is self-supervised using the cross-entropy loss function, as shown 

in (6). 

𝑦̂𝑡
 = arg max

1≤𝑘≤𝐶
𝛿𝑘(𝑓(𝑥𝑡

 )),         (1) 

Ck
(0)
=

∑xt∈ Xtδk(𝑓(xt))𝑭(xt)

∑xt∈ Xtδk(𝑓(xt))
, 𝑘 = 1, 2, … , 𝐶,       (2) 

𝑦̂𝑡 = arg min
1≤𝑘≤𝐶

Dcos(𝑭(xt),Ck
(0)

),        (3) 



6631 

AIMS Mathematics  Volume 9, Issue 3, 6628–6647. 

Ck
(1)
=

∑𝑥𝑡∈ 𝑋𝑡
𝟏(𝑦̂𝑡 = 𝑘)𝑭(𝑥𝑡)

∑𝑥𝑡∈ 𝑋𝑡
𝟏(𝑦̂𝑡 = 𝑘)

,          (4) 

𝑦̂𝑡 = arg min
1≤𝑘≤𝐶

Dcos(𝑭(xt),Ck
(1)

),        (5) 

LT
ssl(f

t
; Xt, 𝑌̂𝑡) = −E(x, 𝑦̂𝑡)∈ Xs×Yt̂

∑ 1[k = 𝑦̂𝑡] log δk (f(x))K
k =1 .     (6) 

2.2. MMD from two-sample tests 

The MMD is a distance measure between feature means. Gretton et al. [28] introduced an MMD 

measure, which involves embedding distribution metrics in the RKHS and using it to conduct a two-

sample test for detecting differences between two unknown distributions, p and q. The purpose of this 

test is to draw two sets of samples X and Y from these distributions and to determine whether p and q 

are different distributions. They applied a kernel-based MMD to two-sample tests on various problems 

and achieved excellent performance. Furthermore, these kernel-based MMDs have been shown to be 

consistent, asymptotically normal, robust to model misspecification, and have been successfully applied 

to various problems, including transfer learning [29], kernel Bayesian inference [37], approximate 

Bayesian computation [38], two-sample testing [28], optimal degree-of-fit testing [39], generating 

moment matching networks (GMMN) [40], and autoencoders [41]. 

Gaussian kernel-based MMDs are commonly used estimators, which have the key property of 

universality, allowing estimators to converge to the best approximation for generating distribution of 

the (unknown) data in the model, without making any assumptions about this distribution. In contrast, 

the L2 norm lacks the above properties, suffers from the curse of dimensionality, and is not suitable 

for universal estimation [34,35]. Furthermore, Gaussian kernel-based MMDs also serve as an effective 

measure for domain differences in UDA scenarios, and their computation is streamlined by applying a 

kernel function directly to the samples. 

2.2.1. Formulation of MMD 

The squared MMD in an RKHS, denoted as ‖𝜇𝑝 − 𝜇𝑞‖ℋ
2

, can be straightforwardly expressed 

using kernel functions. Additionally, it is possible to easily derive an unbiased estimate for finite 

samples. Considering independent random variables x and x' from distribution p, as well as 

independent random variables y and y' from distribution q, let ℋ be a universal RKHS with unit ball 

denoted ℱ , and one can give the squared MMD, as shown in (7) [32], where 𝜙(⋅)  is a function 

mapping the samples to ℋ, 𝜇𝑝 = 𝔼𝑥∼𝑝[𝜙(𝑥)] and 𝜇𝑞 = 𝔼𝑦∼𝑞[𝜙(𝑦)] representing the kernel mean 

embeddings, and 𝑘  is set to the commonly used Gaussian kernel, as shown in (8). An unbiased 

empirical estimate is given in (9), where 𝑋 = {𝑥1, … , 𝑥𝑚}  and 𝑌 = {𝑦1, … , 𝑦𝑛}  are two sets 

randomly sampled from two probability distributions p and 𝑞 , respectively. However, there is no 

definitive method for selecting the bandwidth 𝜎 of the kernel 𝑘 in (9). Gretton et al. [28] suggested 

using the median distance between samples as the bandwidth, but did not verify that this choice is 

optimal. 

(𝑀𝑀𝐷(ℱ, 𝑝, 𝑞))
2
= ‖𝜇𝑝 − 𝜇𝑞‖ℋ

2
= 〈𝜇𝑝 − 𝜇𝑞, 𝜇𝑝 − 𝜇𝑞〉ℋ = 〈𝜇𝑝, 𝜇𝑝〉ℋ + 〈𝜇𝑞, 𝜇𝑞〉ℋ − 2〈𝜇𝑝, 𝜇𝑞〉ℋ 
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= 𝔼𝑥,𝑥′∼𝑝[〈𝜙(𝑥), 𝜙(𝑥
′)〉ℋ] + 𝔼𝑦,𝑦′∼𝑞[〈𝜙(𝑦), 𝜙(𝑦

′)〉ℋ] − 2𝔼𝑥∼𝑝,𝑦∼𝑞[〈𝜙(𝑥), 𝜙(𝑦)〉ℋ]     

= 𝔼𝑥,𝑥′∼𝑝[𝑘(𝑥, 𝑥
′)] + 𝔼𝑦,𝑦′∼𝑞[𝑘(𝑦, 𝑦

′)] − 2𝔼𝑥∼𝑝,𝑦∼𝑞[𝑘(𝑥, 𝑦)],        (7) 

𝑘(𝑎, 𝑏) = exp (−
‖𝑎−𝑏‖2

2

2𝜎𝜙
2 ),        (8) 

(𝑀𝑀𝐷𝑢
 (ℱ, 𝑋, 𝑌))

2
=

1

𝑚(𝑚−1)
∑ 𝑘(𝑥𝑖 , 𝑥𝑗)
𝑚
𝑖≠𝑗 +

1

𝑛(𝑛−1)
∑ 𝑘(𝑦𝑖 , 𝑦𝑗)
𝑛
𝑖≠𝑗 −

2

𝑚𝑛
∑ 𝑘(𝑥𝑖 , 𝑦𝑗)
𝑚,𝑛
𝑖,𝑗 . (9) 

2.2.2. Class-wise MMD based on L2-norm 

Although MMD has been commonly used in cross-domain problems, minimizing the MMD 

between the samples from two domains only narrows their marginal distributions. Long et al. [8] 

proposed joint distribution adaptation (JDA), which jointly adapts marginal and conditional 

distributions in a reduced-dimensional principal component space and constructs new feature 

representations. They adopted a principle component analysis (PCA) transformation and minimized 

the Euclidean distance between the sample means of the two domains in a reduced-dimensional 

principal component space. They referred to this method as MMD for marginal distribution, as shown 

in formula (10), where 𝑋𝑠  ∈ 𝑅
𝑑×𝑛𝑠  and 𝑋𝑡 ∈ 𝑅

𝑑×𝑛𝑡  are the samples from the source and target 

domains, respectively. Here, 𝑛𝑠  and 𝑛𝑡  are the numbers of samples from the source and target 

domains, 𝑑 is the sample dimension, and 𝜑 represents a linear transformation function. Let 𝐴 be 

the 𝑑 × 𝐾  standard matrix of the linear transformation function 𝜑 . Formula (10) can then be 

rewritten as formula (11), where 𝑋𝑠𝑡 = [𝑋𝑠|𝑋𝑡]  and 𝑀0 ∈ 𝑅
𝑛𝑠𝑡×𝑛𝑠𝑡  are calculated as shown in 

formula (12). 

𝑀𝑀𝐷2 = ||
1

𝑛𝑠
∑ 𝜑(𝑥𝑖)𝑥𝑖∈𝑋𝑠 −

1

𝑛𝑡
∑ 𝜑(𝑥𝑗)𝑥𝑗∈𝑋𝑡 ||2

2,     (10) 

𝑀𝑀𝐷2 = ||
1

𝑛𝑠
∑ 𝐴𝑇𝑥𝑖𝑥𝑖∈𝑋𝑠 −

1

𝑛𝑡
∑ 𝐴𝑇𝑥𝑗𝑥𝑗∈𝑋𝑡 ||2

2 = 𝑡𝑟(𝐴𝑇𝑋𝑠𝑡𝑀0𝑋𝑠𝑡
𝑇𝐴),   (11) 

(𝑀0)𝑖𝑗 =

{
 
 

 
 

1

𝑛𝑠𝑛𝑠
, 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑠

1

𝑛𝑡𝑛𝑡
, 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑡

−1

𝑛𝑠𝑛𝑡
, otherwise

.       (12) 

In addition to the MMD for marginal distribution, they proposed also the MMD for conditional 

distribution. However, during empirical estimation, to obtain samples for each category, labels for 

target domain samples that do not exist need to be provided. To address this, they suggested using 

pseudo labels for the target samples, which can be obtained either from the current classifier trained 

on the samples from the source domain or through other methods. They named the MMD for 

conditional distribution as class-wise MMD (CWMMD), as shown in Eq (13). Here, 𝑋𝑠
𝑐  and 𝑋𝑡

𝑐 

represent the data samples of the cth category from the source and target domains, respectively, while 𝑛𝑠
𝑐 

and 𝑛𝑠
𝑐 are the respective sample sizes and the calculation of 𝑀𝑐 ∈ 𝑅

𝑛𝑠𝑡
𝑐 ×𝑛𝑠𝑡

𝑐
 is detailed in (14). 
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𝐶𝑊𝑀𝑀𝐷2 = ∑ ||
1

𝑛𝑠
𝑐∑ 𝐴𝑇𝑥𝑖𝑥𝑖∈𝑋𝑠

𝑐 −
1

𝑛𝑡
𝑐∑ 𝐴𝑇𝑥𝑗𝑥𝑗∈𝑋𝑡

𝑐 ||2
2𝐶

𝑐=1 = ∑ 𝑡𝑟(𝐴𝑇𝑋𝑠𝑡𝑀𝑐𝑋𝑠𝑡
𝑇𝐴)𝐶

𝑐=1 , (13) 

(𝑀𝑐)𝑖𝑗 =

{
 
 

 
 

1

𝑛𝑠
𝑐𝑛𝑠

𝑐 , 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑠
𝑐

1

𝑛𝑡
𝑐𝑛𝑡

𝑐 , 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋𝑡
𝑐

−1

𝑛𝑠
𝑐𝑛𝑡

𝑐 , 𝑥𝑖 ∈ 𝑋𝑠
𝑐, 𝑥𝑗 ∈ 𝑋𝑡

𝑐 or 𝑥𝑗 ∈ 𝑋𝑠
𝑐, 𝑥𝑖 ∈ 𝑋𝑡

𝑐

0, otherwise

.     (14) 

In JDA, both marginal distribution discrepancy and conditional distribution discrepancy across 

domains are simultaneously minimized. Consequently, the optimization problem for JDA is resolved 

by combining Eqs (11) and (13), as shown in Eq (15). In (15), the constraint condition 

𝐴𝑇𝑋𝑠𝑡𝐻𝑠𝑡𝑋𝑠𝑡
𝑇𝐴 = 𝐼𝐾×𝐾 limits the overall data variation to a fixed value, ensuring that data information 

on the subspace is statistically retained to some extent. ‖𝐴‖𝐹
2  controls the size of the matrix 𝐴, and 𝛼 

is a regularization parameter ensuring a well-defined optimization problem. It is important to note that 

𝐻𝑠𝑡 = 𝐼𝑛𝑠𝑡×𝑛𝑠𝑡 −
1

𝑛𝑠𝑡
1𝑛𝑠𝑡×𝑛𝑠𝑡 is a centering matrix, where 𝑛𝑠𝑡

𝑐 = 𝑛𝑠
𝑐 + 𝑛𝑠

𝑐 and 1𝑛𝑠𝑡×𝑛𝑠𝑡 is a matrix of 

size 𝑛𝑠𝑡 × 𝑛𝑠𝑡 with all elements being one. 

min
𝐴
∑ 𝑡𝑟(𝐴𝑇𝑋𝑠𝑡𝑀𝑐𝑋𝑠𝑡

𝑇𝐴)𝐶
𝑐=0 + 𝛼‖𝐴‖𝐹

2  𝑠. 𝑡.  𝐴𝑇𝑋𝑠𝑡𝐻𝑠𝑡𝑋𝑠𝑡
𝑇 𝐴 = 𝐼𝐾×𝐾.    (15) 

2.2.3. Discriminative CWMMD based on L2-norm 

Wang et al. [33] proposed an insight into the working principle of MMD and theoretically 

revealed its high degree of agreement with human transferable behavior. In Figure 1 [33], when 

considering a pair of classes labeled “desktop computers”, respectively, from the source and target 

domains, the process of minimizing the MMD between these two distributions involves two key 

transformations. They are (1) two relatively small red circles (hollow and mesh circles) transformed 

into larger red ones, which are magnified; i.e., maximizing their specific intra-class distance and (2) 

two tiny red circles gradually moving closer along their specific arrows; i.e., minimizing their joint 

variance. This process is analogous to how humans abstract common features to encompass all possible 

appearances, but the detailed information is heavily decayed. Wang et al. also theoretically 

demonstrated this insight. 

Let (𝑆(𝐴, 𝑋))𝑖𝑛𝑡𝑒𝑟
𝑐  = 𝑡𝑟(𝐴𝑇𝑋𝑠𝑡𝑀𝑐𝑋𝑠𝑡

𝑇𝐴)  denote the inter-class distance (i.e., square of MMD) 

between the 𝑐th class data in the source domain and the target domain in the transformation space 

according to the transformation matrix 𝐴, and let 𝑆𝑖𝑛𝑡𝑒𝑟 = ∑ (𝑆(𝐴, 𝑋))𝑖𝑛𝑡𝑒𝑟
𝑐 ,𝐶

𝑐=1  then (15) is written 

as (16). Wang et al. derived 𝑆𝑖𝑛𝑡𝑒𝑟 = 𝑆𝑣𝑎𝑟 − 𝑆𝑖𝑛𝑡𝑟𝑎, so (16) is written as (17), where 𝑆𝑖𝑛𝑡𝑟𝑎 represents 

the intra-class distance, and 𝑆𝑣𝑎𝑟 is the variance of the entire data. Therefore, minimizing the inter-

class distance 𝑆𝑖𝑛𝑡𝑒𝑟 is equivalent to maximizing their variation 𝑆𝑣𝑎𝑟, and maximizing the intra-class 

distance 𝑆𝑖𝑛𝑡𝑟𝑎  at the same time, which will reduce feature discriminativeness. To address this, a 

trade-off parameter is introduced to adjust the hidden intra-class distance in 𝑆𝑖𝑛𝑡𝑒𝑟, as shown in Eq (18). 

They obtained an optimal linear transformation matrix 𝐴, thus minimizing the loss evaluated in this 

transformation space. 
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min
𝐴
[𝑆𝑖𝑛𝑡𝑒𝑟 +𝑀𝑀𝐷

2 + 𝛼‖𝐴‖𝐹
2]  𝑠. 𝑡.  𝐴𝑇𝑋𝑠𝑡𝐻𝑠𝑡𝑋𝑠𝑡

𝑇𝐴 =  𝐼𝑘×𝑘,    (16) 

min
𝐴
[𝑆𝑣𝑎𝑟 − 𝑆𝑖𝑛𝑡𝑟𝑎 +𝑀𝑀𝐷

2 + 𝛼‖𝐴‖𝐹
2]  𝑠. 𝑡.  𝐴𝑇𝑋𝑠𝑡𝐻𝑠𝑡𝑋𝑠𝑡

𝑇𝐴 =  𝐼𝑘×𝑘 ,   (17) 

min
𝐴
[𝑆𝑣𝑎𝑟 + 𝛽 ∙ 𝑆𝑖𝑛𝑡𝑟𝑎 +𝑀𝑀𝐷

2 + 𝛼‖𝐴‖𝐹
2]  𝑠. 𝑡.  𝐴𝑇𝑋𝑠𝑡𝐻𝑠𝑡𝑋𝑠𝑡

𝑇𝐴 =  𝐼𝑘×𝑘.   (18) 

Figure 1. Working principle of the MMD. Different color circles represent various 

categories, the tiny circles are the means of specific categories and the hollow and meshed 

circles represent the source and target domains, respectively; the solid arrows denote the 

DA processes with MMD, and the comparatively larger circles are the transformed data 

features [33]. 

3. The proposed method 

The unsupervised domain adaptation training proposed in this paper focuses on using 

discriminative CWMMD (DCWMMD) to align data of the same class between the source and target 

domains. By alleviating the problem of MMD through reducing feature discriminativeness while 

minimizing the mean difference between the two domains, the proposed method effectively achieves 

the goal of unsupervised domain adaptation. 

Unlike Wang et al. [33], who used the L2-norm as an MMD estimator in the linearly transformed 

feature space, this study employed a network to train a feature space. Samples in this space are then 

projected into an RKHS to efficiently evaluate and minimize the loss function. The Gaussian kernel is 

commonly used because the RKHS with the Gaussian kernel is guaranteed to be universal [30]. Wang 

et al. proposed that the inter-class distance is equal to the variation minus the intraclass distance under 

the MMD they defined. This section reformulates the interclass distance, intra-class distance, and 

variation as defined by Wang et al. and adopts the MMD with the Gaussian kernel. Moreover, it 

provides a proof that when using this MMD to measure the distance of distribution of samples from 

two domains, the interclass distance is indeed equal to the variation minus the intra-class distance. 

3.1. Symbols and notations 

This study considers only two domains, one source domain and one target domain. 𝑋𝑠
𝑐 and 𝑋𝑡

𝑐 
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represent the sample sets of class c from the source domain and the target domain, respectively, and 

𝑋𝑐 (or 𝑋𝑠𝑡
𝑐 ) represents the union of all sample sets of class c in both domains, i.e., 𝑋𝑐 = 𝑋𝑠𝑡

𝑐 = 𝑋𝑠
𝑐 ∪

𝑋𝑡
𝑐. More symbols and notations are presented in a nomenclature table provided in Table 1. 

Table 1. Definitions of symbols and notations. 

symbol meaning 

𝑋𝑠
𝑐 set of samples of class c from source domain 

𝑋𝑡
𝑐 set of samples of class c from target domain 

𝑋𝑐  (= 𝑋𝑠𝑡
𝑐 ) 𝑋𝑐 = 𝑋𝑠

𝑐 ∪ 𝑋𝑡
𝑐, set of samples of class c from source and target domains 

𝑋𝑠 𝑋𝑠 = ⋃ 𝑋𝑠
𝑐𝐶

𝑐=1 , set of samples from source domain 

𝑋𝑡 𝑋𝑡 = ⋃ 𝑋𝑡
𝑐𝐶

𝑐=1 , set of samples from target domain 

𝑋 (= 𝑋𝑠𝑡) 𝑋 = 𝑋𝑠 ∪ 𝑋𝑡, set of samples from source and target domains 

𝑛𝑠
𝑐 ‖𝑋𝑠

𝑐‖, number of samples in 𝑋𝑠
𝑐 

𝑛𝑡
𝑐 ‖𝑋𝑡

𝑐‖, number of samples in 𝑋𝑡
𝑐 

𝑛𝑐(= 𝑛𝑠𝑡
𝑐 ) ‖𝑋𝑐‖ = 𝑛𝑠

𝑐+𝑛𝑡
𝑐, number of samples in 𝑋𝑐 

𝑛𝑠 ‖𝑋𝑠‖, number of samples in 𝑋𝑠 

𝑛𝑡 ‖𝑋𝑡‖, number of samples in 𝑋𝑡 

𝑛 (= 𝑛𝑠𝑡) ‖𝑋‖ = ∑ 𝑛𝑐𝐶
𝑐=1 = 𝑛𝑠 + 𝑛𝑡, number of samples in 𝑋 

𝑚𝑠
𝑐 (1/𝑛𝑠

𝑐)∑ 𝑥𝑖
 
𝑥𝑖∈𝑋𝑠

𝑐 , mean of 𝑋𝑠
𝑐 

𝑚𝑡
𝑐 (1/𝑛𝑡

𝑐)∑ 𝑥𝑖
 
𝑥𝑖∈𝑋𝑡

𝑐 , mean of 𝑋𝑡
𝑐 

𝑚𝑐  (= 𝑚𝑠𝑡
𝑐 ) (1/𝑛𝑐)∑ 𝑥𝑖

 
𝑥𝑖∈𝑋

𝑐 , mean of 𝑋𝑐 

𝑚𝑠 (1/𝑛𝑠)∑ 𝑥𝑖
 
𝑥𝑖∈𝑋𝑠

, mean of 𝑋𝑠 

𝑚𝑡 (1/𝑛𝑡)∑ 𝑥𝑖
 
𝑥𝑖∈𝑋𝑡

, mean of 𝑋𝑡 

𝑚 (= 𝑚𝑠𝑡) (1/𝑛)∑ 𝑥𝑖
 
𝑥𝑖∈𝑋

, mean of 𝑋 

3.2. Relations between interclass distance, intra-class distance, and variance 

This subsection uses the RKHS-based MMD and leverages the kernel trick to efficiently compute 

the interclass distance, intra-class distance, and variation between samples from the two domains. 

Moreover, it demonstrates that when using the Gaussian kernel-based MMD, the inter-class distance 

can be decomposed into their respective intraclass distances and variations. 

Definition 3.1. Interclass distance. 

The square of the interclass distance between the samples from the source domain and the target 

domain is defined as 𝑆𝑖𝑛𝑡𝑒𝑟 = ∑ (𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐𝐶

𝑐=1  , where (𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 = (𝑆𝑠𝑡)𝑖𝑛𝑡𝑒𝑟

𝑐   is the square of the 

interclass distance (or MMD) between the samples of class c from the source domain and the target 

domain, as shown in (19), which is derived as the forms in (20) and (21). 
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(𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 = 𝑘(𝑚𝑠

𝑐 −𝑚𝑡
𝑐 , 𝑚𝑠

𝑐 −𝑚𝑡
𝑐),       (19) 

(𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 = [

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑡
𝑐 𝑘(𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 , 𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 ) +

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐 𝑘(𝑚𝑡

𝑐 −𝑚𝑠𝑡
𝑐 , 𝑚𝑡

𝑐 −𝑚𝑠𝑡
𝑐 ],   (20) 

(𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 (𝑛𝑠
𝑐𝑘(𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 , 𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 ) + 𝑛𝑡

𝑐𝑘(𝑚𝑡
𝑐 −𝑚𝑠𝑡

𝑐 , 𝑚𝑡
𝑐 −𝑚𝑠𝑡

𝑐 ).   (21) 

Definition 3.2. Intraclass distance. 

The square of the intra-class distance between the samples from the source domain and the target 

domain is defined as 𝑆𝑖𝑛𝑡𝑟𝑎 = ∑ (𝑆)𝑖𝑛𝑡𝑟𝑎
𝑐𝐶

𝑐=1  , where (𝑆)𝑖𝑛𝑡𝑟𝑎
𝑐 = (𝑆𝑠𝑡)𝑖𝑛𝑡𝑟𝑎

𝑐   is the square of the 

intraclass distance of the samples of class c from the two domains, as defined in (22). 

(𝑆)𝑖𝑛𝑡𝑟𝑎
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 (∑ 𝑘(𝑥𝑖 −𝑚𝑠
𝑐 , 𝑥𝑖 −𝑚𝑠

𝑐) 
𝑥𝑖∈𝑋𝑠

𝑐 + ∑ 𝑘(𝑥𝑗 −𝑚𝑡
𝑐 , 𝑥𝑗 −𝑚𝑡

𝑐 
𝑥𝑗∈𝑋𝑡

𝑐 ). (22) 

Definition 3.3. Variance. 

The joint variance of the samples from the source domain and the target domain is defined as 

𝑆𝑣𝑎𝑟 = ∑ (𝑆)𝑣𝑎𝑟
𝑐𝐶

𝑐=1 , where (𝑆)𝑣𝑎𝑟
𝑐 = (𝑆𝑠𝑡)𝑣𝑎𝑟

𝑐  is the joint variance of the samples of class c from the 

source domain and the target domain, as shown in (23). 

(𝑆)𝑣𝑎𝑟
𝑐 = (𝑆𝑠𝑡)𝑣𝑎𝑟

𝑐 =
𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 ∑ 𝑘(𝑥𝑖 −𝑚𝑠𝑡
𝑐 , 𝑥𝑖 −𝑚𝑠𝑡

𝑐 ) 
𝑥𝑖∈𝑋𝑠𝑡

𝑐 .    (23) 

The square of the MMD between samples 𝑋𝑠 and 𝑋𝑡 from the source domain and the target 

domain, respectively is defined using (24) or derived as (25). Conceptually, this is equivalent to treating 

the samples from both domains as belonging to the same class and computing the interclass distance. 

This can be expressed as (𝑆)𝑖𝑛𝑡𝑒𝑟
𝑜 = (𝑆𝑠𝑡)𝑖𝑛𝑡𝑒𝑟

𝑜 = (𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡))
2
  or (𝑀𝑀𝐷𝑢(𝑋𝑠, 𝑋𝑡))

2
  when 

unbiased estimation is employed, as demonstrated in formulas (26) and (27), respectively. 

(𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡))
2
= 𝑘(𝑚𝑠 −𝑚𝑡 , 𝑚𝑠 −𝑚𝑡) 

=
𝑛𝑠+𝑛𝑡

𝑛𝑡
 𝑘(𝑚𝑠 −𝑚𝑠𝑡, 𝑚𝑠 −𝑚𝑠𝑡) +

𝑛𝑠+𝑛𝑡

𝑛𝑠
𝑘(𝑚𝑡 −𝑚𝑠𝑡, 𝑚𝑡 −𝑚𝑠𝑡,   (24) 

(𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡))
2
=

𝑛𝑠+𝑛𝑡

𝑛𝑠𝑛𝑡
(𝑛𝑠 𝑘(𝑚𝑠 −𝑚𝑠𝑡, 𝑚𝑠 −𝑚𝑠𝑡) + 𝑛𝑡𝑘(𝑚𝑡 −𝑚𝑠𝑡, 𝑚𝑡 −𝑚𝑠𝑡),   (25) 

(𝑀𝑀𝐷(𝑋𝑠, 𝑋𝑡))
2
=

1

(𝑛𝑠)
2
∑ ∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

 
𝑥𝑗∈𝑋𝑠

 
𝑥𝑖∈𝑋𝑠

  

+
1

(𝑛𝑡)
2 𝑘(𝑥𝑖 , 𝑥𝑗) −

2

𝑛𝑠𝑛𝑡
∑ ∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

 
𝑥𝑗∈𝑋𝑡

 
𝑥𝑖∈𝑋𝑠

       (26) 

(𝑀𝑀𝐷𝑢(𝑋𝑠, 𝑋𝑡))
2
=

1

𝑛𝑠(𝑛𝑠−1)
∑ 𝑘(𝑥𝑖 , 𝑥𝑗)
 
𝑥𝑖,𝑥𝑗∈𝑋𝑠
𝑥𝑖≠𝑥𝑗

  

+
1

𝑛𝑡(𝑛𝑡−1)
∑ 𝑘(𝑥𝑖 , 𝑥𝑗)
 
𝑥𝑖,𝑥𝑗∈𝑋𝑡
𝑥𝑖≠𝑥𝑗

−
2

𝑛𝑠𝑛𝑡
∑ ∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

 
𝑥𝑗∈𝑋𝑡

 
𝑥𝑖∈𝑋𝑠

.    (27) 

Theorem 3.1. The square of the interclass distance equals the data variance minus the square of the 

intra-class distance; that is, 𝑆𝑖𝑛𝑡𝑒𝑟 = 𝑆𝑣𝑎𝑟 − 𝑆𝑖𝑛𝑡𝑟𝑎. 

Proof. For (𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 (𝑛𝑠
𝑐𝑘(𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 , 𝑚𝑠

𝑐 −𝑚𝑠𝑡
𝑐 ) + 𝑛𝑡

𝑐𝑘(𝑚𝑡
𝑐 −𝑚𝑠𝑡

𝑐 , 𝑚𝑡
𝑐 −𝑚𝑠𝑡

𝑐 )) , (𝑆)𝑣𝑎𝑟
𝑐 =
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𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 ∑ 𝑘(𝑥𝑖 −𝑚𝑠𝑡
𝑐 , 𝑥𝑖 −𝑚𝑠𝑡

𝑐 ) 
𝑥𝑖∈𝑋𝑠𝑡

𝑐  , and (𝑆)𝑖𝑛𝑡𝑟𝑎
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 (∑ 𝑘(𝑥𝑖 −𝑚𝑠
𝑐 , 𝑥𝑖 −𝑚𝑠

𝑐) 
𝑥𝑖∈𝑋𝑠

𝑐 +

∑ 𝑘(𝑥𝑗 −𝑚𝑡
𝑐 , 𝑥𝑗 −𝑚𝑡

𝑐) 
𝑥𝑗∈𝑋𝑡

𝑐 ) , it is sufficient to prove that (𝑆)𝑖𝑛𝑡𝑒𝑟
𝑐 + (𝑆)𝑖𝑛𝑡𝑟𝑎

𝑐 = (𝑆)𝑣𝑎𝑟
𝑐   or that 

𝑛𝑠𝑑
𝑐 𝑘(𝑚𝑠𝑑

𝑐 −𝑚𝑐 , 𝑚𝑠𝑑
𝑐 −𝑚𝑐) + ∑ 𝑘(𝑥𝑖 −𝑚𝑠𝑑

𝑐 , 𝑥𝑖 −𝑚𝑠𝑑
𝑐 ) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐 = ∑ 𝑘(𝑥𝑖 −𝑚

𝑐 , 𝑥𝑖 −𝑚
𝑐) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐   for 

1 ≤ 𝑐 ≤ 𝐶  and 𝑠𝑑 ∈ {𝑠, 𝑡} . Since 𝑛𝑠𝑑
𝑐 𝑘(𝑚𝑠𝑑

𝑐 −𝑚𝑐 , 𝑚𝑠𝑑
𝑐 −𝑚𝑐) = ∑ 𝑘(𝑚𝑠𝑑

𝑐 −𝑚𝑐 , 𝑚𝑠𝑑
𝑐 − 

𝑥𝑖∈𝑋𝑠𝑑
𝑐

𝑚𝑐) = ∑ (𝑘(𝑚𝑠𝑑
𝑐 , 𝑚𝑠𝑑

𝑐 ) + 𝑘(𝑚𝑐 , 𝑚𝑐) − 2𝑘(𝑚𝑠𝑑
𝑐 , 𝑚𝑐)) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐 = ∑ (𝑘(𝑚𝑠𝑑

𝑐 , 𝑚𝑠𝑑
𝑐 ) + 

𝑥𝑖∈𝑋𝑠𝑑
𝑐

𝑘(𝑚𝑐 , 𝑚𝑐) − 2𝑘(𝑥𝑖 , 𝑚
𝑐))  and ∑ 𝑘(𝑥𝑖 −𝑚𝑠𝑑

𝑐 , 𝑥𝑖 −𝑚𝑠𝑑
𝑐 ) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐 = ∑ (𝑘(𝑥𝑖 , 𝑥𝑖) +

 
𝑥𝑖∈𝑋𝑠𝑑

𝑐

𝑘(𝑚𝑠𝑑
𝑐 , 𝑚𝑠𝑑

𝑐 ) − 2𝑘(𝑥𝑖 , 𝑚𝑠𝑑
𝑐 )) = ∑ (𝑘(𝑥𝑖 , 𝑥𝑖) + 𝑘(𝑚𝑠𝑑

𝑐 , 𝑚𝑠𝑑
𝑐 ) − 2𝑘(𝑚𝑠𝑑

𝑐 , 𝑚𝑠𝑑
𝑐 )) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐 =

∑ (𝑘(𝑥𝑖 , 𝑥𝑖) − 𝑘(𝑚𝑠𝑑
𝑐 , 𝑚𝑠𝑑

𝑐 )) 
𝑥𝑖∈𝑋𝑠𝑑

𝑐  , we have 𝑛𝑠𝑑
𝑐 𝑘(𝑚𝑠𝑑

𝑐 −𝑚𝑐 , 𝑚𝑠𝑑
𝑐 −𝑚𝑐) + ∑ 𝑘(𝑥𝑖 −

 
𝑥𝑖∈𝑋𝑠𝑑

𝑐

𝑚𝑠𝑑
𝑐 , 𝑥𝑖 −𝑚𝑠𝑑

𝑐 ) =  ∑ (𝑘(𝑚𝑠𝑑
𝑐 , 𝑚𝑠𝑑

𝑐 ) + 𝑘(𝑚𝑐 , 𝑚𝑐) − 2𝑘(𝑥𝑖 , 𝑚
𝑐) + 𝑘(𝑥𝑖 , 𝑥𝑖) − 𝑘(𝑚𝑠𝑑

𝑐 , 𝑚𝑠𝑑
𝑐 )) 

𝑥𝑖∈𝑋𝑠𝑑
𝑐 =

∑ 𝑘(𝑥𝑖 −𝑚
𝑐 , 𝑥𝑖 −𝑚

𝑐) 
𝑥𝑖∈𝑋𝑠𝑑

𝑐 . This completes the proof. 

3.3. Discriminative class-wise loss 

Theorem 3.1 indicates that minimizing the interclass distance is equivalent to minimizing their 

variation, while simultaneously maximizing the intra-class distance, thus reducing feature 

discriminativeness. To address this, the strategy proposed by Wang et al. [33] was adopted with a trade-

off parameter 𝛽  (−1 ≤ 𝛽 ≤ 1)  introduced to adjust the hidden intra-class distance within 𝑆𝑖𝑛𝑡𝑒𝑟 , 

resulting in the formulation of the discriminative class-level loss function, denoted as 𝐿𝑑𝑐𝑤𝑚𝑚𝑑
  in 

formula (28), and its expansion is given in formula (29). 

𝐿𝑑𝑐𝑤𝑚𝑚𝑑
 = 𝑆𝑣𝑎𝑟 + 𝛽 ∙ 𝑆𝑖𝑛𝑡𝑟𝑎 +𝑀𝑀𝐷

2(𝑋𝑠, 𝑋𝑡)      

= ∑ (𝑆𝑠𝑡)𝑣𝑎𝑟
𝑐𝐶

𝑐=1 + 𝛽 ∙ ∑ (𝑆𝑠𝑡)𝑖𝑛𝑡𝑟𝑎
𝑐𝐶

𝑐=1 + (𝑆𝑠𝑡)𝑖𝑛𝑡𝑒𝑟
0 ,  (28) 

𝐿𝑑𝑐𝑤𝑚𝑚𝑑
 = 

∑
𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 (∑ 〈𝑥𝑗 −𝑚𝑠𝑡
𝑐 , 𝑥𝑗 −𝑚𝑠𝑡

𝑐 〉ℋ
 
𝑥𝑗∈𝑋𝑠𝑡

𝑐 + 𝛽∑ 〈𝑥𝑖 −𝑚𝑠
𝑐 , 𝑥𝑖 −𝑚𝑠

𝑐〉ℋ
 
𝑥𝑖∈𝑋𝑠

𝑐 + 𝛽∑ 〈𝑥𝑗 −𝑚𝑡
𝑐 , 𝑥𝑗 −

 
𝑥𝑗∈𝑋𝑡

𝑐
𝐶
𝑐=1

𝑚𝑡
𝑐〉ℋ) +

𝑛𝑠+𝑛𝑡

𝑛𝑡
< 𝑚𝑠 −𝑚𝑠𝑡, 𝑚𝑠 −𝑚𝑠𝑡 > +

𝑛𝑠+𝑛𝑡

𝑛𝑠
< 𝑚𝑡 −𝑚𝑠𝑡 , 𝑚𝑡 −𝑚𝑠𝑡 >.     (29) 

The terms (𝑆𝑠𝑡)𝑖𝑛𝑡𝑒𝑟
𝑐  , (𝑆𝑠𝑡)𝑖𝑛𝑡𝑟𝑎

𝑐  , and (𝑆𝑠𝑡)𝑣𝑎𝑟
𝑐  , defined in Definitions 3.1 to 3.3, can be 

expressed in terms of individual sample representations 𝑥𝑗′𝑠 using formulas (30) to (32). To ensure 

unbiased estimation and calculate deviations in the feature space, this study uses the loss function 

𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 , represented by the feature representations 𝑧𝑗′𝑠 of the samples 𝑥𝑗′𝑠, as shown in (28). By 

setting 𝛼1 =
(𝛽+1)(𝑛𝑠

𝑐+𝑛𝑡
𝑐)

𝑛𝑠
𝑐𝑛𝑡

𝑐 , 𝛼2 = −(
𝑛𝑠
𝑐+(𝑛𝑠

𝑐+𝑛𝑡
𝑐)𝛽

(𝑛𝑠
𝑐)2𝑛𝑡

𝑐 ) , 𝛼3 = −(
𝑛𝑡
𝑐+(𝑛𝑠

𝑐+𝑛𝑡
𝑐)𝛽

𝑛𝑠
𝑐(𝑛𝑡

𝑐)
2 ) , 𝛼4 = −(

2

𝑛𝑠
𝑐𝑛𝑡

𝑐) , 𝛾1 =

1

𝑛𝑠(𝑛𝑠−1)
, 𝛾2 =

1

𝑛𝑡(𝑛𝑡−1)
, and 𝛾3 = −

2

𝑛𝑠𝑛𝑡
, the simplified form of 𝐿𝑑𝑐𝑤𝑚𝑚𝑑

𝑢  is given in formula (34). 
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During the training process, these scalar values can be precomputed and stored, eliminating the need 

for subsequent recalculation. 

(𝑆𝑠𝑡)𝑖𝑛𝑡𝑒𝑟
𝑐 =

1

(𝑛𝑠
𝑐)2
∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖,𝑥𝑗∈𝑋𝑠

𝑐 +
1

(𝑛𝑡
𝑐)
2∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ

 
𝑥𝑖,𝑥𝑗∈𝑋𝑡

𝑐 −
2

𝑛𝑠
𝑐𝑛𝑡

𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖∈𝑋𝑠

𝑐,𝑥𝑗∈𝑋𝑡
𝑐 , (30) 

(𝑆𝑠𝑡)𝑖𝑛𝑡𝑟𝑎
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 [∑ 〈𝑥𝑖 , 𝑥𝑖〉ℋ
 
𝑥𝑖∈𝑋𝑠𝑡

𝑐 −
1

𝑛𝑠
𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ

 
𝑥𝑖,𝑥𝑗∈𝑋𝑠

𝑐 −
1

𝑛𝑡
𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ

 
𝑥𝑖,𝑥𝑗∈𝑋𝑡

𝑐 ],  (31) 

(𝑆𝑠𝑡)𝑣𝑎𝑟
𝑐 =

𝑛𝑠
𝑐+𝑛𝑡

𝑐

𝑛𝑠
𝑐𝑛𝑡

𝑐 ∑ 〈𝑥𝑗 , 𝑥𝑗〉ℋ
 
𝑥𝑗∈𝑋𝑠𝑡

𝑐 −
1

𝑛𝑠
𝑐𝑛𝑡

𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖,𝑥𝑗∈𝑋𝑠

𝑐           

−
1

𝑛𝑠
𝑐𝑛𝑡

𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖,𝑥𝑗∈𝑋𝑡

𝑐 −
2

𝑛𝑠
𝑐𝑛𝑡

𝑐∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖∈𝑋𝑠

𝑐,𝑥𝑗∈𝑋𝑡
𝑐 ,       (32) 

𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 (𝑋𝑠, 𝑋𝑡) = ∑ [

(𝛽+1)(𝑛𝑠
𝑐+𝑛𝑡

𝑐)

𝑛𝑠
𝑐𝑛𝑡

𝑐 ∑ 〈𝑥𝑗 , 𝑥𝑗〉ℋ
 
𝑥𝑗∈𝑋𝑠𝑡

𝑐 − (
𝑛𝑠
𝑐+(𝑛𝑠

𝑐+𝑛𝑡
𝑐)𝛽

(𝑛𝑠
𝑐)2𝑛𝑡

𝑐 )∑ ∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑗∈𝑋𝑠

𝑐
 
𝑥𝑖∈𝑋𝑠

𝑐 −𝐶
𝑐=1

                                      (
𝑛𝑡
𝑐+(𝑛𝑠

𝑐+𝑛𝑡
𝑐)𝛽

𝑛𝑠
𝑐(𝑛𝑡

𝑐)
2 )∑ ∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ

 
𝑥𝑗∈𝑋𝑡

𝑐
 
𝑥𝑖∈𝑋𝑡

𝑐 −
2

𝑛𝑠
𝑐𝑛𝑡

𝑐∑ ∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑗∈𝑋𝑡

𝑐
 
𝑥𝑖∈𝑋𝑠

𝑐 ]  

+
1

𝑛𝑠(𝑛𝑠−1)
∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖,𝑥𝑗∈𝑋𝑠
𝑥𝑖≠𝑥𝑗

+
1

𝑛𝑡(𝑛𝑡−1)
∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ
 
𝑥𝑖,𝑥𝑗∈𝑋𝑡
𝑥𝑖≠𝑥𝑗

       

−
2

𝑛𝑠𝑛𝑡
∑ ∑ 〈𝑥𝑖 , 𝑥𝑗〉ℋ

 
𝑥𝑗∈𝑋𝑡

 
𝑥𝑖∈𝑋𝑠

,           (33) 

𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 (𝑍𝑠, 𝑍𝑡) = ∑ [𝛼1∑ 〈𝑧𝑗 , 𝑧𝑗〉ℋ

 
𝑧𝑗∈𝑍𝑠𝑡

𝑐 + 𝛼2∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑧𝑖,𝑧𝑗∈𝑍𝑠

𝑐 + 𝛼3∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑧𝑖,𝑧𝑗∈𝑍𝑡

𝑐 +𝐶
𝑐=1

                                      𝛼4∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑥𝑖∈𝑍𝑗∈𝑍𝑡

𝑐 ]  

+𝛾1 ∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑧𝑖,𝑧𝑗∈𝑍𝑠
𝑧𝑖≠𝑧𝑗

+ 𝛾2∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑧𝑖,𝑧𝑗∈𝑍𝑡
𝑧𝑖≠𝑧𝑗

+ 𝛾3∑ 〈𝑧𝑖 , 𝑧𝑗〉ℋ
 
𝑧𝑖∈𝑍𝑠,𝑧𝑗∈𝑍𝑡

.  (34) 

A categorical cross-entropy, 𝐿𝑐𝑙𝑠, is commonly used as the error for the classifier's classification 

results on the source domain data, as shown in formula (35). Here, ℓ̂𝑠𝑗
𝑐  is the c-th element of 𝓵̂𝑠𝑖

 =

𝐂(𝑧𝑖
𝑠) and 𝑦𝑠𝑖

𝑐  is the c-th element of the ground truth one-hot label vector 𝒚𝒔𝒊
 , where 𝑦𝑠𝑖

𝑐 = 1 if the 

label of the original sample 𝑥𝑖
𝑠 corresponding to 𝑧𝑖

𝑠 is c, and 𝑦𝑠𝑖
𝑐 = 0 otherwise. To encourage the 

samples to form dense, uniform, and well-separated clusters, the label-smoothing (LS) technique [42] 

is applied to the cross-entropy loss. This involves substituting the smooth label (1 − 𝛼)𝑦𝑠𝑖
𝑐 + 𝛼/𝐶, a 

weighted average of 𝑦𝑠𝑖
𝑐  and 1/𝐶, with 𝑦𝑠𝑖

𝑐  in the categorical cross-entropy to form the smoothed 

categorical cross-entropy 𝐿𝑐𝑙𝑠
𝑙𝑠 (𝑍𝑠, 𝑌𝑠), as shown in (36). Here, 𝛼 is a smoothing factor generally set 

to 0.1 for better performance and 𝐶 represents the number of classes. The goal of LS is to prevent the 

model from becoming too confident in its predictions and to reduce overfitting. Rafael Müller et al. [42] 

have shown that LS encourages the representations of training examples from the same class to group in 

tight clusters. 

During training with target samples, the entropy of predicted results for those samples is 

minimized, as illustrated in formula (37). This strategy is employed because it has been indicated that 

unlabeled examples are especially beneficial when class overlap is small [43]. Minimizing this entropy 

encourages the predicted results to be more inclined toward a specific category, making the feature 

distribution between categories in the target domain more distinct and explicit. The training loss 

function of the entire network is defined as ℒ𝐷𝐶𝑊𝐷𝐴, as shown in formula (38), where 𝜔1 and 𝜔2 
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are weight parameters. 

𝐿𝑐𝑙𝑠(𝑍𝑠, 𝑌𝑠) =
1

𝑛𝑠
∑ ∑ 𝑦𝑠𝑖

𝑐 log ℓ̂𝑠𝑖
𝑐𝐶

𝑐=1
𝑛𝑠
𝑖=1 ,         (35) 

𝐿𝑐𝑙𝑠
𝑙𝑠 (𝑍𝑠, 𝑌𝑠) =

1

𝑛𝑠
∑ ∑ ((1 − 𝛼)𝑦𝑠𝑖

𝑐 + 𝛼/𝐶) log ℓ̂𝑠𝑖
𝑐𝐶

𝑐=1
𝑛𝑠
𝑖=1 ,     (36) 

𝐿𝑒𝑛𝑡(𝑍𝑡) =
1

𝑛𝑡
∑ ∑ ℓ̂𝑡𝑗

𝑐 log ℓ̂𝑡𝑗
𝑐𝐶

𝑐=1
𝑛𝑡
𝑗=1 ,         (37) 

𝐿𝐷𝐶𝑊𝐷𝐴 = 𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 + 𝜔1𝐿𝑐𝑙𝑠

𝑙𝑠 + 𝜔2𝐿𝑒𝑛𝑡 .        (38) 

The training architecture of the proposed discriminative class-wise domain adaptation (DCWDA) 

system, as shown in Figure 2, consists of a feature extractor (𝐅) used for extracting domain-invariant 

features and a classifier (C). The feature extractor 𝐅 and the classifier C are duplicated to represent 

the data paths of the source domain and the target domain, and a dotted line is drawn in the middle to 

indicate shared weights. During training, the source domain samples 𝑥𝑠 and target domain samples 

𝑥𝑡 are first separately input into the feature extractor 𝐅, which outputs features 𝑧𝑠 = 𝐅(𝑥𝑠) and 𝑧𝑡 =

𝐅(𝑥𝑡) . The discriminative class-wise loss function 𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢   is then computed for 𝑧𝑠  and 𝑧𝑡 . 

Subsequently, 𝑧𝑠 and 𝑧𝑡 are separately input into the classifier C, producing classification results 

𝓵̂𝑠 = 𝐂(𝑧𝑠) and 𝓵̂𝑡 = 𝐂(𝑧𝑡). This allows the calculation of the cross-entropy 𝐿𝑐𝑙𝑠 for the predicted 

result for the source domain sample 𝑥𝑠 and the entropy 𝐿𝑒𝑛𝑡 for the predicted result of the target 

domain sample 𝑥𝑡. The training algorithm is shown in Algorithm 1, where the batch sizes of both the 

source sample and the target sample are set to N. 

 

Figure 2. Architecture of DCWDA. 
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Algorithm 1. Training the DCWDA model. 

Input: Δ𝑠, Δ𝑡 , 𝛼, 𝜔1, 𝜔2, 𝜂2; 

Initialize parameters 𝜃𝐅 and 𝜃𝐂; 

# train the model parameters 𝜃𝐅 and 𝜃𝐂 on Δ𝑠 and Δ𝑡; 

repeat until convergence  

  (𝑋𝑠
 , 𝑌𝑠

 ) = {(𝑥𝑠1
 , 𝑦𝑠1

 ), (𝑥𝑠2
 , 𝑦𝑠2

 ), … , (𝑥𝑠𝑁
 , 𝑦𝑠𝑁

 )} ←  mini-batch from Δ𝑠; 

  𝑋𝑡
 = {𝑥𝑡1

 , 𝑥𝑡2
 , … , 𝑥𝑡𝑁

 } ← mini-batch from Δ𝑡; 

  𝑍𝑠
 ← F(𝑋𝑠

 ); 𝑍𝑡 ← F(𝑋𝑡
 ); 

  # generate pseudo labels: 

  ℒ̂𝑡
 
= {𝓵̂𝒕1

 , 𝓵̂𝑡2
 , … , 𝓵̂𝑡𝑁

 } ← 𝐂(𝐅(𝑋𝑡
 ));           # classifier target sample 

  𝑌𝑡
 = {𝑦𝑡1

 , 𝑦𝑡2
 , … , 𝑦𝑡𝑁

 } = {M (𝓵̂𝑡1
 ),M (𝓵̂𝑡2

 ), … ,M (𝓵̂𝑡𝑁
  )};  # obtain pseudo labels 

  # M((𝑣1, 𝑣2, … , 𝑣𝐶)) = argmax
1≤𝑐≤𝐶

𝑣𝑐; 

  # evaluate losses: 

  𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 (𝑋𝑠, 𝑋𝑡) = ⋯;                            # using (29) 

  𝐿𝑐𝑙𝑠
𝑙𝑠 ←

1

𝑁
∑ ∑ ((1 − 𝛼)𝑦𝑠𝑖

𝑐 + 𝛼/𝐶) log ℓ̂𝑠𝑗
𝑐 ;𝐶

𝑐=1
𝑁
𝑖=1              # using (36) 

  𝐿𝑒𝑛𝑡 ← 
1

𝑁
∑ ∑ ℓ̂𝑡𝑗

𝑐 log ℓ̂𝑡𝑗
𝑐𝐶

𝑐=1
𝑁
𝑗=1 ;                      # using (37) 

  𝐿𝐷𝐶𝑊𝐷𝐴 ← 𝐿𝑑𝑐𝑤𝑚𝑚𝑑
𝑢 + 𝜔1𝐿𝑐𝑙𝑠

𝑙𝑠 +𝜔2𝐿𝑒𝑛𝑡; 

  # update 𝜃𝐅 and 𝜃𝐂 to minimize ℒ𝐷𝐶𝑊𝐷𝐴; 

  𝜃𝐅 ← 𝜃𝐅 − 𝜂2∇𝜃𝐅ℒ𝐷𝐶𝑊𝐷𝐴; 

  𝜃𝐂 ← 𝜃𝐂 − 𝜂2∇𝜃𝐂ℒ𝐷𝐶𝑊𝐷𝐴; 

end repeat 

4. Experimental results 

The proposed method was evaluated using digit datasets and office object data. The digit datasets 

used in the experiments include modified national institute of standards and technology database 

(MNIST) [44], U.S. postal service (USPS) [45], and street view house numbers (SVHN) [46]. MNIST 

and USPS are handwritten datasets. MNIST has 60,000 training samples and 10,000 testing samples, 

all grayscale images of size 28×28. USPS consists of 9,298 grayscale images of size 16x16. SVHN 

contains 73,257 training images and 26,032 test images, which are color images of size 32×32 captured 

from street-view house number photo images. For each image, the digit to be recognized are a single 

digit in a house number located in the center of the image, surrounded by other digits or distracting 



6641 

AIMS Mathematics  Volume 9, Issue 3, 6628–6647. 

objects. In the experiment, the images are scaled to a size of 32×32 pixels. Figure 2 shows some 

images from MNIST, USPS, and SVHN, and the image in each blue frame is used as a training 

sample. Figure 3 displays some images from MNIST, USPS, and SVHN, where the numbers within 

blue frames in SVHN images are the digits to be recognized. The Office-31 [47] dataset comprises 

three domains: Amazon (A), DSLR (Digital Single – Lens Reflex) (D), and Webcam (W). Each domain 

comprises 31 object categories in an office environment, totaling 4,110 images, with varying numbers 

of images for each category. Figure 4 displays some images from Webcam, DSLR, and Amazon. 

In the training process, the batch sizes for the digit dataset and Office-31 dataset are set to 128 

and 64, respectively. Resnet-18 and Resnet-50 [1] are adopted as the network architectures for the 

feature extractors on the digit dataset and the Office-31 dataset, respectively. Both architectures 

undergo fine-tuning with pre-trained ImageNet network parameters. In addition, the pseudo-labels of 

all target domain training data are updated with the current classifier parameters at the beginning of 

each epoch. 

 

Figure 3. Digital data: (a) MNIST, (b) USPS, (c) SVHN. 

 

Figure 4. Office-31 data: (a) Webcam, (b) DSLR, (c) Amazon. 

The accuracies of various combinations of source domain and target domain were evaluated. The 

combinations for digital datasets include: MNIST to USPS (M → U), USPS to MNIST (U → M), and 

SVHN to MNIST (S → M). The combinations for Office-31 datasets include: Amazon to DSLR (A → 

D), Amazon to Webcam (A → W), DSLR to Amazon (D → A), DSLR to Webcam (D → W), Webcam 

to Amazon (W → A), and Webcam to DSLR (W → D). Table 1 compares the proposed method with 

various unsupervised domain adaptation methods on the digit datasets, including adversarial 

discriminative domain adaptation (ADDA) [17], adversarial dropout regularization (ADR) [48], 
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conditional adversarial domain adaptation (CDAN) [49], cycle-consistent adversarial domain 

adaptation (CyCADA) [50], sliced wasserstein discrepancy (SWD) [51] and source hypothesis transfer 

(SHOT) [36]. Table 2 compares the proposed method with various unsupervised domain adaptation 

methods on the Office-31dataset, including: Wang et al. [33], deep adaptation networks (DAN) [18], 

domain-adversarial neural network (DANN) [16], ADDA [17], multi-adversarial domain adaptation 

(MADA) [52], SHOT [36], collaborative and adversarial network (CAN) [14] and mini-batch dynamic 

geometric embedding (MDGE) [23]. Each accuracy represents the average accuracy rate of three test 

results. The best-performing methods for each source-to-target combination are highlighted in bold. 

The “Source-only” category indicates that the classifier is directly trained using the source domain 

data without domain adaptation, and then tested using the target domain data. The “Target-supervised” 

category shows that the classifier is directly trained using the target domain data and tested using the 

target data. Typically, the accuracies of “source-only” and “target supervised” serve as the lower and 

upper bounds for domain adaptation accuracy, but there's no guarantee that the accuracy will fall within 

this range. 

As can be seen from Table 2, the proposed method outperforms other methods in testing most 

digital dataset pairs except S → M, and achieves the highest average accuracy. It is worth noting that 

SVHN images have obvious color changes and noise. Compared with other digital imaging datasets, 

the USPS is a smaller digital dataset with smaller images. Hence, the test results for the combinations 

of USPS and SVHN are not very informative. In view of these results, the datasets M → S, S → U, 

and U → S are not used in the digital dataset experiment. As can be seen from Table 3, the proposed 

method outperforms other methods in testing two of the three digital dataset combinations and achieves 

the highest average accuracy. 

Table 2. Accuracies (%) of several approaches on some digit datasets. 

source→target methods M→U U→M S→M Average 

Source-only 69.6 82.2 67.1 73.0 

ADDA [17] 90.1 89.4 76.0 85.2 

ADR [48] 93.1 93.2 95.0 93.8 

CDAN [49] 98.0 95.6 89.2 94.3 

CyCADA [50] 96.5 95.6 90.4 94.2 

SWD [51] 97.1 98.1 98.9 98.0 

SHOT [36] 97.8 97.6 99.0 98.1 

ours 98.0 98.2 98.8 98.3 

target-supervised 99.4 98.1 99.4 98.9 
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Table 3. Accuracies (%) of several approaches on the Office-31dataset. 

source→target methods A→D A→W D→A D→W W→A W→D Average 

Source-only 68.9 68.4 62.5 96.7 60.7 99.3 76.1 

Wang et al. [33] 90.76 88.93 75.43 98.49 75.15 99.80 88.06 

DAN [18] 78.6 80.5 63.6 97.1 62.8 99.6  80.4 

DANN[16] 79.7 82.0 68.2 96.9 67.4 99.1 82.2 

ADDA [17] 77.8 86.2 69.5 96.2 68.9 98.4 82.9 

MADA [52] 87.8 90.0 70.3 97.4 66.4 99.6 85.2 

SHOT [36] 93.9 90.1 75.3 98.7 75.0 99.9 88.8 

CAN [14] 95.0 94.5 78.0 99.1 77.0 99.8 90.6 

MDGE [23] 90.6 89.4 69.5 98.9 68.4 99.8 86.1 

ours 96.3 94.9 77.9 99.5 76.5 99.6 90.8 

target-supervised 98.0 98.7 86.0 98.7 86.0 98.0 94.3 

5. Discussion and conclusions 

In this paper, we tackled the domain adaptation problem by using a deep network architecture 

with a DCWMMD as a loss function. The MMD used is based on embedding distribution metrics in 

the reproducing kernel Hilbert space. This not only leverages the kernel trick to enhance computational 

efficiency but also conforms to the original MMD definition. Marginal MMD helps align the data 

distributions regardless of class alignment. To alleviate this limitation, CWMMD was introduced to 

align data distributions of the same class from the two domains. However, this adjustment may lead to 

a reduction in feature discriminativeness. By deconstructing CWMMD into variance minus intra-class 

distance, an adjustable weight parameter for the intra-class distance term was introduced, providing 

flexibility to preserve feature discriminability. The experimental results show that our proposed 

method improves upon the approach proposed by Wang et al. [33]. In terms of the error function, we 

not only applied the LS technique to the cross entropy for the training of the source domain, but we 

also added the entropy of the predicted label for the target samples to enhance the overall training 

performance. The proposed architecture was evaluated using two datasets, the digital dataset and 

Office-31 dataset. The results demonstrate competitive accuracy rates for domain adaptation when 

compared to other methods. 

In the future, we will continue to improve the performance of training process in the system, such 

as applying data augmentation to increase the diversity of data, using high-confidence data from the 

target domain to provide pseudo-labels for supervised post-processing training, etc. Last but not least, 

we also want to apply our work to other domain adaptation tasks, such as face recognition, object 

recognition, and image-to-image translation. 
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